brought to you by T CORE

Bisht et al

Journal of Drug Delivery & Therapeutics. 2019; 9(4-s):601-609

Available online on 15.08.2019 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Review Article

Unnatural Amino Acids (UAA'S): A Trendy Scaffold for Pharmaceutical Research

AS Bisht* & Divya Juyal

Himalayan Institute of Pharmacy & Research, Rajawala, dehradun Uttaralhnad, India-248007

ABSTRACT

Unnatural amino acids synthesis is a region of research that has gained a lot of interest in modern years. The accessibility of different synthetic routes for new unnatural amino acid derivatives and related compounds will be a critical point in the designning of novel molecules that impersonate the conformation of the natural, active peptides. These molecules (peptidomimetics) are specially designed to show the high receptor affinity and selectivity with enhanced bioavailability and metabolic stability of the drug molecule. Thus, this review focuses on detailed synthetic methods and analogues leading to synthesize variety of unnatural amino acids including various schemes that includes enantioselective synthesis and microwave-assisted synthesis also.

Keywords: Unnatural amino acids, peptidomimetics, enantioselective synthesis

Article Info: Received 07 June 2019; Review Completed 16 July 2019; Accepted 20 July 2019; Available online 15 August 2019

Cite this article as:

Bisht AS, Juyal D, Unnatural Amino Acids (UAA'S): A Trendy Scaffold for Pharmaceutical Research, Journal of Drug Delivery and Therapeutics. 2019; 9(4-s):601-609 http://dx.doi.org/10.22270/jddt.v9i4-s.3210

*Address for Correspondence:

AS Bisht, Himalayan Institute of Pharmacy & Research, Rajawala, dehradun Uttaralhnad, India-248007

INTRODUCTION:

Development of new methods for the synthesis is currently attracting the organic chemists due to the discovery of many chemical entities with their varied biological activities. As it is already known, amino acids are the important biological molecules. They are the building blocks of proteins, and the twenty proteogenic L-amino acids (exception of glycine) are ubiquitous to all living organisms on earth.[1]

Unnatural amino acid (D-amino acids or amino acids with non-natural side chains) and their polymers that contain β and γ -amino acids are known as "foldamers." These foldamers form long-lasting, predictable structures that are very stable and resistant to proteolytic degradation. They can be designed to interact with specific targets and have applications in medicine, materials and general healthcare.[2]

Unnatural amino acids play an important role in the design and synthesis of pharmacologically relevant molecules, peptidomimetics and enzyme inhibitors. [3,4] Aldehydes which are obtained from various natural amino acids leads to form a class of chiral synthons i,e peptides, that are useful in the synthesis of optically active biologically active compounds particularly in the synthesis of unnatural amino acids.[5]

Generally, Peptides act as carriers in a variety of metabolic functions in living organisms. They usually act as hormones,

neurotransmitters, neuromodulators, paracrine factors, cytokines & antigens and mostly influences all fundamental physiological processes through inter/intra-cellular communication and/or by signal transduction mechanism through various types of receptor(s) [6,7]

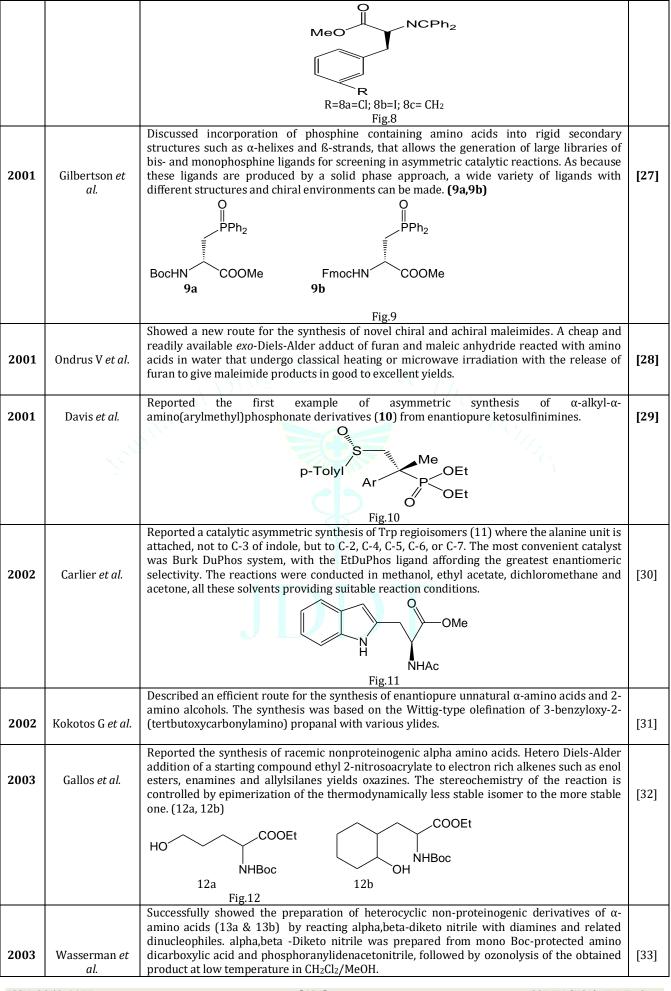
Limitation(s) of natural peptides as drug candidates: [8]

