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Joon-Ho Cho, Manjari Dimri, and Goberdhan P. Dimri'

From the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center,

Washington, D. C. 20037

Background: PcG protein BMI1 is transcriptionally regulated by Myc and is up-regulated in cancer cells.

Results: The WNT pathway plays an important role in Myc regulation of BMI1.

Conclusion: BMI1 up-regulates the WNT pathway, which in turn regulates expression of BMI1 via c-Myc.

Significance: The study provides insights into the regulation of BMI1 and suggests that BMI1 expression may be targeted by

WNT inhibitors in cancer cells.

Polycomb group protein BMI1 plays an important role in cel-
lular homeostasis by maintaining a balance between prolifera-
tion and senescence. It is often overexpressed in cancer cells and
is required for self-renewal of stem cells. At present, very little is
known about the signaling pathways that regulate the expres-
sion of BMI1. Here, we report that BMI1 autoactivates its own
promoter via an E-box present in its promoter. We show that
BMI1 acts as an activator of the WNT pathway by repressing
Dickkopf (DKK) family of WNT inhibitors. BMI1 mediated
repression of DKK proteins; in particular, DKK1 led to up-reg-
ulation of WNT target c-Myc, which in turn further led to tran-
scriptional autoactivation of BMI1. Thus, a positive feedback
loop connected by the WNT signaling pathway regulates BMI1
expression. This positive feedback loop regulating BMI1 expres-
sion may be relevant to the role of BMI1 in promoting cancer
and maintaining stem cell phenotype.

Polycomb group (PcG)> proteins are evolutionarily con-
served gene silencers that determine cell fate decisions during
development (1). These proteins are often aberrantly expressed
in cancer cells. In particular, BMI1 and EZH2 are known to be
overexpressed in a number of human malignancies including
breast and prostate cancers (2—4). In vitro models of cancer
development strongly support an oncogenic role of overex-
pressed BMI1 in cancer and metastasis (5, 6). In addition to its
role in cancer, BMI1 is known to be required for self-renewal of
neural, hematopoietic, intestinal, and mammary stem cells
(7-12). BMI1 is also suspected to play a role in cancer stem cell
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development in different cancer progression models (13, 14).
Consistent with its role in maintenance and self-renewal of
stem cells, recently it was demonstrated that BMI1 can replace
c-Mygc, and together with OCT3/4, it can promote conversion
of human fibroblasts into induced pluripotent stem cells (15). It
was also shown that the knockdown of BMI1 inhibits conver-
sion of human fibroblasts into induced pluripotent stem cells
(16). The overexpression of BMI1 is also thought to promote
stemness and therapy resistance in tumor cells (2, 17).

With respect to its role in senescence and aging, it has been
shown that the overexpression of BMI1 results in repression of
tumor suppressor p16INK4a and bypass of senescence (18, 19).
Deficiency of Bmil in mouse results in tissue atrophy, develop-
mental and neurological abnormalities, type II diabetes, and
accelerated aging (20-22), underscoring its critical role in
pathological conditions. Despite its well documented role in
cellular senescence, cancer, and stem cell phenotype, at pres-
ent, very little is known about the regulation of BMI1. Recently,
it was reported that BMI1 is transcriptionally regulated by
c-Myc (23). Aberrant activation of the WNT pathway is a com-
mon feature of many cancers including breast cancer (24, 25).
WNT family proteins are secreted signaling proteins that bind
specific receptors to activate intracellular signaling via canoni-
cal and non-canonical WNT signaling pathways. In the canon-
ical pathway, the interaction of WNT factors and receptors
leads to inhibition of phosphorylation of B-catenin and its
destruction by ubiquitin/proteasome machinery (24, 25). The
B-catenin then activates transcription of target genes after
translocating to the nucleus and by complexing with TCF/LEF
(24, 25). WNT inhibitors such as members of Dickkopf (DKK),
secreted Frizzled-related protein (SFRP), and WNT inhibitory
factor families act as brakes of the WNT pathway by complex-
ing with WNT factors and disrupting their interaction with
WNT receptors (24, 25). WNT inhibitors can thus function as
growth inhibitors and tumor suppressors. Down-regulation of
these inhibitors often occurs in cancer cells, amplifying the
aberrant WNT signaling to promote growth and survival of
cancer cells (24, 25). One of the important downstream targets
of the WNT pathway is c-Myc, which is activated in multiple
cancers (24, 26). As PcG proteins including BMI1 often target
tumor suppressors such as p16INK4a, we investigated potential
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TABLE 1
Primer sets
F, forward; R, reverse; QPCR, quantitative PCR.

Autoregulation of BMI1

TABLE 2
Antibodies for Western blot analyses
pAb, polyclonal antibody.

Real time RT-PCR
primer sets

BMII (F) 5-TGGAGAAGGAATGGTCCACTTC-3'
(R) 5'-GTGAGGAAACTGTGGATGAGGA-3'
DKK1 (F) 5'CCGCGCCGGGAATCCTGTAC-3'
(R) 5'-GCAGCGTTTTCGGCGCTTCC-3'
DKK?2 (F) 5'-CCAGTACCCGCTGCAATAAT-3'
(R) 5'-CCAGAAATGACGAGCACAG-3'
DKK3 (F) 5'-CTGTGTGTCTGGGGTCACTG-3'
(R) 5'-GCTCTAGCTCCCAGGTGATG-3'
c-Myc (F) 5'-CCTACCCTCTCAACGACAGC-3'
(R) 5'-CTCTGACCTTTTGCCAGGAG-3'
Cyclin D1 (F) 5'-TGGGGAAGTTGAAGTGGAAC-3'
(R) 5’ ATCATCGACGGTGGGTACAT-3'
WNTI (F) 5'-GCAGGCCGTACGACCGTATTC-3'
(R) 5-CGGTTGCCGTACAGGACGCG-3'
BMI (3'-UTR) (F) 5'-CATTCTATGTAGCCATGTCACTGTG-3'
(R) 5'-CTGATTCTTACAAAAGCGAATCATT-3'
GAPDH (F) 5'-GCTAACGGGAAGCTCACTG-3'

