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Abstract
The transition to Next Generation sequencing (NGS) sequencingBackground: 

technologies has had numerous applications in Plant, Microbial and Human
genomics during the past decade. However, NGS sequencing trades high read
throughput for shorter read length, increasing the difficulty for genome
assembly. This research presents a comparison of traditional versus Cloud
computing-based genome assembly software, using as examples the Velvet
and Contrail assemblers and reads from the genome sequence of the zebrafish
( ) model organism.Danio rerio

The first phase of the analysis involved a subset of the zebrafish dataResults: 
set (2X coverage) and best results were obtained using K-mer size of 65, while
it was observed that Velvet takes less time than Contrail to complete the
assembly. In the next phase, genome assembly was attempted using the full
dataset of read coverage 192x and while Velvet failed to complete on a 256GB
memory compute server, Contrail completed but required 240hours of
computation.

This research concludes that for deciding on which assemblerConclusion: 
software to use, the size of the dataset and available computing hardware
should be taken into consideration. For a relatively small sequencing dataset,
such as microbial or small eukaryotic genome, the Velvet assembler is a good
option. However, for larger datasets Velvet requires large-memory  compute
servers in the order of 1000GB or more. On the other hand, Contrail is
implemented  using Hadoop, which performs the assembly in parallel across
nodes of a compute cluster. Furthermore, Hadoop clusters can be rented
on-demand from Cloud computing providers, and therefore Contrail can
provide a simple and cost effective way for genome assembly of data
generated at laboratories that lack the infrastructure or funds to build their own
clusters.
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Background
Genome sequencing technologies and platforms
The earliest landmark in genome sequencing is that of the Bacte-
riophage MS21 between 1972 and 1976. Following that, two DNA 
sequencing techniques for longer DNA molecules were invented, 
first the Maxam-Gilbert2 (chemical cleavage) method and then 
the Sanger3 (or dideoxy) method. The Maxam-Gilbert method 
was based on nucleotide-specific cleavage by chemicals, and is 
best applied to oligonucleotides that and short sequences usually 
smaller than 50 base-pairs in length. On the other hand, the Sanger 
method was more widely used because it leveraged the Polymerase 
Chain Reaction (PCR) for automation of the technique, which also 
allows to sequence long strands of DNA including entire genes. In 
more detail, the Sanger technique is based on chain termination by 
dideoxynucleotides triphosphate (ddNTPs) during PCR elongation 
reactions (review in4). Although the automated Sanger method had 
dominated the industry for almost two decades, with sequencing 
applications and broad demand for the technology in genome varia-
tion studies, comparative genomics, evolution, forensics, diagnostic 
and applied therapeutics, it was still limiting due to its high cost and 
labor intensive process5.

The high demand for low-cost sequencing led to the development 
of high-throughput technologies also known as Next Generation 
Sequencing (NGS), that parallelize the sequencing process and 
lower the cost per sequenced DNA base-pair. NGS techniques 
achieve this by automating template preparation and using high-
speed, precision fluorescence imaging, for highly parallel identifi-
cation of the nucleotides. NGS technologies involve sequencing of 
a dense array of DNA fragments by iterative cycles of enzymatic 
manipulation and imaging-based data collection. The major NGS 
platforms are Roche/454FLX (http://454.com/), Illumina/Solexa 
Genome Analyzer (http://www.illumina.com/systems/genome_ana-
lyzer_iix.ilmn), Applied Biosystems SOLiD system (http://www.
appliedbiosystems.com/absite/us/en/home/applications-technolo-
gies/solid-next-generation-sequencing.html), Helicos Heliscope 
(http://www.helicosbio.com/Products/HelicosregGeneticAnaly-
sisSystem/HeliScopetradeSequencer/tabid/87/Default.aspx) and 
Pacific Biosciences (http://www.pacificbiosciences.com/). Summary 
statistics for the throughput and characteristics of these NGS 
platforms are shown Figure 1, while additional review studies are 
available in the literature6–8.

Although these platforms are quite diverse in sequencing biochem-
istry as well as in how the array is generated, their workflows are 
conceptually similar. First, a library is prepared by fragmenting 
PCR-amplified DNA randomly, followed by in vitro ligation to a 
common adaptor, that is small DNA oligonucleotide with known 
sequence. In the next step, clustered amplicons that are multiple 
copies of a single fragment are generated and serve as the sequenc-
ing fragments. This can be achieved by several approaches, includ-
ing in situ polonies9, emulsion10 or bridge PCR11,12. Common to 
these methods is that PCR amplicons derived from any given single 
library molecule end up spatially clustered, either to a single loca-
tion on a planar substrate (in situ polonies, bridge PCR), or to the 
surface of micron-scale beads, which can be recovered and arrayed 
(emulsion PCR).

The advantage of the NGS platforms is sequencing using single, 
amplified DNA fragments, avoiding the need for cloning required 
by the Sanger method. This also makes the technology applicable to 
genomes of un-cultivated microorganism populations, such as for 
example in metagenomics. A disadvantage of the new technology is 
that sequence data is in the form of short reads, presenting a chal-
lenge to developers of software and genome assembly algorithms. 
More specifically, it can be difficult to correctly assign reads and 
separate between genomic regions that contain sequence repeats 
even if using high-stringency alignments, especially if the lengths of 
the repeats are longer than the reads. In addition, repeat resolution 
and read alignments are further complicated by sequencing error, 
and therefore genome assembly software must tolerate imperfect 
sequence alignments. A reduced alignment stringency can return 
many false positives that results in chimeric assemblies where dis-
tant regions of the genome are mistakenly assembled together. The 
limitation of short reads is compensated by multiple overlaps of the 
sequenced DNA fragments, resulting in many times coverage of the 
genome sequence. Finally, genome assembly is hindered by regions 
that have nucleotide composition for which PCR does not achieve 
its optimum yield, resulting in non-uniform genome coverage that 
in turn leads to gaps in the assembly.

