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Individuals with Autism Spectrum Disorder (ASD) appear to show a general face discrimination deficit
across a range of tasks including social–emotional judgments as well as identification and discrimination.
However, functional magnetic resonance imaging (fMRI) studies probing the neural bases of these be-
havioral differences have produced conflicting results: while some studies have reported reduced or no ac-
tivity to faces in ASD in the Fusiform Face Area (FFA), a key region in human face processing, others have
suggested more typical activation levels, possibly reflecting limitations of conventional fMRI techniques to
characterize neuron-level processing. Here, we test the hypotheses that face discrimination abilities are
highly heterogeneous in ASD and are mediated by FFA neurons, with differences in face discrimination
abilities being quantitatively linked to variations in the estimated selectivity of face neurons in the FFA.
Behavioral results revealed a wide distribution of face discrimination performance in ASD, ranging from
typical performance to chance level performance. Despite this heterogeneity in perceptual abilities, indi-
vidual face discrimination performance was well predicted by neural selectivity to faces in the FFA, esti-
mated via both a novel analysis of local voxel-wise correlations, and the more commonly used fMRI rapid
adaptation technique. Thus, face processing in ASD appears to rely on the FFA as in typical individuals,
differing quantitatively but not qualitatively. These results for the first time mechanistically link variations
in the ASD phenotype to specific differences in the typical face processing circuit, identifying promising
targets for interventions.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Effective processing of faces is essential for social interaction.
While adults typically show very high accuracy in recognizing and

discriminating faces (Diamond and Carey, 1986), a number of studies
have shown that individuals with Autism Spectrum Disorder (ASD)
appear to show a general face discrimination deficit (Weeks and
Hobson, 1987; Klin et al., 1999; Critchley et al., 2000; Adolphs et al.,
2001; Snow et al., 2011). It has even been suggested (Dawson et al.,
2005; Schultz, 2005) that deficits in face processing are at the root
of social dysfunction in autism, and that these might cause the emer-
gence of other aspects of autism. However, fMRI studies probing the
neural bases of face processing deficits in ASD have produced
conflicting results: While several studies (Schultz et al., 2000; Pierce
et al., 2001; Grelotti et al., 2005; Humphreys et al., 2008) have re-
ported reduced or no activation in the human “Fusiform Face Area”
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(FFA) (Kanwisher et al., 1997), a central brain region in human face
processing (Grill-Spector et al., 2004; Jiang et al., 2006; Kanwisher
and Yovel, 2006), others have suggested more typical activation
levels (Pierce et al., 2004; Hadjikhani et al., 2007; Perlman et al.,
2011). One reason for this disagreement in the literature might be
the large phenotypic heterogeneity in autism (Geschwind, 2009),
that has been shown to also extend to face processing abilities
(Barton et al., 2004; Hedley et al., 2011). In addition, a fundamental
problem limiting the ability of conventional fMRI to probe the
neural bases of behavioral differences in ASD is that the average
activation level observed in fMRI experiments may not necessarily
correlate with behavioral performance. FMRI studies of face pro-
cessing have commonly focused on comparing the average BOLD-
contrast response to different classes of stimuli (e.g., faces vs.
houses). However, because of the limited spatial resolution of fMRI,
relating BOLD-contrast signal change, behavioral performance, and
assessments of neural population activity are complicated as the
density of selective neurons as well as the broadness of their tuning
contribute to the average activity level in a voxel: A particular
mean voxel response could be obtained by a few neurons in that
voxel which each respond unselectively to many different faces,
or by a large number of highly selective neurons which each respond
only to a few faces, yet these two scenarios have very different
implications for behavioral discrimination ability (Jiang et al.,
2006). The average stimulus-driven BOLD-contrast response is
therefore insufficient to estimate neuronal tuning specificity and be-
havioral performance, as shown by a number of recent studies (Bölte
et al., 2006; DeGutis et al., 2007; Mahon et al., 2007; Riesenhuber,
2007).

In contrast, fMRI adaptation techniques have been shown to be
able to more directly probe neuronal selectivity than conventional
methods relying on average BOLD-contrast stimulus responses
(Grill-Spector et al., 2006). The fMRI rapid adaptation technique
(fMRI-RA) is motivated by findings from monkey electrophysiology
experiments in ventral temporal cortex, reporting that the second
presentation of a stimulus (within a short time period) evokes a
smaller neural response than the first (Miller et al., 1993). It has
been shown that this adaptation can be measured using fMRI, and
that the degree of adaptation depends on stimulus similarity, with
repetitions of the same stimulus causing the greatest suppression.
Several studies (Fang et al., 2007; Gilaie-Dotan and Malach, 2007;
Jiang et al., 2006, 2007; Murray and Wojciulik, 2004) have provided
evidence that parametric variations in visual object parameters
(shape, orientation, or viewpoint) are reflected in systematic modula-
tions of the fMRI-RA signal, and can be used as an indirect measure of
neural population tuning (Grill-Spector et al., 2006). Crucially, we
(Jiang et al., 2006) and others (Gilaie-Dotan and Malach, 2007; Goh
et al., 2010) have provided quantitative experimental evidence that
behavioral face discrimination performance and neural tuning selec-
tivity in the FFA as estimated with fMRI-RA are tightly linked, as pre-
dicted by a computational model of human face processing (Jiang et
al., 2006).

In the present study, we tested the hypothesis that, as in
neurotypical individuals, the FFA is the central region for face pro-
cessing in ASD, and variations in face discrimination performance in
ASD are related to selectivity differences of face neurons in the FFA.
Specifically, within the ASD population, higher face discrimination
performance is predicted to be associated with more selective neural
tuning in the FFA, whereas lower performance is associated
with broader tuning (Goh et al., 2010; Jiang et al., 2006). We tested
this hypothesis using two independent methods: a novel analysis of
voxel-wise correlations to probe sparseness of neural activations,
and fMRI rapid adaptation, an established technique that is con-
sidered to be a more direct probe of neuronal selectivity than conven-
tional methods relying on average BOLD-contrast stimulus responses
(Grill-Spector et al., 2006).

