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Abstract: 

Air particulate pollution contributes the major air pollution in Beijing, China. In 

this research, concentrations of air particulate pollutants were measured at a total of 

twenty-three field locations in the urban districts of Beijing applying a laser particle 

counter in June and December 2015. Geographic Information System (GIS) was 

utilized to study the two and three-dimensional spatial distributions of air 

particulate pollution (PM0.5, PM1.0, PM2.5, PM5.0, PM10). Geostatistical or spatial 

statistical models were applied to interpolate the spatial distributions of air 

particulate pollution and real property values in the study area. Geographically 

Weighted Regression (GWR) was applied to analyze the spatial relationships of air 

particulate pollution and distribution of real property values. The three-dimensional 

analysis was conducted to illustrate vertical spatial distributions of air particulate 

pollution for each of the twenty-three field survey profiles in ArcGIS. Temporal 

distributions of air particulate pollution within 10 hours daytime at two field survey 

locations were analyzed. The results show that the concentrations of different sizes 

of air particulate pollutants in urban areas of Beijing distribute differently with 

different spatial patterns. The spatial distributions of real property values indicate 

that the highest value occurred in the northwestern and the central parts of Beijing 

both in the June and December 2015. There is no significant relationship of real 



 

 

property values and the intensity of air particulate pollution. Therefore, we suggest 

that the spatial distribution factors of air particulate pollution in Beijing is not a 

major factor for people to purchase real properties as homes. 
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1. Introduction  

1.1 Significance of the Study 

Air particulate pollution, which is also called pollution of particulate matter (PM), is the 

term for a mixture of extremely small solid particles and liquid droplets found in the air 

(EPA Particulate Matter, 2016). According to EPA (United States Environmental 

Protection Agency), there are two categories of air particulate pollutants (Figure 1): 

inhalable coarse particles and fine particles (EPA Particulate Matter, 2016). Inhalable 

coarse particles are larger than 2.5 micrometers and smaller than 10 micrometers in 

diameter. Fine particles are 2.5 micrometers in diameter and smaller (EPA Particulate 

Matter, 2016). 

 

Figure 1: The Size of Air Particle Pollutants (EPA Particulate Matter, 2016) 
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Air pollution is one of environmental problems in recent decades, which has a serious 

toxicological impact on human health (Robinson, 2005; Habre et al., 2014; Adel et al., 

2016). According to the US National Ambient Air Quality Standards (NAAQS) and 

World Health Organization (WHO), air particulate pollution is one of the six criteria air 

pollutants (air particulate pollution, ground-level ozone, carbon monoxide, sulfur oxides, 

nitrogen oxides, and lead). EPA calls these pollutants “criteria” air pollutants because it 

sets NAAQS for them based on the criteria, which regard their effects on health or 

welfare (EPA, 2017). Particles with a diameter of less than 10 microns (PM10), including 

fine particles less than 2.5 microns (PM2.5) pose risks to health, because they are capable 

of penetrating peoples’ lungs and entering their bloodstream (WHO, 2018). The health 

effects of air particulate pollution include respiratory and cardiovascular morbidity (such 

as aggravation of asthma, respiratory symptoms and an increase in hospital admissions); 

mortality from cardiovascular and respiratory diseases and from lung cancer (WHO, 

2013; EPA, 2017). The health effects of air particulate pollution due to the exposure 

levels: short term (hours, days) and long term (months, years). Short-term exposure to 

particulate matter (PM)is a risk factor on respiratory health, and long-term exposure to 

PM may lead to a marked reduction in life expectancy. The increase of cardiopulmonary 

and lung cancer mortality are the main reasons for the reduction in life expectancy 

(Pelucchi et al., 2009; Jerrett et al., 2009; Zhou et al., 2014; Adel et al., 2016)   
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Rapid economic growth and industrial development have been taken place in China in 

recent years (He et al, 2001). Beijing, the capital of the country and one of the largest 

cities, encounters serious air particulate pollution (Tang et al., 2010). According to the 

data from Beijing Municipal Environmental Protection Bureau, the annual average 

concentration of PM2.5 was 80.6μg/m3 in 2015, which was eight times higher than WHO 

air quality standards of PM2.5 (10μg/m3 annual mean), 2.3 times higher than the China 

Air Quality Standards (35μg/m3 annual mean, Class 2) and five times higher than 

National Ambient Air Quality Standards (NAAQS, 15μg/m3 annual mean). The annual 

average concentration of PM10 was 101.5μg/m3 in 2015, which was five times higher than 

WHO air quality standards of PM10 (20μg/m3 annual mean), 1.5 times higher than the 

China Air Quality Standards (70μg/m3 annual mean, Class 2).  