To alleviate some of these problems in genome assemblies with 
short reads, “paired-end” reads are used that are generated by a sim-
ple modification to the standard sequencing template preparation, 
in order to get the forward and reverse strands at the two ends of a 
DNA fragment. The unique paired-end sequencing protocol allows 
the user to choose the length of the insert (200–500 bp) and use the 
positional and distance information of the reads for validating the 
genome assembly, allowing for resolution of alignment ambiguities 
and chimeric assemblies.

Genome assembly algorithms and software
Two approaches widely used in NGS genome assemblers are 
the Overlap/Layout/Consensus (OLC)13 and the de Bruijn Graph 
(DBG)14 method, both using K-mers as the basis for read align-
ment. A graph is an abstraction used in computer science, and is 

Figure 1. Comparison of various NGS Platforms.
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composed of “nodes” connected by “edges”. If the edges connecting 
the nodes can be traversed in one direction, the graph is a directed 
graph, whereas if the edges can be traversed in both the directions 
the graph is bi-directed15.

The OLC approach for genome assembly is the typical method for 
Sanger datasets, and is implemented in software such as Celera 
Assembler, PCAP and ARACHNE16–18. With this approach reads 
are represented as nodes in the graph, and nodes for overlapping 
reads are connected by an edge. In more detail, OLC assembles pro-
ceed in three phases: in the first phase overlap discovery involves 
all-against-all comparison, pair-wise read alignment. The algorithm 
used for that purpose is a seed and extend heuristic algorithm that 
pre-computes K-mers from all reads, then selects overlap candidate 
reads that share K-mers and calculates alignments using the K-mers 
as alignment seeds. This step of the algorithm is sensitive to set-
tings of K-mer size, minimum overlap length and percent identity 
required to retain an overlap as true positive, in addition to base 
calling errors and low-coverage sequencing. Using the results from 
the read alignment, an overlap graph is constructed that provides an 
approximate read layout. The overlap graph does not include the 
sequence base calls rather than just the overlapping read identifiers, 
so large-genome graphs may fit into practical amounts of computer 
memory. The graph also has metadata on the nodes and edges, in 
order to distinguish the lengths, 5′ and 3′ ends, forward and reverse 
complements, and the type of overlap between the reads. In the sec-
ond phase, the precise layout and the consensus sequence of the 
graph are determined by performing Multiple Sequence Alignment 
(MSA)19. For that purpose, the algorithm must load all the sequences 
into memory, and this becomes one of the most computationally 
demanding stages of the assembly. Finally, in the third phase the 
assembly algorithm follows a Hamiltonian path20 to “walk” through 
the graph visiting every node only once, and the contigs formed by 
merging the overlapping reads are determined.

The second approach in genome assembly is based on the de Brujn 
Graph (DBG) algorithms, and example software using this approach 
includes Velvet, Contrail, ALLPATHS and SOAPdenovo21–24. In 
the DBG approach each node in the graph corresponds to a unique 
K-mer present in the set of reads, and a directed edge connects two 
nodes labeled ‘a’ and ‘b’, if the k – 1 length suffix of ‘a’ is the 
same as the k – 1 length prefix of ‘b’. For example, a graph node 
representing the K-mer (K=3) ATG will have an edge with the node 
representing TGG. The DBG algorithms are more efficient for large 
datasets, as they doe not require all-against-all read alignment and 
overlap discovery, while it also doe not store individual reads or 
their overlaps in the computer memory. A de Brujn graph can either 
be uni-directed or bi- directed, with a single edge connecting two 
nodes, or edges with two directions for the 5’ or 3’ genome strands. 
A bidirected graph has the advantage of allowing simultaneous 
assembly of sequence reads from both strands of the genome15. 
The DBG assembly algorithms traverse the graph using an Eularian 
path14, where each edge is visited exactly once.

Methods
Assembly dataset: The sequence reads dataset were Illumina reads 
from the fish species M. zebrafish downloaded from Assemblathon 
database (http://assemblathon.org). The genome was approximately 

1GB in size, the total library coverage estimate for this dataset was 
197X. The read length for the given dataset was 101 and in the first 
phase 38,364,464 reads with coverage of only 2X, both paired and 
unpaired, totaling 2,762,241,408 base pairs were used (filtered for 
bad quality reads). Following that, different variations in the size 
of dataset used for running the assembly involving 1/4, 1/2 and the 
entire dataset of fish genome. The dataset consisted of pairs of files 
with each corresponding to the paired-end reads. De novo assembly 
was performed using two different assemblers, Velvet and Contrail, 
both using the graph-theoretic framework of De-Brujn Graph. Vel-
vet requires high performance computer servers with large RAM 
memory, whereas Contrail is a distributed memory assembler that 
performs the computation in parallel over several servers on a 
computer cluster.

Assembly statistics: The output of the assembly was a file with a list 
of contigs of various lengths. The file contains contigs along with 
various details like length and coverage. For the Velvet assembler, 
the output file was parsed using a Perl script called velvet_stats.pl 
to calculate various assembly statistics. Similarly, for the Contrail 
assembler a Perl script called contrail_stats.pl was used. These 
scripts are available upon request from the authors. Using the Perl 
scripts the following statistics were calculated for comparing the 
quality of the two assemblies:

1) N50 score: The length of the largest contig for which the fol-
lowing is true: the sum of its length and the lengths of all larger 
contigs equals to 50% of the total contig length. The N50 size 
is computed by sorting all contigs from largest to smallest and 
by determining the minimum set of contigs whose sizes total 
50% of the entire genome.