2. Materials and methods

2.1. Participants

Twenty-seven subjects (age range 19–58, ten female) diagnosed
with an ASD (see Table 1) participated in this study. ASD diagnosis
was determined using the Autism Diagnostic Observation Schedule
(ADOS), Module 4. Twelve of the subjects were recruited at
Massachusetts General Hospital (MGH) and only participated in the
behavioral experiments, and the other fifteen were recruited at
Georgetown University Medical Center and the Center for Autism
Spectrum Disorders at Children's National Medical Center, in
Washington, DC, and participated in the behavioral and fMRI Experi-
ments. These participants with autism also completed the Autism-
Spectrum Quotient (AQ) assessment instrument, and scored 32 or
above, a cutoff found to reliably identify adult individuals with autism,
with a low false alarm rate (Baron-Cohen et al., 2001). Fifteen typical
adults recruited from the local community served as behavioral con-
trols (age range 19–59) and only participated in the face discrimina-
tion experiment described in Section 2.3. The controls were age- and
gender-matched to the fifteen ASD subjects who participated in the
fMRI experiments. In our ASD sample, we did not find a significant
correlation of face discrimination ability (performance in the M6 con-
dition, see below) and age (r = −0.15, p > 0.4), nor in the age- and
gender-matched controls (r = 0.01, p > 0.95). Experimental proce-
dureswere approved by GeorgetownUniversity's Institutional Review
Board and the Partners Human Research Committee at Massachusetts
General Hospital, and written informed consent was obtained from
all subjects prior to the experiment. Subjects participating in the
fMRI portion of the study were familiarized with the scanning envi-
ronment in a mock scanner as part of their first study visit, and trained
to minimize head motion. On the second visit, subjects underwent
fMRI scanning followed by the out-of-scanner face discrimination
testing.

Table 1
Age, gender, IQ, and diagnoses of the 27 participants with autism. Participants listed
in bold font are those who participated in the fMRI experiment (see Materials
and methods). ASD (autism spectrum disorder), HFA (high-functioning autism),
RHLD (right-hemisphere learning disability), SEPD (social–emotional processing
disorder).

Age Gender WASI voc. WASI perf. WASI full ADOS

45 M 118 129 127 HFA
52 F 118 104 112 ASD
35 F 105 104 105 ASD
24 M 112 138 128 ASD
54 F 132 126 133 HFA
22 M 118 124 124 HFA
19 F 119 121 123 ASD
27 F 109 118 115 ASD
59 F 116 112 116 ASD
23 M 116 119 120 ASD
20 M 102 112 108 HFA
28 M 93 104 99 ASD
30 M 62 115 85 HFA
25 M 119 101 111 ASD
58 M 134 134 139 ASD
23 M 117 119 120 SEPD + ASD
40 F 105 86 114 RHLD + ASD
44 F 128 95 119 RHLD
21 M 115 69 112 RHLD + ASD
47 M 107 90 112 RHLD
36 M 131 128 133 SEPD + ASD
23 F 139 125 136 SEPD + ASD
48 M 132 109 124 RHLD
25 M 112 111 114 ASD
23 M 141 127 140 SEPD + ASD
42 F 131 117 127 ASD
48 M 119 106 114 ASD
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2.2. Famous faces recognition test

Face pictures of fifty celebrities and fifty ordinary people (unknown
to the subjects) were presented on the screen in random order, and
subjects indicated whether they knew the face on the screen or not
by pressing one of two buttons (Barton et al., 2004). Pictures were
kept visible until subjects pressed a button, which also served to initi-
ate the next trial. After subjects finished the test, a questionnaire
with the names of all fifty celebrities was presented to subjects, and
subjects needed to indicate whether they knew each celebrity. Based
on responses to the questionnaire, responses from four subjects were
excluded from analysis due to insufficient familiarity with the famous
faces used (>5 unfamiliar). To avoid response bias, d-prime (d′) was
used to quantify subjects' ability to identify famous faces.

2.3. Face discrimination test

Using face stimuli generated by a photorealistic face morphing
system (Blanz and Vetter, 1999; Jiang et al., 2006) along twenty-five
within-gender morph lines based on fifty individual prototype faces
(200 by 256 pixels, twenty-six females, see Fig. 1A), we tested
subjects' face discrimination abilities using a two-alternative forced
choice (2AFC) paradigm (Fig. 1B). For each trial, after a 500 ms fixa-
tion, the target face was presented for 200 ms, followed by a mask
image for 400 ms, followed by two choice faces presented side-by-
side for 4000 ms or when subjects responded (whichever came
first), and subjects were asked to judge which one of the two faces
was the same as the target face. The next trial would automatically
start 1000 ms after subjects made a response. If subjects failed to
respond within 4000 ms, an auditory alarm (“beep”) would be
presented, and the next trial would start 1000 ms after the beep.

One of the choice faces was always the same as the sample face,
while the other choice face differed from the first one by one of four
possible different levels of similarity. This was done by creating
“morph lines” interpolated between two prototype faces, and then
choosing face images separated by a specified distance along this con-
tinuum (Fig. 1A). We tested four different levels of intra-pair similarity,
with shape differences of 30%, 60%, 90%, and 120% (conditions M3/6/9/
12, respectively, see Fig. 1A), with 100% corresponding to the distance
between two prototype faces, and 120% difference created by extrapo-
lation (Blanz and Vetter, 1999). Within each trial, the three faces were
either all upright or all inverted (data from inverted faces will be

reported elsewhere). Stimuli were presented to participants on an
LCD monitor on a dark background, 1024 × 768 resolution, 60 Hz re-
fresh rate, at a distance of 60 cm. An in-house software package was
used to present the stimuli and to record the responses. Participants
completed a total of 800 trials (80 per condition) in sixteen blocks.

Our previous study (Jiang et al., 2006) showed that, for typical
adults, an asymptote is reached in the M6 condition, in both behav-
ioral performance and releases from fMRI adaptation, i.e., a significant
increase from M3 to M6 condition in discriminating faces, but not
from the M6 to M9 condition (Jiang et al., 2006). In the present
study, we therefore used performance in the M6 condition as a mea-
sure of subjects' face discrimination ability to correlate with the fMRI
data; nearly identical results were obtained when we fitted subjects'
performance to a sigmoid function, and then used the fitted parame-
ters as the indicators of behavioral performance (see Fig. S5 in Jiang et
al. (2006)).

2.4. Functional localizer scans

To locate the FFA regions, a block design was used to collect MRI
images from two localizer scans for each subject (Haxby et al., 1999;
Jiang et al., 2006; Kanwisher et al., 1997). During each run, following
an initial 10.2 s fixation period, 50 grayscale images of faces, houses,
and scrambled faces were presented to participants in blocks of
30.6 s (each image was displayed for 512 ms and followed by a
100 ms blank screen), and were separated by a 20.4 s fixation block
(Fig. 2). Each block was repeated twice in each run, which lasted for
316.2 s, and participants were asked to passively view these images
while keeping their fixation at the center of the screen. The face and
house images used in the localizer scans were purchased from http://
www.hemera.com and post-processed using programs written in
MATLAB (The Mathworks, MA) to eliminate background variations,
and to adjust image size, luminance, and contrast. The final size of all
images was scaled to 200 by 200 pixels, and half of the faces were
scrambled using a grid of 20 by 20 pixel elements while the outlines
of the faces were kept intact. The fMRI data of functional localizer
scans from one subject were discarded due to lack of activation across
visual cortex (for this subject, the FFA region of interest (ROI) was de-
fined by stimuli > baseline from the event-related scans, see below),
and only one run of images was collected for two other subjects. The
data from the localizer scans were also used in the local regional het-
erogeneity analysis (see below) to probe the sparsity of FFA activations.

