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Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is linked to the deletion of the D4Z4 arrays at chromosome 4q35. Recent
studies suggested that aberrant expression of double homeobox 4 (DUX4) from the last D4Z4 repeat causes FSHD. The aim
of this study is to determine transcriptomic responses to ectopically expressed DUX4 in human and mouse cells of muscle
lineage. We expression profiled human rhabdomyosarcoma (RD) cells and mouse C2C12 cells transfected with expression
vectors of DUX4 using the Affymetrix Human Genome U133 Plus 2.0 Arrays and Mouse Genome 430 2.0 Arrays, respectively.
A total of 2267 and 150 transcripts were identified to be differentially expressed in the RD and C2C12 cells, respectively.
Amongst the transcripts differentially expressed in the RD cells, MYOD and MYOG (2 fold, p,0.05), and six MYOD
downstream targets were up-regulated in RD but not C2C12 cells. Furthermore, 13 transcripts involved in germline function
were dramatically induced only in the RD cells expressing DUX4. The top 3 IPA canonical pathways affected by DUX4 were
different between the RD (inflammation, BMP signaling and NRF-2 mediated oxidative stress) and the C2C12 cells (p53
signaling, cell cycle regulation and cellular energy metabolism). Amongst the 40 transcripts shared by the RD and C2C12
cells, UTS2 was significantly induced by 76 fold and 224 fold in the RD and C2C12 cells, respectively. The differential
expression of MYOD, MYOG and UTS2 were validated using real-time quantitative RT-PCR. We further validated the
differentially expressed genes in immortalized FSHD myoblasts and showed up-regulation of MYOD, MYOG, ZSCAN4 and
UTS2. The results suggest that DUX4 regulates overlapped and distinct groups of genes and pathways in human and mouse
cells as evident by the selective up-regulation of genes involved in myogenesis and gametogenesis in human RD and
immortalized cells as well as the different molecular pathways identified in the cells.
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Introduction

FSHD is an autosomal dominant disorder and the third most

common inherited form of muscular dystrophy. The disease is

characterized by a progressive and selective weakness and atrophy

of the facial, scapular, and humeral muscles followed by weakness

of muscles of the lower extremities. The weakness of muscles is

often asymmetric. There are currently no pharmacologic therapies

available to treat this disease [1–4]. FSHD1 (OMIM #158900)

affects 95% of patients and is genetically linked to contractions of

the D4Z4 repeat array at chromosome 4q35 from 11–150 repeat

units in healthy individuals to 1–10 repeat units in patients with

FSHD. Individuals without any repeat do not develop FSHD [1–

4]. Each of the repeat units contains a conserved ORF for the

double homeobox 4 (DUX4) gene, which is aberrantly transcribed

from the last repeat in patients. FSHD2 (OMIM #158901) is not

linked to contractions of the D4Z4 repeat array but to mutations

in the SMCHD1 protein involved in chromatin structure [5].

DNA hypomethylation of the D4Z4 region is common to both

FSHD1 and 2 and causes transcriptional de-repression, which

allows the DUX4 gene to be transcribed. The FSHD permissive

alleles further present a poly-adenylation signal in the pLAM

region distal to the repeat array [6], which allows stabilization of

the DUX4 transcripts derived from the last D4Z4 unit and their

translation [6–14].

The DUX4 protein is a homeodomain transcription factor

[6,9]. The function of DUX4 has been primarily studied using

mice [15,16]. Previous studies showed that ectopic expression of

human DUX4 in C2C12 cells induced genes involved in oxidative

stress as well as suppressed MYOD pathways [15]. In addition,

ectopic DUX4 expression induced p53-dependant muscle cell

death both in vitro and in vivo [15,16]. While some of the findings in

these mouse studies agree with what has been reported in studies

of human muscle biopsies and myoblasts, including the involve-

ment of oxidative stress responses and cell apoptosis, others such as

suppression of MYOD signaling did not agree with findings using

patient samples [17–26]. Considering the differences between the

mouse and human studies, and the fact that there is no orthologue

of DUX4 in the mouse genome although two paralogues were

reported [8], it is critical to know whether the transcription
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regulatory targets of human DUX4 are the same in mouse cells.

The knowledge will allow us to determine whether DUX4-

regulated pathways can be properly studied in mouse models.

