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Abstract

The Lane-Bates method of blind deconvolution makes it possible to analytically recover the

original image without prior knowledge of blurs convolved in a given image. The method utilizes

the zeros of the z-transform of the given image.  Its implementation, however, requires highly non-

trivial analysis of the zeros. We have developed a novel scheme that considerably simplifies the

analysis of the zeros.  We have developed two versions of the scheme, i.e., determinant conditions

(DCs) for the zeros of blurs and a search algorithm (SA) of blur images. The DCs consist of two

forms, i.e., a derivative form and a multi-point form.  The derivative form is given as a determinant

form of conditions on derivatives of the zeros of assumed blurs that can be evaluated by using

zeros of the z-transform of the given image. On the other hand, the multi-point form is given as a

determinant form of conditions on the zeros of assumed blurs that are evaluated at multiple points

in z space. The scheme is particularly powerful when the blurs have multiple structures as we illus-

trate. The SA is given as a form of simultaneous equations for blur elements of an assumed blur.

The method is powerful when we try to find a single blur. This method is robust for compressed

gray-scale images.  These methods have been experimentally tested with model blurred images

and shown to be powerful. In this report we illustrate how they are useful for the Lane-Bates blind

deconvolution.  
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1. Introduction

Lane and Bates’ (LB) blind deconvolution enables us to remove blurs convolved in a given

image without prior knowledge of the point-spread mechanism that caused the blurring [1]. The

method, however, requires highly nontrivial analysis of the zeros (zero-sheets) of the z-transform

of the given image. We have recently presented a novel scheme that makes such an analysis

almost unnecessary [2-9]. In this paper we give a comprehensive summary of the scheme. We

have devised two versions of the scheme. One is given as determinant forms of conditions on the

zeros and their derivatives of assumed blurs. The other is given as a form of search algorithm for

finding assumed blurs. We refer to the former one as determinant conditions (DCs) and to the lat-

ter one as a search algorithm (SA) throughout this report. 

The DCs enable us to find the zeros of blurs of assumed sizes without classifying the zero-

sheets. The DCs are particularly powerful when the blurs have multiple structures as we illustrate.

We have developed two forms of the DCs, i.e., a derivative form and a multi-point form. The deriv-

ative form is given as a determinant form of conditions on derivatives of the zeros of assumed

blurs. The derivatives of the zeros are analytically given in terms of the whole zeros of the z-trans-

form of a given image and are evaluated at a single point in z space. This is a great advantage of

this method. On the other hand, the multi-point form is given as a determinant form of conditions

on the zeros evaluated at multiple points in z space. 

The SA is given as a form of simultaneous equations for blur elements of an assumed blur.

This method is powerful when we try to find a single blur. This method is also robust even in a sit-

uation where the condition of the perfect convolution is broken. 

We have tested these methods experimentally with model blurred images and shown to be

powerful [2-9].  In this report we show that this novel scheme is useful in implementing the LB

blind deconvolution. In Sec. 2 we present the details of the DCs and the search algorithm. In Sec.

3 we illustrate how they work for deconvolution of given images. Section 4 is for the summary.

2. Determinant conditions for zeros of blurs and a search algorithm

We consider a model of an observed image ( , )g x y that is given as the convolution of a true

image ( , )f x y and a blurring function ( , )h x y

(1)

where no additional noise is involved and it is understood that the blurring is shift-invariant. Here

x and y are nonnegative integers. The ( , )f x y and ( , )h x y are both unknown. The sizes of ( , )f x y
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and ( , )h x y are denoted with M N# and m n# respectively. The size of ( , )g x y is then given as

' ' ( ) ( )M N M m N n1 1# #/ + - + - .  The z-transform ( , )G u v of the given image function

( , )g x y is written as

(2)

where u and v are complex variables.  Similarly, the z-transforms ( , )F u v and ( , )H u v of f and h are

respectively written as

(3) 

(4)

Then Eq. (1) implies

(5)

Consider the equation ( , )H u v 0= with a given u, which is an (n 1- )-th order polynomial for

unknown v. Let its n 1- roots be ib with , , ,i n1 2 1g= - . Then ( , )H u v can be written as

(6)

where ( )A u is a function of u. The bi ’s determined by ( , )G u v contain those of ( , )F u v 0= and

( , )H u v 0= . Provided that we can identify the roots of ( , )H u v 0= , we can determine ( , )H u v

except for factors ( )A u . We repeat the same procedure as above but with a given v.  We denote

the roots of this equation with jc with , , ,j m1 2 1g= - . As we discuss later, the consistency

between the results of the above two procedures allows us to determine ( , )H u v .