M12

100% A
0% B

80% A
20% B

60% A
40% B

40% A
60% B

20% A
80% B

0% A
100% B

-20% A
120% B

M6

M9

M3

500ms

200ms

400ms

4000ms

200ms

A B

Fig. 1. Face stimuli and experimental design of the psychophysics experiment. (A) Shows an example “morph line” between a pair of face prototypes (shown at the far left and
second from the right), created using the photorealistic morphing system (Blanz and Vetter, 1999). The relative contribution of each face prototype changes smoothly along the
line. For example, the fourth face from the left (the third morph) is a mixture of 70% of the face on the far left and 30% of the face on the far right. Four conditions, M3/6/9/12,
which correspond to shape differences of 30%, 60%, 90%, and 120%, were examined in the present study. The difference between two prototype faces was defined as 100%; 120%
difference was achieved by extrapolation along the morph line beyond face prototypes (Blanz and Vetter, 1999). (B) Design of the 2AFC face discrimination experiment. Subjects
viewed a target face, followed by a mask, followed by two test faces, presented side-by-side, and had to indicate which of the test faces was identical to the previously presented
target face. There were four levels of shape difference, M3/6/9/12, between the two test faces as explained in (A).
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2.5. Rapid event-related (ER) scans

MRI images from four ER scans were collected for each subject. Each
run lasted 538.56 s and had two 10.2 s fixation periods, one at the be-
ginning and the other at the end. Between the two fixation periods, a
total of 127 trials were presented to participants at a rate of one
every 4.08 s. During each trial (except null trials), two faces were
displayed sequentially (300 ms each with a 400 ms blank screen
in-between), and followed by a 3080ms blank screen (Jiang et al.,
2006). For each run, the data from the first two trials were discarded,
and analyses were performed on the data of the other 125 trials — 25
each of the five different conditions: three conditions of interest of
varying intra-pair stimulus similarity (M3/M6/M9, see Fig. 1A above)
(Jiang et al., 2006), task trials, in which an ‘oddball’ target face, which
participants needed to identify, could appear as either the first or the
second one of the pair of faces, and null trials (Jiang et al., 2006). Perfor-
mance of subjects in the ASD group on the oddball task inside the scan-
ner was nearly perfect and did not differ from controls (Jiang et al.,
2006). Trial order was randomized and counterbalanced using
M-sequences (Buracas and Boynton, 2002). While inside the scanner,
participants were asked to watch all the faces but only respond to in-
stances of the target face by pressing a button with the right hand.
Morphed faces (200 by 200 pixels) along ten within-gender morph
lines of twenty individual prototype faces (ten females) were used,
along with one additional oddball target face, different from the face
prototypes used to generate the morphed stimuli. The stimuli of both
localizer and ER scans were presented on black background using
E-Prime software (http://www.pstnet.com/products/e-prime/), back-
projected on a translucent screen located at the rear of the scanner,
and viewed by participants through a mirror mounted on the head
coil. The fMRI data from the ER scans from one subject were discarded
due to excessive head movements, and only two runs of fMRI data
were collected from two other subjects. One subject needed to be
rescanned on the ER paradigm as her data from the first run indicated
that she had erroneously performed a face discrimination task on the
face pairs. Subjects were familiarized with the scanning environment
and experimental task in a mock scanner prior to scanning, and one
or two practice blocks of trials were administered to subjects to con-
firm that they were able to do the oddball task inside the scanner.

2.6. MRI data acquisition and analysis

MRI data were acquired at Georgetown University's Center for Func-
tional and Molecular Imaging using an echo-planar imaging (EPI) se-
quence on a 3T Siemens Trio scanner (Flip angle = 90°, TR = 2.04 s,
TE = 29 ms, FOV = 205, 64 × 64 matrix) with an eight-channel head
coil (n = 5) or a twelve-channel head coil (n = 10) (note that since con-
trast measures used in the analyses are all within-subject, these

differences in coils do not present a problem in the current study; in ad-
dition, internal quality tests showed that the two head-coils are compara-
ble in terms of signal-to-noise ratio). Thirty-five interleaved axial slices
(thickness = 4.0 mm, no gap; in-plane resolution = 3.2 × 3.2 mm2)
were acquired for the two functional localizer and four functional runs.
At the end, three-dimensional T1-weighted MPRAGE images (resolution
1 × 1 × 1 mm3) were acquired from each subject.

After discarding the images acquired during the first five acquisi-
tions of each run, the EPI images were temporally corrected to themid-
dle slice, spatially realigned and unwrapped together with the images
from the localizer scans using the SPM2 software package (http://
www.fil.ion.ucl.ac.uk/spm/software/spm2/), then all images were
resliced to 2 × 2 × 2 mm3, normalized to a standard MNI reference
brain in Talairach space, and smoothed with 6mm Gaussian kernel
using SPM2.

The FFA regions were identified for each individual subject inde-
pendently with the data from the localizer scans (except for one sub-
ject, who did not show any activation throughout visual cortex
during the localizer scans even though activation in the ER scans was
normal, and whose FFA was defined by the contrast of stimuli versus
baseline in the ER scans). We first modeled the hemodynamic activity
for each condition (face, scrambled face, and house) in the localizer
scans with the standard canonical hemodynamic response function
(Friston et al., 1995), then identified the FFA ROI with the contrast of
face versus house masked by the contrast of face versus baseline
(p b 0.0001). To obtain comparably-sized FFAs across subjects, we de-
fined the FFA as the ROI consisting of the 45 contiguous voxels with the
highest statistical threshold for each subject (Jiang et al., 2006). The
right occipital face area (OFA) (Haxby et al., 2000) was defined in the
same way in thirteen subjects (45 voxels, n = 13, as the OFA could
not be reliably identified in two subjects), as was the left FFA (45
voxels, n = 14). We also identified a V1/2 ROI (a cuboid ROI centered
at the local maximal voxel (defined by the contrast of face versus base-
line) in the right V1/V2 region, size: 48 voxels, shape: 4 × 4 × 3 voxels,
n = 15), and the right parahippocampal place area (PPA) ROI (Epstein
and Kanwisher, 1998) in each subject using the contrast of house ver-
sus face masked by house versus baseline (p b 0.00001), of same size
(45 contiguous voxels, n = 14 as no activations in visual cortex during
the localizers was found in one subject, see above). We were able to
identify a right STS ROI (Haxby et al., 2000) in nine subjects using the
contrast of face versus house masked by face versus baseline
(p b 0.001, uncorrected), but activity in this area did not correlate sig-
nificantly with face discrimination ability on any of the measures used
(FSL, FSRA, FS369, and Hcorr, see below) (data not shown). To test whether
results were affected by which localizer scan was used to define the
FFA ROI, we also identified another set of independent right FFA
using the data from the second localizer scan, and then analyzed the
data from the first localizer scan. Results obtained from these FFA

