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VIEWPOINT

Renal recovery
Stuart L Goldstein1, Lakhmir Chawla2,3, Claudio Ronco4 and John A Kellum5,6*

Abstract

Acute kidney injury (AKI) research in the past decade
has mostly focused upon development of a standard
AKI definition, validation of early novel biomarkers to
predict AKI prior to serum creatinine rise and predict
AKI severity, and assessment of aspects of renal
replacement therapies and their impact on survival.
Given the independent association between AKI and
mortality in the acute phase, such focus makes
imminent sense. More recently, the recognition that
AKI is associated with subsequent development of
chronic kidney disease and end-stage renal disease,
with the attendant increase in mortality, has led to
interest in the clinical epidemiology and the mechan-
istic understanding of renal recovery after an AKI epi-
sode in critically ill patients. We review the current
knowledge surrounding renal recovery after an AKI
episode, including renal replacement therapy initiation
timing and modality impact, biomarker assessment
and mechanistic targets to guide potential future clin-
ical trials.

Background
The field of acute kidney injury (AKI) in the critically ill
patient population has been subject to a significant re-
search focus over the past decade. Hallmarks of this re-
search progress include development and validation of
standardized multidimensional AKI definitions [1,2],
which help assessment of AKI outcomes, discovery of
novel biomarkers to detect AKI development and pre-
dict AKI severity earlier [3], and prospective randomized
trials enabling assessment of potentially modifiable as-
pects of AKI supportive care, namely the timing and in-
tensity of renal replacement therapy delivery [4,5]. The
realization that patients are dying from, and not just
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with, AKI [6] has driven the effort to alter the course of
AKI. By reducing rates of 'kidney attack' [7,8], thereby
preventing or at least mitigating AKI, patient mortality
and morbidity should likewise be lessened. A natural ex-
tension of 'peri-AKI' epidemiological research would ex-
pand the focus to patients who survive an AKI episode,
and a reassessment of the long-term consequences of
AKI. The fact that episodes of AKI are associated with
more rapid progression to chronic kidney disease (CKD)
in adult patients is a relatively recent observation [9];
the 2009 United States Renal Data System Report re-
vealed that adults with an AKI episode during
hospitalization have an approximately 10-fold greater
risk of progressing to end-stage renal disease than pa-
tients who did not experience AKI [10]. Similar observa-
tions were also reported around the same time for
cardiac surgery patients [11]. The goals of this review on
renal recovery after AKI are to 1) provide a state of the
art description of our current understanding of the epi-
demiology of AKI survivors, 2) describe the evolution of
novel biomarkers in the AKI to CKD field and 3) de-
scribe potential risk factors for renal recovery versus
non-recovery in AKI survivors.

Renal recovery: the definition
Serum creatinine-based definitions
None of the advancements in AKI research would have
occurred without development and validation of the first
standardized multi-dimensional AKI definition, known
as the RIFLE criteria (Risk, Injury, Failure, Loss, End-
stage kidney disease) [1], and its subsequent recalibra-
tions, pediatric RIFLE (pRIFLE) [12], the Acute Kidney
Injury Network [2] and Kidney Disease Improving Glo-
bal Outcomes (KDIGO) criteria [13]. Likewise, a stand-
ard definition of renal recovery is essential to provide an
accurate account of post-AKI epidemiology. The Acute
Dialysis Quality Initiative II work group provided the
first such definition when they proposed the empiric RI-
FLE criteria, as the 'Loss' and 'End-stage kidney disease'
strata ('L' and 'E') contained both estimated glomerular
filtration rate (GFR) and time components in their met-
rics. Loss is defined as persistent complete loss of kidney
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function for greater than 4 weeks, and End-stage kidney
disease is defined as complete loss of kidney function at
3 months after AKI development. The KDIGO AKI
Workgroup proposed a refinement with the somewhat
less severe concept of 'acute kidney disease' (AKD).
AKD, defined as a GFR <60 ml/minute/1.73 m2 or evi-
dence of structural kidney damage for less than
3 months, provides an operationally integrated bridge
between AKI and CKD. The AKD concept, which incor-
porates the concept of partial renal recovery, should be
used to raise awareness and engender the necessary clin-
ical mechanisms to follow AKI survivors for progression
to CKD, which has been recently highlighted as a missed
opportunity for adequate transitions of care [14].
Prospective AKI trials in the critically ill have mostly