2) Maximum contig length: Contig with largest number basepairs.

3) Minimum contig length: Contig with smallest number of 
basepairs.

4) Mean contig length: Average of all the contigs length.

To the run the assembly on the full dataset using contrail, all the 
read files were merged into a single file, and copied in a Hadoop 
compute cluster available at JCVI that consisted of 8 servers with 
32 GB RAM and 16cores each.

Assembly algorithms and software
Both the Velvet and Contrail assemblers are designed for short reads. 
Velvet requires a compute server with large RAM memory, whereas 
Contrail relies on Hadoop to distribute the assembly graphs across 
multiple servers. Velvet is a de novo genomic assembler specially 
designed for short read sequencing technologies, such as Solexa or 
454. It currently takes in short read sequences, removes errors then 
produces high quality, unique contigs using paired-end read and 
long read information when available, for resolving genomic repeats 
that complicate contig calculation. Velvet resolves errors which can 
arise due to both the sequencing process or to the polymorphisms 
by removing the “tips” in the de Bruijn graph that are chain of 
nodes that is disconnected on one end, or “bubbles” using the Tour 
Bus algorithm, both originating from nucleotide differences due to 
sequencing error or polymorphisms in diploid genomes.
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Contrail enables de novo assembly of large genomes from short 
reads by leveraging Hadoop, a software library and framework that 
allows distributed processing of large data sets across clusters of 
computers using a simple programming model. The Hadoop Dis-
tributed File System (HDFS) is the primary storage system in this 
framework, and creates multiple data blocks distributed across 
compute server throughout a cluster to enable reliable, extremely 
rapid parallel computations. HDFS is highly fault-tolerant and is 
designed to be deployed on low-cost, commodity hardware. Build 
on top of HDFS is the Hadoop-MapReduce Framework that uses a 
“Map” step in which individual data records tagged with a “key” 
are processed in parallel. In a second step, a “Reduce” function 
performs aggregation and summarization, in which all associated 
records based on the key are brought together from across the nodes 
of the cluster.

More specifically, the Hadoop implementation of the Contrail algo-
rithm in the Map phase scans each read and emits the key-value 
pairs (u, v) corresponding to overlapping k-mer pairs that form an 
edge. After the map function completes, a key sorting phase that 
is executed in parallel groups together edges for the same K-mer 
based on the key value. The initial graph construction creates a 
graph with nodes for every K-mer in the read set. This is followed 
by aggregation of identical K-mers in the Reduce phase, where also 
linear paths of the de Bruijn graph are calculated and continuously 
overlapping K-mers are simplified into single graph nodes repre-
senting longer stretches of sequence.

Contrail Assembly Steps: The Contrail source code was down-
loaded from sourceforge.net repository (http://sourceforge.net/apps/
mediawiki/contrail-bio/index.php?title=Contrail). Since Contrail 
uses Hadoop MapReduce programming framework, the reads file 
from the fish dataset were stored in the Hadoop File System (HDFS), 
on a local Hadoop cluster with 5TB storage capacity distributed 
across 8 nodes, with each node having 32GB RAM and 16 cores 
memory. In order to run the assembly the following steps were 
followed:

1) Reads files were downloaded from Assemblathon database
using wget http://bioshare.bioinformatics.ucdavis.edu/Data/
hcbxz0i7kg/Fish/62F6HAAXX.1.1.fastq.gz

2) Copy the unzipped fastq files into the Hadoop File System
(HDFS) using ‘put’ command: /opt/hadoop/bin/hadoop/fs –put/
source folder/destination folder in HDFS. ‘Put’ command cop-
ies files from the local file system to the destination HDFS,
also splitting and distributing the file equally across several
compute nodes on the cluster.

3) From within the Hadoop Server enter the directory storing the
source code for contrail assembler.

4) Run the assembly using the command: contrail.pl –reads
[readfile_path] –hadoop [destination folder] –start [stage_of_
assembly] [K-mer length].

5) From the output directory obtain the statistic folder, final
graph folder and the final contig folder (fasta format) using
the Hadoop ‘get’ command. ‘Get’ command copy files to the
local file system from HDFS.

6) Extract the files in the final graph folder using cat and gunzip
command and store all the graph in a single file: cat part* |
gunzip >final_graph.

7) Parse the final graph with the perl script contrail_stats.pl and
save the output in a file.

Velvet Assembly Steps: The Velvet assembler was downloaded 
from the EBI website (http://www.ebi.ac.uk/~zerbino/velvet/). The 
first component of the assembler is Velveth takes in a number of 
sequence files, produces a hash table, and then outputs two files in 
an output directory, “Sequences” and “Roadmaps”, which are nec-
essary for the next step of the assembler called Velvetg. Users need 
to provide the output directory folder, file format of the sequence 
stored in the read file, hash length or K-mer length, read type, and 
read file name. The second Velvetg component of the assembler is 
where de Brujn graph is built. It has various options like specify-
ing coverage cutoff or minimum length of the contigs to output. 
Velvet has optional parameters that allow to assemble paired reads 
data as well. To activate the use of read pairs, two parameters must 
be specified: the expected (i.e. average) insert length (or at least a 
rough estimate), and the expected short-read coverage. The insert 
length is understood to be the length of the sequenced fragment, i.e. 
it includes the length of the reads themselves.

1) Run Velveth on one fourth of the entire dataset using unpaired
reads using the command velveth/outputdir 65 –fastq –short
read_file_1 read_file_2.

2) Run Velvetg on the output obtained from Step 1. using vel-
vetg/outputdir.

3) Run the Velvet on paired read files using velveth/outputdir
65 –fastq –shortPaired read_file_1 read_file_2.