In this study, we compared transcriptomic changes that are

induced in response to ectopic DUX4 expression in human and

mouse cell lines of muscle lineage. Expression profiling studies of

human RD cells and mouse C2C12 cells transfected with DUX4

expression vectors were conducted. The C2C12 cell line is a

mouse myoblast cell line that derived from skeletal muscles of C3H

mice [27] and has since been commonly used to study cellular and

molecular pathways in muscle [6,15]. The human RD cell line is a

rhabdomyosarcoma cell line that was derived from a human

embryonal rhabdomyosarcoma [28]. This cell line expresses

myogenic markers and has been used extensively for studying

regulatory pathways in muscles [29,30]. In this study the mRNA

expression changes of the RD and C2C12 cells in response to

ectopic DUX4 expression was studied and compared. Considering

the RD cells are of neoplastic origin, we also validated our results

using immortalized human myoblasts from patients with FSHD.

Methods

Cell Culture and Transfection
The cell culture and transfection experiments of both the RD

from American Type Culture Collection (ATCC) and C2C12 cells

(ATCC) were conducted in parallel under the same conditions. A

total of 16105 cells were seeded and cultured to 60% confluence in

Dulbecco’s modified Eagle’s medium containing 10% heat

inactivated fetal bovine serum (Sigma-Aldrich) and 1% penicil-

lin-streptomycin in 25 cm2 flasks at 37uC, 5% CO2. The cells

were transfected with 6.25 mg pCIneo-DUX4 [9] expression

vector (n = 4) using Lipofectamine LTX (Life Technologies)

according to the manufacturer’s protocol, and cells collected

16 hours afterwards. Cells transfected with pCIneo insertless

vector were used as controls. Transfection efficiency was

determined using cells transfected with GFP expression vector.

Percentages of GFP positive cells of 5 random fields were

calculated and averaged. The transfection efficiency in C2C12

and RD cells were 91% (63%) and 89% (61%), respectively.

Immortalized human myoblasts were obtained from the Senator

Paul Wellstone Muscular Dystrophy Cooperative Research Center

at Boston Biomedical Research Institute. The patient myoblast cell

line was derived from the biceps of a 42 years old male with mild

muscle weakness (WS157) [31]. The control myoblasts were

derived from the patient’s 46 year old brother without FSHD

(WS161) [31]. These cells were immortalized with expression

vectors encoding hTERT that compensates for telomere loss and

CDK4 that prevents growth arrest of CD56+ myogenic cells,

when these cells are cultured in-vitro. We cultured these cells as

described in previously published protocol [31,32]. Briefly,

proliferating immortalized myoblasts were cultured in a growth

medium consisting of medium 199 and DMEM (Life Technolo-

gies) in a 1:4 ratio with 0.8 mM sodium pyruvate (Life

Technologies), 3.4 g/l sodium bicarbonate (Sigma-Aldrich), 15

% fetal bovine serum (Thermo Scientific), 0.03 mg/ml Zinc sulfate

(Fisher), 1.4 mg/ml vitamin B12 (Sigma-Aldrich), 2.5 ng/ml

recombinant human hepatocyte growth factor (Millipore),

10 ng/ml basic fibroblast growth factor (Biopioneer), 0.02 M

HEPES, and (Life Technologies) at 37uC, 5% CO2. The culture

dish was coated with 0.1 % gelatin (Sigma-Aldrich).

Expression Profiling and Data Analyses
Affymetrix Human Genome U133 Plus 2.0 and Mouse 430 Plus

2.0 arrays were used for profiling the RD and C2C12 cells,

respectively. The procedures were conducted as previously

described [6]. Briefly, total RNA was isolated from human RD

and mouse C2C12 cells using TRIzol (Invitrogen) according to the

manufacturer’s protocol and purified using the RNeasy MinElute

Cleanup Kit (Qiagen) according to the manufacturer’s protocol.

Four hundred nanograms of total RNA was converted into double

stranded cDNA, then biotin labeled cRNA, which was subse-

quently fragmented. All of the steps were performed using the

Affymetrix 39-IVT Express Kit. The fragmented cRNA was

hybridized to microarrays for 16 hours at 45uC. Following

hybridization, the washing and staining steps were performed

using Fluidics Station 450 as described in the Affymetrix protocol.

The probe arrays were subsequently scanned using the Genechip

Scanner 3000 to acquire images providing the raw data of gene

expression. The microarray data generated is deposited to the

Gene Expression Omnibus (GEO) database (accession number

GSE45854).

