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Abstract
The transport of glucose across the plasma membrane is mediated by members of the glu-

cose transporter family. In this study, we investigated glucose uptake through the yeast hex-

ose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable,

fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG

is not incorporated into the hxt null strain lacking all glucose transporter genes and that this

defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the puta-

tive glucose-binding residues, inferred from the alignment of yeast and human glucose

transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully

complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus,

2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose

transport system. Hxt1 is internalized and targeted to the vacuole for degradation in re-

sponse to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A

are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG

nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-

NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a

critical residue for the stability and function of Hxt1.

Introduction
Metastasized tumor cells metabolize large amounts of glucose through glycolysis and produce
copious amounts of lactic acid even in the presence of oxygen [1,2]. This phenomenon, termed
the Warburg effect, is a hallmark of cancer [3]. The well-established elevated glucose consump-
tion of malignant tissue forms the basis of the clinical imaging of cancer, [18F] FDG-PET (posi-
tron emission tomography) [4]. The budding yeast Saccharomyces cerevisiae, like cancer cells,
prefers to ferment rather than oxidize glucose [5,6]. Since energy generation by fermentation
of glucose is inefficient, the yeast cells consume the available glucose vigorously by enhancing
glucose uptake through glucose transporters [7,8].
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Glucose uptake is measured using non-metabolizable glucose analogs such as 3-O-methyl-
glucose (3-OMG) and 2-deoxyglucose (2-DG) [9–11]. After taken up by cells, 3-OMG cannot
be phosphorylated by hexokinase; 2-DG is phosphorylated to 2-DG-6-phosphate (2-DG-6-P)
but cannot be metabolized further. Hence, radioisotope-labeled 3-OMG and 2-DG have
been widely used to measure glucose uptake. Recently, however, some inherent disadvantages
associated with using radioactive glucose analogs have led to the development of improved
methods for measuring glucose uptake using nonradioactive substances. 2-[N-(7-nitrobenz-
2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) is a fluorescent derivative of
2-DG, which is converted to its phosphate form and accumulates in cells [12]. Due to its non-
metabolizable and fluorescent properties, 2-NBDG has been proven useful for evaluating glu-
cose uptake in mammalian cells [13–15].

S. cerevisiae possesses at least six members of the glucose transporter family (Hxt1, 2, 3, 4, 6
and 7) with different affinities for glucose in order to cope with environmental changes in glu-
cose availability [16,17]. Expression of severalHXT genes (HXT1-4) is repressed by the Rgt1 re-
pressor, which recruits the general corepressor complex Ssn6–Tup1 and the HXT corepressor
Mth1 to the HXT promoters in the absence of glucose [18–26]. The yeast cells employ three
major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—that operate in a
highly regulated and cooperative manner to bring about glucose-induction of HXT gene ex-
pression by inactivating the Rgt1 repressor [7,27,28]. The yeast glucose transporters are regu-
lated at both transcriptional and posttranslational levels: HXT genes are induced by the
aforementioned mechanisms; Hxt proteins undergo endocytosis and vacuolar degradation
when they are not needed [29, 30].

In this study, using 2-NBDG, we investigated glucose uptake through the yeast hexose trans-
porter 1 (Hxt1). Our study was focused on whether 2-NBDG can be used as a proxy for glucose
uptake in S. cerevisiae and whether 2-NBDG is transported through the putative glucose-bind-
ing residues, inferred from human glucose transporters (Gluts). Our results show that Hxt1
transports 2-NBDG in a mechanism similar to Gluts and, furthermore, that some of the puta-
tive glucose-binding residues of Hxt1 are involved in endocytosis. Also discussed is the possible
roles of these residues in the stability and function of Hxt1.