The problem is, how to separate the roots ib ’s ( ic ’s) that belong to ( , )H u v 0= from those of

( , )F u v 0= . To perform this LB’s fundamental procedure requires us to classify the zero-sheets of

( , )G u v when u (v) is varied. This is a highly nontrivial analysis. The novel scheme that we present

in the following sections simplifies the analysis to a considerable extent. 

2.1 Derivative form of DC

The root ib of ( , )H u v 0= is a function with of u.  Note that ( , )H u ib is identically zero by

definition.  Therefore the following equations hold,

(7)

The above mn equations enable us to express the mn unknown elements of ( , )h x y in terms of u

and the derivatives of ib with respect to , / ( , , , )u d du j mn0 2 1( )j j j
g/ = -b b . Actually all higher

Ikuo MORITANI, Souichirou AOGAKI, Takao SUGAI, Fujio TAKEUTCHI and Fumiharu Masafumi TOYAMA, 85



derivatives of ( , )H u ib are also zero. Hence we can use derivatives of any orders higher than

those of Eq. (7). The results for ( , )h x y , however, should be independent of the choice of the

derivatives. 

Let the matrix that consists of the coefficients of the mn elements of ( , )h x y be C and its

determinant detC. Matrix C is complex in general. We require that Eq. (7) has a nontrivial solu-

tion, that is, the mn elements of ( , )h x y are not all zero. This requires detC = 0. We refer to this as

version 1 of the DC. Hereafter we denote the DC for a m n# blur with ( ( ))E um n
u b#

t . As an illus-

tration let us consider the case of m = 2 and n = 3. Then we obtain

(8)

where we took as u eu
i u

= t - z and / /u( )j j j j
i u

j
"2 2 2 2/b b b t [4] and we dropped the factor

1/mn=1/6. The detC leads to the DC [4, 7]

(9)

For 
( )

i

j
b , we can take it as derivatives with respect to other parameters. However, they are in fact

identical to each other. For instance, when we take as /
( )

i

j j j
" 2 2b b zu we have a relation

( ) ( )E Ei i2 3 2 3
u 12=b t b# #

z t
u

u where ( )E i2 3 b#
zu is the DC obtained by taking /

( )

i

j j
i

j
" 2 2b b zu . This

can be verified with the Cauchy-Riemann relation between derivatives of ib with respect to tu and

zu,  i.e., / ( / )ii i2 2 2 2=b z t b tu u u (the relations between higher degree derivatives are obtained

from this relation). 

This DC derived for 2 3# implicitly includes DCs for blurs of the sizes smaller than 2 3# ,

i.e., 2 2# , 1 3# and 1 2# . This is because the detC can be expressed as a linear combination of

DCs for the blur elements of the smaller sizes. However, the detC cannot vanish for i 1# where

i 2$ . For instance, we present an explicit decomposition of Eq. (9) into DCs for 2 2# blurs, i.e.,
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(10)

where Ak and ( )E i k2 2 b#
tu are given as,

(11)

(12)

(13)

(14)

(15)

(16)

and

(17)

(18)

(19)

(20)

(21)

(22)

Equations (17)-(22) are all DCs for 2 2# blurs. The simplest form E2 2
u

#
t

( )i 6b of Eq. (22) is

obtained from Eq. (7) [2]. Other ones are obtained by taking the higher order derivatives than

those in Eq. (7). Note that E2 2
u

#
t

( )i 2b and E2 2
u

#
t

( )i 5b are respectively obtained by differentiat-

ing E2 2
u

#
t

( )i 3b and E2 2
u

#
t

( )i 6b with respect to tu. Thus, it is seen that ( )E i2 3
u b#

t for 2 3# blurs

implicitly includes the DCs for 2 2# blurs. Similarly, it can be explicitly shown that the DCs of

Eqs. (17)-(22) for 2 2# blurs implicitly include the CEs for 1 2# blurs. This implies that

( )E i2 3
u b#

t for 2 3# of Eq. (9) can detect the zeros of blurs of the sizes 2 3# , 2 2# , and 1 2# all

at once. Equation (9) also includes DCs for j1 # with >j 3 blurs (larger one-dimensional blurs).

For such one-dimensional blurs, all zeros are independent of u and its derivatives with respective

u are all zero.  This is why Eq. (9) includes the DCs for j1 # with >j 3 blurs implicitly. This fea-

ture of the DC, which holds for blurs of any sizes in general, enables us to detect all zeros of any

blurs convolved in the given image if we choose sufficiently large values for m and n. For illustra-

tion we have shown the DC by assuming a 2 3# blur but it is straightforward, although tedious,
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to extend it to blurs of larger sizes. 

