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miR-411 is up-regulated in FSHD myoblasts and
suppresses myogenic factors

Naoe Harafuji', Peter Schneiderat?, Maggie C Walter? and Yi-Wen Chen'**

Abstract

Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is
linked to the contraction of the D474 array at chromosome 4g35. Recent studies suggest that this shortening of
the D474 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition,
misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we
identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function.

Methods: To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression
profiling of both miRNA and mRNA using TagMan Human MicroRNA Arrays and Affymetrix Human Genome U133A
plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C,C;, cells to determine the effect of

miR-411 on myogenic markers.

were suppressed by miR-411.

role in regulating myogenesis.

Results: Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were
differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs,
miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01)
myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both
miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411
including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by
immunoblotting (—3.7 fold, p<0.01). C,C,, cells were transfected with miR-411 to determine whether miR-411
affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA
expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (MyhT)

Conclusions: The study demonstrated that miR-411 was differentially expressed in FSHD myoblasts and may play a

Keywords: FSHD, microRNA, miR-411, YAF2, YY1, Myod, myogenin

Background

Facioscapulohumeral muscular dystrophy (FSHD) is an
autosomal dominant myopathy with estimated preva-
lence of 1:20,000 [1,2]. The age of onset is often in the
second decade of life with nearly complete penetrance
(95%) by age 20 [3]. FSHD is characterized by progres-
sive weakness of different muscle groups, often starting
with the facial muscles, followed by the shoulder girdle
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muscles, and moving down to the hip girdle and the ex-
tremities [4-6]. Many patients also exhibit a marked left-
right asymmetry in muscle involvement [4,7,8]. Patients
can have additional symptoms such as severe inflammation
in muscles, subclinical hearing loss, and peripheral retinal
capillary abnormalities [9-11]. Genetic studies of FSHD
have shown that the disease is associated with a deletion of
the D474 repeats in the 4q35 subtelomeric region. In indi-
viduals without FSHD, this region contains up to 150 cop-
ies of the D4Z4 repeats while patients with FSHD only
have one to ten copies of the repeat [4,6,12-16].

Each D47Z4 repeat contains a double homeobox pro-
tein 4 (DUX4) gene. Several DUX4 splice variants have
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been reported to be expressed in germ-line cells and myo-
blasts [17-19]. Although the function of DUX4 is not yet
known, the full-length DUX4 transcript (fl-DUX4) has
been shown to be cytotoxic in vivo and ex vivo when ec-
topically expressed [19-23]. Several studies suggested that
p53-dependent cell death plays a major role in the cyto-
toxicity of DUX4 [23-25]. Recent studies have also shown
that a combination of two genomic features is required to
cause FSHD. First, the contraction of the D4Z4 repeats
causes hypomethylation of the D4Z4 region, allowing
DUX4 mRNA to be transcribed [21,26]. Second, an intact
polyadenylation signal in the region distal to the D474
array allows DUX4 transcripts from the last D474 repeat
to be polyadenylated and therefore stable for protein
translation. This combination of events leads to the aber-
rant expression of DUX4 and the downstream molecular
changes involved in FSHD [17,21,27]. The aberrant ex-
pression of DUX4 in FSHD has been proposed to inhibit
myogenesis by suppressing Myod regulated pathways and
inducing muscle atrophy pathways [20,24,28-33]. How-
ever, the regulatory relationship between DUX4 and these
pathways is not clear. Currently no effective therapy for
FSHD is available. Several pharmacological treatments
such as corticosteroids, albuterol, creatine monohydrate,
and anti-human myostatin antibody have been tested for
their efficacy of treating FSHD, but none showed promis-
ing results [34].