+ ++ + ++ +

0      4 5     19 30   44 55   69 80   94 105 119 20   29 45   54 70   79 95 104 120 129130 144145-154

7-21 132-146
24-29 74-79 99-104 124-129 149-15449-54

Fig. 2. Functional localizer scans. Participants were asked to passively view blocks of face, house, and scrambled face images that were separated by fixation blocks. The numbers (in
black font) indicate the first and last MRI acquisition of each block. MRI images that were chosen for the local regional heterogeneity analysis are shown in red (face blocks) and blue
(fixation blocks). Due to the lag of hemodynamic responses, for face blocks, the images from n0 + 2 to nm + 2 were used (n0 is the time point when face blocks started, and nm is
the time point when face blocks ended), and the images from n0 + 4 to nm were used for fixation blocks to avoid signal overlap from the blocks before and after it (n0 is the time
point when a fixation block started, and nm is the time point when it ended). (For interpretation of the references to color in this figure legend, the reader is referred to the online
version of this article.)
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were similar to those obtained with FFAs defined from both localizer
scans.

After removing low frequency temporal noise from the EPI runs
with a high pass filter (1/128 Hz), fMRI responses were modeled
with a design matrix comprising the onset of each non-null trial and
movement parameters as regressors using SPM2, and proportional
scaling was applied to remove the effects of global variations
(Aguirre et al., 1998), as we expected differences between the three
adaptation conditions (M3/6/9) to be small and limited to local
face-selective regions based on previous findings (Gilaie-Dotan and
Malach, 2007; Jiang et al., 2006). We then extracted the hemodynam-
ic response for each subject in the right and left FFA and OFA, using a
standard canonical hemodynamic response function (Friston et al.,
1995) with the MarsBar toolbox (Brett et al., 2002) and in-house soft-
ware written in Matlab.

2.7. Local regional heterogeneity analysis

In the present study, we introduce a novel technique to probe the
sparseness of neural activation patterns and provide an indication of
neural selectivity. The technique, called local regional heterogeneity
analysis, is based on an analysis of voxel-wise correlations of fMRI ac-
tivation patterns. It is motivated by our earlier computational, behav-
ioral and imaging studies (Jiang et al., 2006; Riesenhuber and Wolff,
2009) that provided quantitative evidence that human face percep-
tion is based on the discrimination of sparse activation patterns
over highly selective face neurons. In this account, the sparseness of
activation patterns in the FFA is related to face neuron selectivity:
The high selectivity of face neurons in typical subjects produces a
sparse neural code, as each face neuron only responds to a small set
of faces highly similar to its preferred face. In contrast, less selective
face neurons respond to a greater number of dissimilar face stimuli,
leading to greater overlap in responses among face neurons and less
sparse representations. Indeed, training studies in monkeys have
shown that learning produces sparser codes, with neurons after train-
ing responding to fewer stimuli (Freedman et al., 2006; Kobatake et
al., 1998), and we have found compatible results using fMRI-RA in
humans, indicating training-induced sharpening of neural tuning,
which were paralleled by improvements in behavioral discrimination
abilities (Jiang et al., 2007). For a selective face representation based
on sharply tuned face neurons, activation patterns should thus be
sparser than for a population with more broadly tuned neurons.
This then predicts that the sharply tuned population should have a
higher degree of heterogeneity in neural correlations (as small groups
of neurons preferring similar faces should show high correlation but
low correlation with other neurons) than the population with more
broadly tuned neurons (in which more neurons respond in a similar
way, increasing the uniformity of correlations). This hypothesis is
supported by single-unit studies that have found that neurons with
similar tuning tend to show more correlated firing than neurons
with dissimilar tuning (Bair et al., 2001; Jermakowicz et al., 2009).
Thus, when measured with fMRI, tuning specificity in the FFA should
correlate with the degree of sparseness, which in turn should corre-
late with the heterogeneity of correlations in the FFA, i.e., the stan-
dard deviation or standard error of correlations between voxels. In
other words, across subjects, a lower local regional heterogeneity of
correlations in the FFA should be associated with lower behavioral
performance in discriminating faces, and greater heterogeneity with
better behavioral performance.

For the local regional heterogeneity analysis, we first extracted the
raw time series data in the FFA from the first localizer scan (see
Fig. 2) for each subject (with normalization but without additional
smoothing), followed by removal of the mean, any linear trends, and
low frequency variations (Friston et al., 1995). The fMRI data from
every time point in the face blocks and fixation blocks (after compen-
sating for delays caused by the slow hemodynamic response) were

used in a pair-wise correlation analysis between each voxel, which
resulted in a set of pairwise correlation coefficients (for n voxels), rij.

rij ¼ corr Voxi; Voxj
� �

; i; j∈1 ::n ð1Þ

We then calculated a measure of local heterogeneity, Hcorr, as the
standard error of the mean (SEM) of those correlation coefficients
(rij, i b j, because rij = rji, and rii = 1).

Hcorr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn−1

i¼1

Xn
j¼iþ1

rij−u
� �2

N � N−1ð Þ

vuuuut
; where N ¼

Xn−1

i¼1

i;u ¼ 1
N

Xn−1

i¼1

Xn
j¼iþ1

rij ð2Þ

Hcorr was then used for a correlation analysis with subjects' behavioral
performance in the M6 condition. We also calculated Hcorr in the right
OFA, PPA, and V1/2 ROIs of each individual subject to probe whether a
correlation between behavioral performance and Hcorr is limited to
FFA (as predicted by the model), or is a general global effect. For com-
parison, we also ran the local regional heterogeneity analysis on the
data from neurotypical subjects who were part of our previous
study (Jiang et al., 2006) (FFA ROI size, range 42–49, mean 45.0 ±
0.9). Finally, to investigate whether spatial resampling might affect
the regional heterogeneity measurements, we re-analyzed the data
using different voxel sizes (1.5 × 1.5 × 1.5mm3, yielding an FFA of
100 voxels, and 3 × 3 × 3mm3, yielding an FFA of 15 voxels).

2.8. Face selectivity indices

In addition to Hcorr, we defined two face selectivity indices (one for
the functional localizer scans, and the other for the fMRI-RA scans) to
investigate the relationship between fMRI response and behavioral
performance.