Although we examined DCs for the zeros of ( , )H u v , in the actual analysis we have to start

with ( , )G u v that is defined in terms of the given image ( , )g x y . Recall that we have no prior

knowledge of the blurring function ( , )h x y .  With a given u, we numerically solve ( , )G u v 0= for

unknown v.  Some of these roots can be the roots of ( , )H u v 0= with the same given u. In that

case, Eq. (7) with ( , )H u v replaced by ( , )G u v holds.  Let one of such roots be b, i.e., assume that

( , )H u 0=b . Then Eq. (7) holds for this b. In order to work out the matrix elements of C, we

have to evaluate derivatives of b with respect to u. Because ( , )h x y is still unknown, we cannot

use Eq. (7) to determine these derivatives.  The b, however, is a solution of Eq. (7) with ( , )H u b

replaced by ( , )G u b , which we can use to determine the derivatives of b. The derivatives can

explicitly be written down in the form of rational functions of u. As examples we give analytical

expressions for the derivatives of ib , up to the fourth order.  From ( , ) /d G e d 0k
u

i
i u

k
=t b t- zu

( , , )k 1 5g= , the derivatives of the zeros ib are given as,

(23)

(24)

(25)

(26)

(27)
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where 

(28)

In Eq. (28) , , , , ,p q 0 1 2 5g= , with p q 5+ = . In this way the derivatives of the zeros ib are given

in terms of known ( , )g x y and the zeros ib that are evaluated at a point of u. If Eq. (9) is satisfied

with the chosen b, it means that the given image contains the blurs of the sizes 2 3# , 2 2# or

j1 # with j 2$ . We repeat the same procedure for all of the roots of ( , )G u 0i =b one by one. In

this way we can identify the roots that belong to the blurs of the sizes 2 3# , 2 2# or j1 # with

j 2$ .  We do not have to go through complicated analysis of the “zero-sheets”.  The size of the

blurring function can be much larger. The detC for ( , )h x y of larger sizes case can be worked out

explicitly. If we test detC = 0 for all the roots of ( , )G u 0=b , we can in principle identify all of the

b’s of ( , )H u 0=b , including those of blurs of smaller sizes that are contained.  

Even when we find all the b ’s associated with ( , )H u v , we cannot determine ( , )H u v in the

sense that we do not know factor ( )A u of Eq. (6).  The ( , )H u v , however, can be fully determined

by repeating the same procedure for zeros with respect to variable u (with a fixed v).  If m n= ,

the DC for ic ’s can be obtained from the DC for ib by the following substitutions: i i"b c ,

u v"t t , u v"z z , x yE in the DC for ib and relevant equations, but ( , )g x y must be left as it is.

However, if m n! , the form of the DC for ic is different from that of ib . As a preparation to the

next section, for the 2 3# case we give the explicit form of the DC for ci, i.e.,

(29)

where we took as v ev
i v

= t - z and /d dv
( )

i
j j

i
j

=c c [4, 7].

Before ending this section we should emphasize an interesting feature of the DC of the deriv-

ative form. As mentioned before, we can use derivatives of any orders higher than those of Eq. (7)

when we construct DCs for an assumed blur. If we use such higher derivatives we obtain more

complicated DCs with higher order derivatives of zeros ib or ic . We can also obtain such DCs by

differentiating DCs constructed with lower order derivatives of zeros ib or ic .  The DCs con-

structed with the higher order derivatives of the zeros ib or ic are more powerful in detecting the

zeros of blurs. This is because, in the higher order derivatives of the zeros, the ( )v ut dependences

of the zeros ib or ic of blurs are much more different from those of non-blur elements. We will

demonstrate this aspect of the derivative form of the DCs in the next section.

2.2 Multi-point form of DC

In the preceding section we presented the derivative form of DC. The derivative form of the
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DC is very sophisticated in the sense that it can be evaluated at a single point in z space. In this

section we present yet another version of the DC, which is a simpler form than the derivative

form. 

We consider the same situation as that we considered in the previous section, i.e., a situation

where noise is absent and a given image ( , )g x y can be modeled as the convolution of a true image

( , )f x y and a blur image ( , )h x y given as Eq. (1). Equation ( , )H u v 0= with ib defines ib as a

function of u, i.e., ( )ui i=b b . The ( , )H u bi is identically zero by definition. Therefore the follow-

ing equations hold, 

(30)

where b can be any of the ib ’s and uj are different points of u. The mn equations enable us to

express mn unknown elements ( , )h x y in terms of uj and ( ) ( , , )u j mn0 1j g= -b . Let the

mn mn# matrix that consists of the coefficients of mn elements ( , )h x y be D. The matrix D is

given as,

(31)

where q mn 1= - and we dropped the factor /mn1 [6, 9]. We require that Eq. (30) has nontrivial

solutions, that is, mn elements of ( , )h x y are not all zero. This requires detD = 0. We refer to this as

version 2 of the DC. Hereafter we denote the DC for m n# blur with ( ( ), , ( ))E u um n
u

mn0 1gb b# - .