Results

2-NBDG as a fluorescent probe for glucose uptake in S. cerevisiae
Glucose uptake assays in yeast heavily rely on the use of radioactive glucose or its derivatives,
which suffer from numerous problems inherent in the use of radioactive substances. This ham-
pers the development of facile methods for measuring glucose transport activity. 2-NBDG is
often used as a fluorescent probe for glucose uptake in mammalian cells [13–15]. However,
limited numbers of studies, only two early works, have shown that 2-NBDG can be incorporat-
ed into yeast cells [31,32]. To directly determine whether 2-NBDG is transported into the yeast
S. cerevisiae through the glucose transport system, the yeast cells lacking allHXT (glucose
transporter) genes [33] were transformed with an empty plasmid or with a plasmid encoding
Hxt1-HA. The resulting transformants were first grown in SC-glycerol/ethanol medium till
mid log phase and shifted to the same medium containing 60 μM of 2-NBDG. The intensity of
the fluorescence signal was used to measure for the concentration of 2-NBDG transported into
the cell. The fluorescence signal was not noticeably observed in the hxt null strain, but was
markedly increased in the strain expressing the Hxt1 glucose transporter (Fig. 1A). Glucose
competition assay was conducted to study substrate specificity by varying glucose concentra-
tions with a fixed concentration of 2-NBDG. The results show that the fluorescence intensity is
inversely correlated with increasing concentrations of glucose in the medium and that
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treatment of cells with 0.5 mM glucose resulted in ~ 50% decrease in the uptake of 2-NBDG
(Fig. 1B and 1C). These results suggest that 2-NBDG is transported into S. cerevisiae through
glucose transporters and that glucose uptake activity in yeast can be directly evaluated by mea-
suring the incorporation of 2-NBDG into the cells.

Fig 1. 2-NBDG is incorporated into S. cerevisiae through the hexose transporter Hxt1. (A) Yeast cells
(hxtΔ) expressing either empty vector or Hxt1-HA were first grown in SC-5% glycerol + 2% ethanol medium to
mid log phase and shifted to the samemedium containing 60 μM of 2-NBDG and incubated for 30 min.
Fluorescence microscopy images (left panel) and quantification of relative 2-NBDG fluorescence (right panel,
**P< 0.001) were shown. (B) Yeast cells (hxtΔ) expressing Hxt1-HA were grown as described in A. For
glucose competition assay, glucose was added to different concentrations (mM) as shown and 2-NBDG
uptake was analyzed by fluorescence microscopy. (C) Quantification of relative 2-NBDG uptake in glucose
competition assay was shown. FL: Fluorescence, DIC: Differential Interference Contrast.

doi:10.1371/journal.pone.0121985.g001
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The yeast Hxt1 glucose transporter transports glucose in a similar
mechanism as the human Glut1
Extensive mutational analyses of human glucose transporters and crystal structures of some
sugar transporters have identified residues important for glucose transport [34–41]. Since yeast
and human glucose transporters are highly conserved, we examined whether yeast glucose
transporters transport glucose in a similar mechanism as human glucose transporters (Fig. 2A
and 2B). To this end, we first mutated the putative glucose-binding residues of Hxt1 corre-
sponding to the residues of human Glut1—Q209, Q335, Q336, S363, N370, and W473 [42]—
to alanine individually and tested the resulting mutant Hxt1 proteins for their ability to trans-
port glucose. While the expression patterns of most of mutant Hxt1 proteins are similar to
those of wild type Hxt1, the protein levels of Hxt1N370A and Hxt1W473A are constitutively high