Peptides are poor drug candidates due to their following limitations:

- a) Characterized by fast hydrolytic cleavage
- b) Poor penetration of membranes.
- c) Rapid photolytic degradation.
- d) Conformational instability.
- e) Unfavorable pharmacokinetics

For above reasons many efforts have been done to find various ways to replace biologically active parts of peptides with non-peptide structures, which are termed as peptidomimetics. [9] One of the various strategies in the research for expansion of peptidomimetic agents is to incorporate unnatural amino acid and their derivatives, as they are conformationally restricted and non-proteinogenic amino acids in nature, having a potential to elucidate the bioactive conformation of peptides. It must be taken into consideration that there are only some amino acid analogs which facilitate restricted conformational flexibility without

Journal of Drug Delivery & Therapeutics. 2019; 9(4-s):601-609


much changing the stereo-electronic properties of the peptide [2].

Now days, designing and synthesis of novel unnatural amino acids in the field of pharmaceuticals is in demand and attract the imagination of many synthetic chemists because of their interesting folding properties. Thus, the present communication aims to present different ideas and approaches which deals with synthesis of unnatural amino acid. Our basic aim is to provide the reader a brief picture of work done till date in this exciting and not much known field of synthetic chemistry and pharmaceuticals.

Table1: summary of various synthetic methods and procedures in chronological order of their development.

1973Research showed reaction(s) of furan and maleic acid was carried out in several solver The endo-adduct was isolated and the structure established by its spectral properties a their conversion into compounds. The adducts of furan with fumaric acid, diethyl fumar and diethyl maleate were reported.1989Bose AK et al.Here morpholines were synthesized by an efficient molecular rearrangement of appropri derivatives of α-hydroxy-β-lactams included optically active β-lactams prepared fr homochiral Schiff bases.1993Varma RS et al.The research focused on simple high-yielded method(s) for deprotection of acetyla phenols and alcohols which occurs under mild conditions on an alumina surface us microwave irradiation. Here, authors' reported a simplistic and trouble-free procedure affect the deacetylation of a variety of such esters on neutral alumina under solvent-fr reactions conditions which could be further accelerated safely by using an unmodif common household microwave oven.1994Crawford LA et al.This communication discussed the synthesis of λ-aminobutyric acid in response treatments reducing cytosolic pH. The proposal investigates by using isolated asparag (Asparagus sprengeri Regel) mesophyll cells. The cell acidification was promoted by us hypoxia, H+/L-glutamic acid symport and addition of butyrate or other weak acids.1994Coles MP et al.This communication deals with reaction of homochiral norbornene monomers which w derived from amino acids that undergo ring-opening metathesis polymerisation w [Mo(=CHCMe_2Ph)(=NC6H3Pri2-2,6)(OBut), to give homochiral polymers with narr	nd te [10] te [11] ed ng [11] ed [12] ed [12] to [13] re th
1973Eggelte TA et al.their conversion into compounds. The adducts of furan with fumaric acid, diethyl fumaric and diethyl maleate were reported.1989Bose AK et al.Here morpholines were synthesized by an efficient molecular rearrangement of appropri derivatives of α-hydroxy-β-lactams included optically active β-lactams prepared fr homochiral Schiff bases.1993Varma RS et al.The research focused on simple high-yielded method(s) for deprotection of acetyla phenols and alcohols which occurs under mild conditions on an alumina surface us microwave irradiation. Here, authors' reported a simplistic and trouble-free procedure affect the deacetylation of a variety of such esters on neutral alumina under solvent-fr reactions conditions which could be further accelerated safely by using an unmodifi common household microwave oven.1994Crawford LA et al.This communication discussed the synthesis of λ-aminobutyric acid in response (Asparagus sprengeri Regel) mesophyll cells. The cell acidification was promoted by us hypoxia, H+/L-glutamic acid symport and addition of butyrate or other weak acids.1994Coles MP et al.This communication deals with reaction of homochiral norbornene monomers which w derived from amino acids that undergo ring-opening metathesis polymerisation w	te [10] te [11] ed ng [11] ed [12] ed [12] to [13] re th
 Bose AK et al. derivatives of α-hydroxy-β-lactams included optically active β-lactams prepared fr homochiral Schiff bases. Varma RS et al. Varma RS et al. The research focused on simple high-yielded method(s) for deprotection of acetyla phenols and alcohols which occurs under mild conditions on an alumina surface us microwave irradiation. Here, authors' reported a simplistic and trouble-free procedure affect the deacetylation of a variety of such esters on neutral alumina under solvent-f reactions conditions which could be further accelerated safely by using an unmodif common household microwave oven. Crawford LA et al. Crawford LA et al. Crawford LA et al. Coles MP et al. Coles MP et al. Coles MP et al. 	m [11] ed ng to ee [12] ed [12] to us [13] re th
 1993 phenols and alcohols which occurs under mild conditions on an alumina surface us microwave irradiation. Here, authors' reported a simplistic and trouble-free procedure affect the deacetylation of a variety of such esters on neutral alumina under solvent-free common household microwave oven. 1994 Crawford LA et al. Crawford LA et al. This communication discussed the synthesis of λ-aminobutyric acid in response treatments reducing cytosolic pH. The proposal investigates by using isolated asparage (Asparagus sprengeri Regel) mesophyll cells. The cell acidification was promoted by us hypoxia, H+/L-glutamic acid symport and addition of butyrate or other weak acids. 1994 Coles MP et al. This communication deals with reaction of homochiral norbornene monomers which we derived from amino acids that undergo ring-opening metathesis polymerisation we have a supervised of the synthesis of the synthesis of homochiral norbornene monomers which we derived from amino acids that undergo ring-opening metathesis polymerisation we have a supervised of the synthesis polymerisation we have a supervised that undergo ring-opening metathesis polymerisation we have a supervised to the supervised that undergo ring-opening metathesis polymerisation we have a supervised to the supervise	ng [12] ed [12] to us [13] re th
al.treatments reducing cytosolic pH. The proposal investigates by using isolated asparage (Asparagus sprengeri Regel) mesophyll cells. The cell acidification was promoted by us hypoxia, H+/L-glutamic acid symport and addition of butyrate or other weak acids.1994Coles MP et al.This communication deals with reaction of homochiral norbornene monomers which we derived from amino acids that undergo ring-opening metathesis polymerisation we	us ng [13] re th
derived from amino acids that undergo ring-opening metathesis polymerisation w	th
molecular mass distributions. Here, they described the synthesis of homochiral polymolecular from norbornenes functionalised with optically pure alanine ester residues.	ow rs [14]
1994 Ortiz AD <i>et al.</i> They showed the reaction in microwave irradiation ketene acetals that undergo 1,3-dipc and hetero- Diels-Alder cycloadditions within 5-12 min to give excellent yields of eas purified heterocyclic products.	
 1996 Hanessian <i>et al.</i> Resercher(s) developed an enantiomerically selective synthesis of allyl containing am acids (1). The starting sultam derivatives of <i>O</i>-benzyl glyoxylic acid oximes were react with allyl bromides in the presence of zinc in aqueous ammonium chloride. After select cleavage of the N-O bond in the presence of Mo(CO)₆, the sultam auxiliary was removed treatment with LiOH in THF/H₂O solution to afford the corresponding free allylglyc derivatives without any loss of stereochemical purity. 	ed ve by
$ \begin{array}{c} $	
1996 Fuji <i>et al.</i> Scientists performed a diastereoselective alkylation of the (S)-glycine equivalent, wh includes axially chiral bi-naphthol (2) as an auxiliary, with several electrophiles yielding (α-amino acid derivatives.	
$H^{\text{WW}}_{\text{NH}_2}$ Fig. 2	
1996 Study described the preparation of the unnatural, bicyclic proline derivatives (3a) and (3 along with their utility as chiral ligands in the copper-catalyzed enantioselective ally oxidation of cyclohexene with <i>tert</i> -butyl perbenzoate.	
n= 3a=1; 3b =2 ISSN: 2250-1177 [602] CODEN (USA):	