The Em n
u

# implicitly includes the DCs for any blurs of sizes smaller than m n# , except for the

size ( , , )r r m1 1# g= . This follows from the structure of the determinant detD. Further, the DC

can detect the zeros of blurs of the size k1 # ( , , )k n N1 g= + . This can be seen as follows. In

such a one dimensional blur the zeros are all constant, i.e., do not depend on u. Hence when we

substitute the zeros of k1 # blurs into detD, at least two column vectors become proportional to

each other. This is why the DC for the m n# blurs detects the zeros of k1 # blurs.

Version 2 is simpler than version 1 in the sense that we do not have to evaluate derivatives of

the zeros. However, there is a drawback in the sense that in this version 2 we have to solve ib at

mn different values of ( , , )u l mn0 1l g= - numerically. That is, we have to find ib of the blurs

for each of step ( , , )u j M0 1j g= - by solving mn equations on ib . To do this we take mn differ-

ent points ( , , , )u l mn0 1 1l g= - in the vicinity of each uj , i.e., as u u l u,j l j= + D . This requires

an optimization of the parameter u∆ . Namely, to hold the “same” ib we have to take u∆ suffi-

ciently small. By the “same” ib , we mean the ib ’s such that, when u ,j l are all reduced to the same
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value, then all the associated ib ’s coalesce.  On the other hand, if we take u∆ too small, ib solved

for mn different points u ,j l become closer to each other. This may cause more than two row vec-

tors in detD to be nearly proportional to each other. Thus, detD . 0 may be caused, which does

not necessarily mean that the condition is satisfied. Therefore, we have to determine an optimal

uD to accomplish the detection process successfully. 

In order to complete the image restoration we need the DC also for the variable u. The DC for

u is given in a form similar to detD. The DC for u is denoted as ( ( ), , ( ),)E v vm n
v

i i mn0 1gc c# -

where ic are the zeros of the blurs.

2.3 A simple algorithm for eliminating blurs

In this section we present an algorithm for finding blurs, which is a new tool for the LB

method but different from the DCs that we presented in the previous sections.  In this new algo-

rithm, for a larger size of the blur the amount of computation stays still relatively small compared

with those in the DCs. Although the DCs we have presented in the last two sections work very

well in the situation where the condition of the perfect convolution holds, they are not so robust

against a break of the condition of the perfect convolution. On the other hand, this new search

algorithm can be also extended to a situation where the condition of the perfect convolution is

broken by some reason.  

First we consider the same situation as that we considered in the previous sections, i.e., a sit-

uation where noise is absent and a given image ( , )g x y can be modeled as the convolution of a

true image ( , )f x y and a blur image ( , )h x y given as Eq. (1). For a given u, the solutions v of the

equation ( , )G u v 0= are denoted by ( , , , '; ' )i N N N n1 2 1u

i
g #= + -b . Then ( , )G u v of Eq. (2)

can be expressed as

(32)

where suffix j means different value of u.

The blur function H can also be expanded in the same manner as above;

(33)

where j

i
a is the i-th solution of ( , )H u vj .  Actually Eq. (33) is the same as Eq. (6). From Eq. (2), it

follows that { } { }
j j

1a b .

The RHS of Eq. (33) can be expanded as

(34)
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where cy is the coefficient of the degree y term, all containing j

0a through j

n 1a
-

except for cn-1

which is just 1.  Thus we obtain n equations

(35)

which can be considered as a set of simultaneous equations for unknowns h(x,y) and pj  [5, 8].

Our aim is to determine the blur functions ( , )h x y from Eq. (35). However, Eq. (35) has

mn 1+ unknown variables.  On the other hand, the number of independent equations in Eq. (35)

is n. Therefore, in order to obtain ( , )h x y uniquely, one has to evaluate Eq. (35) at q (i.e.,

, ,j q1 g= ) different values of uj, where q can be taken as the smallest integer that satisfies

/ ( )q mn n 1$ - . Then, one can solve Eq. (35) with , ,j q1 g= for ( , )h x y and pj. If Eq. (35) has

nontrivial solutions for ( , )h x y and pj’s, the zero-values j

i
a ( , , ,i n1 2 1g= - ) are those of an

m n# blur and the solutions ( , )h x y form the blur matrix.  On the other hand, if Eq. (35) has no

solution, it means that the zero-values j

i
a ( , , ,i n1 2 1g= - ) are not those of the m n# blur. For

all combinations of n 1 j
- b ’s, one repeats this procedure. The number of the possible combina-

tions is C'N n1 1- - for a given ' 'M N# image. Once an m n# blur matrix ( , )h x y is found, one can

construct the z-transform ( , )H u v of it. Hence, one can obtain the z-transform ( , )F u v of a real

image ( , )f x y simply by ( , ) ( , ) / ( , )F u v G u v H u v= , which allows us to restore the true image by

the inverse Fourier transform.  