MicroRNAs (miRNAs) are short (~22 nucleotides) non-
coding RNAs which regulate gene expression by inter-
fering translation or promoting degradation of target
mRNAs [35,36]. A mature miRNA is generated through
several steps. First, a primary-miRNA (pri-RNA) is tran-
scribed and then cleaved to form a pre-miRNA, which is a
single hairpin-shaped stem-loop [37]. Subsequently, the
pre-miRNA is exported to the cytoplasm and cleaved into
a mature miRNA duplex by Dicer [37,38]. The functional
strand is incorporated into the RNA-induced silencing
complex (RISC) to form a miRNA-RISC complex [39,40].
In general, the miRNA-RISC complex will cleave the tar-
get mRNA when the target sequence is perfectly comple-
mentary to the miRNA sequence, or it will interfere with
translation of the target mRNA when mismatches are
present in the target sequence [40,41]. Many miRNAs are
conserved between vertebrates and invertebrates and have
been shown to share functions in various cellular pro-
cesses including embryogenesis, organogenesis, apoptosis,
cell cycle regulation and disease development, including
muscle disorders [40-43]. Several miRNAs have been
shown to play important roles in muscle differentiation,
including the miR-1 and miR-133 families, miR-181, miR-
214, miR-24, miR-221 and miR-222 [44-51]. In additional
to normal muscle growth and maintenance, miRNAs have
also been shown to be differentially expressed in disease
conditions [52-54]. A global miRNA expression profile of
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10 muscle disorders was previously performed and
showed that 185 out of the 428 miRNAs examined were
differentially expressed in at least one of the 10 different
muscle disorders [55]. Among the 185 miRNAs, 62 were
up-regulated in FSHD while none was down-regulated.
These findings suggest that miRNAs may play a critical
role in FSHD, although the mechanisms involved have not
been studied. MiR-411 belongs to the miR-379 family and
is located in the miR-379/miR-656 cluster within the
DLK-DIO3 region on human chromosome 14 [56]. The
miR-379/miR-656 cluster is highly conserved in placental
mammals [56]. In mouse brain, the expression of the miR-
379/miR-656 gene cluster is likely co-regulated by
myocyte enhancing factor 2 (Mef2) and is involved in
activity-dependent outgrowth of hyppocampal neurons
[57]. The function of miR-411 in brain or other tissues is
currently unknown. In this study we performed miRNA
expression profiling using PCR-based miRNA arrays to
identify miRNAs misregulated in FSHD myoblasts. We
then used mRNA profiling to identify potential regulatory
targets of miR-411, which was significantly upregulated in
the miRNA profiling. We further examined the effects
of over-expressing miR-411 in C,C;, myoblasts and its
potential role in myogenesis.

Methods

Cell culture and immunostaining

Primary myoblasts were obtained from EuroBioBank
(Dr. Schneiderat and Dr. Walter) (Additional file 1:
Table S1). For expression profiling experiments, cells
were cultured in collagen I-coated flasks with SkGM
(Lonza) at 37°C, 5% CO,. For in situ hybridization ex-
periments, cells were seeded on poly-D-lysine/mouse
laminin-coated coverslips (BD BioCoat, BD Biosciences).

C,Cy, cells were purchased from ATCC and cultured
in growth medium consisting of DMEM (Life Technolo-
gies) with 10% heat-inactivated fetal bovine serum
(Sigma). Myotube differentiation was induced by cultur-
ing the cells in differentiation medium consisting of
DMEM with 2% heat-inactivated horse serum (Sigma) at
37°C, 5% CO,.

Immortalized human myoblasts were from the Boston
Biomedical Research Institute and cultured as described
in previously published protocol [58,59]. Briefly, immor-
talized myoblasts were cultured in a growth medium
consisting of medium 199 and DMEM (Life Tech-
nologies) in a 1:4 ratio with 0.8 mM sodium pyruvate
(Life Technologies), 3.4 g/l sodium bicarbonate (Sigma-
Aldrich), 15% fetal bovine serum (Thermo Scientific),
0.03 pg/ml Zinc sulfate (Fisher), 1.4 pg/ml vitamin B12
(Sigma-Aldrich), 2.5 ng/ml recombinant human hepato-
cyte growth factor (Millipore), 10 ng/ml basic fibroblast
growth factor (BioPioneer), 0.02 M HEPES (Life Technolo-
gies), and 0.055 pg/ml dexamethasone (Sigma-Aldrich) at
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37°C, 5% CO,. The culture dish was coated with 0.1%
gelatin (Sigma-Aldrich).