Fig 2. The yeast Hxt1 glucose transporter transports glucose in a similar mechanism as the human
glucose transporters. (A) Cartoon for the arrangement of the 12 transmembrane helices and the proposed
model of the exofacial glucose-binding sites of Hxt1 protein as viewed from the outside of the cell. For the
sake of simplicity, all transmembrane helices were drawn as perfect helices perpendicular to the plane of the
membrane. Amino acid residues were grouped according to their chemical properties of side chains (red:
neutral polar, purple: acidic or basic polar, green: neutral nonpolar and blue: hydrophobic). Putative glucose-
binding residues are shown. (B) Sequence alignment of segments of glucose transporters of yeast (Hxt1-7
and Gal2) and human (Glut1-5) showing proposed amino acids (highlighted in box) predicted to interact with
glucose. (C) Western blot analysis of Hxt1-HA levels at the plasmamembrane. Yeast cells (WT) expressing
indicated Hxt1-HA proteins were grown in SC-2% glucose (Glu) medium to mid log phase and shifted to SC
medium containing 2% galactose (Gal) for 6 hr. Membrane fractions were analyzed using anti-HA antibody.
Actin was served as loading control. (D) Yeast cells (hxtΔ) expressing either empty vector or indicated
Hxt1-HA proteins were spotted on 2% glucose plate supplemented with Antimycin-A (1μg/ml). The first spot
of each row represents a count of 5 x 107 cell/ml, which is diluted 1:10 for each spot thereafter. The plate was
incubated for 3 days and photographed.

doi:10.1371/journal.pone.0121985.g002
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as compared with those of wild type Hxt1 (Fig. 2C). The hxt null strain is unable to grow on
glucose as a sole carbon source and this defect is fully complemented by expression of wild
type Hxt1 [33]. To test the mutant Hxt1 proteins for their ability to transport glucose, the hxt
null mutant strain was transformed with plasmids encoding the mutant Hxt1-HA transporters
and scored for growth on glucose medium. We observe that the growth of the hxt null strain is
not restored by expression of most of mutant Hxt1 proteins or only partially restored by ex-
pression of Hxt1S363A-HA or Hxt1W473A-HA (Fig. 2D). Thus, these results demonstrate that
the putative glucose-binding residues—in particular Q209, Q335, Q336 and N370—may be
critical for glucose uptake.

Hxt1 with mutations at the putative glucose-binding residues cannot
transport 2-NBDG
Given that 2-NBDG is transported into the yeast cells through glucose transporters (Fig. 1), we
examined whether the putative glucose-binding residues are involved in 2NBDG uptake. To
this end, the hxt null strain was transformed with plasmids encoding the mutant Hxt1 proteins,
and the resulting transformants were treated with 2-NBDG, as described above. 2-NBDG fluo-
rescence is hardly detectable in cells expressing Hxt1Q209A, Hxt1Q336A and Hxt1N370A; by con-
trast, the fluorescence signals in cells expressing Hxt1Q335A, Hxt1S363A and Hxt1W473A are
reduced by 50%-80%, compared with those in cells expressing wild type Hxt1 (Fig. 3A). Thus,
the residues Q209, Q336 and N370 seem to be critical for 2-NBDG uptake, consistent with the
above finding that these three residues may play a major role in glucose transport.

Mutation at the putative glucose-binding residues of Hxt1 does not affect
its localization to the plasma membrane
Next, we determined whether mutation at the putative glucose-binding residues of Hxt1 affect
its targeting to the plasma membrane by analyzing subcellular localization of GFP-fused mu-
tant Hxt1 proteins. Expression of wild type Hxt1-GFP fully complemented the growth defect
of the hxt null strain on glucose, suggesting that fusion of the GFP moiety to Hxt1 does not in-
terfere with its function. However, the growth defect was not rescued by expression of the mu-
tant Hxt1-GFP transporters or only partially rescued by expression of Hxt1S363A-GFP or
Hxt1W473A-GFP (Fig. 4A). It should be noted that basal levels of glucose uptake in the hxt null
strain expressing Hxt1-HA fusions were a little higher, compared with those in the strain ex-
pressing corresponding GFP fusions. This is presumably due to different expression levels of
the two constructs; Hxt1-HA expressed from a 2μ-based, high copy number plasmid (Fig. 2)
and Hxt-GFP expressed from a CEN-based, low copy plasmid (Fig. 4). Western blot analysis
indicates that expression patterns of Hxt-GFP proteins are similar to those of Hxt-HA proteins:
the protein levels of Hxt1Q209A-GFP, Hxt1Q335A-GFP, Hxt1Q336A-GFP and Hxt1S363A-GFP are
high in glucose-grown cells but low in galactose (glucose-free)-grown cells; by contrast, those
of Hxt1N370A-GFP and Hxt1W473A-GFP are constitutively high in both glucose and galactose-
grown cells (Fig. 4B). In addition, fluorescence microscopy reveals that wild type Hxt1-GFP is
localized to the plasma membrane in response to glucose, whereas Hxt1N370A-GFP and
Hxt1W473A-GFP are found at the plasma membrane constitutively, regardless of the presence
and absence of glucose (Fig. 4C). Of note, both HA and GFP fusions of Hxt1N370A are express-
ed at high levels in both glucose-containing and glucose-free medium but unable to rescue the
growth defect of the hxt null strain. Thus, the expression patterns of mutant Hxt1 proteins are
not correlated with their ability to uptake glucose.