The search algorithm for finding m n# blur matrix ( , )h x y is summarized as follows:

1. Determine the smallest integer q that satisfies / ( )q mn n 1$ - .

2. Pick up combinations of n 1- zero-values b from ib ( , , , '; 'i N N N m1 2 1g #= + - ) of the

variable v of the z-transform of the given image.

3. Evaluate the n 1- zero-values b at q different points. Then, solve (35) for the blur ( , )h x y and

unknown constants p j ( , ,j q1 g= ).

4. If the set of equations give a non-trivial solution, then those b’s are identified as the a’s that are

solutions of ( , )H u vj .

5. Find nontrivial solutions by repeating the procedures 1. ~ 3. at most C'N n1 1- - times until the

condition 4. is met.

6. Restore the true image ( , )f x y by removing the blur using ( , ) ( , ) / ( , )F u v G u v H u v= .   

When one chooses q different values for uj ’s, it is advisable to select values that are not very
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different from each other.  In that case, if the i-th solution j

i
b is identified as a ja , the chance that

'j

i
b at another value u 'j is also a solution 'ja is large.

We have constructed the algorithm in terms of the zeros of the variable v. Of course we may

use the zeros ic ( , , , 'i N1 2 1g= - ) of u instead of v in constructing the same algorithm. This

version can simply be obtained by the replacements N M" , n m" , i i"b c , and u vj j" .

Next we consider a situation where the perfect convolution given in Eq. (1) is broken by

some reasons. In this situation, the simultaneous equations (35) do not hold exactly because j

i
a

in Eq. (35) are not exact solutions of Eq. (35). We then define 2| by Eq. (36) and determine

unknown h(x,y) and pj to minimize the 2| ,

(36)

In the next section it is shown that this algorithm is robust against a break of the condition of the

perfect convolution. 

3.  Illustrations : Tests of the DCs and search algorithm

In the preceding section we have given two types of the DCs and a simple search algorithm

for blurs. In this section, we illustrate the image restoration with the DCs and the simple search

algorithm and show how this novel scheme is useful mathematical tools in implementing the LB’s

blind deconvolution. 

3.1 Tests of the DCs

Figure 1 shows model images used for illustration in this section. Figure 1(a) shows a model

image that we regard as a true image. The image has been downloaded from the web site of Ref.

[10], which has been often used in many references to demonstrate image restorations. Figures

1(b), 1(c), 1(d), and 1(e) represent blur images of the sizes 1 2# , 2 1# , 2 2# and 2 3# , respec-

tively. We convolved these four blurs into the true image of Fig. 1(a). Here, it should be stressed

that the gray tones of these blur images have been chosen unintentionally. Fig. 1(f) shows the

convolved image, of which size is 43 44# .
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We first illustrate how zeros of the blurs can be detected through ( )E2 3
u b#

t of Eq. (9) and

( )E2 3
v c#

t of Eq. (29). For the parameter ut and vt we take them to be 1u v= =t t . We can take

any values for ut and vt in principle. However, in order to accomplish the image-restoration

effectively we have to choose optimal values for them. Figure 2 shows the results of numerical

evaluations of the DCs for the convolved image shown in Fig. 1(f). We carried out the evaluation

at /j2 43u=z r ( , ,j 0 42g= ) and /k2 44v =z r ( , ,k 0 43g= ). Note that when we restore the

image by the inverse Fourier transform we need the representation of ( , )G u v at these points of

uz and vz . In Fig. 2 we plot [ ( ) ]log E 1i2 3
u

+b#
t and [ ( ) ]log E 1i2 3

v
+c#

t only for four points of

each of uz and vz . As we have stressed in the preceding section, ( )E i2 3
u b#

t and ( )E2 3
v c#

t
i both

include DCs for blurs of smaller sizes 1 2# , 2 1# , 2 2# and 2 3# implicitly. Therefore,

( )E i2 3
u b#

t exhibits four ( 1 1 2= + + ) zeros. When there exists a degenerate zero in the 2 3#

blur, the number of zeros is reduced to three.  On the other hand, the number of zeros ic that can

be detected through ( )E i2 3
v c#

t is just three ( 1 1 1= + + ).
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obtained by convolving the four blurs of (b)-(e) into the true image of (a).  The size of the convolved
image is  43 44# .



As seen in Fig. 2(a), for 0u=z , four zeros 1b , 13b , 20b , and 21b are exhibited by ( )E i2 3
u b#

t .

Also at other uz four zeros are well exhibited by ( )E i2 3
u b#

t . Here, note that the solution-numbers

of the detected zeros are different at each uz . In the evaluation of the DC we solved ib numerical-

ly by Mathematica, separately at each uz . Accordingly, the ordering of the numerical solutions

(zeros) varies depending on uz .