4) Run velvetg on the output obtained from Step 3 using velvetg
output_directory/-ins_length 101 -exp_cov 20.

5) After the assembly is complete, parse the stats.txt file from the
output directory using the Perl program velvet_stats.pl.

Results and discussion
The comparison of the de novo assembly quality for the Velvet and 
Contrail algorithms presented in the current study, is based on the 
size of the dataset and assembly statistics using both paired and 
un-paired sequence data. In the first phase of the research, we com-
pared assembly results for a range of K-mers, using a minimal por-
tion of zebrafish data set (single lane un-paired, approximately 2X 
coverage). For this dataset, Figure 2 shows the graph plot with the 
relationship between the K-mer value and the maximum contig size 
in the assembly output for both Velvet and Contrail assemblers. 
The graph indicates that the maximum contig length increases with 
increase in the K-mer size, but above K-mer value of 65 that is a lit-
tle more than half of the actual read length (101 for our dataset), the 
contig size decreases indicating lower assembly quality. The reason 
is that at larger K-mer lengths, the DBG algorithm connects two 
K-mers with an edge on the assembly graph only if K-1 length suf-
fix of the first K-mer is same as K-1 length prefix of the second 
K-mer. As the K-mer approaches the actual read size, the probability 
that any pair of K-mers will have a K-1 length of suffix/prefix iden-
tity, decreases significantly given also the presence of sequencing 
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Figure 2. Maximum Contig VS K-mer length.

errors. From Figure 2 it is also apparent that for both assemblers the 
maximum contig size was achieved at K-mer size 65, and there-
fore the remaining experiments in this study were carried out using 
that specific value.

In the next step, assembly was performed with Velvet for the same 
2X coverage dataset using paired reads, but no significant differ-
ence was observed in the maximum contig size (Table 1, row 1–2). 
Paired read assembly was not performed for Contrail, as the algo-
rithm implementation used in the current study did not provide this 
feature. The un-paired datasets with Contrail returned half the max-
imum contig size of Velvet (Table 1, row 3), and took significantly 
more computing time to complete due to the overhead required for 
initiating the parallel computation with the Hadoop cluster (see 
Methods section for details).

In the second phase of the research we attempted to perform assem-
bly using the entire dataset of the zebrafish genome that has approx-
imate coverage of 192X. For running the assembly using Velvet, 
first the sub-command Velveth was used that creates a “roadmap” 
of read overlaps, followed subsequently by Velvetg to create and 
traverse the de Bruijn graph. While we used a 1 Terabyte RAM 
memory server to run the assembler and the Velveth step of the 
assembly completed, Velvetg failed to complete, and similar situa-
tion was observed when using paired reads (Table 1, row 4–5). The 
error reported by the Velvet software in both cases indicated that 
there was not sufficient memory for the completion of the assembly 
computation. On the other hand, the Contrail assembler success-
fully completed the run and returned the best N50 score and largest 
contig size in the current study, albeit requiring 240 hours running 
time (Table 1, row 6).

Table 1. Assembly statistics for the Velvet and Contrail assemblers at K-mer value 65.

# Assembler Dataset size N50 score 
(bp)

Max Contig 
size (bp)

Approx. Time 
(hrs)

Memory 
RAM (GB)

1 Velvet minimal (2x) unpaired 1693 5682 6 256

2 Velvet minimal (2x) paired 1500 6238 6 256

3 Contrail minimal (2x) unpaired 1380 2987 24hrs 32GB * 8

4 Velvet full dataset unpaired - - System Crash 1000

5 Velvet full dataset paired - - System Crash 1000

6 Contrail full unpaired 4458 46958 240hrs 32GB * 8

7 Velvet ¼ dataset unpaired 1279 16548 9 512

8 Velvet ¼ dataset paired 2540 23780 12 512

9 Velvet ½ dataset unpaired 2477 20658 24 1000

10 Velvet ½ dataset paired - - System Crash 1000
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Since Velvet failed to complete the assembly for the entire genome, 
a partial set of the reads from the zebrafish dataset was used as 
input. First, by using one-fourth of the total dataset the assembly 
completed in nine and twelve hours for un-paired and paired reads 
respectively (Table 1, row 7–8). In this case, there was significant 
difference in the assembly quality between paired and unpaired 
reads, with the maximum contig size for unpaired reads approxi-
mately 7,000bp shorter when compared to paired reads. Next, 
one-half of the zebrafish dataset was used as input to Velvet, and 
with unpaired reads the total assembly time completed success-
fully in 24 hours (Table 1, row 9). In detail, the Velveth step con-
sumed approximately 8hours, while Velvetg required an additional 
14 hours. The maximum contig size obtained was about half of that 
with the Contrail assembler when using the full dataset of unpaired 
reads (Table 1, row 6). In addition the assembly for Velvet with one-
half of the unpaired reads dataset, was found to be comparable to 
the Velvet results using one-fourth of the paired reads (Table 1, row 
8–9). This demonstrates that is feasible to achieve better assembly 
with less data, when paired end reads are available. Finally, using 
half of dataset with paired reads, the Velveth step completed in 
10hrs while Velvetg failed on our 1TB compute server due to insuf-
ficient memory space (Table 1, row 10).