(R) 5'-GTGCTCAGTGTAGCCCAGGA-3'

ChIP qPCR primer sets
Set 1 (—1003, —702)

(F) 5'-CCACTTTGATCTCACGCGTC-3’
(R) 5'-CCCGGCTTTGAGGTCCTTCA-3'
(F) 5'-GGAGGGCAACTGAAGGACCT-3'
(R) 5'-GAACTTGGGTGCCCTTGCCTG-3'
(F) 5'-ACCCTTACTGCCAGGCAAGG-3’
(R) 5'-CGCGGCTGCCTTTATACCGC-3'
(F) 5'-ATGCTCCGGGCCCGCGGTAT-3’
(R) 5'-GTGGCGCTCACTCCCAGCAG-3'

Set 2 (—712, —409)
Set 3 (—419, —127)

Set 4 (—140, +155)

regulation of the WNT pathway and expression of DKK1,
DKK2, and DKK3 by BMI1. We report that BMI1 negatively
regulates expression of these DKK family members, in particu-
lar DKK1, and that their negative regulation results in up-reg-
ulation of WNT targets such as c-Myc that participate in a
positive feedback loop, activating transcription of BMII gene
via an E-box present in its promoter.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture Methods—MCF10A, breast cancer cell
lines, and 293T cells were obtained from the American Type
Culture Collection (ATCC) (Manassas, VA). The cells were cul-
tured as described previously (3, 23, 27).

Expression Vectors and Expression-related Methods—Retro-
viral vector overexpressing wild type BMI1 and a BMI1 shRNA-
expressing vector for knockdown studies and methods for pro-
ducing retroviruses, transient transfection, proliferation assays,
and colony formation in soft agar have been described previ-
ously (3, 23, 27). Lentiviral vectors expressing DKK1 (pCS2-
hDKK1) and Wnt1 (pHIV-Wnt1) were obtained from Addgene
(Cambridge, MA). The DKK1 shRNA-expressing retroviral
vectors were obtained from Origene (Rockville, MD).

Quantitative Real Time RT-PCR Assays—The quantitative
real time RT-PCR (qRT-PCR) was carried out in a StepOnePlus
real time PCR system (Applied Biosystems, Foster, CA) using
total RNA and primers specific for a particular gene as recom-
mended by the manufacturer. The cDNA was generated using
oligo(dT) primer mixture and 2.0 ug of total RNA and ampli-
fied using primers specific for BMI1, DKK1, c-Myc, Cyclin D1,
WNTI, and GAPDH (Table 1). The PCR conditions consisted
of an initial activation at 95 °C for 10 min followed by 40 cycles
of 95 °C for 15 s and 58 °C for 1 min. The real time amplification
was detected using SYBR Green dye, and the Ct (threshold

FEBRUARY 1,2013+VOLUME 288+-NUMBER 5

BMI1 F6 mouse mAb (Millipore)

c-Myc C-33 mouse mAb (Santa Cruz Biotechnology,
Santa Cruz, CA)

Cyclin D1 A-12 mouse mAD (Santa Cruz Biotechnology)

GFP B2 mouse mAb (Santa Cruz Biotechnology)

B-Catenin E-5 mouse mAb (Santa Cruz Biotechnology)

Phospho-3-catenin Ser-33/-37/Thr-41 rabbit pAb (Cell Signaling
Technology, Danvers, MA)

DKK1 Rabbit pAb (Epitomics, Burlingame, CA)
WNT1 Rabbit pAb (Abcam, Cambridge, MA)
B-Actin Mouse mADb (Sigma-Aldrich)

cycle) value of each PCR product was normalized to that of
GAPDH control.

Analysis of WNT PCR Array—Gene expression was assessed
using a gene-specific Human WNT Pathway TagMan® Array
from Applied Biosystems/Invitrogen. The array set has 96
genes related to the WNT pathway including three housekeep-
ing genes, GAPDH, HPRTI, and GUSB. Total RNA was
extracted with a RNAqueous PCR kit (Ambion), and 2 ug of
RNA was reverse transcribed using High Capacity cDNA RT
kits (Invitrogen). Real time PCR was performed using a
StepOnePlus RT-PCR system (Applied Biosystems) with Taq-
Man Gene Expression Master Mix (Invitrogen) as suggested by
the manufacturer. Gene expression data analysis and visualiza-
tion of differentially expressed genes were conducted using
online DataAssist software from Applied Biosystems/Invitro-
gen (version 3.0). Unsupervised hierarchical cluster analysis
was performed based on the ACT values using Pearson’s corre-
lation as a measure of similarity, and Average Linkage and
Global View were used for generating a heat map.