For 0v =z , as seen in Fig. 2(b), three zeros 
1

c , 3c and 12c are detected through ( )E i2 3
v c#

t ,

as expected.  Also at other points vz three zeros are clearly detected by ( )E i2 3
v c#

t . As we men-

tioned earlier, ( )E i2 3
u b#

t and ( )E i2 3
v c#

t exhibit the zeros of blurs of not only the size 2 3# but

Ikuo MORITANI, Souichirou AOGAKI, Takao SUGAI, Fujio TAKEUTCHI and Fumiharu Masafumi TOYAMA, 95

Fig. 2. Results of the evaluations of ( )E i2 3
u

b#
t and ( )E i2 3

v c#
t of Eq.(9) and Eq.(29). In (a) and (b),

[ ( ) ]log E 1i2 3
u

+b#
t and [ ( ) ]log E 12 3

v
+c#

t
i are plotted for the zero-value number ib and ic. We

took ut and vt as 1u v= =t t .



also the sizes 1 2# , 2 1# and 2 2# , all at once. The results of Fig. 2 verify that the detection of

the zeros was done successfully.  

We have shown that version 1 of the DCs works very well in detecting zeros of multiple blurs

that are convolved in a given image. Next, we illustrate version 2 by using the same image as that

used for the illustration of version 1. 

In Fig. 3 we show the results of the numerical evaluations of the DCs E u
2 3# ( ( ), , ( )u u0 5gb bi i )

and Ev
2 3# ( ( ), , ( )v vi i0 5gc c ) where we plot [ ( ( ), , ( )) ]log E u u 10 1u

i i2 3 0 5
50

#g +b b# and
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Fig. 3. Results of the evaluations of the DCs E u
2 3# ( ( ), , ( )u ui i0 5gb b ) and E v

2 3# ( ( ), , ( )v vi i0 5gc c ). (a) and
(b) show the results of the evaluations for ib and ic , respectively. We took ut and vt as 1u v= =t t . 



[ ( ( ), , ( )) ]log E v v 10 1v
i i2 3 0 5

50
#g +c c# . We took u∆ and v∆ as u v e∆ ∆ i∆

= = t - z and used

/∆ 2150=z r and 1=t , as optimized parameters. We took a very small value of ∆z so that the

“same” ib is hold in sampling mn points. We mentioned earlier that there can be misjudgment of

the zeros of blurs. To avoid such a situation we need to evaluate the DC in high precision. This is

why we multiplied E u
2 3# and Ev

2 3# by the factor 1050 in evaluating the DC.  

As we stressed in the preceding section, both of E u
2 3# ( ( ), , ( )u ui i0 5gb b ) and Ev

2 3#

( ( ), , ( )v vi i0 5gc c ) include DCs for blurs of smaller sizes 1 2# , 2 1# and 2 2# implicitly.

Therefore, we can find altogether four ( 1 1 2= + + ) zeros ib with E u
2 3# ( ( ), , ( )u ui i0 5gb b ).

When there exists a degenerate zeros in the 2 3# blur, the number of the zeros that we can find

may be three ( 1 1 1= + + ). On the other hand, the number of zeros ic that must be found with

Ev
2 3# ( ( ), , ( )v vi i0 5gc c ) is just three ( 1 1 1= + + ). As seen in Fig. 2(a), for 0u=z , four zeros 1b ,

13b , 20b , and 21b are the blurs found through E u
2 3# ( ( ), , ( )u ui i0 5gb b ). Also at other uz four

zeros of the blurs are clearly found with E u
2 3# ( ( ), , ( )u ui i0 5gb b ). As seen in Fig. 2(b), for 0v =z ,

three zeros 1c , 3c and 12c are found as those of the blurs with Ev
2 3# ( ( ), , ( )v vi i0 5gc c ).  Also at

other points vz three zeros are clearly detected through Ev
2 3# ( ( ), , ( )v vi i0 5gc c ). Note that the

zeros detected through E u
2 3# ( ( ), , ( )u ui i0 5gb b ) and Ev

2 3# ( ( ), , ( )v vi i0 5gc c ) are the same as

those found with the DCs of version 1 (see Fig. 2). This is natural because we used the same test

image for the two illustrations.

Version 2 of the DC obtained from Eq. (31) looks simpler than version 1 that we presented in

section 2.1 in the sense that version 2 of the DC can be evaluated with only the zeros. However,

when we use version 2 we have to spend extra time to optimize the sampling parameters u∆ and v∆ . 

In Fig. 4 we show the image restored by removing four zeros ib in v and three zeros ic in u.