		Fig. 3	
1997	Ondrus V and Fisera L	Research proposed new routes for the synthesis of various novel chiral maleimides. The oxabicyclic anhydride, <i>exo</i> -Diels-Alder adduct of furan and maleic anhydride was used as a vehicle, which in turn reacted with hydrochlorides of amino acids in the presence of Et_3N with the release of furan to give the requisite novel chiral imides in good to moderate yields. The stereoselectivity of 1,3-dipolar cycloaddition of nitrile oxides with prepared chiral imides were also investigated.	[19]
1998	Sandhu S <i>et al</i> .	This communication tried to focus on how maleic and phthalic anhydride condensed with amino acids and alkylamines to undergo microwave irradiation technique. The reaction afforded N-substituted maleimides and phthalimides in excellent yields.	[20]
1998	Lectka T <i>et al.</i>	This communication reported, an operationally convenient and efficient, catalytic, enantioselective iminoene reaction of R-imino ester with various alkenes which were catalyzed by Lewis acid complex and show that the reaction could be a useful new pathway to get R-amino acid derivatives. They initiated the study with the reaction between R-imino ester and R-methylstyrene.	[21]
1998	Kokotos et al.	Chemist prepared enantiopure lipophilic α -amino (4) acids and also their other functionalized derivatives and some bis α -amino acids. The key intermediate was protected glutamic acid aldehyde which was utilized in a Wittig reaction with trityloxy alkylidene triphenylphosphoranes. After hydrogenation of the obtained β -hydroxy- α -amino acid was used as starting material in the synthesis of functionalized α -amino acids.	[22]
		НООМе	
		N(Boc) ₂	
2001	Shieh et al	Study discussed a facile synthetic route to (<i>R</i>)-4 piperidinylglycine. It offers a promising alternative to the previously published 8-step synthesis for the same compound. The Cbzenamides (5a) and (5b) were prepared from commercially available <i>N</i> -Cbz-phosphonoglycine trimethyl ester and <i>N</i> Boc-4-piperidone using the Schmidt protocol.	[23]
	19		
		5a =R= <i>t</i> -Bu; 5b =R= <i>i</i> -Pr Fig. 5	
2001	Davis <i>et al.</i>	Scientest described an asymmetric synthesis which was reported with α -substituted serines (6) via the regioselective hydrogenolysis of 2-benzyloxyaziridine 2- carboxylate. The starting (2 <i>S</i> , 3 <i>S</i>) <i>N</i> -sulfinylaziridine carboxylate was treated with TFA to remove the <i>N</i> sulfinyl group without ring-opening.	[24]
		Ph NH ₂	
		HO	
		Fig. 6 Developed an interesting method for the synthesis of amino acid derivatives (7a,7b,7c) <i>via</i> carbon-carbon bond formation in water and air atmosphere. Rhodium-catalyzed (catalyst: Rh ₂ (COD) ₂ Cl ₂) conjugated addition of ethyl alpha-phthalimido aminoacylate with various	
2001	Li and Huang	organotin reagents proceeded smoothly in water under ambient conditions and concurrent sonication to give the desired compounds.	[25]
		\bigcirc EtO R= 7a=Cl, 7b=Me, 7c= <i>t</i> -Bu Fig. 7	
2001	Park <i>et al.</i>	Described chiral auxiliary mediated stereoselective alkylation reaction of N' -[(S)-1'-phenylethyl]- N -(diphenylmethylene) glycinamide , using a phase transfer catalyst (PTC). (8a,8b and 8c)	[26]
2001	1 11 11 11 11 11		