focused upon patients who receive acute renal replace-
ment therapy (RRT), since they are at the highest risk
for mortality and RRT is one of the few aspects of the
AKI episode that is modifiable. A more temporally prox-
imal definition of renal recovery was utilized in the Vet-
erans Affairs/National Institutes of Health Acute Renal
Failure Trial Network (ATN) trial; patients with a 6 hour
creatinine clearance >20 ml/minute were trialed off RRT,
whereas patients with a creatinine clearance <12 ml/mi-
nute had RRT continued [4]. Thus, at the current time,
the definition of renal recovery depends upon the time
frame of interest, as depicted in Figure 1.
The report from the 2011 NIDDK Workshop on Clin-

ical Trial Design [15] recently proposed a composite
endpoint of death, dialysis provision and incomplete
renal recovery at 28 or 60 days. This concept had already

been used in the evaluation of plasma neutrophil
gelatinase-associated lipocalin (NGAL) as a predictor of
renal recovery defined by the composite of mortality,
persistence of RIFLE-F or need for RRT [16] and was
subsequently operationalized as Major Adverse Kidney
Events at Day 30 in a study of novel AKI biomarker pre-
diction of AKI and outcomes [17]. Future prospective
interventional trials aimed at promoting renal recovery
should consider incorporating at least one of these defi-
nitions as an outcome. An important consequence of
these composite endpoints is that the issue of competing
risk between persistent renal dysfunction, RRT and death
is obviated by combining these outcomes into a single
endpoint. In addition, they are perhaps more patient-
centered since kidneys that recover in patients that die
will be valued less by these patients.
GFR estimation reflects late functional changes, which

are inherently delayed since the kidneys contain the in-
nate ability to maintain function by hyperfiltration and
compensatory hypertrophy of the remaining healthy
nephrons, irrespective of the etiology for the kidney
damage. This nephron adaptation allows for continued
clearance of plasma solutes, so that serum creatinine in-
creases only after about 50% of nephrons have been lost.
Thus, it is important to note that even if creatinine-
based GFR returns to normal, there may be a potential
loss of renal reserve, so that repeated episodes of AKI
may unmask clinically detectable CKD.
There are alternatives to serum creatinine-based defi-

nitions of renal recovery, which include timed urine col-
lections for creatinine clearance measurement, direct
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Figure 1 Time periods for renal recovery based on various study endpoints in the published literature. AKD, acute kidney disease [13];
AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; RIFLE-E, end-stage of of Risk, Injury, Failure, Loss,
End-stage kidney disease criteria [1]; RIFLE-R, loss stage of Risk, Injury, Failure, Loss, End-stage kidney disease criteria; RRT, renal
replacement therapy.
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GFR assessment by radionuclide clearance and GFR esti-
mation using Cystatin C, a molecule that has ideal prop-
erties of clearance by filtration with a serum
concentration that is not dependent on muscle mass.
Going forward, epidemiological research studies should
employ these methods to reduce the issues with sole re-
liance on serum creatinine.

Classic biomarker injury-based definitions
While extensive research has been expended to identify
novel biomarkers to identify acute kidney damage earlier
and predict AKI severity [18,19], widespread outcomes
studies of specific biomarkers for the early detection of
progression from AKI to CKD do not exist. Thus, at
present, in addition to the estimation of GFR noted
above, measurement of proteinuria or microalbuminura,
which are extrapolated from the diabetic nephropathy
progression model, have been hallmarks of CKD assess-
ment [20]. Proteinuria, albuminuria and microalbumi-
nuria have been studied extensively in both adult
and pediatric cross-sectional studies of AKI survivors
[21-25]. Recent reports in adult populations have sup-
ported the use of proteinuria for prediction of adverse
outcomes in CKD [20,26,27]. However, significant struc-
tural damage has typically already occurred before
proteinuria is measureable, and kidney function decline
has usually already commenced at the onset of microal-
buminuria [28-30]. Furthermore, the predictive value
of microalbuminuria has been questioned, since a
large proportion of diabetic patients exhibit spontaneous
resolution, and only a minority progress to overt
proteinuria [31].