The restored image is the same as the true image of Fig. 1(a). Thus, we confirm that the zeros of
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Fig. 4.  Image restored by removing the four and three zeros that were respectively detected through
( )E u

2 3 b# i and ( )E v
i2 3 c# of version 1 of the DC or E u

2 3# ( ( ), , ( )u ui i0 5gb b ) and E v
2 3#

( ( ), , ( )v vi i0 5gc c ) of version 2 of the DC.



blurs convolved in the given image are correctly detected through ( ( ), , ( ))E u uu
i i2 3 0 5gb b# and

( ( ), , ( ))E u uv
i i2 3 0 5gc c# . The results show that the DC is very powerful tool for the LB blind

deconvolution.

In the preceding section we mentioned that the higher order derivative forms of version 1

may be more powerful in detecting the zeros of blurs than the simplest form of the DC obtained

by Eq. (7).  Before ending this section we illustrate how they are powerful. Figure 5 shows the

evaluations of three DCs constructed for 2 2# blurs, i.e, ( )E 4 2( ) ( ) ( ) ( )
i i i i i2 2 5

3 2 4 1u
=- +b b b b b#

t of
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Fig. 5. Comparison of the evaluations of higher order derivative forms of the DCs for 2 2# blurs. (a) shows
the evaluations done for the DCs ( ) ' ( ) /E E 2 ( ) ( ) ( ) ( ) ( )

i i u i i i i i2 2 5 2 2 5
3 2 4 1 5u u

2

2 2/ = + -b b t b b b b b# #
t t (red

lines), ( )E 4 2( ) ( ) ( ) ( )
i i i i i2 2 6

3 2 4 1u
=- +b b b b b#

t (blue lines) and ( )E 3 2( ) ( ) ( )
i i i i2 2 6

2 3 1u
2

=- +b b b b#
t (black

lines), where actually we plotted [ ]log E 10 12 2
3u # +#

t . (b) shows the evaluations done for the DCs
for the zeros ic . The forms of the DCs for ic of are the same as those for ib .



Eq.(21), ( ) ' ( ) /E E 2 ( ) ( ) ( ) ( ) ( )
i i u i i i i i2 2 5 2 2 5

3 2 4 1 5u u
2

2 2/ = + -b b t b b b b b# #
t t and ( )E 3 ( )

i i2 2 6
2u

2

=-b b#
t

2 ( ) ( )
i i
3 1

+ b b of Eq. (22), where we plotted [ ( ) ]log E 10 12 2
3u # +b#

t .  Here, note that the forms of

the DCs for the zeros ic of the variable u are the same as those for the zeros ib for variable v

because the assumed blurs are symmetric 2 2# blurs. The ( )E i2 2 6
u b#

t is the simplest form that is

obtained by Eq. (7).  The model image used in this illustration is of Fig. 1(f), in which 2 1# , 1 2# ,

2 2# and 2 3# blurs of Fig. 1(b-e) are convolved.  As we mentioned earlier, the DCs constructed

for 2 2# blurs should detect the zeros of blurs of the sizes 2 1# , 1 2# and 2 2# . It should be

noted that they never detect the zeros of 2 3# blur. The black, blue and red lines show the evalu-

ations of ( )E i2 2 6
u b#

t , ( )E i2 2 5
u b#

t and ( )E i2 2 4
u b#

t , respectively. It is seen that the differences

between the evaluations of the DCs for the zeros of the 2 2# blur and those for the other zeros

are larger in the higher order derivative forms of the DCs. Thus, higher order derivative forms

are more powerful in detecting the zeros of the blurs.  

3.2 Test of the simple search algorithm for finding blurs

In section 2 we discussed a search algorithm for finding a single blur convolved in a given

image. In this section we present one of the results of the tests of image restoration done by

means of the search algorithm.

Fig. 6(a) shows a 40 40# model image that we regard as the true image, which is the same

as that we used for the tests of the DCs in the preceding section. Figs. 6(b), 6(c) and 6(d) are

blurs of sizes 2 2# , 2 3# and 3 3# , respectively. We convolve the three blurs into the true

image. The blurs of the sizes 2 2# and 2 3# are the same as those used in the tests for the DCs.

We introduced the 3 3# blur in the present test. Figure 1(e) shows the convolved image. The

size of the convolved image is 44 45# .

We test how the search algorithm represented by Eq. (35) works in finding each single blur
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Fig. 6. (a): True image of size 40 40# that we took from  [10].  (b): Blur image of size 2 2# . (c): Blur image
of size 2 3# .  (d): Blur image of size 3 3# . (e): Image obtained by convolving the three blurs of (b),
(c), and (d) into (a).  The image size is 44 45# .



convolved in the true image. To choose uj ’s we imposed u 1j = , and changed only its phase.