Myoblasts purity was determined by performing im-
munofluorescent staining using anti-human desmin
(Dako) antibody. Myoblasts that exhibited greater than
70% desmin-positive cells were utilized for expression
profiling. Immunostaining was conducted as previously
described [60]. Briefly, the cells were fixed with 4% para-
formaldehyde for 30 minutes, then blocked with 0.3%
Triton X-100, 15% hose serum and 450 mM NacCl in
phosphate buffer saline (PBS). Following blocking, fixed
cells were incubated with anti-human desmin (Dako) for
4°C overnight. After washing 3 times, fixed cells were in-
cubated with secondary antibody, DyLight 488-conjugated
donkey anti-mouse IgG (Jackson ImmunoRessearch
Laboratories). The slides were mounted using ProLong
Gold Antifade Reagent with DAPI (Life Technologies) for
further examination.

Total RNA extraction and miRNA expression profiling

To identify differentially expressed miRNA in FSHD pri-
mary myoblasts, we performed miRNA expression pro-
filing using proliferating primary FSHD and control
myoblasts (n=3, Additional file 1: Table S1). Total RNA
with miRNA enrichment was extracted from cells using
mirVana miRNA isolation kit (Life Technologies) ac-
cording to manufacturer’s protocol. Following RNA iso-
lation, RNA quality and concentration were determined
by gel electrophoresis and NanoDrop (Thermo Fisher
Scientific), respectively. The miRNA profile of each myo-
blasts was determined using TagMan Human MicroRNA
Array v2.0 (Human Array A) (Life Technologies) ac-
cording to manufacturer’s protocol. Briefly, reverse tran-
scription (RT) was performed with 100 ng of total RNA,
Multiplex RT Human primer pools, and TaqMan
MicroRNA Reverse Transcriptase Kit (Life Technolo-
gies). Real-time PCR was performed with TagMan Uni-
versal PCR Master Mix, No AmpErase UNG (Life
Technologies) using the Applied Biosystems 7900HT
System. Ct values of all miRNAs were determined using
RQ Manager 1.2 (Life Technologies) with a threshold of
0.1. Ct values were then imported into Partek Genomics
Suite 6.5 and normalized to control, RNU48. ANOVA
analysis was performed using Partek Genomics Suite 6.5
(Partek Incorporated, MO). No multiple testing correc-
tions were performed.

mRNA expression profiling and miRNA target search

The total mRNA samples were expression-profiled using
the Affymetrix Human Genome U133A plus 2.0 micro-
arrays (Affymetrix) following the manufacture’s protocol
and as previously described [17,61]. Absolute analysis of
the array data was performed using the MAS5 algorithm
of the Affymetrix expression console. All genes with 10%
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present calls were then imported into Partek Genomics
Suite 6.5 for t-test analysis [62]. Targets of miRNA were
predicted using Partek with the TargetScanHuman (release
5.1) database. The identified transcripts were further se-
lected for those down-regulated in the FSHD myoblasts,
considering that miRNAs generally down-regulate expres-
sion of the target genes.