Promoter-Reporter Vectors, Luciferase Assays, and Chroma-
tin Immunoprecipitation (ChIP) Methods—The BMII promot-
er-reporter constructs pGL3-BmiPrWT and pGL3-BmiPrMut
have been described previously (23). The WNT reporter was
kindly provided by Dr. Ray Wu (George Washington Univer-
sity, Washington, D.C.). The DKKI promoter region was
amplified by PCR and cloned in the pGL4.18 luciferase reporter
vector (Promega, Madison, WI). Luciferase assays were per-
formed as described (23). ChIP assays were performed as
described (28). Briefly, cells were treated with 1% formaldehyde
for 20 min at room temperature. The cross-linked chromatin
was isolated, sonicated to yield 200-500-bp fragments, and
immunoprecipitated using a custom-made rabbit polyclonal
antibody raised against BMI1, a mouse monoclonal antibody
against H3K27me3 (Millipore, Billerica, MA), and a control
IgG. The BMI1-, H3K27me3-, and IgG-bound chromatins were
amplified by qPCR using DKK1 primer sets described in Table
1.

Antibodies and Western Blot Analyses—W estern blot analy-
ses were done as described previously (23). The various anti-
bodies and their sources are described in Table 2. For DKK1
and Wntl detection, cells were plated on a 100-mm dish, and
supernatant was collected 48 h after plating the cells. The
supernatant was spun down at 4000 rpm at 4 °C and then con-
centrated using Amicon ultracentrifugal filter units (Millipore).
The protein was quantified using the BCA protein assay kit, and
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40 ng was run on SDS-PAGE, transferred to a PVDF mem-
brane, and probed with respective antibodies.

Soft Agar and Mammosphere Formation Assays—The soft
agar assay to measure the anchorage-independent growth was
performed as described previously (5, 29). For the mammo-
sphere formation assay, cells were trypsinized and carefully
resuspended in a serum-free mammosphere culture medium
supplemented with MammoCult Proliferation Supplements
(StemCell Technologies, Vancouver, Canada). Single cells were
plated in ultralow attachment 24-well plates (Corning, Lowell,
MA) at a density of 10,000 cells/well in triplicates. After 3-7
days of cell plating, the number of mammospheres was counted
and photographed under phase-contrast (X 10 magnification).
Each experiment was done in triplicates, and the numbers of
mammospheres/10,000 seeded cells were plotted.

ALDEFLUOR Assay and Flow Cytometry—Aldehyde dehy-
drogenase (ALDH) activity was detected using the ALDE-
FLUOR assay kit as described by the manufacturer (StemCell
Technologies). Briefly, cells were resuspended in the assay
buffer at 1 X 10° cells/ml and added to a tube containing a 1.5
uM concentration of an activated ALDH substrate, BODIPY
aminoacetaldehyde. Half of the sample was transferred to a
tube containing a specific inhibitor of ALDH, diethylamino-
benzaldehyde, and incubated for 45 min at 37 °C, and the fluo-
rescence intensity of ALDH-positive cells was measured by
flow cytometry using a FACSCalibur DxP8 analyzer (BD Bio-
sciences). The data were analyzed using FlowJo software (Tree-
Star, Ashland, OR).

Statistical Analysis—All experiments were performed at
least twice in triplicates for each group. The results are pre-
sented as the mean * S.D. Statistical significance was deter-
mined using Student’s ¢ test, and p < 0.05 was considered
significant.

RESULTS

BMII Transcriptionally Regulates Its Own Promoter—Many
breast cancer cells express high levels of BMI1 (3, 27). We
hypothesized that BMI1 can directly or indirectly activate its
own expression and thereby provide a positive feedback loop to
maintain constitutively high expression in cancer cells. As the
BMII promoter contains an E-box, which is evolutionarily con-
served in mammalians and other vertebrates (supplemental Fig.
S1) (30), we also hypothesized that the E-box to which c-Myc
binds may be part of the autoregulation of BMI1. To probe this
hypothesis, we performed BMII promoter-reporter assays in
control and BMI1 knockdown cells. Cells were transiently
transfected with plasmid expressing a luciferase reporter driven
by wild type BMII promoter (pGL3-BmilPrWT) and BMII
promoter with a mutant E-box (pGL3-BmilPrMut) (23), and
the luciferase activity of the different promoter-reporters was
determined. The results showed that cells expressing a BMI1
shRNA exhibited lower activity of the BMI1 wild type promot-
er; however, the activity of the E-box mutant promoter
remained constitutively low and was not affected by BMI1
knockdown (Fig. 14). Next, we performed promoter-reporter
assays in MCF10A control and MCF10A cells that either over-
express BMI1 (MCF10A-BMI1) or underexpress BMI1
(MCF10A-BMI1-i). The results showed that compared with the
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A MCF7
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9 o
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FIGURE 1. BMI1 autoactivates its promoter. A and B, wild type and mutant
BMI1 promoter-reporters constructs (as indicated) with pRL-TK plasmid were
transiently transfected into MCF7 (A) or MCF10A (B) cells, and luciferase (/uc)
assays were performed. F and R represent Firefly and Renilla respectively. The
error bars represent the means = S.D. of three independent experiments. C,
the gRT-PCR analysis of endogenous BMI1 was performed using primers spe-
cific for endogenous BMI1 that amplify the 3’ non-coding region of BMI1 and
RNA isolated from an MCF10A series of cells (B0 and Ctrl-i, controls; BMIT,
BMI1-overexpressing; BMI-i, BMIT knockdown cells). Error bars represent
*S.D.* p < 0.05 (Student's t test).

control cells the activity of the wild type BMII promoter but not
the mutant promoter is up-regulated in MCF10A-BMI1 cells,
whereas it is down-regulated in MCF10A-BMI1-i cells (Fig.
1B). These data therefore suggest that BMI1 can transactivate
its own promoter in an E-box dependent manner. To further
confirm the autoactivation of BMII transcription, we per-
formed qRT-PCR analysis. The assay was performed using
primers specific for endogenous BMI1 gene and RNA prepared
from the MCF10A series of cells (MCF10A-B0O, MCF10A-
BMI1, MCF10A-Ctrl-i, and MCF10A-BMI1-i). The results
confirmed that the expression of endogenous BMI1 is down-
regulated in BMI1 knockdown cells, whereas it is up-regulated
in cells overexpressing exogenous BMI1 (Fig. 1C). Therefore,
our data indicate that BMI1 autoactivates its own transcription.