Prediction of renal recovery
One set of current tools for potentially predicting renal
recovery is encompassed in clinical severity of illness
(SOI) scores. While these may seem attractive options
initially, it is important to remember that SOI scores are
used to characterize and stratify adult and pediatric crit-
ical illness [32]. The initial SOI systems were developed
to benchmark, or compare, critical care units against
one another, to monitor resource use, evaluate therapies,
and improve quality assessment. They were not intended
to predict SOI in individual patients but, rather, to group
patients together in strata of illness, which would allow
group-wide mortality or SOI prediction. As an example,
Uchino and colleagues [33] tested two general illness se-
verity scores (Acute Physiology and Chronic Health
Evaluation II and Sequential Organ Failure Assessment
(SOFA)), and four AKI-specific severity scores in 1,742
patients as part of the BEST Kidney Study. None of
these scoring systems tested had a high level of discrim-
ination or calibration to predict outcome for AKI pa-
tients. If systems do not perform well to predict AKI-

associated mortality, it is no wonder that prediction of
renal recovery has remained elusive as well [34]. Al-
though factors such as advanced age, male gender, pres-
ence of sepsis/septic shock, hypotension, respiratory
failure, use of mechanical ventilation, presence of oli-
guria, and high serum bilirubin, low serum creatinine,
and using vasoactive substances are risk factors for AKI
[35], we know far less about the clinical determinants of
renal recovery. In a small study, a subset (n = 76) of the
ATN study cohort [4], Srisawat and colleagues found
that age and underlying chronic disease predicted non-
recovery of renal function (area under the curve (AUC)
0.74) following provision of RRT for AKI [16]. Determi-
nants of renal recovery may be influenced by etiology of
AKI. The same authors studied recovery following severe
AKI (RIFLE-F) in patients with community-acquired
pneumonia and found that a model composed of age,
creatinine on the first day of RIFLE-F, pneumonia sever-
ity index on admission, and maximum non-renal SOFA
score yielded an AUC of 0.78 [36].
Some recent work has demonstrated promise for clin-

ical prediction for renal recovery with more specific
markers. A systematic review of patients with hemolytic
uremic syndrome revealed that renal replacement ther-
apy provision and central nervous system involvement
increased risk for end-stage renal disease [37], although
rates of renal recovery were not directly addressed. A re-
cent assessment of AKI to stage 4 CKD progression in
the US Veterans population developed and then vali-
dated three models to predict CKD risk, with increasing
AKI severity by RIFLE score and in-hospital hypoalbu-
minemia providing the strongest prediction [38]. Of
note, each increase in RIFLE score was associated with
an adjusted odds ratio of 4.43 for development of stage
4 CKD, which was higher than any other covariate ex-
cept the need for RRT. Although these models require
validation in other cohorts and should be tested longitu-
dinally in a systematic assessment of patients at risk for
AKI, they provide some clues as to which patients
should be targeted for close follow-up and potentially
therapeutic trials to slow CKD progression.
Although oliguria (urine output less than 400 ml/day)

is a common event in the ICU and urine flow is one of
the diagnostic and staging criteria for AKI, only a few
studies have focused on the role of urine output as a
prognostic renal biomarker. Oliguric patients without
change in serum creatinine concentrations demonstrated
increased mortality rates and dialysis requirements simi-
lar to patients with serum creatinine change-based AKI
[39]. A post hoc analysis from the BEST kidney study
revealed that the urine output area under the receiver
operating characteristic curve for successful discontinu-
ation of continuous RRT (CRRT) was 0.85, although
it fell to 0.67 when diuretics were used. Urine output
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cutoffs of 436 ml/day and 2,330 ml/day for patients
without and with diuretics, respectively, had the highest
accuracy [40].
Recently, some studies have begun to assess the ability

of novel biomarkers to predict renal recovery and/or
progression to CKD. NGAL has been extensively studied
in the field of AKI [41]. In the late phase of AKI, NGAL
is believed to play a role as a growth and differentiation
factor for restoring tubular epithelial function with the
assistance of siderophore-iron complexes. However,
most previous studies have tested plasma/urine NGAL
as a marker for early diagnosis of AKI; only a few studies
have examined plasma/urine NGAL as a prognosticate
marker of clinical outcome, mostly with mortality and
hospital length of stay as endpoints. In fact, a systematic
review demonstrated similar mortality rates and length
of stay for patients with 'NGAL-positive: creatinine-
negative' AKI versus 'NGAL-negative: creatinine-
positive' AKI [42].
Two studies (also mentioned above) have assessed