Quantitative reverse transcription polymerase chain
reaction (qRT-PCR)
Expression levels of miR-411 were analyzed by qRT-PCR
using TagMan MicroRNA assays according to the manu-
facturer’s instructions. RNU48 served as an endogenous
control (Life Technologies). Briefly, RT reactions were
performed with 10 ng of total RNA using TaqgMan
MicroRNA Reverse Transcriptase Kit (Life Technolo-
gies). Real-time PCR was performed using TagMan Uni-
versal PCR Master Mix, No AmpErase UNG (Life
Technologies) and Applied Biosystems 7900HT System.
Relative fold changes were calculated using the com-
parative Ct Method (AA Ct Method) [63,64]. We chose
RNU48 as the endogenous control because it demon-
strated the most stable expression level among suggested
internal control genes noted by Life Technologies.
Expression levels of Myod, myogenin, myosin heavy
chain 1 (Myhl), and YY1 associated factor 2 (Yaf2) were
determined using qRT-PCR as previously described [65].
18s rRNA (Life Technologies) was used as the endogen-
ous control. Briefly, RT reaction was performed with
random hexamers and Super Script II (Life Technologies).
Real-time PCR was performed with SYBR green Master
Mix or TagMan Universal PCR Master Mix (Life Tech-
nologies) using a final template concentration of 0.4 ng/pl.
Mpyod, myogenin and Myhl primers were a gift from
Dr. Tatiana V. Cohen [66]. The primer sequences were
as follows: Myod, 5'- GGCTACGACACCGCCTACTA -3/;
and 5- GCTCCACTATGCTGGACAGG -3". myogenin,
5- GGGCAATGCACTGGAGTT -3; and 5- ATGGTT
TCGTCTGGGAAGG -3'. Myhl, 5'- GCAAGAAGCAGA
TCCAGAAAC -3; and 5- CGGTCTTCCTCAGTTTGA
TAAG -3'. Yaf2, 5'- ATCAGGGTTAGCGCTGTTGT -3}
and 5- TGGCAAGTTCTTTCCTGCTT -3". All the Ct
values were extracted with SDS (Life Technologies) and,
after normalization using r18s, were converted into ex-
pression levels. Student t-tests were performed to deter-
mine the statistical significance of changes.

In situ hybridization

In situ hybridization was performed using 5'-digoxigenin
(DIG) labeled miRCURY locked nucleic acid (LNA)
detection probes, including hsa-miR-411 (38398-01),
U6 (99002-01) and Scramble-miR (99004-01) (Exiqon)
following the protocol from Exiqon and Roche with
few modifications. Cultured cells were fixed with 4%
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paraformaldehyde (PFA)/PBS, rinsed with 100% metha-
nol, then rehydrated and acetylated. Cells were then pre-
hybridized in hybridization buffer at 37°C for 1 hour [67].
The hybridization step was performed with 30 nM heat-
denatured LNA-probe at 37°C for overnight. After strin-
gent washes with 50% formamide, 0.1% Tween-20, 2x SSC
at 37°C and 0.2x SSC at room temperature, the samples
were incubated with blocking solution, and next with alka-
line phosphatase (AP)-conjugated anti-DIG Fab fragment
(Roche). The antibodies were detected with the 5-bromo
4-chloro-3-indolyl phosphate (BCIP)- nitroblue tetrazo-
lium (NBT) colorimetric detection system incubating the
slides in 0.35 mg/ml NBT and 0.175 mg/ml BCIP in 10%
polyvinyl alcohol (PVA) and 1 mM levamisole staining so-
lution. The samples were mounted using ProLong Gold
Antifade Reagent with DAPI (Life Technologies) for fur-
ther examination.