The raw data were imported into GeneSpring GX 11.0

software (Silicon Genetics, CA, USA) for filtering and statistical

analysis. The probe sets showing at least one Affymetrix ‘present’

calls out of a total of eight human or mouse arrays (,10% Present

calls), respectively, were selected for further statistical analysis.

Welch’s t test was performed to calculate the probabilities of

significant gene expression changes (p,0.05) along with multiple

testing correction using Benjamini Hochberg False Discovery Rate

(5%).

The gene lists generated in Genespring were imported into

Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood,

CA), which is a web based bioinformatics tool used to identify

canonical pathways differentially regulated in microarray datasets.

The significance of genes from the microarray data assigned to

pathways by IPA is determined by the ratio of the number of genes

in the dataset mapping to a specific pathway to the total number of

genes in the IPA database mapping to that pathway. Fischer’s

exact test was used to calculate a p-value that determines whether

the association between the gene and the pathway is significant.

The pathways are subsequently ranked according to the p-value.

Real-time Quantitative Reverse Transcription Polymerase
Chain Reaction (real-time qRT-PCR)

Real-time qRT-PCR was performed to validate microarray

results as previously described [6,33]. Briefly, total RNA (1 mg)

from each sample was first subjected to DNAse I digestion (1 U) in

16DNAse I reaction buffer (Promega) by incubating at 37uC for

30 minutes to remove genomic DNA contamination. The reaction

was inactivated by adding 1 ml of stop solution (Promega) and

heating for 10 minutes at 65uC. Subsequently, the RNA sample

was reverse transcribed to cDNA using Superscript II (Life

Technologies) and oligo dT primers. The cDNA thus generated

was amplified in triplicates in SYBR Green PCR Master Mix (Life

Technologies) using 1 mM of forward and reverse primers specific

to each gene and 1 ml of cDNA template in a total volume of

50 ml. The thermal cycling conditions included 50uC for 2 min,

95uC for 10 min, followed by 40 cycles of amplification using the

condition of 95uC for 15 s then 60uC for 1 min. Primer sequences

used for human myogenic differentiation 1 (MYOD) were (forward) 59 -

TGCTCCGACGGCATGATGGAC -39 and (reverse) 59-TCGA-

CACCGCCGCACTCT -39; urotensin 2 (UTS2) were (forward) 59-

AAGTTTCAGGATTTCTCTGGACAAGATCC -39 and (re-

verse) 59- CCAGAAGCAATCAGGAGTCTCACG-39; myogenin

(MYOG) (forward) were 59-AACCCAGGGGATCATCTGCT-

CAC-39 and (reverse) 59-GTTGGGCATGGTTTCATCTGG-

GAAG-39; zinc finger and SCAN domain containing 4 (ZSCAN4) were

(forward) 59-TGGAAATCAAGTGGCAAAAA-39 and (reverse)

Human and Mouse Transcriptomes Regulated by DUX4
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59-CTGCATGTGGACGTGGAC-39 [24]. Glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) was used as internal control and the

primers used were (forward) 59- TGTCAAGCT-

CATTTCCTGGTA-39 and (reverse) 59-

GTGAGGGTCTCTCTCTTCCTCTTGT-39. Primer sequences

used for mouse urotensin 2 (Uts2) were (forward) 59-GAG-

GAAGGCTTTCGCTGGGCA-39 and 59-

GGGCAGCCCCGTGTTGCTTA-39. Glyceraldehyde-3-phosphate

dehydrogenase (Gapdh) was used as internal control and the primers

used were (forward) 59-CCAGGAGCGAGACCCCACTAACA-

39 and (reverse) 59-TCAAGTGGGCCCCGGCCTT-39. All

primers were tested for nonspecific amplicons and primer dimers

by visualizing PCR products on 1% agarose gels as well as melting

curve analysis. The DDCT method was used to determine

expression values relative to GAPDH as well as fold differences

relative to insertless vector. T-test was used (P,0.05) to determine

statistical significance.