NGAL as a predictor of renal recovery [16,36]. Plasma
NGAL was assessed in patients with community-
acquired pneumonia on the first day they experienced
severe AKI (defined as RIFLE-F), and recovery was de-
fined as being alive and neither requiring RRT during
hospitalization nor having a persistent RIFLE-F classifi-
cation at hospital discharge [36]. The investigators
found that elevated plasma NGAL levels were associ-
ated with renal non-recovery with a 17% increase in
predicting renal non-recovery. The second study, the
Biological Markers of Recovery for the Kidney study
[16], was conducted as an ancillary to the ATN study
[4]. Urine samples were collected on days 1, 7, and 14
from 76 patients who developed AKI and received
RRT in the ICU. For predicting recovery, decreasing
urinary NGAL and urinary hepatocyte growth factor in
the first 14 days was associated with greater odds of
renal recovery.
Interestingly, animal models of AKI-to-CKD transition

identify NGAL, as well as another novel AKI biomarker,
Kidney injury molecule-1 (KIM-1), as two of the most
upregulated genes and proteins in the kidney, revealing
a possible role for these proteins as biomarkers [43].
Furthermore, studies on urinary NGAL and KIM-1 in
other renal diseases demonstrate higher NGAL concen-
trations are associated with more rapid progression of
CKD [44-49]. Coupling the animal data with the human
data noted provides evidence that novel biomarkers can
serve as early markers of ongoing renal injury, even in
the setting of AKI. The clinical impact is potentially
great in the setting of AKI, for even if a patient is under-
going dialysis, therapies directed at mitigating ongoing
injury may have a role in AKI treatment and CKD
prevention.

Promoting renal recovery
Mechanisms of recovery
The kidney has a tremendous capacity for repair follow-
ing different types of AKI. Interestingly, regeneration
and repair mechanisms lead to the expression of many
different developmental signaling pathways [50]. Prox-
imal tubular epithelial cells are particularly susceptible
to AKI as they are positioned closest to the glomeruli
(and are thus first to 'see' various endogenous and ex-
ogenous toxins) [51] as well as having the highest meta-
bolic rate (and are thus susceptible to ischemia and
metabolic toxins). Once injured, tubular epithelial cells
can re-differentiate after an initial phase of de-
differentiation and proliferation, thus replacing cells that
are lost to necrosis, apoptosis, or simply shedding from
the basement membrane during injury [52]. This
'healthy repair process' can go awry at various stages,
leading to fibrosis and CKD. Various mechanisms have
been implicated in controlling the repair process [53],
many of which may represent drug targets. Recently,
Notch signaling, a cell-cell communication mechanism
that regulates development, tissue homeostasis and re-
pair, has been identified to play a potential role in repair
and regeneration after AKI [54]. Generally absent in the
mature kidney, Notch is reactivated after AKI, and could
be responsible for cellular differentiation, proliferation
and repair [55]. This notion is supported by studies from
various laboratories that independently observed a link-
age between increased expression of Notch2 and its tar-
get Hes1 and increased proliferation of renal tubular
epithelial cells in the setting of various insults [56-58].

Therapies
While a number of medications have been studied to
prevent AKI development and severity, including di-
uretics, adenosine A1 receptor antagonist and dopamine
receptor alpha1-specific agonists, the results have been
nearly uniformly negative [59-61], although fenoldopam
has been shown to improve urine output and NGAL ele-
vation in children after cardiac surgery in a pilot study
[62,63]. Thus, it logically follows that these agents may
not be helpful to promote renal recovery. New therapies
aimed more specifically at mechanisms of renal fibrosis
and maladaptive repair are under development, some
with promising pre-clinical results.
Two aspects of RRT provision have recently been

assessed for their potential impact on renal recovery:
fluid overload at the time of RRT initiation and RRT
modality. Each of these factors is important, since they
represent potentially modifiable treatment decisions
available today to improve outcomes. The association
between increasing degrees of fluid overload at RRT ini-
tiation as well as the negative impact of fluid overload in
critically ill patients with and without AKI has been well