For the data from the functional localizer scans, we extracted the
fMRI responses to faces and houses in the right FFA from localizer
scans and defined a Face Selectivity Index, FSL, (Kourtzi et al., 2003) as

FSL ¼
Face−House
Faceþ House

ð3Þ

For the data from the fMRI-RA scans, we defined a Face Selectivity
index, FSRA, as

FSRA ¼ M6−M3ð Þ− M9−M6ð Þ
M3þM6þM9ð Þ=3 ð4Þ

FSRA is high for signal asymptotes at M6 (indicating high specificity as
in typical controls), i.e., for an increase in release from fMRI adapta-
tion from M3 to M6, but not from M6 to M9, as found in typical con-
trols (Jiang et al., 2006). Conversely, FSRA is low if release from
adaptation increases beyond M6 and extends to M9 (indicating less
specific face neuron tuning).

Furthermore, to provide an additional index to show the link
between responses in the fMRI-RA Experiment and behavioral face
discrimination performance, we defined a new face selectivity
index, FS369, as,

FS369 ¼ M6
M3þM9

ð5Þ

A high FS369 would point to a strong release from adaptation at
M6, which would in turn suggest high face selectivity. Conversely, a
low FS369 suggests weak release from adaptation at M6, which
would in turn suggest low face selectivity.

324 X. Jiang et al. / NeuroImage: Clinical 2 (2013) 320–331



2.9. Comparison to Jiang et al. (2006)

To link the results of the present study to those of our earlier study
(Jiang et al., 2006) and further validate the local regional heterogene-
ity analysis method, we re-analyzed the data from (Jiang et al., 2006)
using the same methods as in the current study (with FFA ROI based
on the 45 most significant contiguous voxels, see Materials and
methods). The designs of fMRI Experiment 1 in (Jiang et al., 2006)
and the fMRI Experiment in the present study are idEntical except
for minor changes in trial duration (4 s in (Jiang et al., 2006), 4.08 s
in the present study) and MRI acquisition (TR = 2 s, TE = 30 ms,
44 slices, thickness = 3.2 mm, and a single-channel head coil were
used in Jiang et al. (2006), and TR = 2.04 s, TE = 29 ms, 35 slices,
thickness = 4.0 mm, and an eight- or twelve-channel head coil
were used in the present study). In addition, the design of the 2AFC
face discrimination experiment was slightly different between the
present study and Jiang et al. (2006), with choice faces presented se-
quentially in Jiang et al. (2006) and side-by-side in the present study,
but this difference did not affect face discrimination performance,
(p > 0.35, two-tailed t-test, M6 condition).

3. Results

3.1. Heterogeneity of face discrimination abilities in ASD

Twenty-seven adults diagnosed with an ASD (see Materials and
methods) and fifteen typical controls participated in the 2AFC face dis-
crimination behavioral experiment (Fig. 1B). Based on results from our

earlier study (Jiang et al., 2006) that had shown that by the M6 condi-
tion (i.e., for face pairs separated by 60% shape difference) typical con-
trols approach an asymptote for both release from adaptation in the
fMRI-RA experiment as well as discrimination ability (thick blue line
with error bars in Fig. 3A), we used behavioral performance in the
M6 condition to define whether a subject in the ASD group had typical
or impaired face discrimination abilities, depending onwhether his/her
performance at the M6 condition was above or below the mean minus
one standard deviation of the performance of typical controls at theM6
condition. At the group level, a two-sample t-test revealed a significant
difference between the ASD and control groups in the M6 condition
(p b 0.03, Fig. 3B). In line with a previous report (Barton et al., 2004),
a high heterogeneity in face discrimination performance was observed
in the ASD group — about half of the subjects in that group (n = 13,
green lines in Fig. 3A) showed performance levels approximately com-
parable to typical controls, while the other half (n = 14, red lines in
Fig. 3A) exhibited more substantial impairments in discrimination per-
formance. However, note that this separation of the ASD cohort into
groups with and without face processing deficits is only meant to
illustrate the substantial heterogeneity of face processing abilities in
ASD— the data themselves indicate a continuum of performance levels,
ranging from severe impairment to typical performance levels, rather
than the existence of discrete subgroups. To directly compare the het-
erogeneity of behavioral performance between the ASD and control
groups, we conducted an F-test on performance in the M6 condition,
and found that the variance in ASD group was significantly higher
than control group (p b 0.015), further supporting that there is a
high heterogeneity in face discrimination in individuals with ASD.
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Fig. 3. Heterogeneity of face discrimination abilities in autism and correlation with famous face recognition performance. (A) Individual behavioral face discrimination performance
of twenty-seven participants with ASD (thin green and red lines), and the mean and standard deviation (SD) of fifteen typical controls (thick blue lines). Green and red lines show
subjects in the ASD cohort with performance within and below one standard deviation from the mean performance of control subjects, respectively (see text). (B) Mean accuracy
from nine typical controls and twenty-seven ASD subjects. (C) Correlation between face discrimination ability in the M6 condition vs. performance (d′) in the famous face recog-
nition experiment for participants in the ASD group (N = 23, as four participants with ASD were not sufficiently familiar with the famous individuals used in the test, see Materials
and methods). (D) Individual behavioral face discrimination performance of the fifteen subjects with ASD who also participated in the fMRI experiments (thin lines), and the mean
and standard deviation (SD) of the controls (thick blue lines). Green and red lines show normal and below-normal face discrimination performance as in (A). Error bars indicate SD.
(For interpretation of the references to color in this figure legend, the reader is referred to the online version of this article.)
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Subjects in the ASD group also participated in the famous face rec-
ognition experiment (Barton et al., 2004) (see Materials and methods).
Results showed a significant correlation between accuracy in discrimi-
nating faces in theM6 condition and recognition performance in the fa-
mous faces test (r = 0.54, p b 0.008), suggesting that the ability to
discriminate the fine shape differences in the computer-generated
morphed faces was related to the ability to recognize real faces
(Fig. 3C). This parallels a previous report showing that ASD subjects
with better famous face recognition have better ability to discriminate
changes in facial structure (Barton et al., 2004). In line with previous
reports (Barton et al., 2004), we did not observe significant correlations
between face discrimination performance in the M6 condition and the
demographic and neuropsychological measurements, including age
(p > 0.46), IQ (p > 0.98), ADOS social score (p > 0.82), and ADOS
communication scores (p > 0.83). The data from the fifteen subjects
who also participated in the fMRI component of the study are shown
in Fig. 3D.