Results

DUX4 regulates distinct groups of transcripts in the RD
cells

To determine the molecular responses to ectopic expression of

DUX4 in human RD and mouse C2C12 cells, we expression

profiled human RD and mouse C2C12 cells transfected with

DUX4 expression vector. The cells were cultured and transfected

in parallel and same statistical criteria were applied when the array

data were analyzed. A total of 2267 transcripts were differentially

expressed in RD cells (Table S1), while 150 differentially expressed

transcripts were identified in C2C12 cells (Table S2). A total of 40

differentially expressed transcripts were shared between the two

cell lines (Table S3). Among the shared genes, the direction of

expression changes of the majority of the genes were the same

suggesting these responses were truly shared between the RD and

C2C12 cells. Molecular pathways affected by DUX4 in human

RD cells and mouse C2C12 cells were further examined using

Ingenuity Pathway Analysis (IPA). The results showed that top 3

canonical pathways affected by DUX4 expression in RD cells were

those involved in Wnt-mediated immune responses, BMP

signaling and NRF-2 mediated oxidative stress response, whereas

in C2C12 cells were those involved in p53 signaling, cell cycle

regulation, and cellular energy metabolism. The results showed

that the most significantly affected molecular pathways by DUX4

are distinct in the RD cells and C2C12 cells while some expression

changes were shared.

The Wnt-mediated inflammatory immune response pathway

was found to be the top ranked pathway affected by DUX4 in the

RD cells as evidenced by significant up-regulation of WNT5A (1.4

fold, p,0.05), and several frizzled family receptors, namely FZD1

(1.6 fold, p,0.01), FZD2 (1.5 fold, p,0.05), FZD4 (1.5 fold,

p,0.01), and FZD7c (1.6 fold, p,0.01) (Table S4). However, the

transcripts of interleukins IL6 (21.8 fold, p,0.05), IL8 (22.2 fold,

p,0.01), and IL15 (21.4 fold, p,0.05), which are downstream of

WNT5A were down-regulated.

The BMP signaling pathway was found to be the second ranked

pathway. Of the 39 transcripts that belong to this pathway in the

IPA database, 17 transcripts were misregulated in response to

ectopic DUX4 expression in the RD cells. Amongst the

misregulated transcripts, 53% of the expression changes were

shown to be involved in suppression of the BMP signaling pathway

while 35% of the changes indicated activation of the pathway

(Table S5).

The NRF-2 mediated oxidative stress response pathway was

identified to be the third ranked pathway regulated by DUX4 in

the RD cells. Thirty one of the 86 transcripts known to function in

this pathway were found to be misregulated in this study. Among

the 31 differentially expressed transcripts, 55% of the changes may

potentially induce or contribute to oxidative stress, while 39% of

them were reported to be involved in anti-oxidative stress

responses (Table S6).

DUX4 significantly up-regulated genes involved in
myogenesis and gametogenesis in the RD cells but not
C2C12 cells

Since myogenesis factors and genes regulating cell cycle have

previously been reported to be affected in primary FSHD

myoblasts [19,21,26], we first looked up the expression changes

of two major myogenic factors, MYOD and MYOG, in the profiling

data. The results showed that MYOD (Figure 1A) and MYOG

(Figure 1B) were 2 fold up-regulated in the RD cells (p,0.05) but

not in the C2C12 cells ectopically expressing DUX4. Six

transcripts reported as direct targets of MYOD, namely BIN1

(1.4 fold, p,0.05), HMGB3 (1.3 fold, p,0.05), SIX1 (1.5 fold,

p,0.05), ACTC1 (1.3 fold, p,0.05), IGFBP5 (1.5 fold, p,0.05),

and CHRNA1 (2.1 fold, p,0.05) [34], were also up-regulated only

in the RD cells transfected with the DUX4 expression vector. In

addition, several transcripts involved in cell cycle progression were

shown down-regulated in the RD cells, including CCND1 (21.3

fold, p,0.05), CCND2 (21.3 fold, p,0.05), CDC6 (21.3 fold,

p,0.01) and E2F7 (21.5-fold, p,0.05) but not in the C2C12

cells. To validate the significant up-regulation of MYOD and

MYOG in the RD cells, we performed real-time qRT-PCR and

confirmed that both MYOD (20 fold, p,0.05) and MYOG (12 fold,

p,0.05) were up-regulated in the RD cells ectopically expressing

DUX4 (Figure 1C–D).