		O R	
		BnO	
		×	
		↓ 13a R=OH; X=H 13b R=CN; X=Cl Fig.13	
2003	Gellerman <i>et al.</i>	Published a rapid synthesis of ring A-disubstituted, Fmoc and Boc protected <i>L</i> -tryptophan derivatives (14a-d)The synthesis starts from the appropriate 2,4- or 2,3 disubstituted phenylhydrazines and optically active <i>N</i> , <i>N</i> -diprotected <i>L</i> -glutamic a-aldehyde and it utilizes Fischer-indole synthesis as a key step affording the mixture of mono- Boc/di-Boc tryptophan esters. R_{2} R_{1} R_{1} R_{2} R_{1}	[34]
		14a =R1 = Me, R2 = H, R3 = Me 14b= R1 = OMe, R2 = H, R3 = Me 14c= R1 = H, R2 = Me, R3= Me 14d= R1 = Et, R2 = H, R3 = Ph Fig.14	
		Describe synthesis of sterically constrained α, α -symmetrically disubstituted α -amino acids.	
2003	Soloshonok et al.	Showed interesting approach of dialkylating the Ni (II) complex of a glycine derivative resulted in symmetrical- α , α -amino acids. 15 (a-h) Alk	[35]
		СООН	
		Alk =	
	1	AIK =	
		a : CH2-CH=CH2 e :(CH2)2CH3 b: CH2-C6H5 f: (CH2)3CH3 c: trans CH2-CH=CH-C6H5 g : CH3 d: CH2-CH3 h : (CH2)4CH3 Fig.15 Fig.15	
		Described an interesting approach to the synthesis of proline derivatives, by Pd- catalyzed 5-	[36],
2003	Rutjes <i>et al.</i>	endo-dig cyclization of lipophilic acetylene-containing amino acid derivatives. 16	[37]
		Ts	
		Fig.16 Successfully snthesized boronated novel 1-aminocyclobutane-1-carboxylic acid derivatives	[38],
2003 and 2004	Kabalka and coworkers	(ACBC). The skeleton was constructed by a [2+2] cycloaddition reaction. All presented boron-containing unnatural amino acids are currently being evaluated as potential agents for boron neutron capture therapy. 17	[39]
		(OH) ₂ B	
		$(On)_2 D$ Hn_2 Fig.17	
2004	Chang et al.	A novel class of pseudoaromatic amino acids, namely tetrahydroindazol-3-yl alanine and benzisoxazole-3- ylalanine derivatives, was reportedSequential acylation of cyclic 1,3- diketones or cyclic enamines by side chain carboxyl functionalities of appropriately protected aspartic or glutamic acids followed by regioselective cycloaddition with dinucleophiles such as hydrazine, <i>N</i> -benzylhydrazine and hydroxylamine, yielded various derivatives . These novel homochiral amino acids, offer unique opportunities, not only as structural surrogates of tryptophan, but also as novel amino acid building blocks for the design of molecular probes.	[40]
		The novel pyrrolidine-sulfonamide (18) has been prepared and used successfully to catalyze	
			I
ISSN: 2 2	250-1177	[605] CODEN (USA): JDD	I'AO