 

With the development of economy and the growing population, demands of residents for 

real property increase dramatically in Beijing, which lead to relative growth of real 

property values (Chivakul et al., 2015). Consumer demands, the level of income, social 

security, residential environment have significant impacts on real property values (Liu et 

al., 2016). Nikolaos et al. (2011) suggested that the natural environment has an impact on 

real property values, however, there are very few studies show the relationships between 

air particulate pollution and real property values of the area, especially spatial 
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relationships in large or super large municipalities, such as Beijing. 

 

Geographic information systems (GIS) offer researchers a powerful method of managing, 

analyzing, and displaying spatial information (GISGeography, 2017). Therefore, GIS was 

utilized in this research to analyze spatial distribution of air particulate pollutants in the 

urban area of Beijing and the spatial relationships between air particulate pollutants and 

real property values. Remote sensing is also a powerful tool to extract spatial information 

on Land Use Land Cover (LULC) changes over a large area (Carlson et al., 1999; 

Guerschman et al., 2003; Rogana and Chen, 2004; Zsuzsanna et al., 2005; Reis, 2008). 

LULC classification is one of the most widely and commonly used applications in remote 

sensing (Saadat et al., 2011). 

 

1.2 Objectives of the Study 

The objectives of this research are: 

a) to visualize the spatial patterns in two dimensions of air particulate pollutant (PM0.5, 

PM1.0, PM2.5, PM5.0, PM10) concentrations and analyze the spatial relationships 

between the air particulate pollution and its distributions of real property values.  

Some studies indicate that air particulate pollution of different particle sizes in Beijing 

have different characteristics of spatial distribution and pollution sources (Zhu et al., 
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2016, Wang et al.,2013b). Cheng et al. (2014) and Pearce et al. (2009) mentioned that the 

characteristics of spatial distribution and sources of air pollution are affected by many 

factors, such as meteorological (wind directions, humidity etc.) and anthropic 

(transportation etc.) factors. In order to analyze the spatial distribution of PM in different 

particle sizes, we applied particle counters with concentrations of PM to collect data at 

twenty-three locations in Beijing urban area. Geospatial models were established by 

using GIS in this study. In recent years, real property values have increased dramatically 

in the City of Beijing (Glaeser 2016). Geographic locations, residential environment, 

favorite floors, etc. are the main factors affecting real property prices (Corsini, 2009). 

More researches about the spatial relationships between air particulate pollution and its 

relations to the distributions of real property are needed, in particular, for the large city 

like Beijing. The goal of this research is to test spatial statistically if there is a strong 

correlation between the concerning of relative low air particulate concentrations and high 

real estate prices (or appreciations of the real estate locations). The original hypothesis is 

that air particulate pollution is not a criterion of real estate choice. The alternative 

hypothesis is that air particulate pollutions contribute the values or appreciations of real 

properties in the study area. 

 

b) to visualize the spatial distributions in three dimensions on air particulate pollution 
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(PM0.5, PM1.0, PM2.5, PM5.0, PM10) concentrations and compare the different spatial 

patterns at different levels of elevations.  

Data from Beijing Municipal Environmental Protection Bureau (2015) indicated that the 

concentrations of PM2.5 were very high in 2015 with the average 80.6μm per cubic meter. 

A survey made by Institute of Public and Environmental Affairs in 2012 showed that 87.5% 

of local residents in Beijing concerned about air quality, that is to say, air quality got 

attentions from more than two-thirds (2/3) of population in Beijing. Yang et al. (2005) 

studied the vertical distributions of PM2.5 concentrations at fourteen days in the autumn 

and winter in Beijing. They found the vertical distribution of PM2.5 concentrations 

decreased with the increase of the altitude in the autumn and winter. Therefore, this study 

visualized the three-dimensional (3D) spatial distributions of air particulate pollution and 

compare the spatial profiles of air particulate pollution in different elevations. 