3.2. Face-selective response amplitude in the FFA does not predict
behavioral face discrimination ability

After identifying the right FFA using the contrast of faces versus
houses masked by faces versus baseline in each individual subject
(Grill-Spector et al., 2004; Jiang et al., 2006) (see Fig. 4 for the FFA in
one representative subject), we extracted the fMRI responses to faces
and houses in the right FFA from localizer scans and calculated the
FSL for fourteen subjects. Pearson's correlation analysis showed no cor-
relation between FSL and behavioral performance in the M6 condition
(r = 0.30, p > 0.30, see Fig. 5A). Similar results were obtained when
correlating behavioral performance in the M6 condition with the
fMRI response to faces (r = 0.07, p > 0.82), or with the differences

in fMRI responses to faces and to houses (r = 0.17, p > 0.56), or
with the ratio of fMRI responses to faces divided by fMRI responses
to houses (r = 0.27, p > 0.35) (Fig. 5B-D).

Together with the conflicting reports on FFA activation levels from
previous fMRI studies of face processing study in ASD (reduced or no
FFA activity to faces in Humphreys et al. (2008), Grelotti et al. (2005),
Pierce et al. (2001), and Schultz et al. (2000) versus typical activation
levels at FFA in Hadjikhani et al. (2007), Perlman et al. (2011), and
Pierce et al. (2004)), these results provide further support that the
commonly used contrast of faces versus houses or other classes of ob-
jects in fMRI studies is insufficient to predict behavioral abilities, like-
ly due to the aforementioned confound that measures of average
activity in a voxel can be affected by the density of selective neurons
as well as the broadness of their tuning (Grill-Spector et al., 2006;
Jiang et al., 2006; Riesenhuber, 2007).

3.3. Local heterogeneity of voxel-wise correlations in the FFA provides a
direct link between neural selectivity (sparseness of neural activations)
and individual behavioral performance

We next tested the hypothesis that the local heterogeneity of
voxel-wise correlations, Hcorr, in the FFA during the localizer scans
could predict behavioral performance in the ASD cohort. Using the
data from face blocks only, Pearson's correlation analysis revealed a
trend of correlation between Hcorr and behavioral performance
(r = 0.48, p b 0.085, see Fig. 6A). In order to increase the power of
our analysis, we next augmented the data set used to calculate
pair-wise correlations of activation by including the data from both
face blocks and resting blocks (see Fig. 2), following reports from a
number of single unit recording studies (Bair et al., 2001;
Jermakowicz et al., 2009) that found that pair-wise correlation

Fig. 4. Left and right FFA and right OFA from one representative subject. For illustration purpose, a less strict threshold (p b 0.001, uncorrected, masked by face > baseline,
p b 0.00001, uncorrected) was used.
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between two neurons in the presence of visual stimuli (which in turn
are related to similarities in neuronal tuning (Bair et al., 2001;
Jermakowicz et al., 2009)) can also be detected in spontaneous activ-
ity (i.e., in the absence of stimuli). Indeed, analyzing the joint data set
revealed a highly significant correlation between Hcorr and behavioral
performance (r = 0.75, p b 0.0022, see Fig. 6B). Using the data from

both face and resting blocks, a trend was observed in the left FFA
(r = 0.55, p b 0.054, Fig. 6C). In contrast, there was no correlation
of behavioral face discrimination performance and Hcorr in the more
posterior OFA (r = 0.19, p > 0.54, see Fig. 6D; note that correlations
in the right FFA for the same subgroup of subjects were comparable to
the full cohort, r = 0.73, p b 0.0074), lower visual areas (V1/2,
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r = −0.02, p > 0.94, see Fig. 6E), nor in the right PPA (r = −0.20,
p > 0.48, see Fig. 6F), showing that the correlation of behavior and
voxel-wise heterogeneity is specific to the FFA, as predicted, and not
a general effect. Furthermore, the lack of correlation between behav-
ioral performance and Hcorr in the more posterior right OFA suggests
that the FFA, rather than the OFA, is still the key region mediating
face perception in individuals with ASD. Similar results were obtained
when using the second localizer scan to identify the right FFA and the
first localizer scan for analysis. In contrast, the average voxel-wise
correlation within the FFA was not significantly correlated with be-
havioral performance (r = −0.43, p > 0.12). Furthermore, we
probed the impact of head movement on the local regional heteroge-
neity analysis. There was no correlation between Hcorr in the FFA and
any of the six head movement parameters obtained during prepro-
cessing (at least p > 0.31), and regressing out the six head movement
parameters did not change the conclusions (r = 0.75, p b 0.03).

To further validate the Hcorr measure, we calculated the Hcorr values
of the typical adult subjects in our earlier study (Jiang et al., 2006),
which fit very well with the data from the autistic population (green
circle in Fig. 6B), demonstrating the strength of the Hcorr analysis to es-
timate neural selectivity and predict behavioral ability, even across
studies. Finally, similar correlations between Hcorr in the FFA and be-
havioral performance in the M6 condition were observed when the
fMRI data were resampled at 1.5 × 1.5 × 1.5 mm3 (r = 0.707,
p b 0.005), or 3 × 3 × 3mm3 (r = 0.603, p b 0.023), indicating that
the results are not an artifact of voxel resampling.

3.4. fMRI-RA provides another direct link between neural selectivity and
individual behavioral performance

As stated above, previous studies (Gilaie-Dotan and Malach, 2007;
Goh et al., 2010; Jiang et al., 2006) have established a tight link

between neural selectivity as estimated with fMRI-RA and behavioral
face discrimination performance in typical adults. This link is based
on a computational model of face processing (Jiang et al., 2006) that
predicts that viewing a particular face should be associated with a
sparse activation pattern over face neurons tuned to faces similar to
the currently viewed face, with little activation of neurons tuned to
dissimilar faces. Thus, in an fMRI-RA paradigm that varies the similar-
ity between two face images shown successively in a single trial, the
BOLD-contrast signal in the FFA for increasing within-pair face
dissimilarity should progressively increase as the two faces activate
increasingly disjoint subpopulations of neurons (causing increasingly
lower amounts of neuronal adaptation), up to where the two images
activate different subpopulations of neurons, at which point the re-
sponse level should asymptote and not increase for further increases
in face dissimilarity. Correspondingly, at the behavioral level, this
model predicts that the ability to discriminate specific faces is directly
related to the dissimilarity of the neural activation patterns associat-
ed with these faces in the FFA. These predictions were confirmed ex-
perimentally by us (Jiang et al., 2006) and others (Gilaie-Dotan and
Malach, 2007; Goh et al., 2010). We now tested whether this same
link between behavioral ability and neural selectivity would hold in
the ASD group.