BMI1 Activates WNT Pathway to Up-regulate c-Myc—Be-
cause autoactivation of BMI1 is dependent on the E-box to
which c-Myc binds and because c-Myc is a target of the WNT
pathway, we surmised that c-Myc is a part of positive feedback
loop that autoactivates BMII transcription via the WNT path-
way. To test this hypothesis, we first determined whether BMI1
can regulate the WNT pathway using a PCR array that contains
various WNT pathway-related genes. The PCR array was
probed with cDNA prepared from the RNA of MCF10A-Ctrl-i
and MCF10A-BMI1-i cells. The results show differential regu-
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FIGURE 2. BMI1 autoactivation involves WNT pathway. A, the heat map of the gene expression profile of the human WNT pathway genes in control and BMI1
shRNA-expressing MCF10A cells. The color scale depicts the relative gene expression between the two cell lines: red indicates an increase with a ACT value
below the neutral level, and green indicates a decrease with a ACT value above the neutral level. The broken arrow indicates c-Myc, whereas the solid arrows
represent DKK1, DKK2, and DKK3. B, the LEF/TCF reporter assay was performed to confirm the regulation of the WNT pathway by BMI1. The TOPflash reporter
contains wild type LEF/TCF binding sites, whereas the FOPflash reporter contains mutant LEF/TCF binding sites. These constructs were transiently transfected
into an MCF10A series, MCF7 control, and MCF7 BMI1 knockdown cells, and the reporter activity was measured as described under “Experimental Procedures.”
C, the gRT-PCR analysis of Cyclin D1 and c-Myc was performed using RNA isolated from control, BMI1-overexpressing, and BMI1 knockdown cells as indicated.
D, Western blot analysis of WNT pathway-related proteins c-Myc, Cyclin D1, B-catenin, and phospho (p)-B-catenin in the indicated cell types derived from
MCF10A and MCF7 was performed using specific antibodies as described under “Experimental Procedures.” E, the APS mutant of BMI1 is more active than wild
type BMI1 in activating the WNT pathway and up-regulating its target genes, c-Myc and Cyclin D1. The Western blot analysis of WNT pathway genes (as
indicated) was performed using total cell extracts of MCF10A-BO, MCF10A-BMITWT, and MCF10A-BMITAPS cells (E, top panel). The gRT-PCR analysis of
endogenous BMIT was performed using MCF10A-derived cells (as indicated) and primers specific for the BMI1 coding region and 3'-UTR (designed for
detection of endogenous BMI) (E, bottom panel). A representative Western blot and protein quantification data from three different experiments are shown in
D and E. Error bars represent =S.D. *, p < 0.05 (Student's t test). Ctrl, control.

lation of WNT-related genes by BMI1. The genes that were
notably up-regulated in BMI1 knockdown cells were WNT
inhibitors such as DKK family of proteins (DKK1, DKK2, and
DKK3) and SFRP2 (Fig. 24). Among other factors, WNT fac-
tors that are involved in the canonical pathway such as
WNT3A, WNT7A, WNT10A, and WNT4 and c-Myc were
down-regulated in BMI1 knockdown cells (Fig. 24). WNT5A
on the other hand was up-regulated by BMI1 knockdown in
MCF10A cells (Fig. 2A). Together, these results suggested that
BMI1 may down-regulate WNT inhibitors and up-regulate
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WNT factors that are involved in the WNT canonical pathway.
To confirm the array data, we performed a TCF/LEF reporter
assay utilizing the widely used TOPflash and FOPflash lucifer-
ase reporter plasmids, which measure WNT activity (24, 25).
These reporters were transiently transfected into MCF7 and
the MCF10A series of cells. The results showed that compared
with control cells the reporter exhibited higher activity in
BMI1-overexpressing cells, and lower activity of the reporter
was seen in BMI1 knockdown cells (Fig. 2B). Based on these
data, we conclude that BMI1 activates the TCF/LEF reporter,
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and thus, BMI1 very likely regulates the WNT canonical
pathway.

We further confirmed array and TCE/LEF reporter assay
data using qRT-PCR for Cyclin D1 and c-Myc in these cells. Our
results confirmed that indeed Cyclin D1 and c-Myc are tran-
scriptionally regulated by BMI1 (Fig. 2C). We also performed
Western blot analyses of total and phospho-B-catenin, Cyclin
D1, and c-Myc. The results showed down-regulation of total
[B-catenin, Cyclin D1, and c-Myc in BMI1 knockdown cells and
their up-regulation in BMI1-overexpressing cells (Fig. 2D, left
panel). The expression of phospho-3-catenin on the other hand
was down-regulated in BMI1-overexpressing cells and up-reg-
ulated in BMI1 knockdown cells (Fig. 2D, left panel). Similar
data were obtained with MCF7 cells where we probed control
and BMI1 knockdown cells for the proteins indicated above
(Fig. 2D, right panel). We have recently shown that deletion of
the PS region of BMI1 results in an increase in BMI1 oncogenic
activity (31). Hence, we determined whether the PS mutant of
BMI1 is more active in inducing WNT target genes. Our results
indicated that compared with wild type BMI1 the PS mutant of
BMI1 induced higher expression of c-Myc and Cyclin D1 (Fig.
2E). The mutant was also more active in inducing endogenous
BMI1 (Fig. 2E). Taken together, our data strongly suggest that
BMI1 up-regulates the WNT pathway and its target genes.