Glucose Uptake through Hxt1
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Fig 3. Glucose transport-defective mutant Hxt1 cannot uptake 2-NBDG. (A) Yeast cells (hxtΔ)
expressing either empty vector or indicated Hxt1-HA proteins were grown as described in Fig. 1A. 2-NBDG
uptake by the yeast cells was analyzed by fluorescence microscopy. FL: Fluorescence, DIC: Differential
Interference Contrast. (B) Quantification of relative 2-NBDG uptake by the yeast cells was shown
(*P< 0.05).

doi:10.1371/journal.pone.0121985.g003
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Fig 4. Mutation at the putative glucose-binding residues of Hxt1 does not affect its localization to the
plasmamembrane. (A) Yeast cells (hxtΔ) expressing either empty vector or indicated Hxt1-GFP proteins
were spotted on 2% glucose plate supplemented with Antimycin-A (1μg/ml) as described in Fig. 2D. The plate
was incubated for 3 days and photographed. (B) Western blot analysis of Hxt1-GFP levels at the plasma
membrane. Yeast cells (WT) expressing indicated Hxt1-GFP proteins were grown as described in Fig. 2C.
Membrane fractions were analyzed byWestern blotting with anti-GFP antibody. Actin was served as loading
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Some of the putative glucose binding residues of Hxt1 are required for its
endocytosis
We have recently shown that Hxt1 is endocytosed and degraded in the vacuole in response to
glucose starvation [43]. Thus, it is conceivable that the reduced protein levels of Hxt1 in glu-
cose-starved cells (e.g., galactose-grown cells) may be due to endocytosis (Figs. 2 and 4). To
validate this idea, we examined endocytosis of the mutant Hxt1 proteins (Hxt1S363A and
Hxt1N370A) in a strain lacking End3, involved in the internalization step of endocytosis. We
found that, in the end3Δ strain, the protein levels of wild type Hxt1 and mutant Hxt1S363A

transporters are not reduced in glucose-starved cells (Fig. 5A) and that these proteins constitu-
tively localize to the plasma membrane (Fig. 5B and 5C). Thus, like wild type Hxt1, Hxt1S363A

(and presumably also Hxt1Q209A, Hxt1Q335A, and Hxt1Q336A) may be internalized and targeted
to the vacuole for degradation in glucose-starved cells. By contrast, Hxt1N370A protein levels
are constitutively high in both wild type and end3Δ strains, suggesting that Hxt1N370A (and pre-
sumably also Hxt1W473A) may not undergo endocytosis. Thus, these results identify N370 as a
critical residue for the stability and function of Hxt1.