Immunoblotting

Immunoblotting was performed as described previously
[25]. Briefly, myoblasts were lysated with RIPA buffer
(Sigma-Aldrich) on ice. Protein concentration was deter-
mined by DC protein assay (Bio-Rad), and 30 pg of pro-
tein was loaded to 12% Bis-Tris NuPAGE Novex gels
(Life Technologies) and then transferred to Hybond nitro-
cellulose membranes (Amersham Biosciences). After
blocking, the membrane was incubated with rabbit poly-
clonal anti-YAF2 antibody (1:2,000) (Aviva) followed by
horseradish peroxidase (HRP)-conjugated anti-rabbit anti-
bodies (Amersham Biosciences). Chemiluminescent sub-
strate (Pierce) was used to visualize the target proteins on
blue light autorad film (BioExpress). Detection of the load-
ing control, GAPDH (Santa Cruz Biotechnology), was
similarly performed with 1:10,000 dilution of the mouse
monoclonal primary antibody. The same blot was subse-
quently incubated with mouse monoclonal anti-human
YY1 antibody (1:200) (Bio Matrix Research) to detect the
YY1 protein followed by HRP-conjugated anti-mouse
antibodies (Amersham Biosciences). Band density of the
target protein was measured using a GS 800 Calibrated
Densitometer (Bio-Rad) and image ] [68] then normalized
to the density of GAPDH. Student t-tests were performed
to determine the statistical significance of changes. The
experiments were performed in quadruplicate.

Cell Transfection

Cells were transfected with 30 mM Ambion pre-miR
-411 precursor oligos (Life Technologies) using
Lipofectamine 2000 (Life Technologies) following the
manufacture protocol. Briefly, 4x 10%/cm? C,C,5 cells were
plated in growth medium one day before the transfection.
Cells were transfected when they reached 70% confluence.
A final concentration of 30 nM oligos was used for the
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transfection. Differentiation was induced 6 hours after the
pre-miR-411 transfection.

Results

MiRNA-411 was differentially expressed in FSHD primary
myoblasts

MiRNAs have been shown to be misregulated in FSHD
and other muscular dystrophies and were proposed to
be involved in the pathological mechanisms of muscular
dystrophies. To identify miRNAs misregulated in prolif-
erating FSHD myoblasts and their potential mRNA tar-
gets, we performed miRNA and mRNA expression
profiling using total RNA samples isolated from 3 sets of
proliferating primary myoblasts. Using TagMan Human
MicroRNA Arrays, we identified 8 miRNAs differentially
expressed in FSHD myoblasts comparing to controls
(n=3, p<0.05) (Additional file 2: Table S2). To validate
the findings, we performed qRT-PCR with an independ-
ent set of primary myoblasts (n=4). Only miR-411 was
validated using the second set of samples (2.1 fold,
p<0.01) (Figure 1A). To determine whether the same dif-
ference could be observed in immortalized FSHD myo-
blasts of which the control myoblasts were derived from
an unaffected family member, we performed qRT-PCR
and the results showed a similar difference in the im-
mortalized FSHD myoblasts comparing to the control
sample (2.7 fold, p<0.01, n=4) (Figure 1B).

The expression of miR-411 has been reported in brain,
however the function and cellular localization of the
miRNA is unknown. To determine the cellular localiza-
tion of the miR-411 in myoblasts, we visualized miR-411
by in situ hybridization. The results showed that miR-411
was localized in the cytoplasm of the myoblasts. A subset
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Figure 1 The up-regulation of miR-411 was validated in
primary and immortalized FSHD myoblasts using qRT-PCR.
MiR-411 expression was significantly higher in the proliferating
primary myoblasts (A) and immortalized myoblasts (B) of patients
with FSHD (n=4). White columns indicate control (Con) and black
columns indicate FSHD myoblasts (FSHD). Error bars represent
standard errors, and asterisks (**) indicate p < 0.01.
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of primary FSHD myoblasts showed stronger staining that
can be visualized by the in situ hybridization (Figure 2B).
The cells which expressed higher level of miR-411 were
larger in size. The morphology is more similar to the
FSHD cells showing necrotic phenotype reported previ-
ously [32,69]. The miR-411 expression in the control myo-
blasts as well as the negative probes in both the disease
and control cells was not visible (Figure 2).