	250-1177	[606] CODEN (USA): JDD7	ГАО
		A useful and fast microwave-assisted synthesis of α -nitro- α -amino esters 24 and the	
		Fig.23	
		HO NH ₂	
2005	Pellicciari <i>et al.</i>	First time synthesized 2-(tetrahydrofuran-2-yl)glycine (23) is a conformationally constrained amino acid. The first enantiodivergent synthesis of all four possible 2-(tetrahydrofuran-2-yl) glycine stereoisomers was described. The key synthetic step is a highly stereo-controlled allylboration.	[48]
		Ph OMe Fig.22	
2005	Pedatella <i>et al.</i>	give N', N'' -di-Boc-2-hydrazino derivatives with excellent <i>anti</i> diastereomeric ratios.	[47]
		An orthogonally protected 2,3-amino acid 22 was reported. The starting enolates of N,N - dibenzylated β^3 -amino esters were treated with di <i>tert</i> - butyl azodicarboxylate (DBAD) to	[47]
		21a 21b Fig.21	
		MeO	
		nucleophiles, was added. These building blocks can be used to develop novel antineurodegenerative drugs, as they possess the ability to selectively modulate metabotropic glutamate receptors. PhOCHN COOME PhCOHN COOME	[46]
2005	Boto <i>et al</i>	In present communication arylglycine derivatives 21a and 21b were prepared in one step, starting from readily available serine derivatives. The method involves treating the starting protected serine with iodine and DIB (di acetoxyiodo benzene) at room temperature. The reaction mixture was then cooled and BF_3 Et ₂ O, together with an excess of different	140
2005	Garbay et al	malonylmethylphenylalanyl derivatives uses 4-bromobenzaldehyde diethyl acetal as a starting material and converts it to the corresponding products by a four step synthetic pathway as published	[45]
		Fig.20 Described an enantioselective synthesis of malonylphenylalanyl and	
		HN Me	
2004	Esaki <i>et al</i> .	acid and methylamine by using a novel enzyme <i>N</i> -methyl- <i>L</i> -amino acid dehydrogenase (NMAADH) from <i>Pseudomonas putida</i> , NADP+ and glucose dehydrogenase (GDH) from <i>Bacillus subtilis</i> as a co factor recycling system. (20)	[44]
		Fig.19 Described coupled enzymatic synthesis of <i>N</i> -methyl- <i>L</i> -phenyl alanine from phenylpyruvic	
2004	De Riccardis <i>et</i> <i>al.</i>	(19)	[43]
		Disclosed an asymmetric synthesis of N,O-diprotected (2 <i>S</i> ,3 <i>S</i>)- <i>N</i> -methyl-delta hydroxyisoleucine, a building block required for the asymmetric synthesis of halipeptin A.	
2004	Dondoni <i>et al</i>	pyridyl)- and β -(4-pyridyl)-alanines and the corresponding <i>N</i> -oxide derivatives that have been developed by a convenient one-pot thermal Hantzsch-type cyclocondensation of aldehyde-ketoester enamine systems.	[42]
		Fig.18 Study shows a family of heterocyclic amino acids comprising highly functionalized ß-(2-	
		Br	
		alpha-amino acid derivatives.	
2004	Wang et al.	be employed in this reaction. The reaction is used to efficiently synthesize functionalized	[41]

2005	Pollini et al	corresponding acids, under mild conditions and without solvent, was reported. The desired products were obtained <i>via</i> Michael addition from methyl <i>N</i> -(diphenylmethylene)-2,3 didehydroalaninate.	[49]
2005	Ballini <i>et al</i>		
		PMP	
		HÍ (^{Trang}	
		Fig.24	
		Prepared a new class of α -disubstituted α -amino acids 25 bearing a pendent chiral centre.	
2005	Tanaka <i>et al.</i>	Derivatives of 4-aminopiperidine-4-carboxylic acid are achiral α -amino acids bearing a nitrogen group. The focus on this amino acid has been due to the antimicrobial activity of its helical peptides.	[50]
		H ₂ N ^{COOH}	
		Fig.25	
2005	Takemoto <i>et al.</i>	Published a tandem reaction yielding dehydroamino acid derivatives. Afforded α - disubstituted amino acids <i>via</i> radical and anionic carbon–carbon bond-forming processes. The authors disclosed the reductive allylation reaction of <i>N</i> -phthaloyl dehydroalanine with allyl acetate which was accomplished by using Bu ₃ SnH and Pd(PPh ₃) ₄ yielding.	[51]
		and Demery dear	
		Reported a three-step synthesis of N^{α} -methyl- N^{α} -(o nitrobenzenesulfonyl)- α -amino acids 26	
2005	Kessler <i>et al.</i>	without extensive purification. The procedure is based on previously known <i>N</i> -alkylation of N^{α} -arylsulfonylamino esters, which was improved by utilizing dimethyl sulfate and DBU as base.	[52]
	- N	O Me	
		S. S.	
		NO ₂ O	
		Fig.26	
2005	Konopelski <i>et</i> al.	Published a complementary method for the synthesis of optically pure <i>N</i> -methyl amino acids esters 27 that requires no protection of the functionalized amino acid side chain. The method comprises two consecutive reductive aminations, first with benzaldehyde, then with paraformaldehyde. An important feature of the reaction is that both sequences of imine formation and subsequent reduction were performed in the same flask and without	[53]
		isolation. CH_2OH	
		H	
		N COOMe	
		l Me	
		Fig.27 Presenting a series of (S)-N-(1,4-naphthoquinon-2-yl)- α -amino acid methyl esters. The	
2005	Tandon <i>et al</i>	reaction of 1,4-naphthoquinones and their bromo derivatives with enantiomerically pure <i>L</i> - amino acid methyl ester hydrochlorides produce <i>N</i> -modified- α -amino acid methyl esters	[54]
		This review focuses on the selected recent synthetic methodologies leading to unnatural	
2007	Perdih A and Dolenc MS	amino acids including chiral catalysts that enabled enantioselective synthesis and microwave-assisted synthesis. It also focused on solid phase synthesis and construction of organometallic amino acids.	[55]
2007	Matthew JG et	The present communication shows an interesting topic of enantioselective organocatalysis. They discussed the impact of enamine, iminium, nucleophilic and bronsted acid catalysts in organic synthesis, and highlighted key strategic methods to assemble useful molecules with	[56]
2007	<i>al.</i> Corvo MC and	high enantiomeric purity. Describes the synthesis of λ -amino acid analogues from natural α -amino acids by a radical	
2007	Pereira MMA	pathway. They present a new λ -amino actid analogues from natural α -amino actids by a radical pathway. They present a new λ -amino esters and amides preparation by a radical method. This was the first time that any radical species generated from natural α -amino acids and are used to synthesize λ -amino acid derivatives.	[57]
		The present study develops a convenient synthesis of amino acid methyl esters. All	
		compounds are prepared in a good to excellent yields by room temperature reactions of	