Discussion
In this study, using 2-NDBG uptake assay in combination with yeast growth restoration assay,
we assessed glucose uptake through the yeast hexose transporter Hxt1 and found that it may
transport glucose in a mechanism similar to but subtly different from that of human Glut1
(Fig. 3B). Previous evidence suggests that Q161, Q282 andW412 of Glut1 may be involved in
glucose-binding. Substitution of an asparagine at Q161significantly reduces the affinity for the
substrate-binding site of a nontransported glucose analog, suggesting that this residue is critical
for transport activity and exofacial ligand binding [44]. Q282 of Glut1 appears to have an im-
portant role in exofacial substrate binding but not to be critical in glucose transport, implicat-
ing the involvement of this residue in glucose-induced conformational change [45]. Our results
show that Hxt1 with mutations at Q209 and Q335, corresponding to Q161 and Q282 in Glut1,
respectively, is unable to restore the growth defect of the hxt null strain on glucose and to trans-
port 2-NBDG into the yeast cells (Fig. 3A). Interestingly, W412 of Glut1 appears to be critical
for substrate binding by interacting with the C-6 position of the pyranose ring [34,46]; howev-
er, its corresponding residue in Hxt1 (W473) is not critically required for glucose uptake (Figs.
2D and 4A). A striking feature of glucose transporters is their distinctive substrate specificity:
the human Glut1 transports glucose, galactose but not fructose [47], whereas the yeast Hxt1
transports glucose and fructose, but not galactose [48, 49]. This is presumably due to differ-
ences in the sequences within and outside the glucose-binding pockets of the yeast and human
glucose transporters. For example, Q282, Q283, N288, N317 and N415 of Glut1 are involved in
interaction with glucose through hydrogen bonds; the first four residues are conserved in yeast
transporters, whereas the aromatic asparagine at 415 in Glu1 is replaced with the non-aromatic
glycine (at position 476) in yeast Hxts [41]. Therefore, it is conceivable that this difference, in
part, may account for the different roles of W412 (Glut1) andW473 (Hxt1) in transporting
glucose.

control. (C) Yeast cells (WT) expressing indicated Hxt1-GFP proteins were grown as described in Fig. 2C and
were analyzed by fluorescence microscopy (top). Relative GFP fluorescence in the plasmamembrane was
quantified (bottom). Relative GFP fluorescence intensities were plotted with the fluorescence ofWT cells (2%
glucose condition) set to 100%. The data represented were averages of at least 50 cell counts with error bars
representing standard deviations (S.D).

doi:10.1371/journal.pone.0121985.g004
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Yeast glucose transporters are removed from the plasma membrane and targeted to the vac-
uole for degradation when they are not needed. The high affinity glucose transporters Hxt2
and Hxt6/7 are endocytosed and degraded in high glucose-grown cells, whereas the low affinity
glucose transporters Hxt1 and Hxt3, in glucose-starved cells [30,50–52]. We have also recently

Fig 5. Some of the putative glucose-binding residues of Hxt1 are required for endocytosis. Yeast cells
(WT and end3Δ) expressing indicated Hxt1-GFP proteins were grown as described in Fig. 2D. (A) Western
blot analysis of Hxt1-GFP levels at the plasmamembrane and (B) fluorescence microscopy of Hxt1-GFP
proteins were shown. Actin was served as loading control. (C) Quantification of relative GFP fluorescence in
the plasmamembrane was performed as described in Fig. 4E. *Results of theWestern blot and fluorescence
microscopy analysis of wild type Hxt1-GFP protein in yeast cells (WT) depicted in Fig. 4C were shown
for comparison.

doi:10.1371/journal.pone.0121985.g005
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shown that the high affinity glucose sensor Snf3 is inactivated in a similar mechanism as Hxt2
and Hxt6/7 and that the low affinity glucose sensor Rgt2, as Hxt1 and Hxt3 [53]. These obser-
vations suggest that turnover of glucose transporters and sensors might be associated with
their inability to bind glucose. However, the results in this study show that the mutant Hxt1
transporters unable to restore the growth defect of the hxt null strain on glucose—Hxt1Q209A,
Hxt1Q335A, Hxt1Q336A and Hxt1N370A—are endocytosed and degraded in response to glucose
starvation except Hxt1N370A (Fig. 4). Furthermore, both Hxt1S363A and Hxt1W473A have a re-
duced ability to complement the growth defect of theHxt null strain, but only Hxt1W473A is re-
sistant to endocytosis (Fig. 5). Thus, it remains to be determined whether Hxt1 stability is
related to its ability to bind glucose.