 

c)  to help the local government mitigate and control the air particulate pollution. 

Air particulate pollution became a serious problem and pushed government to mitigate 

and control it. The Five-Year Plan of Chinese government which is a draft economic plan 

for the next five years, contains new targets that will need to be met to solve the 

environmental crises (China’s National People’s Congress, 2016) This study would be a 

useful guidance for the government to understand the spatial distributions of air 
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particulate pollution and to control and reduce the air pollution.  

 

2. Literature Review 

The literatures relevant to this study has been reviewed into the following sections: 1) the 

researches of air particulate pollution, 2) the studies of characteristics and chemical 

component of air particle pollutants, 3) the studies of temporal and spatial distribution of 

air particulate pollution and its influential factors, 4) the studies of real property value in 

Beijing and its influential factors, 5) applications of GIS in analyzing air particulate 

pollution and the real properties, 6) applications of remote sensing to air particulate 

pollution and land use and land cover (LULC) studies. 

 

2.1 The Research of Air Particulate Pollution 

In 2005, WHO established the air quality guidelines of annual mean and 24-hour mean 

concentrations of PM2.5 and PM10. The annual mean concentration of PM2.5 is 10μg/m3 

and the 24-hour mean concentration is 25μg/m3; the annual mean concentration of PM10 

is 20μg/m3 and its 24-hour mean concentration is 50μg/m3. In 1982, ambient air quality 

standard was regulated in China, when initial limits were set for TSP (Total Suspended 

Particulates), SO2, NO2, lead and Benzopyrene. In 1996, the standard was both 

strengthened and expanded from 1982 standard; in February 2012, China released a new 

national air quality standard (GB3095-2012), which sets limits for the first time on PM2.5. 
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The new standards took effect nationwide in 2016, but Beijing required to implement the 

standards in 2012. China Air Quality Standards (GB3095-2012) divided standards into 

classes: Class 1 applies to special regions (including national parks) and Class 2 applies 

to all other areas. The annual mean concentration of PM2.5 in China Air Quality Standards 

(GB3095-2012, Class 2) is 35μg/m3 and the 24-hour mean concentration is 75μg/m3; the 

annual mean concentration of PM10 is 70μg/m3 and its 24-hour mean concentration is 

150μg/m3. In 1990, The Clean Air Act required EPA to set National Ambient Air Quality 

Standards (NAAQS) for pollutants which were considered harmful to public health and 

the environment. EPA established the National Ambient Air Quality Standards (NAAQS) 

for the six criteria air pollutants (air particulate pollution, ground-level ozone, carbon 

monoxide, sulfur oxides, nitrogen oxides, and lead). In NAAQS, annual mean 

concentration of fine particle (PM2.5) to be less or equal to 15 μg/m3 (Primary) and the 

24-hour mean concentration of PM2.5 is 35μg/m3 (Primary and Secondary); the 24-hour 

mean concentration of PM10 is 150μg/m3.    

 

China has experienced severe air pollution these years (Chen et al., 2013; Guan et al., 

2016; Guo et al., 2014; Huang et al., 2014; Li et al., 2016; Sun et al., 2014; Wang et al., 

2016; Zhang et al., 2015; Song et al. 2017a). Wang et al. (2000) studied the 

characteristics of air particulate matter and found there was a heavy air particulate 
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pollution in most areas in China. Song et al. (2017) analyzed data of particulate matter 

concentrations (PM2.5 and PM10) from 1300 national air quality monitoring sites in a 

period of three years (January 2014 to December 2016). They found that PM2.5 pollution 

was much heavier in winter than in summer, especially in the Northern China (Song et 

al., 2017a). PM2.5 has become the most frequent and major pollutant in China followed 

by PM10 and O3 (Song et al., 2017a). The first study of air particulate pollution was done 

in Beijing during the year between 1989 and 1990 (Chen et al., 1994). At present, 

researches on air particulate pollution in China are carried out by departments and 

institutions of environmental research and management across the nation (Wang et al., 

2014).  