Conclusions
The present study presents an example comparison of performance 
characteristics for distributed genome assemblers that leverage par-
allel computing and commodity, cloud computing clusters, versus 
assemblers that require large memory, specialized and expensive 
compute servers. The overall conclusion is that for assembling 
small datasets, reads from bacterial genomes or small eukaryo-
tic genomes, it is better to use assembly software such as Velvet. 
Nonetheless, for larger genomes and datasets a single server can-
not scale, and the assembler fails to load the entire graph into the 

memory and the assembly does not complete. Genome assem-
blers such as Contrail present an alternative option, as it performs 
assembly in parallel using cloud computing and commodity server 
clusters. Contrail is based on the Hadoop programming framework 
that is open source, freely available and also can be installed on 
local cluster. If a local clusters are not available, Hadoop compute 
servers can be rented from cloud providers. Depending on the size 
of the assembly to be carried additional nodes can be attached or 
rented as needed, and expand the capacity of the Hadoop cluster on 
the cloud or locally. Therefore, additional research by the bioinfor-
matics community on cloud-based, scalable assemblers can result 
in cost effective solutions for assembly of genomes of any size for 
both well established institutions or smaller, academic research 
groups.

Author contributions
P.K. performed the research and wrote the manuscript, R.M. and 
V.S. contributed to the research and writing the manuscript, K.K. 
reviewed and edited the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This project has been funded in whole or part with federal 
funds from the National Institute of Allergy and Infectious Dis-
eases, National Institutes of Health, Department of Health and 
Human Services under contract numbers N01-AI30071 and/or 
HHSN272200900007C.

I confirm that the funders had no role in study design, data collection 
and analysis, decision to publish, or preparation of the manuscript. 

References

1. Min Jou W, Haegeman G, Ysebaert M, et al.: Nucleotide sequence of the gene 
coding for the bacteriophage MS2 coat protein. Nature. 1972; 237(5350): 
82–8. 
PubMed Abstract | Publisher Full Text 

2. Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci 
U S A. 1977; 74(2): 560–4. 
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Sanger F, Coulson AR: A rapid method for determining sequences in DNA by 
primed synthesis with DNA polymerase. J Mol Biol. 1975; 94(3): 441–8. 
PubMed Abstract | Publisher Full Text 

4. Metzker ML: Emerging technologies in DNA sequencing. Genome Res. 2005; 
15(12): 1767–76. 
PubMed Abstract | Publisher Full Text 

5. Saiki RK, Gelfand DH, Stoffel S, et al.: Primer-directed enzymatic amplification 
of DNA with a thermostable DNA polymerase. Science. 1988; 239(4839): 
487–91. 
PubMed Abstract | Publisher Full Text 

6. Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet. 
2010; 11(1): 31–46. 
PubMed Abstract | Publisher Full Text 

7. Bentley DR: Whole-genome re-sequencing. Curr Opin Genet Dev. 2006; 16(6): 
545–52. 
PubMed Abstract | Publisher Full Text 

8. Ansorge WJ: Next-generation DNA sequencing techniques. N Biotechnol. 2009; 
25(4): 195–203. 
PubMed Abstract | Publisher Full Text 

9. Mitra RD, Church GM: In situ localized amplification and contact replication of 

many individual DNA molecules. Nucleic Acids Res. 1999; 27(24): e34–e39. 
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Dressman D, Yan H, Traverso G, et al.: Transforming single DNA molecules 
into fluorescent magnetic particles for detection and enumeration of genetic 
variations. Proc Natl Acad Sci U S A. 2003; 100(15): 8817–22. 
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Adessi C, Matton G, Ayala G, et al.: Solid phase DNA amplification: 
characterisation of primer attachment and amplification mechanisms. Nucleic 
Acids Res. 2000; 28(20): E87. 
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Fedurco M, Romieu A, Williams S, et al.: BTA, a novel reagent for DNA 
attachment on glass and efficient generation of solid-phase amplified DNA 
colonies. Nucleic Acids Res. 2006; 34(3): e22. 
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Myers EW, Sutton GG, Delcher AL, et al.: A whole-genome assembly of 
Drosophila. Science. 2000; 287(5461): 2196–2204. 
PubMed Abstract | Publisher Full Text 

14. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA 
fragment assembly. Proc Natl Acad Sci U S A 2001; 98(17): 9748–9753. 
PubMed Abstract | Publisher Full Text | Free Full Text 

15. Kundeti VK, Rajasekaran S, Dinh H, et al.: Efficient parallel and out of core 
algorithms for constructing large bi-directed de Bruijn graphs. BMC 
Bioinformatics. 2010; 11(1): 560. 
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Denisov G, Walenz B, Halpern AL, et al.: Consensus generation and variant 
detection by Celera Assembler. Bioinformatics. 2008; 24(8): 1035–1040. 
PubMed Abstract | Publisher Full Text 