N370 andW473—N370 in particular—may have a pivotal role in both glucose transport
and Hxt1 protein turnover. Hxt1 is ubiquitinated by the Rsp5 ubiquitin ligase prior to endocy-
tosis [30], and often phosphorylation is a signal for ubiquitination [54–56]. We surmise that
N370A and W473A mutations may induce conformational changes in Hxt1 and that the re-
sulting mutant Hxt1 proteins are neither phosphorylated nor ubiquitinated. Consistently, a
mutation of N370 of Hxt7 or N376 of Gal2, corresponding to N370 of Hxt1, to F (phenylala-
nine) abolishes hexose transport completely [57]. It is also noted that residues involved in the
endocytosis of the Hxt1 transporter are also needed for the transport of 2-NBDG (Figs. 2 and
3), raising a possibility that 2-NBDG binds to Hxt1 and then enters the cells by endocytosis.
Therefore, 2-NBDG, like glucose, is likely transported into the cells through the glucose trans-
porter system, but the possibility of 2-NBDG uptake by endocytosis cannot be ruled out.

Materials and Methods

Yeast strains and Growth Conditions
The Saccharomyces cerevisiae strains used in this study are BY4742 (WT,Mata his3Δ1 leu2Δ0
ura3Δ0 met15Δ), EBY.S7 (MATα hxt1-17Δgal2Δagt1Δstl1Δleu2-3,112 ura3-52 trp1-289 his3-Δ1
MAL2–8c SUC2 hxtΔfgy1-1 [33]) and KFY127 (Matα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 end3::
KanMX [47]). Yeast cells were grown in YP (2% bacto-peptone, 1% yeast extract) and SC (syn-
thetic yeast nitrogen base medium containing 0.17% yeast nitrogen base and 0.5% ammonium
sulfate) media supplemented with the appropriate amino acids and carbon sources.

Plasmid Construction
The plasmids used in this study are listed in Table 1. Plasmids containing Hxt1-GFP, Hxt1
(Q209A)-GFP, Hxt1 (Q335A)-GFP, Hxt1 (Q336A)-GFP, Hxt1 (S363A)-GFP, Hxt1 (N370A)-
GFP and Hxt1 (W473A)-GFP were constructed by ‘gap repair’ of BamHI-EcoRI linearized
pUG35 vector. Hxt1-HA plasmid was mutagenized by QuikChange Site-Directed Mutegenesis
kit (Stratagene) following manufacturer’s protocol to generate Hxt1 (Q209A)-HA, Hxt1
(Q335A)-HA, Hxt1 (Q336A)-HA, Hxt1 (S363A)-HA, Hxt1 (N370A)-HA and Hxt1 (W473A)-
HA.

Yeast Membrane Preparation, Western Blotting and Protein Half-life
Measurement
Membrane enriched fractions were essentially prepared as described previously [50], with
some minor modifications. Briefly, after washing with phosphate buffer, pH 7.4 containing 10
mM sodium azide, the cell pellet was resuspended in ice cold membrane isolation buffer (100
mM Tris-Cl, pH 8, 150 mMNaCl, 5 mM EDTA) containing 10 mM sodium azide, protease
and phosphatase inhibitors and vortexed with acid-washed glass beads. After diluting the
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samples with the same buffer, unbroken cells and debris were removed by centrifugation
and membrane enriched fraction was collected by centrifuging the samples at 12,000 rpm for
40 min at 4° C. The pellets were resuspended in the aforementioned buffer containing 5M urea
and incubated for 30 min on ice and further centrifuged at 12,000 rpm for 40 min at 4° C. The
proteins were precipitated with 10% TCA, neutralized with 20 μl of 1M Tris base and finally
dissolved in 80 μl of SDS buffer (50 mM Tris-HCl, pH, 6.8, 10% glycerol, 2% SDS, 5% β-mer-
captoethanol). For Western blotting, proteins were resolved in 10% SDS-PAGE, transferred to
PVDF membrane (Millipore) and the membranes were incubated with appropriate antibodies
(anti-HA, anti-GFP or anti-Actin antibody, Santa Cruz) in TBST buffer (10 mM Tris-HCl, pH,
7.5, 150 mMNaCl, 0.1% Tween 20) and proteins were detected by the enhanced chemilumi-
nescence (ECL) system (Pierce).