BMI1 Expression Inversely Correlates with Expression of DKK
Family of Proteins in Breast Cancer Cells—As our array data
suggested that BMI1 may repress WNT inhibitors, in particular
the DKK family of proteins, and BMI1 is known to be overex-
pressed in many breast cancer cell lines, we examined whether
there is an inverse correlation between the expression of BMI1
and DKK1, DKK2, and DKK3 in breast cancer cells. We per-
formed qRT-PCR for DKK1, DKK2, and DKK3 using RNA iso-
lated from MCF10A and several breast cancer cell lines. To
correlate the expression of DKKs with BMI1, we performed
Western blot analysis of BMI1. Our data indicated that, con-
sistent with published data, in general BMI1 is overexpressed in
breast cancer cell lines, whereas DKK family proteins were
either not expressed or expressed at lower levels in most breast
cancer cell lines (Fig. 34 and supplemental Fig. S2). However,
some exceptions were noted; for example, compared with
MCF10A cells, DKKI was high in MDA-MB-231 cells, whereas
DKK2 was expressed at higher levels in BT474 and HS578t cells
(Fig. 3A and supplemental Fig. S2). To establish an inverse cor-
relation between the expression of BMI1 and DKK1, we deter-
mined the Pearson’s correlation coefficient (r) of expression of
BMI1 and DKK1; it showed a negative correlation (r = —0.3,
p <0.00001) (Fig. 3A). The negative correlation between BMI1
and DKK1 was further strengthened if MDA-MB-231 was not
considered (r = —0.6, p < 0.0001). We further determined the
effect of knockdown of BMI1 on the DKK family of proteins in
MCF10A cells. Of four known DKK proteins, DKK4 expression
was found to be very low in our cell system, and it did not
change significantly between control and BMI1 knockdown
cells. Hence, we focused on DKK1, DKK2, and DKK3. The
expression of DKK1, DKK2, and DKK3 was determined in con-
trol and a BMI1 knockdown derivative of MCF10A cells using
qRT-PCR analysis. The results showed that BMI1 knockdown
up-regulated DKKI1, DKK2, and DKK3 (Fig. 3B). Taken
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together, our data suggested that BMI1 can regulate members
of the DKK family of WNT inhibitors.

We also determined the expression of WNT1, Myc, and
DKKI1 in an MCF10A tumor progression series consisting of
MCF10A-B0 (normal immortal), MCF10A-BMI1 (epithelial to
mesenchymal transition-positive and partially transformed),
MCF10A-Ras (transformed), and MCF10A-BMI1 +Ras (trans-
formed, aggressive, and metastatic) (5, 6). Our data showed an
increased expression of WNT1 and c-Myc and correspondingly
decreased expression of DKKI1, which correlated with an
aggressive phenotype of the cells (Fig. 3D).

BMI1I Transcriptionally Regulates DKK1—Next, we focused
on the potential mechanism of regulation of the WNT pathway
by BMI1. Because among all DKKs DKK1 was expressed at
higher levels in normal mammary epithelial cells and showed
better inverse correlation with BMI1, we further studied poten-
tial regulation of the WNT pathway by BMI1 through DKKI.
Because PcG proteins function as transcriptional repressors, we
hypothesized that BMI1 may act as a transcriptional repressor
of the DKK family of WNT inhibitors and that BMI1 could
regulate its own expression via down-regulation of DKK1, acti-
vation of the canonical WNT pathway, and up-regulation of
c-Myc. First, we observed that BMI1 overexpression repressed
DKK1 expression, confirming results obtained from BMI1
knockdown studies (Fig. 3C). We also confirmed qRT-PCR data
suggesting DKK1 regulation by BMI1 using Western blot anal-
yses of control, BMI1-overexpressing, and BMI1 knockdown
cells (Fig. 3C). Similar to MCF10A cells, BMI1 knockdown up-
regulated expression of DKK1 at the RNA level in MCF7 and
MDA-MB-453 breast cancer cells lines (supplemental Fig. S3).
Based on data from normal immortal human mammary epithe-
lial cells (MCF10A) and breast cancer cell lines, we conclude
that BMI1 transcriptionally regulates DKK1I.

Next, we cloned a 1-kb promoter region of DKK1 gene into a
luciferase vector and performed promoter-reporter assays. The
relative promoter activity of DKKI was examined in an
MCF10A series of cells and MCF7-derived BMI1 knockdown
cells using transient transfections. The results showed that
indeed BMI1 overexpression repressed DKKI promoter,
whereas BMI1 knockdown up-regulated BMI1 promoter activ-
ity (Fig. 4A). To demonstrate that BMI1 directly binds to DKK1
promoter, we performed a ChIP assay using a set of four prim-
ers covering a 1-kb region of DKKI promoter. The results of
ChIP-qPCR suggested that indeed BMI1 binds to DKK1 pro-
moter (Fig. 4B). The highest binding of BMI1 was noticed in
region 1 (further upstream from the transcription initiation
site), and the lowest binding was detected near the transcrip-
tion initiation site (region 4). The binding of H3K27me3 mir-
rored the binding of BMI1 to DKKI promoter sequences, which
is consistent with PRC-mediated repression involving PRC1
and PRC2. We further chose to study region 1 and region 4 in
MCEF7 and MDA-MB-453 cells in which BMI1 is expressed at
high levels. The data showed that, similar to MCF10A cells, in
cancer cells BMI1 showed high binding to region 1 and low
binding to region 4. Our results also showed that relative to
MCF10A cells BMI1 binding to DKK1 promoter is increased
severalfold in MCF7 and MDA-MB-453 cells, suggesting that in
cancer cells BMI1 overexpression leads to increased binding of
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FIGURE 3. The expression of BMI1 and DKK1 inversely correlates. A, Western blot analysis of BMIT and gRT-PCR analysis of DKK1 were performed using total
cell extract or RNA isolated from MCF10A and various breast cancer cell lines as indicated. The error bars represent the means *=S.D. of three independent
assays. The Pearson'’s correlation coefficient () was calculated using Microsoft Excel data analysis tools. B, knockdown of BMI1 up-regulates DKK1, DKK2, and
DKK3. qRT-PCR analysis of BMIT and DKK family members was carried out using specific primers and RNA isolated from an MCF10A series of cells (described in
Fig.1).C, BMI1 regulation of DKK1 was studied in MCF10A control and BMI1-overexpressing MCF10A cells using qRT-PCR and Western blot analysis as described
under “Experimental Procedures.” Each experiment was done in triplicates. Error bars represent =S.D. *, p < 0.05 (Student’s t test). D, the expression of BMI1,
DKK1, Wnt1, and c-Myc was studied in an MCF10A tumor progression series using a Western blot analysis. A representative Western blot and protein