Parameter q is 4, 3, and 5 for each blur of Fig. 1(b), 1(c) and 1(d).   Figure 7 shows the results of

the test. Figure 7(a) shows the image restored by removing the 2 2# blur that has been detected

by searching the 2 2# blur in Fig. 7(e).  Fig. 7 (b) shows the image restored by removing the

2 3# blur that has been detected by searching for the 2 3# blur in Fig. 7 (a). Finally, Fig. 7 (c)

shows the image restored by removing the 3 3# blur that has been detected by searching for the

3 3# blur in Fig. 7 (b). In obtaining the final restored image of Fig. 7 (c) we applied the search

algorithm three times. In each search, the algorithm worked very well for blurs of different sizes.

In this way we verified that the search algorithm works well in finding a single blur convolved in a

given image. This test is just one of the many tests that we have carried out.

Next we show how the search algorithm is robust in a situation where the perfect convolution

is broken. Figure 8(a) is the true image that is the same as that used in the tests for the DCs and

the search algorithm. Figure 8(c) is the image obtained by convolving the 2 2# blur image of Fig.

8(b). The gray levels are 3852. Figure 8(d) is the image obtained from the image of (c) by com-
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Fig. 8 (a): True image of the size 40 40# that we took from [10];  (b): Blur image of the size 2 2# . (c):
Image (3852 gray levels) obtained by convolving the blur of (b) in to (a); (d)  Image obtained by com-
pressing image (c) to 256 gray levels. 

Fig. 7. Restored images by removing three blurs that were found by the search algorithm. (a): restored
image by removing the 2 2# blur from the image of Fig. 6(e); (b): restored image by removing the
2 3# blur from the image of (a); (c): restored image by removing the 3 3# blur from the image of
(b). 



pressing the gray levels to 256. In the compressed image (d) the condition of the perfect convolu-

tion, i.e., ( , ) ( , ) ( , )G u v F u v H u v= is broken. As we discussed in the preceding section, in this situ-

ation the simultaneous equations (35) does not hold exactly. Then, we tried to find blur elements

( , )h x y with Eq. (36).  Figure 9 shows the restored image by removing the blur of Fig. 8(b). The

restored image is surely enhanced. In this way, one can see that the modified search algorithm

presented by Eq. (36) works for images with a broken convolution.  

4. SUMMARY AND CONCLUSION

We have presented two versions of DCs for finding blurs convolved in a given image, in a sit-

uation where no noise is involved. Version 1 of the DCs is given in terms of the derivatives of the

zeros of the given image. The derivatives of the zeros are given as rational functions of the zeros

themselves of the given image. Hence, the DCs can be evaluated with only the zeros evaluated at

a single point in z space. This is a great advantage of the DCs.  By using the DCs we can avoid a

complicated analysis of the zero-sheets of the given image and reduce the processing time. The

DCs constructed for m n# blurs can actually detect any blurs of the sizes smaller than m n# all

at once. Therefore, when we apply the DCs to the given image, it is advisable to start with the DCs

for blurs of sufficiently large size, although we have to take account of the computational complex-

ity of the image restoration process. The DCs are very useful to make the LB blind deconvolution

a more practical one.  In particular, higher order forms of the DCs are more powerful in detecting

the zeros of blurs than the simplest form.

However, version 1 of the DCs are very complicated for blurs of large sizes. This causes a big

computational load in the image restoration. Then, we gave the other version of the DCs to solve

this problem. Version 2 of the DCs is given in terms of only the zeros of the given image evaluated

at multiple points in z space. Therefore, we do not need any derivatives of the zeros of blurs to

evaluate the DCs. Hence, in version 2 the computational load is much reduced compared with that

of version 1. By using the DC constructed for m n# blurs we can actually find blurs of any sizes
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Fig. 9 Restored image from the image of Fig. 8(d).



smaller than m n# all at once. This feature is the same as that of version 1 of the DCs. 

The two versions of the DCs are mathematically elegant in the sense that they detect multiple

blurs at once. On the other hand, the sizes of the detected blurs cannot be determined, except for

a single blur. Then, we presented yet another form of a search method, i.e., a simple search algo-

rithm for finding blurs of a specified size.

The search algorithm is given in the form of solving simultaneous equations for a blur matrix

elements. The algorithm is for finding a single blur of a specified size. Once a blur of a given size

is detected, and the matrix elements are obtained, one can easily reconstruct the unblurred

image. The advantage of this method is that it can be extended easily to blurs of larger sizes. In

particular, this search algorithm can be extended to a situation where the perfect convolution is

broken. In a compressed image the condition of the perfect convolution is broken. Even in such a

situation this search algorithm can be applied to find assumed blurs convolved in given images.

We experimentally tested the DCs and the search algorithm by using test images and exam-

ined how they work for finding blurs convolved in original images. We have verified that the algo-

rithm works, in a practical processing time, very well for blurs of small sizes convolved in a middle

size image. This novel scheme will be very useful in making use of the LB blind deconvolution.  
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