Goldstein et al. Critical Care Page 4 of 72014, 18:301
http://ccforum.com/content/18/1/301

http://ccforum.com/content/18/1/301


documented in the pediatric and adult critical care lit-
erature. Multiple multicenter studies demonstrate in-
creased mortality in patients with greater than 10 to 20%
ICU fluid accumulation at CRRT initiation [64-66]. A
single center study demonstrated that initiation of RRT
at less than 10% fluid overload was associated with im-
proved renal recovery, with each 1% of fluid overload
carrying a 3% reduction in renal recovery rates [67]. The
potential explanation for this association posits that fluid
overload increases the risk of intra-abdominal compart-
ment syndrome and increases renal venous pressure,
leading to renal interstitial edema with resultant de-
creased glomerular filtration, distorted tissue architec-
ture, and impaired tissue perfusion.
The two recent, large, well conducted, randomized,

multicenter trials, ATN [4] and RENAL [5], which did
not demonstrate a benefit of higher RRT intensity on
survival or renal recovery, have provided high-quality
data to assess the impact of RRT modality on renal re-
covery, since the two studies had very different rates of
renal recovery. Overall, the cohorts were closely
matched; however, recovery of renal function by day 28
was substantially better in RENAL versus ATN (87% ver-
sus 55%).
What differences between the two studies could ac-

count for this difference in renal recovery? Although the
chronological time to start of treatment was shorter in
RENAL compared to ATN (2.1 versus 6.7 days), the
BUN concentration at the start of therapy (another sur-
rogate for timing) was nearly identical. Another differ-
ence between the two trials that could have accounted
for the differences in outcomes was the exclusive use of
CRRT as the initial mode of RRT in the RENAL trial
compared to a strategy that allocated patients to CRRT
only if they were hemodynamically unstable (cardiovas-
cular SOFA score >2) in the ATN trial, while more
stable patients received intermittent hemodialysis.
A very recent meta-analysis of RRT modality and renal

recovery lends significant credence to the proposition
that CRRT is associated with improved renal recovery
compared to intermittent RRT (IRRT) [68]. Ultimately,
23 total studies (randomized controlled n = 7, observa-
tional n = 16), comprising 3,977 AKI survivors, fulfilled
criteria for the comparison of CRRT to IRRT. Pooled av-
erages from the studies demonstrated that patients re-
ceiving IRRT initially were generally less severely ill,
with lower rates of mechanical ventilation, vasopressor
administration and CKD. The overall relative risk (RR)
from all studies for dialysis dependence was higher for
IRRT patients (RR 1.73, 95% confidence interval (CI)
1.35 to 2.20). However, this association was not observed
in the pooled average of randomized controlled trials
(RR 1.15, 95% CI 0.78 to 1.68), and only held true in the
pooled averages for the observational trials (RR 1.99,

95% CI 1.53 to 2.59). The authors note that the random-
ized controlled trials only included small studies (com-
bined patient total of 472 AKI survivors) and enrolled
less severely ill patients. Furthermore, most randomized
controlled trials have only included patients who could
receive either modality, excluding those deemed too un-
stable for standard IRRT.

Conclusion
Recovery of renal function following an episode of AKI
is far from certain and a growing body of evidence sug-
gests that progression of underlying CKD or even devel-
opment of de novo CKD may occur following an episode
of AKI. Patients who fail to recover will have a signifi-
cantly shorter life-span and succumb to a number of
morbidities. The underlying cellular and physiologic
mechanisms that drive outcomes after AKI are poorly
characterized. Epidemiologic evidence strongly suggests
that advanced age is the most significant risk factor for
non-recovery of renal function but this may merely re-
flect a diminished renal functional reserve in this popu-
lation. Since there is a potential independent risk
conferred by multiple AKI episodes on CKD progression
[9], the clinical focus at present must continue to be on
avoiding subsequent AKI episodes in the critically ill.
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