quantification data are shown in Cand D. Ctrl, control.

BMI1 to DKK1 promoter and consequently increased repres-
sion of DKK1 (Fig. 4C).

WNT Pathway Regulates BMI1 Expression—Because BMI1 is
a target of the WNT pathway and DKKI1 is a repressor of the
WNT pathway, we determined whether DKK1 regulates BMI1
expression via a negative feedback loop. We transiently trans-
fected 293T cells with increasing amounts of DKK1-expressing
plasmid and determined the expression of endogenous BMI1 as
well as Cyclin D1 and c-Myc (Fig. 54). The results showed that
increasing doses of DKK1 proportionally down-regulated
c-Myc, BMI1, and Cyclin D1 (Fig. 54). To further confirm our
results, we generated MCF10A cells stably expressing DKK1
shRNAs, which showed ~50% knockdown efficiency, and
determined the expression of BMI1 and c-Myc. Our results
showed that the knockdown of DKK1 up-regulated c-Myc and
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BMI1 at both mRNA and protein levels (Fig. 5B). These data
validate our hypothesis that DKK1 can regulate expression of
BMI1 via inhibition of the canonical WNT pathway. Taken
together, our data suggest that BMI1 and DKK1 can regulate
expression of each other via a negative feedback loop.

Next, we determined whether WNT1 can up-regulate BMI1
expression via c-Myc induction. We transiently transfected
293T cells with increasing doses of a mouse Wntl-expressing
plasmid and determined the expression of BMI1, c-Myc, and
Cyclin D1. Our data showed a dose-dependent increase in the
expression of c-Myc and its target genes Cyclin D1 and BMI1
(Fig. 6A4). Next, to determine whether exogenous DKK1 and
Wntl regulated BMII1 via the E-box (c-Myc binding site) in
BMII promoter, we performed promoter-reporter assays in
293T and MCEF?7 cells. Our results indicated that indeed Wnt1
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(Student’s t test). Band C, binding of BMI1 and H3K27me3 to DKKT promoter was determined using a ChIP assay in the indicated set of cells and four different
sets of primers covering 1 kb of promoter region as described under “Experimental Procedures.” Ctrl, control.

activate BMI1 wild type but not the mutant promoter to which
¢-Myc cannot bind (Fig. 6B). Similarly, DKK1 repressed wild
type but not the mutant promoter, and Wntl up-regulated
BMI1 promoter in MCF?7 cells (Fig. 6C). Thus, Wntl induces
expression of BMI1 via c-Myc up-regulation, which transcrip-
tionally activates BMI1 expression, and DKKI1 inhibits BMI1
promoter activity in an E-box dependent manner. Taken
together, our data suggest that the WNT pathway regulates
BMI1 expression via a positive feedback loop.

BMI1 and Wntl Mediate Oncogenic Activity of Each Other—
Next, to determine the functional significance of BMI1 auto-
regulation and the role of BMI1 in the WNT pathway, we deter-
mined whether the WNT-dependent increase in oncogenic
activity depends on BMI1 and vice versa. We overexpressed
Wntl in MCF7 cells in which BMI1 expression was reduced
using stable expression of a BMI1 shRNA and examined cells
for proliferation as well as colony formation in soft agar. The
results indicated that BMI1 knockdown inhibited proliferation
as well as colony formation in soft agar and that Wntl over-
comes the inhibitory effect of BMI1 knockdown (Fig. 7A).
Results also indicated that Wntl increased proliferation as well
as colony formation activity in soft agar in control cells but not
in BMI1 knockdown cells. Similar data were obtained in MDA-
MB-453 cells where exogenous Wntl reversed proliferation
inhibition and decreased colony formation in BMI1 knock-
down cells (supplemental Fig. S4).
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BMI1 Overrides Tumor Suppressive Activity of DKKI—To
further determine the functional role of BMI1 in the WNT
pathway, we determined whether BMI1 is a target of the tumor
suppressive activity of DKK1 in MCF7 cells. Our results indi-
cated that DKKI1 inhibited proliferation of control but not
exogenous BMI1-overexpressing MCF7 cells (Fig. 7B). Further-
more, the results of the soft agar colony formation assay showed
that the exogenous BMI1 expression overcomes DKK1-medi-
ated inhibition of colony formation in soft agar (Fig. 7B). Simi-
lar data were obtained in 293T and MDA-MB-453 cells, which
stably overexpressed exogenous BMII. In these cells, transient
transfection of DKK1 (293T cells) or stable overexpression of
DKK1 (MDA-MB-453 cells) did not cause proliferation atten-
uation or decreased colony formation in soft agar (supplemen-
tal Fig. S5, A and B). These data suggest that BMI1 is a target of
growth inhibitory activity of DKK1 and that it may be required
for DKK1-mediated tumor suppressive activity.