A small number of genes showed dramatic up-regulation

(.100-fold) only in the RD cells ectopically expressing DUX4,

which formed a cluster of transcripts (Figure 2A–B). These

transcripts were MBD3L2 (2805 fold, p,0.01), TRIM43 (2060

fold, p,0.01), ZSCAN4 (1546 fold, p,0.01), RFPL1/RFPL2 (1231

fold, p,0.01), PRAMEF1/PRAMEF13/PRAMEF2 (1217 fold,

p,0.01), PRAMEF12 (711 fold, p,0.01), TRIM48 (421 fold,

p,0.01), TRIM49 (409 fold, p,0.05), RFPL2 (332 fold, p,0.01),

KHDC1L (254 fold, p,0.01), RFPL3 (204 fold, p,0.01), SPRYD5

(171 fold, p,0.01), and PRAMEF11 (126 fold, p,0.01). Out of

these, only Zscan4 was up-regulated (7.4 fold, p,0.01) in C2C12

cells ectopically expressing DUX4. While not expressing in normal

skeletal muscle, these transcripts are expressed in germ cells,

embryos during preimplantation and early embryogenesis. The

genes were also reported to be up-regulated in immortalized

human myoblasts ectopically expressing DUX4 [20].

DUX4 induced up-regulation of UTS2 in both the RD and
C2C12 cells ectopically expressing DUX4

While the majority of the genes induced by DUX4 expression in

RD and C2C12 cells were cell-specific, 40 transcripts were

similarly regulated by DUX4 in both cell lines suggesting there are

shared transcriptional targets in the cells (Table S3) and urotensin-

2 (UTS2) was one of them. UTS2 was significantly up-regulated in

the RD cells (76 fold, p,0.01) and C2C12 cells (224 fold, p,0.01)

ectopically expressing DUX4 (Figures 3A–B). The finding were

validated by real-time qRT-PCR in both the RD and C2C12 cells

with fold changes of 130 fold (p,0.01) and 21 fold (p,0.05)

respectively (Figure 3C–D).

Human and Mouse Transcriptomes Regulated by DUX4
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Figure 1. Up-regulation of MYOD and MYOG in response to ectopic DUX4 expression in RD cells. Expression levels of myogenic markers
MYOD (A) and MYOG (B) were determined by expression profiling human RD cells transfected with an expression vector either encoding DUX4 or
insertless (control), respectively. The differential expression of MYOD (C) and MYOG (D) were validated using real-time qRT-PCR (n = 4). Normalized
expression levels of the transcripts were calculated using GAPDH as a reference. ** p,0.01, * p ,0.05.
doi:10.1371/journal.pone.0064691.g001

Figure 2. Scatter plot analysis of transcripts regulated by ectopically expressed DUX4 in RD and C2C12 cells. To clearly visualize
transcripts highly induced by DUX4, only transcripts changed .2-fold were used for analysis. Log transformed expression levels of transcripts in cells
transfected with the insertless vector was plotted against expression levels of transcripts in cells transfected with the DUX4 expression vector. A
cluster of transcripts highly induced by DUX4 (circled) in RD (A.) but not C2C12 cells (B.) was observed.
doi:10.1371/journal.pone.0064691.g002

Human and Mouse Transcriptomes Regulated by DUX4
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Transcripts upregulated by ectopic DUX4 expression
were upregulated in immortalized FSHD myoblasts

To determine whether the expression changes identified in the

RD cells ectopically expressing DUX4 can be detected in the

FSHD myoblasts, we performed real-time qRT-PCR and

validated the significant up-regulation of MYOD (19 fold,

p,0.01), MYOG (110 fold, p,0.01), ZSCAN4 (32 fold, p,0.01),

and UTS2 (229 fold, p,0.01) (Figure 4A–D) in immortalized

FSHD cells as compared to the control immortalized myoblasts.

Discussion

Misregulation of genes and pathways involved in myogenesis,

cell cycle regulation and oxidative stress in human FSHD

myoblasts has been reported previously [13–23]. Recently genes

involved in gametogenesis were shown to be up-regulated in

immortalized FSHD myoblasts and muscle biopsies [20,35,36].