Page 7 of 13

F1000Research 2015, 4:20 Last updated: 05 MAR 2015

http://www.ncbi.nlm.nih.gov/pubmed/4555447
http://dx.doi.org/10.1038/237082a0
http://www.ncbi.nlm.nih.gov/pubmed/265521
http://dx.doi.org/10.1073/pnas.74.2.560
http://www.ncbi.nlm.nih.gov/pmc/articles/392330
http://www.ncbi.nlm.nih.gov/pubmed/1100841
http://dx.doi.org/10.1016/0022-2836(75)90213-2
http://www.ncbi.nlm.nih.gov/pubmed/16339375
http://dx.doi.org/10.1101/gr.3770505
http://www.ncbi.nlm.nih.gov/pubmed/2448875
http://dx.doi.org/10.1126/science.2448875
http://www.ncbi.nlm.nih.gov/pubmed/19997069
http://dx.doi.org/10.1038/nrg2626
http://www.ncbi.nlm.nih.gov/pubmed/17055251
http://dx.doi.org/10.1016/j.gde.2006.10.009
http://www.ncbi.nlm.nih.gov/pubmed/19429539
http://dx.doi.org/10.1016/j.nbt.2008.12.009
http://www.ncbi.nlm.nih.gov/pubmed/10572186
http://dx.doi.org/10.1093/nar/27.24.e34
http://www.ncbi.nlm.nih.gov/pmc/articles/148757
http://www.ncbi.nlm.nih.gov/pubmed/12857956
http://dx.doi.org/10.1073/pnas.1133470100
http://www.ncbi.nlm.nih.gov/pmc/articles/166396
http://www.ncbi.nlm.nih.gov/pubmed/11024189
http://dx.doi.org/10.1093/nar/28.20.e87
http://www.ncbi.nlm.nih.gov/pmc/articles/110803
http://www.ncbi.nlm.nih.gov/pubmed/16473845
http://dx.doi.org/10.1093/nar/gnj023
http://www.ncbi.nlm.nih.gov/pmc/articles/1363783
http://www.ncbi.nlm.nih.gov/pubmed/10731133
http://dx.doi.org/10.1126/science.287.5461.2196
http://www.ncbi.nlm.nih.gov/pubmed/11504945
http://dx.doi.org/10.1073/pnas.171285098
http://www.ncbi.nlm.nih.gov/pmc/articles/55524
http://www.ncbi.nlm.nih.gov/pubmed/21078174
http://dx.doi.org/10.1186/1471-2105-11-560
http://www.ncbi.nlm.nih.gov/pmc/articles/2996408
http://www.ncbi.nlm.nih.gov/pubmed/18321888
http://dx.doi.org/10.1093/bioinformatics/btn074


17. Cancel-Tassin G, Latil A, Valeri A, et al.: PCAP is the major known prostate 
cancer predisposing locus in families from south and west Europe. Eur J Hum 
Genet.: EJHG. 2001; 9(2): 135–42. 
PubMed Abstract | Publisher Full Text 

18. Batzoglou S, Jaffe DB, Stanley K, et al.: ARACHNE: a whole-genome shotgun 
assembler. Genome Res. 2002; 12(1): 177–189. 
PubMed Abstract | Publisher Full Text | Free Full Text 

19. Lipman DJ, Altschul SF, Kececioglu JD: A tool for multiple sequence alignment. 
Proc Natl Acad Sci U S A 1989; 86(12): 4412–4415. 
Publisher Full Text | Free Full Text 

20. Chvátal V, Erdos P: A note on Hamiltonian circuits. Discrete Math. 1972; 2(2): 
111–113. 
Publisher Full Text 

21. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using 
de Bruijn graphs. Genome Res. 2008; 18(5): 821–829. 
PubMed Abstract | Publisher Full Text | Free Full Text 

22. Schatz MC, Langmead B, Salzberg SL: Cloud computing and the DNA data race. 
Nat Biotechnol. 2010; 28(7): 691–3. 
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Butler J, MacCallum I, Kleber M, et al.: ALLPATHS: de novo assembly of whole-
genome shotgun microreads. Genome Res 2008; 18(5): 810–820. 
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Li Y, Hu Y, Bolund L, et al.: State of the art de novo assembly of human genomes 
from massively parallel sequencing data. Hum Genomics. 2010; 4(4): 271–7. 
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 8 of 13

F1000Research 2015, 4:20 Last updated: 05 MAR 2015

http://www.ncbi.nlm.nih.gov/pubmed/11313747
http://dx.doi.org/10.1038/sj.ejhg.5200592
http://www.ncbi.nlm.nih.gov/pubmed/11779843
http://dx.doi.org/10.1101/gr.208902
http://www.ncbi.nlm.nih.gov/pmc/articles/155255
http://dx.doi.org/10.1073/pnas.86.12.4412
http://www.ncbi.nlm.nih.gov/pmc/articles/287279
http://dx.doi.org/10.1016/0012-365X(72)90079-9
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pmc/articles/2336801
http://www.ncbi.nlm.nih.gov/pubmed/20622843
http://dx.doi.org/10.1038/nbt0710-691
http://www.ncbi.nlm.nih.gov/pmc/articles/2904649
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://dx.doi.org/10.1101/gr.7337908
http://www.ncbi.nlm.nih.gov/pmc/articles/2336810
http://www.ncbi.nlm.nih.gov/pubmed/20511140
http://dx.doi.org/10.1186/1479-7364-4-4-271
http://www.ncbi.nlm.nih.gov/pmc/articles/3525208
http://bioshare.bioinformatics.ucdavis.edu/Data/hcbxz0i7kg/Fish/


F1000Research

Open Peer Review

  Current Referee Status:

Version 1

 27 February 2015Referee Report

doi:10.5256/f1000research.6440.r7606

 Surya Saha
Boyce Thompson Institute for Plant Research, Ithaca, NY, USA

De novo assembly of large eukaryotic genomes remains a challenging task even with the increasing
availability of high quality long reads and short reads from paired-end and mate-pair libraries. An in-depth
comparison of the performance of assemblers using multiple data sets and operating on widely used high
memory multi-core systems versus distributed platforms can be a valuable contribution to the field.
 
However, the authors fail to deliver on the promise of the paper on several counts. They present a limited
and unsound comparison of only two assemblers (Velvet and Contrail) using two poorly selected datasets
from a single species. The experiment design and analysis is replete with numerous errors, large and
small.
 
The Background section is superfluous and contains uncited historical details that are not applicable to
the context of the paper. The authors chose to highlight sequencing technology (Figure 1) that is outdated
by at least two years (Illumina Genome Analyzer) and not available any more (Helicos, Roche 454) while
neglecting to mention the workhorses of sequencing cores today. There was no discussion of the widely
used platforms like Illumina Hiseq or desktop sequencers like Illumina Miseq or Ion Torrent PGM. There
are also many factual errors such as the maximum length of 50bp for sequences generated using
Maxam-Gilbert method and costs/ read lengths of different sequencing platforms. Maxam-Gilbert
sequences range from 250bp to 500bp or longer . The sequencing costs and read lengths are outdated
for Illumina Genome Analyzer and incorrect for SOLiD. The authors describe the concepts of
overlap-layout-consensus (OLC) and  graph assembly but neglect to mention string graph de Bruijn
theory.