Next, we determined whether DKK1 is required for onco-
genic activity of BMI1. We co-expressed shRNAs of BMI1 and
DKK1 in MCF7 cells and determined the effect of knockdown
of BMI1 alone or knockdown of both BMI1 and DKK1. The
results indicated that BMI1 knockdown inhibits proliferation of
MCEF7 cells and that further DKK1 knockdown can partially
rescue the proliferation defect of these cells, suggesting that the
BMI1 knockdown effect is mediated via up-regulation of DKK1
(Fig. 7C). Next, cells expressing either BMI1 shRNA or both
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done to ascertain equal loading of supernatant extract used for DKK1 prob-
ing. B, MCF10A cells with DKK1 knockdown were generated and analyzed for
the expression of DKK1, BMI1, and c-Myc using gRT-PCR and Western blot
analysis. In each case, a representative Western blot and protein quantifica-
tion data are shown. Error bars represent =S.D. *, p < 0.05 (Student’s t test).
Ctrl, control.

DKK1 and BMI1 shRNAs with controls were studied for colony
formation in soft agar. The results indicated that BMI1 knock-
down results in reduced proliferation as well as decreased col-
ony formation in MCF7 cells and that further knockdown of
DKK1 can partially reverse the effect of BMI1 knockdown (Fig.
7C). Similar data were obtained in MDA-MB-453 cells where
DKK1 knockdown partially reversed the effect of BMI1 knock-
down on proliferation and colony formation in soft agar (sup-
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plemental Fig. S6). Collectively, our data indicate that DKK1 is
required for the pro-oncogenic activity of BMI1.
Cross-regulation of BMI1 and DKKI Plays a Role in Cancer
Stem Cell Phenotype—One of the phenotypes that BMI1 is
known to be associated with is cancer stem cell (CSC) pheno-
type. To determine the relevance of cross-regulation of BMI1
and WNT inhibitor DKK1 on CSC phenotype, we carried out
mammosphere formation and ALDEFLUOR assays, both of
which are widely used to define/identify mammary stem cells
and breast CSCs (32, 33). First, we confirmed that indeed over-
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FIGURE 7. BMI1 and WNT regulators modulate oncogenic activity of each other. A, MCF7 cells expressing a control shRNA (Ctrl-i) or BMIT shRNA (BMI1-i)
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colony formation in soft agar (right panel). B, the ability of BMI1 to overcome DKK1 tumor suppressor activity in MCF7 cells was studied using cell proliferation
and colony formation assays in soft agar (as indicated). C, knockdown of DKK1 restores proliferation and colony formation in soft agarin MCF7 cells that express
BMI1 shRNA. The combinations of cells expressing a single shRNA (BMI1 or DKK1) or both shRNAs (BMI1 and DKK1) were generated using respective retroviral
vectors. Error bars represent =S.D. *, p < 0.05 (significant); **, p = 0.08 (not significant) (Student’s t test).

expression of BMI1 increases and its knockdown decreases the
number of mammospheres and the fraction of ALDH-positive
cells in the MCF10A cell line (supplemental Fig. S7). Next,
mammosphere formation and ALDEFLUOR assays were car-
ried out in MCF7 cells expressing different combinations of
overexpression and/or knockdown of BMI1, DKK1, and Wnt1.
Our results showed that knockdown of BMI1 decreased
whereas Wntl overexpression increased the number of mam-
mospheres in MCF7 cells (Fig. 84, upper panel). Furthermore,
Wntl overexpression in BMI1 knockdown cells restored the
number of mammospheres, suggesting that BMI1 knockdown
modulated the number of mammospheres via the WNT path-
way. Similarly, BMI1 knockdown modestly decreased the frac-
tion of ALDH-positive cell population, which was overcome by
exogenous expression of Wntl (Fig. 84, lower panel). Overex-
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pression of DKK1 in MCF7 cells also resulted in a decrease in
the number of mammospheres and fraction of ALDH-positive
cells that could be restored by the exogenous expression of
BMI1 (Fig. 8B). Thus, BMI1 knockdown decreases the number
of CSCs as determined by mammosphere formation and
ALDEFLUOR assays. Based on these results, we hypothesized
that BMI1 knockdown may affect CSCs via up-regulation of
DKK]1. To test this hypothesis, we generated cells expressing
shRNAs for both BMI1 and DKK1 and carried out mammo-
sphere and ALDEFLUOR assays. Indeed, our data indicated
that knockdown of DKK1 could overcome the effect of BMI1
knockdown on CSC phenotype (Fig. 8C). The other most used
marker of breast CSCs is CD44"8"/CD24~/°% (34). Because the
MCF?7 cell line contains undetectable number of such cells, we
used MCF10A-Ras transformed cells (5, 6) to determine
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FIGURE 8. BMI1 and DKK1 regulate breast cancer stem cell phenotype. A, knockdown of BMI1 results in a decrease in the number of CSCs, which can be
restored by Wnt1 overexpression. B, DKK1 decreases the number of CSCs, which are restored by BMI1 overexpression. C, decrease in the number of mammo-
spheres and ALDH-positive fraction of cells in BMI1 knockdown cells is overcome by knocking down the expression of DKK1. Mammosphere formation (upper
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(not significant) (Student’s t test). Ctrl, control.
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whether DKK1 overexpression decreased the number of
CD44Me"/CD24~ "% cells and whether BMI1 overexpression
could restore the number of such cells. Our results suggested
that indeed DKKI1 overexpression or BMI1 knockdown
decreases the number of CD44"8"/CD24~ "% cells, and BMI1
overexpression in DKK1 knockdown cells restores the fraction
of CD44"¢"/CD24 "% cells (supplemental Fig. S8). Taken
together, our results suggest that BMI1 likely modulates CSC
phenotype via regulation of DKK1 and the WNT pathway.