Over-expression of miR-411 leads to down-regulation of
YAF2, MYOD and myogenin

To identify mRNA transcripts that can be potentially
regulated by miR-411, mRNA profiles generated using
the same total RNA samples used for miRNA profiling
were analyzed to identify potential mRNA targets of
miR-411. First, 1,502 mRNA transcripts were differen-
tially expressed in the FSHD myoblasts comparing to
the control samples during cell proliferation (p<0.05)
(Additional file 3: Table S3). The miR-411 predicted tar-
gets were identified then compared to the mRNA tran-
script list using Partek Genomics Suite 6.5 to identify
potential miRNA-mRNA interactions. Among the po-
tential miR-411 targets, we further selected transcripts
that were down-regulated in FSHD myoblasts based on
the current knowledge that miRNAs negatively regulate
target gene expression. Four candidate genes were iden-
tified, including YAF2 (-1.4 fold, p<0.05), calmodulin-
like 4 (CALML4) (-1.8 fold, p<0.05), mitogen-activated
protein kinase kinase 1 (MAP2KI) (-1.2 fold, p<0.05), and
SH3 and multiple ankyrin repeat domains 2 (SHANK2)
(-1.9 fold, p<0.05). Among the 4 genes, two genes, YAF2
and MAP2K1, are known to be involved in cell cycle

Page 5 of 10

regulation and early myogenesis. In addition, YAF2 nega-
tively regulates myotube differentiation by inhibiting Yin
Yang 1 (YY1) activity [70]. YY1 is a transcriptional repres-
sor that inhibits muscle gene expression and myogenesis
[71,72]. YAF2 interacts with YY1 and facilitates proteolytic
cleavage of YY1 by m-calpain [70].

There are five human YAF2 transcript variants
reported (GenBank). All five splice variants have one or
two putative miR-411 binding site in their 3° UTR
(Additional file 4: Figure S1). Among these, YAF2 variant
2 has been cloned from the human muscle cDNA library
as a protein which interacted with YY1 [70]. To determine
if YAF2 expression is affected at the protein level in FSHD
myoblasts, we performed immunoblotting and showed a
3.7 fold (p<0.01) down-regulation of YAF2 in FSHD im-
mortalized myoblasts (Figure 3). The expression level of
YY1 in the immortalized FHSD myoblasts was determined
by immunoblotting. The result showed that YY1 was 8.3
fold (p<0.01) up-regulated in the FSHD myoblasts
(Figure 3). To further determine whether miR-411 can
regulate YAF2 and downstream pathways, C,C;, myo-
blasts were transfected with miR-411 precursor oligos,
followed by cell differentiation for 5 days. The expression
levels of miR-411, Yaf2 and myogenic markers, Myod,
myogenin (Myog), and Myhl were examined by qRT-PCR.
The results showed that Yaf2 expression level was signifi-
cantly down-regulated (-4.5 fold, p<0.05) by miR-411
over-expression (Figure 4A). Interestingly, myogenic fac-
tors, Myod (-14 fold, p<0.05) and Myog (-2.1 fold,
p<0.05) as well as a myotube differentiation marker, Myhl
(-1.7 fold, p<0.05), were also significantly down-regulated
by miR-411 over-expression (Figure 4B-D).

— 4 m—

Figure 2 Cellular localization of miR-411 in FSHD myoblasts. The cellular localization of miR-411 was determined by in situ hybridization
using LNA probes. While not seen in control myoblasts (A), the expression of miR-411 was visible in the cytoplasm of some FSHD myoblasts
(B: marked by asterisks). The negative control using probes with scramble sequences did not generate any signal in control myoblasts (C) or
FSHD myoblasts (D). In contrast, the positive control (U6 probe) showed nuclear staining in both control myoblasts (E) and FSHD myoblasts
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*
(F). The scale bar is 50 pym.
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Discussion