2008	Sha Y and Li J	amino acids with methanol in the presence of trimethylchlorosilane. The method is not only compatible with natural amino acids, but also with other aromatic and aliphatic unnatural amino acids.	[58]
2008	Parra M <i>et al.</i>	Described an efficient synthesis of γ -amino acids and here attempts made to drive its enantioselectivity. The present communication describes a general procedure for the addition of dianions of carboxylic acids to bromoacetonitrile. This methodology, with saturated carboxylic acids, is a new approach to the synthesis of γ -aminoacids that are obtained with higher yields than those earlier described. Unfortunately, here poor yield resulted in their attempts which drive the enantioselectivity by chiral amide induction.	[59]
2009	Cobb AJA et al.	Presents an enantioselective intramolecular michael addition of nitronates onto conjugated esters for access to cyclic γ -amino acids with up to three stereocenters. They have shown the first use of bifunctional organocatalysis in the intramolecular michael addition of nitronates to conjugated esters. They have also demonstrated its utility in peptide chemistry, and mechanistic investigations of the reaction.	[60]
2011	Narsaiah AV et al.	The study describes the use of a catalyst named Amberlyst-15 which is an efficient, cost- effective and recyclable hetero generous solid acid catalyst for the synthesis of β - enaminones and β -enamino esters. The β -keto carbonyl compounds rapidly react with a variety of amines in the presence of Amberlyst-15 to produce beta-enamino compounds with excellent yields.	[61]
2012	R. Saladino et al.	In this review authors were tried to describe the recent advances in the amino acid side- chain transformations and backbone modifications by oxidative and fluorination procedures. They also emphasizes about how modified amino acids with enhanced biological activity, proteolitic stability and bioavailability are of increasing interest in protein design and engineering as drug candidates.	[62]
2012	Rudat J <i>et al.</i>	Presents a mini review on transaminases an enzyme for the synthesis of enantio-pure β - amino acids. This review gives an overview over microbial transaminases with activity towards β -amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. As optically pure β -amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β -amino acids.	[63]
2012	Murthy LN et al.	Presents a brief review on synthesis and applications of β -enamino carbonyl compounds owing to the wide range applications in pharmaceuticals and as building blocks for the synthesis of a variety of heterocyclic compounds, β -amino esters, β -amino acids, β -amino alcohols, peptides and alkaloids. They developed a number of methods so far for the synthesis of these compounds.	[64]
2016	Lei Liu <i>et al</i> .	Reviewed surveys the recent advances of synthesis of chiral unnatural α -amino acids and peptides through palladium-catalyzed functionalization of un-activated C(sp ₃)–H bonds. The review represents all the available methods for direct C–H functionalization of simple amino acids that represents one of the most attractive approaches because it exhibits good atomeconomy and step-efficiency.	[65]

CONCLUSION:

Unnatural amino acids are of particularly interest for drug development and drug optimization. So there is growing interest for the synthesis of various unnatural amino acids and their derivatives as new medicines and other pharmaceuticals. Various organic chemist and researchers were develop different protocols but still there is a great need of a drug candidate which is more effective and more selective. Current review summarized various synthetic methods and procedures and their pharmaceutical uses. All mentioned research shows a remarkable creativity of those procedures and also involved in the design of novel unnatural amino acid and their derivatives. Without any doubt, it can be concluded that novel synthetic methodologies to construct various unnatural amino acids will continue to provide new ways for pharmaceutical drug design.