Between the two functional localizer runs, MRI images from four
runs of event-related (ER) scans using an fMRI-RA paradigm were
collected (n = 15), while subjects performed an oddball target
face detection task that was orthogonal to the conditions of interest,
i.e., the similarity of the two faces in a pairwas irrelevant for the oddball
task (Jiang et al., 2006), thereby avoiding differential task difficulty-
related modulations of the conditions of interest (Grady et al., 1996;
Riesenhuber, 2007; Sunaert et al., 2000). Three conditions of interests,
M3/6/9, were tested (see Fig. 1A).Within each trial, two faces of varying
dissimilarity (either 30%, 60%, or 90% of shape change, corresponding to
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Fig. 7. Neural selectivity as estimated with fMRI-RA correlates with face discrimination ability. (A) Mean fMRI responses in the FFA during the fMRI-RA scans revealed only a weak
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Green circles in (B) and (D) indicates the average data from adults with typical face perception (Jiang et al., 2006). Dashed lines show the respective regression lines. Error bars
show within-subject SEM. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this article.)
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M3/6/9) were presented in rapid succession, as in our previous studies
(Jiang et al., 2006) (Fig. 1A).

The fMRI responses to pairs of faces in the M3/6/9 conditions were
extracted from the independently defined right FFA ROI of each indi-
vidual (same ROI as above). Over the whole ASD group, there was no
significant difference between signal levels in the M3 and M6 condi-
tions (Fig. 7A, paired t-test, p > 0.29), in contrast to the controls of
Jiang et al. (2006), indicating decreased release from adaptation for
small shape differences that is compatible with generally reduced
selectivity of face neurons in the FFA in autism. We then used re-
sponses in the M36/9 conditions to calculate the FSRA face selectivity
index for each subject (see Materials and methods) to probe whether
it predicted behavioral face discrimination ability. Pearson's correlation
analysis revealed a significant correlation between FSRA and behavioral
performance in the M6 condition (r = 0.72, p b 0.004, see Fig. 7B),
suggesting that the heterogeneity of face perception abilities in individ-
uals with autism might be the consequence of varying degrees of neu-
ronal selectivity to faces in the FFA region, in agreement with the Hcorr

analysis results. Further strengthening the validity of the FSRA measure
to relate estimated neural selectivity to behavior, the data from our
prior study with typical adults (Jiang et al., 2006) (green circle in
Fig. 7B) fit well with the data from this study (note that the current
study used a 12-channel coil with a signal-to-noise ratio, SNR, twice
as high as that of the previous study (Jiang et al., 2006); the high SNR
in the current study permitted the individual-subject correlation anal-
ysis, in contrast to the 2006 study, where it was necessary to average
over the whole population to reduce variability). In line with the Hcorr

results, a significant correlation was observed in the left FFA (r =
0.59, p b 0.033, Fig. 7C), but not in the right OFA (r = −0.38,
p > 0.22), nor in lower visual cortex (V1/2) (r = 0.13, p > 0.65).

Furthermore, Pearson's correlation analysis also revealed a signifi-
cant correlation between behavioral performance in the M6 condition
and another measure of face selectivity, FS369 (see Materials and
methods), r = 0.67, p b 0.0091 (Fig. 7D) providing additional evidence
of a direct link between neural tuning to faces in the FFA and face dis-
crimination performance in adults with autism. In contrast, as in the
functional localizer scans, the amplitude of fMRI responses in the FFA
during the event-related scans again did not correlate with behavioral
performance (r = −0.066, p > 0.82).

4. Discussion and conclusions

One of themain challenges in autism research and the development
of effective therapies is the identification of differences at the neural
level that can be mechanistically and quantitatively linked to the ob-
served behavioral differences that are often highly variable in individ-
uals with autism. In the present study, substantial heterogeneity in
face discrimination abilities, linked to real-life face identification skills,
was found in adults with autism spectrum disorders. Specifically,
despite the significant variability of face discrimination abilities in the
ASD cohort, behavioral performance levels were shown to be quantita-
tively linked to levels of tuning specificity in the right FFA — estimated
via a novel analysis of voxel-wise correlations as well as with fMRI-RA,
suggesting that the phenotypic heterogeneity in face processing in ASD
is mediated by neuronal selectivity to faces in the FFA, similar to find-
ings in typical adults (Gilaie-Dotan and Malach, 2007; Goh et al.,
2010; Jiang et al., 2006).

These data are compatible with the theory that different human
face processing tasks depend on a common representation for face
shape, located in the human FFA, and that decreased selectivity of
face neurons in the FFA would therefore result in broad face process-
ing impairments across tasks (Jiang et al., 2006), in both neurotypical
individuals (Gilaie-Dotan and Malach, 2007; Goh et al., 2010) and
those with ASD (Weigelt et al., 2012). Previous brain imaging studies
examining average BOLD contrast response amplitudes to faces have
reported conflicting results regarding processing differences in the

FFA in autism, however, probably due to the fact that response ampli-
tude may not be a good index of neuronal tuning specificity. Indeed,
in our study we confirm that FFA activation level is not a predictor
of face processing ability in individuals with ASD (see Fig. 5 for results
with four different face indices, all based on average BOLD-contrast
response), creating the need for more advanced MRI techniques to
explore the neural bases of face processing deficits in autism.