While some of the changes were also reported in studies conducted

using C2C12 cells and animal models, such as increased

susceptibility to oxidative stress and the induction of cell death,

other findings did not agree with the human studies including how

the myogenesis program was affected by DUX4 and the induction

of the germline genes [15,16,35,36]. To further investigate the

genes and pathways regulated by DUX4 in human and mouse

cells of muscle lineage, we analyzed mRNA transcripts affected by

ectopically expressed DUX4 using expression profiling. Our

results showed that while the RD cells expressing DUX4

recapitulated the molecular defects seen in human muscles and

immortalized myoblasts, the C2C12 cells responded differently to

the DUX4 expression. For example, the most dramatic expression

changes of the germline genes were induced by DUX4 in both RD

and immortalized FSHD myoblasts and observed in patients’

muscles but not the C2C12 cells. Among these genes, only

ZSCAN4 was mildly up-regulated in the C2C12 cells. In general,

DUX4 regulated significantly greater number of genes (2267) in

RD cells as compared with C2C12 cells (150) suggesting that

DUX4 may have more direct regulatory targets in RD cells as

compared with C2C12 cells. In addition, several pathways and

genes previously reported to be misregulated in FSHD were shown

affected in the RD cells but not in the C2C12 cells. The similarity

among the human RD cells, the immortalized FSHD myoblasts

and the primary myoblasts suggest that RD and immortalized

Figure 3. Up-regulation of human UTS2 and mouse Uts2 was observed in RD and C2C12 cells ectopically expressing DUX4,
respectively. Expression levels of human UTS2 and mouse Uts2 were determined by expression profiling RD (A) and C2C12 (B) cells transfected with
an expression vector either encoding DUX4 or insertless (control), respectively. The expression changes in RD (C) and C2C12 (D) were validated using
real-time qRT-PCR (n = 4). Normalized expression levels of the transcripts were calculated using GAPDH and Gapdh as a reference in both cell lines. **
p,0.01, * p ,0.05.
doi:10.1371/journal.pone.0064691.g003

Human and Mouse Transcriptomes Regulated by DUX4
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FHSD myoblasts may be more suitable culture systems for

studying DUX4 function than mouse C2C12 cells. Whether

mouse or other animal models that carry human DUX4 in their

genomes can be used to study DUX4 function or can be a suitable

FSHD disease model need to be further investigated.

Previous studies showed up-regulation of MYOD and its

downstream regulatory targets accompanied by a halt in cell

cycle progression in human myoblasts and biopsies therefore a

hypothesis that pre-mature activation of myogenesis program was

involved in the pathological mechanisms of FSHD was proposed

[19,21,26]. MYOD is a transcription factor that activates

myogenesis through regulation of several transcriptional targets

that facilitates the transformation of quiescent satellite cells (stem

cells committed to muscle lineage) into proliferating myoblasts

which are capable of undergoing differentiation [37]. While the

activated myoblasts are essential for muscle maintenance and

repair, maintaining a healthy number of satellite cells is critical for

a continuous supply of myoblasts [38]. A pre-mature activation of

myogenesis induced by DUX4 bares a risk to prematurely deplete

satellite cells, which can potentially lead to diminished regener-

ative capacity of the adult skeletal muscle. Our profiling and real-

time qRT-PCR data showed up-regulation of MYOD and MYOG

as well as suppression of cell cycle progression in the RD cells

expressing DUX4. The up-regulation of MYOD and MYOG was

further validated using immortalized FHSD myoblasts. The

findings are in concordance with previous studies in primary

FSHD myoblasts and muscle biopsies [19,21,26]. Our data

provide a direct link between DUX4 expression and the activation

of myogenesis program as evidenced by activation of MYOD and

its downstream target genes accompanied by a halt in cell cycle

progression, a critical step prior to differentiation.

A recent study by Geng et al [20] showed activation of MYOG

expression in response to ectopic expression of DUX4 in human

immortalized myoblasts, which is consistent with activation of

MYOD signaling since terminal differentiation involves increased

MYOG and decreased MYOD expression levels, a step necessary

for myoblasts to fuse and form mature myofibers [39,40]. Since

our results showed higher expression levels of both MYOD and

MYOG by DUX4 overexpression, this indicates these cells are at

an earlier stage of differentiation process. This could be explained

by the fact that our study was conducted at an earlier time point

(16 hours post-transfection) as compared to the study conducted

by Geng et al (24 hours post-transfection). While the studies

conducted using human muscle biopsies and myoblasts reported

activation of MYOD pathways [19,21,26], studies conducted in

C2C12 cells reported repression of MYOD pathways in response

to ectopically expressed DUX4 as well as DUX4c [15,41] The

different conclusions from human and mouse studies can

potentially be explained by the lack of DUX4 orthologue in mice;

therefore human DUX4 does not regulate Myod and other

regulatory target genes the same way.