The methods used for evaluation are reasonably well documented. But a majority of the description could
have been moved to supplementary data leaving room for a more qualitative discussion of the motivation
for the methods used in the paper.  The authors chose to evaluate only two assemblers without giving an
explanation of why these two were selected. Velvet was selected as an example of serial de Bruijn graph
assembler and Contrail as a compute-distributed assembler. The dataset selected by the authors is from
a Lake Malawi cichlid (  or ) incorrectly named as  zebrafish in theMaylandia zebra Metriaclima zebra M.
paper. The reason for selecting this particular dataset and not a range of genomes with varying
complexity is not explained despite the impact on the evaluation. The two cichlid data sets have either
very low coverage or very high coverage, both of which are detrimental for  assembly. Thede novo
authors refer to Perl scripts that are not included in the paper. This is not acceptable given the availability
and ease of use of code sharing platforms like Git. Such scripts can also be included in supplementary

data as text files. The only summary statistics used for evaluating assemblies are N50 and maximum
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data as text files. The only summary statistics used for evaluating assemblies are N50 and maximum
contig size. These are not informative with regards to the quality of the assembly and will have
ramifications for analysis. Error correction is mentioned but no further explanation is given. None of the
many other well-known preprocessing practices such as k-mer based normalization and merging of
paired-end reads were used before  assembly.de novo
 
The authors attempt to assemble the full dataset as well as various sub-sampled versions using the two
assemblers. The sub-sampling procedure is not described in the methods. The analysis in the Discussion
section, like previous sections, has several shortcomings. The authors refer to the Assemblathon2 
comparison of assembly algorithms which set the standard for metrics to use for evaluation of
assemblers. The evaluation of assemblies from Velvet and Contrail is quite inadequate as they authors
did not check the assemblies for errors. They did not validate the assemblies by checking for the
presence of core genes as described in Assemblathon2  or by comparing to the published genome. The
assemblies were simply evaluated for contiguity using N50 and maximum contig size, both of which can
be improved with parameters that can potentially increase the number of misassemblies.
 
The authors conclude that assemblers based on serial or non-distributed algorithms cannot be used for
large scale  assembly due to out of memory errors in Velvet. Velvetg fails to complete due to lackdenovo
of memory but they do not explore the issue further. Large  graphs are often caused by presencede Bruijn
of sequencing errors in the reads. Velvet may be able to assemble the given dataset once poor quality
reads are filtered out. Merging of paired-end reads and k-mer-based normalization are also effective
strategies to reduce memory requirements. It is also not clear why the authors did not perform assemblies
with 50% and 25% unpaired dataset with Contrail. They would provide additional data points for
comparison with Velvet even for the underpowered experimental design used in this paper. 
 
The information presented in this paper is outdated and the experiments and analysis are woefully
inadequate to judge the effectiveness of serial versus distributed genome assemblers. Moreover, the
paper does not utilize or even address the commonly used approach of combining long reads with higher
coverage paired-end and mate-pair short reads to generate assemblies for large eukaryotic genomes.
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This title of this manuscript would lead a reader to believe that a careful comparison of two broad
strategies for  sequence assembly.  Unfortunately, what the manuscript delivers is an error-richde novo
and outdated introduction, incompletely defined methods and an extremely limited comparison on a
single dataset of two assembly programs.  

In their introduction the authors dig far into the history of DNA sequencing nearly to the very beginning.
 However, this summary is filled with dubious assertions that lack citations.  For example, they credit PCR
with boosting Sanger sequencing over Maxam-Gilbert sequencing, but Sanger sequencing had already
all-but-extinguished Maxam-Gilbert before PCR had become commonly used in any facet of sequencing,
and even today Sanger sequencing does not have a reliance on PCR (the authors may be confusing
cycle sequencing, which relies on a linear amplfication using thermostable polymerases, with PCR).  

The authors present in figure form a comparison of four "next generation sequencing" systems (a term
that really should be retired, given the fact that these systems are over a decade old now).  The figure is
exquisitely badly formatted and nearly unreadable when printed due to using a thin white font on dark
backgrounds; if the information was of any value it should have been formatted as a table.  Alas, the
information in the table is worse than its formatting, being completely out-of-date.

The statistics given for Illumina sequencing, which name an instrument (the GA) discontinued several
years ago, give a cost per base that is roughly right for the MiSeq platform, but the read lengths on that
platform are far longer (now 2x300). Several of the other Illumina platforms offer longer read lengths than
given with a cost per basepair which are several orders of magnitude lower than given in the figure.

Another quadrant of the figure describes the SOLiD system, which has rarely been used for de novo 
assembly.  In any case, the number of reads per run and read length are both wrong, which leads to the
cost per basepair being off by over an order of magnitude.

A third quadrant gives obsolete statistics for the 454 platform, which hit read lengths of over 800 bases (or
>2X that given in the figure).  However, that really doesn't matter except historically since Roche
discontinued the 454 platform in 2014.  Even worse is the 4th quadrant, which describes the Helicos
sequencer, a comparny that went bankrupt in 2011.

The Ion Torrent systems, despite being used frequently for small genome  assembly, are notde novo
mentioned anywhere. Missing from the table, but briefly mentioned in the text, is the Pacific Biosciences
platform.  Given that PacBio has been used extensively for  assembly, this is unexcusable.de novo
 Furthermore, the paper fails to mention that PacBio is very different in its read characteristics, particularly
read length.