To determine whether the differentially expressed
miRNAs identified in our study overlap with changes
identified in miRNAs in patient muscle biopsies [55], we
compared our miRNA data to the previously published
miRNA profiling study of 10 muscle disorders. In the
study, expression of 62 out of 428 miRNAs examined
was differentially expressed muscles of patients with
ESHD. All miRNAs were up-regulated in the muscles
while none was down-regulated. One miRNA, miR-517*
was reported to be uniquely up-regulated in FSHD. We
compared our myoblast miRNA profiling data to the
study and found out that 5 out of the 8 miRNAs iden-
tified in our study were overlapped with the mis-
regulated miRNAs in the previous study (Additional file 2:
Table S2). Among the 5 miRNAs, miR-99b and miR-18a
were also reported to be misregulated in FSHD biopsies.
However, the directions of expression changes were the
opposite in the two studies. While miR-517* was exam-
ined in our study, the expression was not detectable in

either the FSHD and control myoblasts. The discrepancy
may results from differences in sample type (muscle biop-
sies vs. primary myoblasts), disease stages, or platform
used. It is not clear whether a probe detecting miR-411
was on the array used in the previous profiling study
therefore it is not known whether miR-411 was changed
in patients’ muscle samples. While no study was con-
ducted to investigate the function of miR-411, differential
expression of miR-411 was reported in a miRNA profiling
study of a mouse model of Duchenne muscular dystrophy
known as the mdx mouse model [54]. In this study, miR-
411 was reported to be down-regulated (-1.8 fold) in the
gastrocnimeous muscles of the mdx mice. To date, it is
not known whether the down-regulation of miR-411 con-
tributes to the disease phenotype or participates in the
muscle regeneration process in the mdx mouse model
However, our data suggested that reduction of miR-411
may have a positive effect on muscle regeneration consid-
ering its potential to suppress factors that promote myo-
blast maturation.
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In this research, we showed that YAF2 was down-
regulated in FSHD myoblasts and is a potential target of
miR-411. YAF2 is a C,C,-type zinc finger factor and an
inhibitor of the YY1 protein, a known negative regulator
of myogenesis [70]. YAF2 shows high similarity with
YEAF1 and can be a part of Polycomb group (PcG)
complexes [73,74]. YY1 is also a member of the PcG and
has been shown to bind to the D4Z4 repeat with
HMGB2 and nucleolin [75,76]. In myoblasts, YY1 in-
hibits differentiation through binding to the promoter
regions of myofibrillar genes and the retinoblastoma
gene (Rb) which induces terminal exit from the cell cycle
[77]. YY1 also inhibits miR-29 which is a positive regula-
tor of myotube differentiation [78]. It has been shown
that YY1 binds to the serum response factor (SRF) bind-
ing sequence, CArG box, in the regulatory region of the
MYOD gene during muscle regeneration, which re-
pressed the expression of MYOD ([79]. SRF is a member
of the MADS box transcription factor family and a posi-
tive regulator of myogenesis [80-83]. It is believed that
YY1 inhibits myogenesis via competition for SRF bind-
ing sites and repressing expression of myogenic factors,
such as MYOD. The expression level of YY1 protein in
muscle cells is positively controlled by NF-kappa B
which inhibits myogenesis, and negatively regulated by
YAF2 [70,84]. YAF2 expression increases during muscle
differentiation and directly binds to YY1 protein. The
interaction between YAF2 and YY1 promotes proteolytic
cleavage of YY1 by m-calpain, thus reducing YY1 protein
levels in differentiating myofibers. Based on the findings,
we hypothesized that the over-expression of miR-411 af-
fects the expression of myogenic factors through the in-
hibition of YAF2 expression. The down-regulation of
YAF2 might result in the accumulation of YY1 proteins
therefore suppress MYOD and myogenin expression.
Previous mRNA profiling studies examining patients’
muscle biopsies showed that YY1 was up-regulated in
FSHD biopsies [17]. In addition, YY1 was shown to be
up-regulated in immortalized human myoblasts trans-
fected with DUX4 expression vector [85]. In this study,
we showed YY1 was up-regulated in FSHD myoblasts.
Our findings suggested a potential regulatory mechan-
ism of the YY1 up-regulation and the myogenesis defects
observed in FSHD.