In contrast, the hypothesis that variations in the selectivity of the
face representation in the FFA are responsible for the heterogeneity
of face processing abilities in autism is supported by our novel analy-
sis of local voxel-wise correlations within the FFA. While fMRI corre-
lation analyses usually focus on long-distance relationships between
different brain regions, few studies have examined local correlations
between voxels within a local region (Deshpande et al., 2009; Zang
et al., 2004). In those previous approaches, a coherence value was
usually assigned to each voxel based on correlations with its nearest
neighbors, and this quantity (termed regional homogeneity, or
ReHo) was then used for comparisons. Using this approach, two
recent studies (Paakki et al., 2010; Shukla et al., 2010) have found
altered ReHo in individuals with ASD, including both increased and
decreased ReHo in several different brain regions, such as frontal
and temporal cortices. For instance, Shukla et al. (2010) found in-
creased ReHo in right fusiform gyrus in children with ASD. However,
these previous approaches did not take into account the functional
roles of voxels – i.e., a voxel and its neighbors may, or may not, be
involved in the same cognitive function or be selective for similar
stimuli – nor the variations in correlation with neighborhood voxels.
To develop a better measure of voxel-wise response heterogeneity
that takes the functional role of each voxel into account, we proposed
a novel approach in which an ROI was functionally defined, followed
by the computation of all pair-wise correlations between all voxel
pairs within this ROI. The variability of these pair-wise correlation co-
efficients was calculated to define an indicator of local regional het-
erogeneity, Hcorr, with a larger value indicating a higher degree of
local regional heterogeneity. The rationale behind this approach is
that voxel-wise activity correlations should be modulated by correla-
tions in activity of the neurons in the voxels of interest. Crucially,
these neuron-level correlations have been shown to be higher for
neurons with similar tuning, and are also found in the absence of
visual stimuli (Bair et al., 2001; Jermakowicz et al., 2009). Hcorr there-
fore probes the variability of BOLD response correlations as an esti-
mator of neuronal selectivity, rather than differences in activation
maps for particular stimuli. Based on the sparse coding model for
face representations in the FFA, we hypothesized that tuning differ-
ences at the neuronal level might be reflected in different levels of
local regional heterogeneity. That is, a higher regional heterogeneity
in the FFA would indicate sparser representations, which in turn
would indicate higher selectivity of face neurons, which in turn
should be reflected by better behavioral performance in face process-
ing. Our data confirm this hypothesis, showing that, indeed, local re-
gional heterogeneity is a strong predictor of behavioral performance.
As predicted, this correlation was limited to brain regions thought to
mediate face perception behavior, in particular the right FFA, but was
not found in other brain regions, such as V1/2, nor the PPA, and not
even in the more posterior face selective area, OFA. In contrast,
there was no significant correlation between behavioral performance
and the averaged local voxel-wise correlations in the FFA (r = –0.43,
p > 0.12), suggesting Hcorr is a more sensitive measure of neural
selectivity, possibly because it is less affected by global, unspecific
correlations between voxels activation levels, but rather focuses on
local differences in correlations. To our knowledge, this is the first
time that behavioral performance has been linked to local voxel-
wise correlation measures in a functionally-defined ROI. Due to its
simplicity, sensitivity, and robustness (in this case relying on less
than 5.5 min of scan time), we expect that this method will be of in-
terest for a wide range of applications in which differences in neural
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selectivity can be linked to variations in task performance. A particu-
lar potential strength of the technique is the possibility to calculate
Hcorr from resting state data (or while the subject is fixating), which
could make it possible to estimate neural selectivity (and thus predict
behavioral performance on skills known to rely on neural selectivities
in particular brain areas) throughout the brain from resting state
scans. Indeed, we have already found that subject performance on a
standard test of reading ability can be predicted from Hcorr values in
the Visual Word Form Area (VWFA) obtained from fixation blocks
(Eden et al., 2011).

The hypothesis of reduced selectivity of face neurons in the FFA in
autism is further supported by our fMRI-RA experiment. We had
shown previously that face neuron selectivity as estimated with
fMRI-RA was in excellent agreement with theoretical predictions
(Jiang et al., 2006), and the results of the present study, providing ev-
idence for delayed release from adaptation in the FFA of individuals
with autism and face processing impairments, further strengthen
the link between face neuron selectivity in the FFA and behavioral
face processing abilities.

Neuroimaging studies have identified several brain regions in-
volved in face processing (Haxby et al., 2000; Kanwisher and Yovel,
2006), and there is broad consensus that, in typical adults, the right
FFA is the central region in face processing, as shown in a number
of studies (Grill-Spector et al., 2004; Jiang et al., 2006; Yovel and
Kanwisher, 2005). However, several fMRI studies have suggested
that face processing deficits in autism might be due to abnormalities
in other brain regions, such as the amygdala, frontal cortices, or the
mirror neuron system rather than in the FFA per se (Bookheimer et
al., 2008; Hadjikhani et al., 2007; Humphreys et al., 2008; Pierce et
al., 2004), or that face processing in autism might rely on other
brain regions, such as the more posterior occipital cortex (Hubl et
al., 2003), or general non-face object-related regions (Scherf et al.,
2010), or more individualized brain networks (Pierce et al., 2001).
In contrast, in the present study, we probed the neural selectivity in
the left and right FFA and other face and non-face brain regions, and
found that only neural tuning in the right FFA (as indirectly estimated
via fMRI-RA and variations in voxel-wise response correlations), but
not in any other face-selective area, could reliably predict subjects'
face discrimination performance. Thus, our results strongly suggest
that face processing abilities in adults with autism are mediated by
neural selectivity in the right FFA, but not any other face-selective re-
gions, providing direct support for the theory that face processing is
only quantitatively different, but qualitatively similar between indi-
viduals with ASD and typical adults (Jiang et al., 2006; Weigelt et
al., 2012).

It has been postulated that selectivity differences in the FFA in au-
tism might be due to weaker face-related saliency signals from the
amygdala (Schultz, 2005), and other studies have provided evidence
for reduced connectivity between the amygdala and the FFA (Conturo
et al., 2008; Kleinhans et al., 2008). Such a weaker face-related input
from the amygdala could affect experience-driven refinement of
face-selective representations in the FFA during development (see
Golarai et al. (2007)), following current theories of perceptual learning
that have identified a key role of the amplitude of neuronal activity in
enabling learning (Seitz and Dinse, 2007). In addition, anatomical dif-
ferences in the fusiform cortex of individuals with ASD might limit
the selectivity of neuronal representations there. Recent anatomical
studies have identified cortical minicolumn abnormalities – specifically
reduced minicolumn width – in autism (Casanova et al., 2006). The re-
duction in minicolumn width has been hypothesized to be associated
with an increased overlap of afferents across minicolumns (Casanova
et al., 2006) as well as decreased inhibition between minicolumns
(Rubenstein andMerzenich, 2003). While these effects have previously
been hypothesized to give rise to sparser representations (Casanova et
al., 2006), both of these anatomical differences would in fact serve to
broaden the selectivity of neural tuning (Jiang et al., 2006; Wörgötter

and Koch, 1991), as predicted by the model and borne out in our neu-
roimaging results. It is also conceivable that the two theories are linked,
in that the aforementioned microstructural differences might reflect
slowed-down experience-driven maturation of neural selectivity,
following animal studies that have found an experience-dependent
reduction in plasticity mediated by a progressive reduction in
intracortical inhibition during development (e.g., (Dorrn et al.,
2010)). Yet, given that the brain areas studied in Casanova et al.
(2006) did not include the fusiform gyrus, the link of variations in
minicolumn width to the differences in neural selectivity in the FFA
suggested by our study remains speculative and further studies are
needed.

If selectivity differences in the FFA in autism are due to reduced
experience-driven refinement, training individuals with autism on
tasks that recruit the face representation in the FFA (and compensate
for a lack of amygdala-based face saliency by task-dependent salien-
cy, cf. (Adolphs et al., 2005)) might serve to sharpen up its selectivity
and remediate face-processing differences. Interestingly, it has been
shown in a prosopagnosic individual that training using a face catego-
rization task optimized to engage face representations in the FFA led
to broad improvements in behavioral performance on a wide range of
face perception tasks (DeGutis et al., 2007), supporting a model in
which the face representation in the FFA can serve as a general repre-
sentation for a wide range of face-related tasks (Riesenhuber and
Poggio, 2002; Riesenhuber and Wolff, 2009). Future studies will
have to show whether targeted training can indeed refine the selec-
tivity of neural representations in the FFA to broadly improve face
processing abilities in autism.
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