REFERENCES:

- 1. M. C. Rosen, "Asymmetric Synthesis of α-Amino Acids: New Twists on Old Ideas" *Mini reviews*, pp155, 2003
- 2. Samuel Gellma, "Efficient Method of Synthesizing Gamma Amino Acids for Applications in Medicine,Materials, Healthcare", U.S. Patent No. 8,269,039, 2012

- 3. Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. 1993, 32, 1244.
- 4. Wang, L.; Schultz, P.G. Chem. Commun., 2002, 43, 11623.
- 5. Garner, P.; Park, J.M. Org. Synth. 1992, 70, 18.
- 6. Burger's Medicinal Chemistry and Drug Discovery, Volume 1, Drug Discovery, 6th Ed., John Wiley & Sons: New York, 2005.
- Bonner, G.G.; Davis, P.; Stropova, C.; Ferguson, R.; Yamamura, H.I.; Porreca, F.; Hruby, V.J. Peptides, 1997, 18, 93.
- 8. Marshall, S.A.; Lazar, G.A.; Chirino, A.; Desjarlais, J.R. Drug Discov. Today, 2003, 8, 212.
- 9. Adessi, C.; Soto, C. Curr. Med. Chem., 2002, 9, 963.
- Eggelte T. A., Koning H. D., Huisman H. O., "Diels-Alder reaction of furan with some dienophiles", *Tetrahedron* 1973,29,2491-2493.
- 11. Wagle D. R., Monteleone M. G., Krishnan L., Manhas M. S., Bose A. K., "Novel synthesis of optically active morpholines" *J. Chem. Soc., Chem. Commun*, 1989,915-916.
- Varma R. S., Varma M., Chatterjee A. K., "Microwave-assisted deacetylation on alumina: a simple deprotection method" *J. Chem. Soc. Perkin Trans.*, 1993,999-1000.
- Crawford L. A., Bown A. W., Breitkreuz K. E., Cuine F. C., "The Synthesis of y-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH", *Plant Physiol.*, 1994,104,865-871.
- 14. Coles M. P., Gibson V. C., Mazzariol L., North M., Teasdale W. G., Williams C. M., Zamunerb D., "Amino acid derived homochiral polymers *via* ring-opening metathesis polymerisation" *J. Chem. Soc., Chem. Commun*, 1994,2505-2506.

Bisht et al

- 15. Ortiz A. D., Barra E. D., Hoz A., Prieto P., Moreno A., "Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions" *J. Chem. Soc. Perkin Trans.*, 1994, 3595-3578.
- 16. Hanessian, S.; Yang, R.-Y. Tetrahedron Lett., 1996, 37, 5273.
- 17. Tanaka, K.; Ahn, M.; Watanabe, Y.; Fuji, K. Tetrahedron Asymmetry, 1996, 7, 1771.
- 18. Södergren, M.J.; Andersson P.G.; Tetrahedron Lett., 1996, 37, 7577.
- 19. Ondrus V., Fisera L., "Synthesis and 1,3-dipolar cycloaddition reactions of chiral maleimides", *Molecules*, 1997,2,49–56.
- Borah H. N., Boruah R. C., Sandhu J. S., "Microwave-induced one-pot synthesis of N-carboxyalkyl Maleimides and Phthalimides" J. Chem. Research (S), 1998, 272-273.
- 21. Drury W. J., Ferraris D., Cox C., Young B., Lectka T., "A novel synthesis of alpha-amino acid derivatives through catalytic, enantioselective ene reactions of alpha-imino esters" *J. Am. Chem. Soc.*, 1998, 120,11006-11007.
- Padrón, J.M.; Kokotos, G.; Martín, T.; Markidis, T.; Gibbons, W.A.; Martín V.A. *Tetrahedron Asymmetry*, 1998, 9, 3381.
- 23. Shieh, W.-C.; Xue, S.; Reel, N.; Wu, R.; Fitt, R.; Repi, O. *Tetrahedron Asymmetry*, 2001, *12*, 2421.
- 24. Davis, F.A.; Zhang, Y.; Rao, A.; Zhang, Z. Tetrahedron, 2001, 57, 6345.
- 25. Huang, T.S.; Li, C. J. Org. Lett., 2001, 3, 2037.
- 26. Kim, H.J.; Lee, S.; Park, Y.S. Synlett, 2001, 5, 613.
- 27. Greenfield, S. J.; Gilbertson, S. R. Synthesis, 2001, 10, 2337-2340.
- Ondrus V., Fisera L., Bradac V., "On the use of water as a solvent - simple and short one- step synthesis of maleimides" *ARKIVOC*, 2001, 5, 60-67.
- 29. Davis, F.A.; Lee, S.; Yan, H.; Titus, D.D. Org. Lett., 2001, 3, 1757.
- 30. Carlier, P.; Lam, P.C.H.; Wong, D.M. J. Org. Chem., 2002, 67, 6256.
- 31. Magrioti V., Antonopoulou G., Pantoleon E., Kokotos G., "Synthesis of 2-amino alcohols and unnatural amino acids from serine" *ARKIVOC*, 2002,13,55-61.
- Gallos, J.K.; Sarli, V. C.; Varvogli, A.C.; Papadoyanni, C.Z.; Papaspyrou, S.D.; Argyropoulos, N.G. *Tetrahedron*, 2003,44,3905.
- 33. Wasserman, H.H.; Long, Y.O.; Parr, J. *Tetrahedron Lett.*, 2003, 44, 361.
- Gorohovsky, S.; Meir, S.; Shkoulev, V.; Byk, G.; Gellerman, G. Synlett, 2003, 1411.
- Ueki, H.; Ellis, T.K.; Collin, M.H.; Soloshonok, V.A. Eur. J. Org.Chem., 2003, 1954.
- Van Esseveldt, B.C.J.; van Delft, F.L.; Smits, J.M.M.; de Gelder, R.; Rutjes, F.P.J.T. Synlett, 2003, 15, 2354-2358.
- 37. Van Esseveldt, B.C.J.; van Delft, F.L.; de Gelder, R; Rutjes, F.P.J.T. *Org. Lett.*, 2003, *5*, 1717.
- 38. Kabalka, G.W.; Yao, M.-L. Synthesis, 2003, 2890.
- 39. Kabalka, G.W.; Yao, M.-L. J. Org. Chem., 2004, 69, 8280.
- 40. Middleton, R.J.; Mellor, S.J.; Chhabra, S. R.; Bycroft, B. W.; Chan, W.C. *Tetrahedron Lett.*, 2004, *45*, 123.
- 41. Wang, W.; Wang, J.; Li, H. Tetrahedron Lett., 2004, 45, 724.
- 42. Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V. *Tetrahedron*, 2004, *60*, 2311.
- 43. Izzo, I.; Avallone, E.; Della Corte, L.; Maulucci, N.; De Riccardis. *Tetrahedron Asymmetry*, 2004, *14*, 1181.