In addition to activation of MYOD program, we also identified

a suppression of BMP signaling pathways in RD cells expressing

DUX4. The BMP pathways negatively regulate MYOD program

and was identified as the second top ranked pathway in the RD

cells ectopically expressing DUX4. BMP signaling has been shown

Figure 4. Up-regulation of MYOD, MYOG, ZSCAN4, and UTS2 in FSHD immortalized cells. MYOD (A.), MYOG (B.), ZSCAN4 (C.), and UTS2 (D.)
levels were quantified in FSHD immortalized cells and control cells using real-time qRT-PCR (n = 4). Values representing expression levels of transcripts
were calculated using GAPDH as a reference. ** p,0.01.
doi:10.1371/journal.pone.0064691.g004
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to be activated during the proliferation stage of satellite cells. The

BMP signaling is suppressed during differentiation by a BMP

antagonist Noggin [42]. Our profiling data suggested a suppres-

sion of the BMP signaling with the BMP antagonist Noggin up-

regulated by DUX4 (1.6 fold, p,0.05; Table S5). Overall, the

data support our conclusions that DUX4 expression leads to

induction of myogenesis through activation of MYOD signaling

and increased expression of Noggin.

The top ranked pathway identified by IPA to be differentially

regulated in RD cells ectopically expressing DUX4 are genes

involved in innate immune response as evidenced by up-regulation

of WNT5A, and several FZD receptors. Genomic studies have

shown WNT5A, agonist of FZD receptors, to be up-regulated in T-

cells, macrophages and dendritic cells exposed to pathogens as well

as in pathologies involving inflammation such as rheumatoid

arthritis. Previous studies suggest that Wnt5A is a positive

regulator of immunity and inflammation [43–47]. Our data

therefore indicate that DUX4 directly induces an inflammatory

immune response, which could contribute to the T-cell mediated

inflammation in FSHD reported previously [35,48]. Interestingly,

some interleukin genes functioning in lymphocyte activation and

infiltration downstream of Wnt5A are downregulated in our RD

data suggesting compensatory mechanisms to combat Wnt5A

signaling. However, while WNT5A can be involved in regulating

immune responses, it is also highly expressed in satellite cells and is

involved in switching cells from proliferation to myogenic

differentiation [49]. The up-regulation of Wnt signaling in the

myoblasts can potentially contribute to increased myogenesis and

not related to inflammation.

The top ranked pathway affected by DUX4 expression in the

C2C12 cells was the p53 pathway. P53 signaling has been shown

to be activated by DUX4 in mice ectopically expressing DUX4 in

vivo and other animal models expressing DUX4 [16,50]. In

addition, it is shown to be up-regulated in human FSHD

myoblasts during differentiation [24]. This pathway was also

highly ranked among the pathways affected in the RD cells

expressing DUX4 but not in the top 3. It should be noted that RD

cells are of neoplastic origin and contain point mutations in the

tumor suppressing p53 gene leading to its functional loss [51–53].

This could potentially explain the reasons for the p53 pathway not

being amongst the top 3 ranked affected pathway by DUX4 in RD

cells. While the activation of the p53 pathway was suggested based

on the IPA, we did not observe obvious reduction of total cell

numbers when we collected the cells. In addition, the amount of

total RNA isolated from the cells was comparable between the

cells transfected with the DUX4 and insertless vectors. We selected

an earlier time point to collect cells in order to avoid profiling

dying or dead cells. The cell death likely will occur at a later time

point.

Previous studies showed that FSHD myoblasts and C2C12 cells

expressing DUX4 were more vulnerable to oxidative stress

[15,17–19,23–25,54], while another study of FSHD and control

myoblasts from relatives did not [31]. Our data showed that

ectopic DUX4 expression in RD cells caused the misregulation of

genes involved in the NRF2-mediated oxidative stress response

pathway, which is involved in combating oxidative stress.

Oxidative stress is caused when the rate of production of reactive

oxygen species such as free radicals and peroxides, exceeds their

rate of detoxification. Increases in levels of reactive oxygen species

can be very damaging to the cell and trigger apoptotic responses.

The NRF2 mediated oxidative stress response is the primary

pathway involved in combating oxidative stress through the action

of several detoxifying and anti-oxidant enzymes functioning in the

pathway. Misregulation of transcripts involved in the NRF2

mediated oxidative stress response pathway has been reported in

several FSHD studies [15,17–19,23–25,54]. Our study again

confirmed the link with DUX4. In addition, our data showed that

more changes that are pro-oxidative stress were induced by

DUX4. This pathway was also significant in C2C12 cells

expressing DUX4 but was not in top 3.