DISCUSSION

The role of PcG proteins in cancer development and stem
cell phenotype is well documented (35). The primary mecha-
nism by which PcG proteins promote oncogenesis and metas-
tasis appears to be by senescence bypass (18, 19) and increased
cell survival (3, 6). The exact mechanism by which BMI1 exhib-
its oncogenic activity is not known. The prime relevant target of
PcG proteins, the pl6INK4a locus, is methylated or deleted in
most breast cancer cells. Hence, during breast cancer develop-
ment, PcG proteins such as BMI1 are likely to target other
tumor suppressors and/or growth-regulatory pathways.
Indeed, PcG protein EZH2 was recently reported to promote
hepatocellular carcinoma via regulation of the WNT pathway
(36), and cross-talk between EZH2 and the WNT pathway has
been reported (37).

In this study, we examined whether BMI1 can regulate the
WNT pathway and up-regulate its target genes such as Cyclin
D1 and c-Myc. Indeed, our data suggest that BMI1 can up-reg-
ulate the canonical WNT pathway and that its overexpression
leads to up-regulation of Cyclin D1 and c-Myc. With respect to
the mechanism of regulation of the WNT pathway, BMI1
appears to transcriptionally repress expression of WNT inhib-
itors such as the DKK family of proteins. Recently, it was
reported that in lung cancer cells tobacco smoke can induce
PcG-mediated repression of DKK1 (38). Our data are consist-
ent with this finding and suggest that the autoactivation of
BMI1 can lead to further down-regulation of DKK1 and poten-
tiation of carcinogenic activity of tobacco smoke. DKKI is
down-regulated in many cancer cells, and it is known to func-
tion as a potent tumor suppressor by antagonizing the WNT
pathway and inhibiting cell proliferation, migration, and inva-
sion (39). The mechanism of down-regulation of DKK1 in can-
cer cells is not very well understood. Our data suggest that
BMI1, which is often overexpressed in cancer cells, is a direct
transcriptional repressor of DKK1. Other WNT inhibitors such
as DKK2, DKK3, and SFRP2 also appear to be repressed by
BMI1 in breast cancer cells. It is conceivable that tobacco
smoke could regulate all these inhibitors by up-regulating
BMI1 and other PcG proteins. In addition to repression of
WNT inhibitors, our ongoing studies suggest that BMI1 may
directly up-regulate the WNT pathway and its target by tran-
scriptionally up-regulating WNT factors such as WNT3A,
WNT7A, WNT10A, and WNT4. The mechanism of up-regu-
lation of certain WNT factors by BMI1 is not clear at present.

Because BMI1 is a transcriptional target of c-Myc, our results
led us to examine an interesting possibility that BMI1 may auto-
regulate its expression via a positive feedback loop involving
c-Myc. Indeed, the promoter-reporter assay and the qRT-PCR
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B-transducin repeat-containing protein; APC, anaphase-promoting complex.

assay using primers specific for endogenous BMI1 suggest that
BMI1 positively autoregulates its expression and that the auto-
regulation of BMI1 is mediated via activation of the WNT path-
way and its downstream target, c-Myc, by BMI1 (Fig. 9).
Recently, it was reported that in colon cancer cells the WNT
pathway can regulate expression of BMI1 (40). We confirmed
that, similar to colon cancer cells, overexpression of Wntl and
knockdown of DKK1 lead to BMI1 up-regulation in human
mammary epithelial cells. Our new data suggest that although
the WNT pathway regulates BMI1 conversely BMI1 also regu-
lates the WNT pathway via direct repression of DKK family
members and up-regulation of WNT factors (Fig. 9). Both of
these regulations converge at c-Myc (Fig. 9). Interestingly, the
promoter region of DKK1 contains putative binding sites for
B-catenin-TCF, and it has been shown that B-catenin‘TCF
complexes up-regulate DKK1 expression (41, 42). DKK1 auto-
regulation presents a negative feed back loop, which controls its
expression. In this scenario, up-regulation of the WNT path-
way may lead to up-regulation of DKK1, which then will inhibit
expression of c-Myc and its target BMI1. Inhibition of BMI1
will likely lead to down-regulation of the WNT pathway and its
targets including c-Myc and DKK1. Down-regulation of DKK1
may lead to up-regulation of BMI1 via c-Myc expression. At the
same time, BMI1 will likely down-regulate DKK1, further up-
regulating the WNT pathway and its target, c-Myc, leading to
an increase in BMII transcription (Fig. 9). It is expected that
such regulation might favor BMI1 overexpression in cancer
cells via increased WNT activity and c-Myc expression. The
resulting BMI1 overexpression is likely to increase the fraction
of CSCs and impart drug resistance to tumors. On the other
hand, increased expression of WNT inhibitors such as DKK1
might favor BMI1 down-regulation in senescent and aged tis-
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sues where it is likely to result in up-regulation of p16INK4a
and exhaustion of the stem cell pool. Thus, a fine-tuned positive
feedback loop controls BMI1 expression via the WNT signaling
pathway, and this feedback loop may be relevant to the role of
BMI1 in cancer, stem cells, and aging.
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