Journal of Drug Delivery & Therapeutics. 2019; 9(4-s):601-609

- 44. Muramatsu, H.; Mihara, H.; Kakutani, R.; Yasuda, M.; Ueda, M.; Kurihara, T.; Esaki, N. *Tetrahedron Asymmetry*, 2004, *15*, 2841.
- 45. Cheng, H.; Luzy, J.-P.; Garbay, C. Tetrahedron Lett., 2005, 46,3319.
- Boto, A.; Hernandez, R.; Montoya, A.; Suarez, E. Tetrahedron Lett, 2005, 43, 8.
- 47. Capone, S.; Guaragna, A.; Palumbo, G.; Pedatella, S. *Tetrahedron*,2005, *61*, 6575.
- 48. Jingersons, A.; Marinozzi, M.; Pellicciari, R.; *Tetrahedron*, 2005,61, 373.
- Ballini, R.; Balsamini, C.; Bartoccini, F.; Gianotti, M.; Martinelli, C.; Savoretti, N. Synthesis, 2005, 2, 296.
- 50. Oba, M.; Tanaka, M.; Takano, Y.; Suemune, H. Tetrahedron, 2005, 61, 593.
- 51. Miyabe, H.; Asada, R.; Takemoto, Y. *Tetrahedron*, 2005, *61*, 385.
- 52. Biron, E.; Kessler, H. J. Org. Chem., 2005, 70, 5183.
- 53. White, K.N., Konopelski, J.P. Org. Lett., 2005, 7, 4111.
- 54. Tandom, V.K.; Yadav, D.B.; Singh, R.V.; Chaturvedi, A.K.; Shukla, P.S. *Biorg. Med. Chem.*, 2005, *15*, 5324.
- 55. Perdih A., Dolenc S. M., "Recent advances in the synthesis of unnatural alpha-amino acids" *Current Organic Chemistry*, 2007,11,801-832.
- Matthew J. G., Johansson C. C. C., McNally A., Vo N. T., "Enantioselective organocatalysis.," *Drug Discov. Today*, 2007,12,8–27.
- 57. Corvo M. C and Pereira M. M. A, "Synthesis of gamma-amino acid analogues from natural alpha-amino acids by a radical pathway", *Amino Acids*, 2007,32,243–246,.
- 58. Li J., Sha Y., "A convenient synthesis of amino acid methyl esters",*Molecules*,2008,13,1111-1119.
- S. Gil, M. Parra, P. Rodríguez, "An efficient synthesis of γ aminoacids and attempts to drive its enantioselectivity" *Molecules*, 2008,13, 716-728.
- 60. Nodes W. J., Nutt D. R., Chippindale A. M., and Cobb A. J. A., "Enantioselective Intramolecular Michael Addition of Nitronates onto Conjugated Esters : Access to Cyclic γ -Amino Acids with up to Three Stereocenters," J. Am. Chem. Soc, pp. 2009,16016–16017.
- Narsaiah A. V., Reddy A. R., Reddy B. V. S., Yadav J. S., "Amberlyst-15: An efficient, cost-Effective and recyclable hetero geneous solid acid catalyst for the synthesis of betaenaminones and beta-enamino esters", *The Open Catalysis Journal*, 2011,4,43-46.
- Saladino R., Bottaa G., Crucianelli M., "Advances in the synthesis of bioactive unnatural amino acids and peptides" *Mini-Reviews in Medicinal Chemistry*, 2012,12,277-300.
- 63. Rudat J., Brucher B. R., Syldatk C., "Transaminases for the synthesis of enantiopure beta-amino acids" *AMB Express*, 2012,2,11.
- 64. Murthy L. N, Govindh B, Bhagavathula, S Diwakar, Yellajyosula, "A brief review on synthesis & applications of beta-enamino carbonyl compounds, *Org. Commun.* 2012,5(3),105-119,.
- 65. Xi Lu , Xiao B. , Shang R., Lei Liu, "Synthesis of unnatural amino acids through palladium catalyzed C(sp³)-H functionalization" *Chinese Chemical Letters*, 2016,27,305–311.