A novel finding of this study is the dramatic induction of UTS2

in response to ectopic DUX4 expression in both the RD and

C2C12 cells, which was also validated in the immortalized FHSD

myoblasts. UTS2 is a powerful vasoconstrictor and has also been

shown to be pro-angiogenic as evidenced by its ability to cause

increased proliferation of endothelial cells as well as increased

migration of vascular smooth muscle cells [55–59]. It has also been

recently shown associated with diabetic retinopathy and athero-

sclerosis [60]; therefore, its induction in response to DUX4

provides a potential explanation for the retinal vasculopathy

commonly observed in FSHD patients, who are found to exhibit

symptoms similar to those exhibited by patients of Coats’ disease,

wherein abnormal vessels develop behind retina [61,62]. Since the

molecular mechanism of these retinal defects remains yet

unknown, the up-regulation of UTS2 could potentially be involved

and worth for further investigation.

Interestingly, rhabdomyosarcoma cells have often been used to

study pharmacological properties of UTS2 and its receptors since

these cells endogenously express UTS2 receptors. Moreover,

UTS2 and its receptors have also been shown expressed at a

significantly greater level in human skeletal cells and tissues

compared with other organs such as pancreas, brain, liver, testis,

placenta, lung, kidney, thymus, prostate, small intestine, colon,

peripheral blood leukocytes, ovary and spleen. Our findings along

with the findings reported in these studies indicate that overex-

pression of UTS2 in skeletal muscle could be particularly

significant in contributing towards the skeletal muscular symptoms

in FSHD patients [63–66].

Our study suggests that DUX4 can contribute to FSHD

pathogenesis through several avenues including induction of

MYOD pathways, induction of immune and inflammatory

response, misregulation of genes involved in oxidative stress, and

induction of germline genes. Our study also reported a dramatic

induction of UTS2, a potent vasoconstrictor involved in angio-

genesis and also reported preferentially expressed in skeletal

muscle tissue in FSHD myoblasts, which could potentially explain

the vasculopathy and skeletal muscular symptoms observed in

FSHD patients. Furthermore, we showed that some of these

critical changes were not observed in mouse C2C12 myoblasts

while other changes overlapped, which suggest that a mouse

model carrying human DUX4 gene may not fully recapitulate the

human FSHD and needs to be evaluated carefully.

Supporting Information

Table S1 Transcripts regulated by DUX4 in RD cells.
RD cells transfected with DUX4 expression vector and insertless

vector (control) were expression profiled and fold-changes of

transcripts changed in response to ectopic DUX4 expression were

calculated relative to control. Welch’s t test was performed to

calculate the probabilities of significant gene expression changes

(p,0.05) along with multiple testing correction using Benjamini

Hochberg False Discovery Rate (5%).

(XLSX)

Table S2 Transcripts regulated by DUX4 in C2C12
cells. C2C12 cells transfected with DUX4 expression vector and

insertless vector (control) were expression profiled and fold-

changes of transcripts changed in response to ectopic DUX4
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expression were calculated relative to control. Welch’s t test was

performed to calculate the probabilities of significant gene

expression changes (p,0.05) along with multiple testing correction

using Benjamini Hochberg False Discovery Rate (5%).

(XLSX)

Table S3 Common transcripts regulated by DUX4 in
RD and C2C12 cells. Genespring GX 11.0 was used to identify

transcripts regulated by DUX4 in both RD and C2C12 cells

(p,0.05).

(XLSX)

Table S4 Transcripts functioning in immune response
pathways regulated by DUX4 in RD cells. Transcripts

identified in the top ranked canonical pathway regulated by

DUX4 in RD cells were identified through IPA.

(XLSX)

Table S5 Transcripts functioning in BMP signaling
pathway regulated by DUX4 in RD cells. Transcripts

functioning in BMP signaling pathway, the second ranked

canonical pathway regulated by DUX4 in RD cells, were

identified through IPA.

(XLSX)

Table S6 Transcripts functioning in NRF2 mediated
oxidative stress response pathway regulated by DUX4 in
RD cells. Transcripts functioning in NRF2 mediated oxidative

stress response pathway, the third ranked canonical pathway

regulated by DUX4 in RD cells, were identified through IPA.

(XLSX)
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