While some studies have reported that FSHD myo-
blasts exhibit a normal, healthy phenotype [28,59,86],
others reported an abnormal phenotype regarding their
appearance and ability to differentiate [32,33,87]. Our re-
sults agree with the latter findings, as we observed some
FSHD myoblasts with necrotic features as reported pre-
viously [32,69]. Interestingly, these cells also showed vis-
ible staining of miR-411 in their cytoplasm, suggesting
the up-regulation of miR-411 may be involved at a later
stage when the cells are further affected. Despite the

Page 7 of 10

phenotypic differences reported in the different groups,
several expression profiling studies showed similar de-
fects at the molecular level, such as in cell cycle regula-
tion, early myogenesis, and oxidative stress responses
[28,30-32]. MYOD is a master regulator of myogenesis
and has been studied extensively [88,89]. MYOD is
expressed in the early stages of myogenesis and induces
myoblast differentiation through activation of down-
stream muscle-specific genes including myogenin, MYH1,
as well as muscle-specific miRNAs, such as miR-1, miR-
133 and miR-206 [45,90,91]. MYOD also promotes cell
cycle arrest to induce myoblast differentiation through ac-
tivation of p21 and Rb [92,93]. Overexpression of MYOD
has been shown to convert 10T1/2 fibroblasts and other
type of cell lines into myoblasts [94,95]. While MYOD is
critical in activation of myogenesis, early up-regulation of
myogenin, a downstream regulatory target of MYOD, can
lead to premature myoblast differentiation, as seen in
early myotube formation by FSHD myoblasts [96]. Ex-
pression profiling studies have supported this defect in
FSHD myoblasts by showing up-regulation of MYOD,
myogenin and other MYOD regulated genes in the prolif-
erating cells [29,31,96]. Whether the up-regulation of
miR-411 directly contributes to the disease pathogenesis,
or is part of a compensatory response to suppress the
prematurely activated MYOD program still needs to be
further investigated.

Conclusions

In this study, we demonstrated that miR-411 was up-
regulated in both primary and immortalized FSHD
myoblasts in comparison to control myoblasts. We also
identified YAF2 as a potential regulatory target of miR-411
by analyzing the miRNA and mRNA expression profiling
data generated from primary myoblasts. Over-expressing
miR-411 in C,Cy, cells leads to down-regulation of Myod,
myogenin, and Myhl. Based on previous findings as well
as our own observations, we propose a potential model of
how up-regulation of miR-411 can be involved in the
myogenic defect observed in FSHD myoblasts. Starting
with the up-regulation of miR-411, YAF2 is suppressed,
which will then positively regulate YY1. Up-regulation of
YY1 suppresses myogenic factors including MYOD and
myogenin, which directly affect myogenesis. Alternatively,
the up-regulation of miR-411 may be a compensatory
mechanism to the hypothesized premature activation of
the MYOD program. While each specific regulatory rela-
tionship needs to be further investigated, our findings
demonstrated a potential role of miR-411 in regulating
myogenesis, and provides a novel molecular regulatory
mechanism that may be involved in FSHD pathogenesis.
In addition, miRNAs circulating in the blood have been
acknowledged as readily accessible disease markers. Thus,
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miR-411 may be a potential candidate as a biomarker in
FSHD studies.

Additional files

Additional file 1: Table S1. Human primary myoblasts used for
miRNA and mRNA profiling (the top 6 samples) and validation
(the bottom 8 samples).

Additional file 2: Table S2. miRNAs differentially expressed in
proliferating FSHD myoblasts (p<0.05).

Additional file 3: Table S3. mRNAs differentially expressed in
proliferating FSHD myoblasts (p<0.05).

Additional file 4: Figure S1. Putative miR-411 binding sites in the 3’ UTR
of 5 splice variants of YAF2. The seed region of miR-411 is underlined. The
complimentary bases are highlighted in yellow. The variant 2 has been
reported to be expressed in skeletal muscles.
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