Microscopy and Image Analysis
Yeast cells expressing Hxt1-GFP were stained with FM4-64 (lipophilic styryl dye for selectively
staining vacuolar membrane, 1μg/ml) to visualize vacuole and analyzed with Olympus Fluo-
View confocal microscope under 63X oil immersion objective lens using GFP, Texas Red fil-
ters. Images from confocal microscope were captured by FluoView software (Olympus) and
un-manipulated raw images were used to quantify fluorescence intensities by ImageJ v1.4r soft-
ware (NIH). For each cell in a given image, regions of interest on plasma or vacuolar mem-
brane and in an area outside the cell (background) were traced and mean fluorescence
intensities (both GFP and FM4-64) were measured. After background subtraction, the GFP sig-
nals in the plasma membranes were normalized to the FM4-64 signal of vacuolar membrane.
At least 200 cells were analyzed and the data represented were the averages with error bars rep-
resenting standard deviation (S.D).

2-NBDG Uptake Assay and Quantification
Cells were first grown in glucose free (5% glycerol + 2% ethanol) medium to mid log phase
(O.D600nm = 1.2–1.5). The cells were harvested, resuspended in the aforementioned medium
and incubated with 60μM of 2-NBDG at 30° C for 30 min. The uptake reaction was stopped
by washing the cells three times with 1X Phosphate-buffered saline, pH 7.4. Live cells were

Table 1. Plasmids used in this study.

Plasmid name Description Source

JKP315 Hxt1-GFP, Ura3, CEN This study

JKP316 Hxt1 (Q209A)-GFP, Ura3, CEN This study

JKP317 Hxt1 (Q335A)-GFP, Ura3, CEN This study

JKP318 Hxt1 (Q336A)-GFP, Ura3, CEN This study

JKP319 Hxt1 (S363A)-GFP, Ura3, CEN This study

JKP320 Hxt1 (N370A)-GFP, Ura3, CEN This study

JKP322 Hxt1 (W473A)-GFP, Ura3, CEN This study

pBM4527 Hxt1-HA, Ura3, 2μ [25]

JKP326 Hxt1 (Q209A)-HA, Ura3, 2μ This study

JKP327 Hxt1 (Q335A)-HA, Ura3, 2μ This study

JKP328 Hxt1 (Q336A)-HA, Ura3, 2μ This study

JKP329 Hxt1 (S363A)-HA, Ura3, 2μ This study

JKP330 Hxt1 (N370A)-HA, Ura3, 2μ This study

JKP331 Hxt1 (W473A)-HA, Ura3, 2μ This study

doi:10.1371/journal.pone.0121985.t001
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visualized with Olympus FluoView confocal microscope under 63X oil immersion objective
lens using GFP filter. The quantification of 2-NBDG fluorescence was calculated using ImageJ
v1.4r software (NIH). Briefly, the mean fluorescence intensity (MFI) of individual cells within
the field of view was calculated and normalized by subtracting the background fluorescence
signal from a region without any cells. At least 200 cells were analyzed from three independent
experiments. Relative 2-NBDG fluorescence (the fluorescence of 2-NBDG from hxtΔ was set to
1.0) was plotted with data showing averages ± S.D.
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