A section on the experimental workflows for these systems attempts to summarize all of them in one
paragraph.  There is one serious error here; in library preparation PCR is performed after ligation of
adaptors and not before.  More seriously, the described workflow does not apply to either of the single
molecule systems which they have mentioned; neither uses PCR and Helicos didn't even have a ligation
step.

A brief summary of  sequence assembly algorithms has a few small errors (for example, whilede novo
many implementation of overlap-layout-consensus (OLC) use k-mers to speed execution, k-mer analysis

is not an inherent facet of the algorithm as the authors suggest).  More serious is that only de Bruijn graph
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is not an inherent facet of the algorithm as the authors suggest).  More serious is that only de Bruijn graph
and OLC are discussed; string graphs are omitted and would be very relevant to the purported scope of
this paper.

For the paper, the authors downloaded a single dataset from the Assemblathon dataset, for Zebrafish
(oddly described as "fish species M.zebrafish").  No explanation is given why this dataset was chosen.
 Some assembly runs involved removing low quality data from the dataset, but no explanation is given as
to what criteria were used to define low quality or tools used to remove them.  This relates to another
gaping hole in the manuscript: numerous approaches for preprocessing data have been described in the
literature, including read filtering, read trimming, error correction, paired end merging and k-mer based
normalization; none of these topics are broached.  This will become clearly unfortunate later in their
manuscript.

While the title promises a significant comparison of methods, the manuscript describes using only two
programs: Velvet standing in for single compute node de Bruijn graph algorithms and Contrail for
distributed computing de Bruijn graph assemblers.  While a few other DBG assemblers are mentioned,
the existence of other DBG assemblers which can run across multiple compute nodes are not (e.g. Ray,
ABySS).  Since the manuscript focuses on the Hadoop aspect of Contrail (which is the framework it uses
to distribute the computing across multiple nodes), the paper could leave the unfortunate impression that
this is the only attempt in the field, rather than one of many mechanisms (e.g. MPI)

The authors begin by trying a sampling of k-mer values for both Velvet and Contrail using a 2X dataset.
 The method used for downsampling the dataset is not given (while the text promises that the Perl
programs used are available on request, this should be seen as an unacceptably inadequate mechanism;
at a minimum they must be supplementary materials but better would be deposition in a public code
repository).  They measure two figures-of-merit (N50 and maximum contig size), but plot only one of them
(though this plot is the best single element in the paper). A justification for using a 2X sample, rather than
a larger one, is not given.  This opens the question whether a larger k-mer length might have worked
better on a larger dataset.

The authors proceed to try both programs on the entire dataset; Contrail succeeds but Velvet fails.  Velvet
fails again on 50% of the data if in paired end mode (though again, the method of downsampling is not
given) but runs on that dataset in unpaired read mode.  Velvet is tried also, in both modes, on a 25%
dataset and succeeds.  The authors present the figures-of-merit as a table, with no apparent order.  Since
Contrail (at least the version used) had only an unpaired mode, it is run only once. This data would be far
more useful plotted as a graph as well, with the table sorted in some order relevant to the user, such as
the 2X, 25%, 50% and 100% of dataset.

A serious issue at this point is the author's choice of N50 and maximum contig length as their sole
figures-of-merit, which they mistakenly label as measures of assembly quality. At no point do the authors
attempt to assess the correctness of their assemblies, despite this being a standard method in assembler
comparisons (such as the Assemblathon from which the authors obtained the data used).  Both N50 and
maximum contig length can be inflated by overly aggressive assembly that yields misassembly artifacts,
and N50 can be inflated by the choice of a minimum contig length cutoff.  Indeed, the authors fail to report
a genome size their assemblies, and so these assemblies could represent only a fraction of the target
genome.

The authors observe that the 25% and 50% datasets gave similar results for their figures-of-merit, and
observe that less data can give equal or better results.  They appear to have not asked if this has been

observed before (it has).  Nor do they run Contrail on the subsampled datasets to see if the trend holds
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observed before (it has).  Nor do they run Contrail on the subsampled datasets to see if the trend holds
there as well.

The issue of Velvet crashing on the larger datasets is presented as highly significant; indeed the
conclusion is drawn that multi-machine programs such as Contrail are required for this data.  This is highly
unfortunate on two grounds.

First, as noted before, the authors performed nearly no preprocessing of the data (other than the
ill-documented poor quality read removal).  Sequencing errors will enlarge the de Bruijn graph, so error
correction or read trimming can reduce the memory requirements of an assembler. Paired end merging
can similarly reduce memory requirements, albeit at some risk of telescoping small repeats.  Merging is
particularly relevant for Contrail, since it does not explicitly handle paired ends.  K-mer based read
normalization can greatly reduce memory requirements for assembly.

Second, a number of programs have demonstrated assembly of vertebrate-scale short read datasets on
single machines, indeed single machines with far less memory than the 1Tbyte found compute node used
for Velvet in the paper.  Examples include Minia, with a de Bruijn graph structure designed to be
extremely memory efficient, and Readjoiner, which uses a string graph paradigm (which, as noted above,
is a strategy ignored by the paper in the introduction).

Finally, the authors fail to make any attempt to place this in a relevant modern context. Given that short
reads from short inserts alone are mathematically incapable of assembling anything but the simplest
plasmid or viral genomes, the current thrust in  assembly is assembling either entirely from long de novo
reads or integrating short reads with long reads or mate pairs to accurately yield long (increasingly,
chromosome-scale) scaffolds.  Failing to place the very limited findings of this manuscript in such a
context could be characterized as a final failing.

I have read this submission. I believe that I have an appropriate level of expertise to state that I
do not consider it to be of an acceptable scientific standard, for reasons outlined above.

 No competing interests were disclosed.Competing Interests:
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