 

With the rapid development of science and new technologies, various methods such as 

GIS and remote sensing were used to study air particulate pollutants and analyze the 

spatial distributions of air pollution (Zhang et al., 2015). Gorai et al. (2014) utilized GIS 

to analyze the spatial patterns of asthma hospitalization and air pollutants in New York 

State. Spendley and Brehme (2014) applied GIS for topographic analysis and modeling 

air pollutant concentrations in the study of influencing factors on particulate pollution in 

Keene, New Hampshire.  
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2.2 The Studies of Characteristics and Chemical Component of Air Particulate 

Pollution 

Particulate Matter (PM), a mixture of solids and liquid droplets floating in the air, affects 

human living environments in terms of air quality, public health, climate effects and 

ecosystems (Watson, 2003; AirNow, 2014). High concentrations of air particulate 

pollution may cause respiratory diseases and cardiovascular diseases (Lee et al., 2014). 

Air particulate pollution has become one of the major environmental problems in the City 

of Beijing (He et al, 2001). Air particulate pollution acts as a trigger for haze events (light 

attenuation) which relate to both meteorological conditions and pollutant levels in the 

atmosphere (Song et al. 2017). Fine particles are believed to be one of the major reasons 

in scattering of visible light and a cause of the degradation of visibility (Sloane et al., 

1991; Zhao et al. 2013).  

 

Many studies indicated that elemental carbon (EC), organic carbon (OC), ionic species 

(i.e., sulfate [SO4
2-], nitrate[NO3

-], ammonium [NH4
+], chloride [Cl-], sodium [Na+], etc.), 

crustal elements, and water are the major constituents in PM (Lee et al., 2002; Pathak et 

al., 2003; Shen, 2010; Tsai et al., 2011). EC and OC particles are released from the 

incomplete combustion of carbonaceous fuels; EC is a primary pollutant that is emitted 

directly during the combustion processes; OC consists of primary and secondary carbons; 
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primary OC is emitted in the particulate phase, and secondary OC is formed via 

gas-to-particle processes of volatile organic compounds (VOCs) in the atmosphere (Lee 

et al., 2002; Pathak et al., 2003; Aneja et al., 2006; Shen, 2010; Tsai et al., 2011). In 

addition, SO4
2-, NO3, and NH4 are the common components of secondary inorganic 

aerosols in the atmosphere, and the particles are formed via the reactions of the 

precursors of sulfur dioxide (SO2), oxides of nitrogen (NOx; nitric oxide [NO] and 

nitrogen dioxide [NO2]), and ammonia (NH3) in the atmosphere (Lee et al., 2002; Pathak 

et al., 2003; Aneja et al., 2006; Shen, 2010; Tsai et al., 2011). Particulate matter (PM) is 

composed of various chemical elements (Seinfeld 1989). Zhang et al. (2013) found 

twenty main chemical elements (Al, As, Br, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, 

Se, Si, Ti, V and Zn) in Beijing using X-Ray Emission (PIXE).  

 

Air quality models which use mathematical and numerical techniques simulate the 

physical and chemical processes that affect dispersion and reaction of air pollutants in the 

atmosphere (EPA, 2017). These models are utilized to characterize primary pollutants 

that are emitted directly into the atmosphere and secondary pollutants that are formed as a 

result of complex chemical reactions within the atmosphere (EPA, 2017). Dispersion 

modeling, photochemical modeling and receptor modeling are the three commonly used 

air quality models (EPA, 2017). Dispersion modeling use mathematical formulations to 
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characterize the atmospheric processes that disperse a pollutant emitted by a source; 

photochemical models are large-scale air quality models which simulate the changes of 

pollutant concentrations in the atmosphere by using mathematical equations 

characterizing the chemical and physical processes in the atmosphere; receptor models 

are mathematical or statistical procedures for identifying and quantifying the sources of 

air pollutants at a receptor location (EPA, 2017). Zhang et al. (2013) collected 121 daily 

PM2.5 samples from an urban site in Beijing between April 2009 and January 2010 (four 

seasons). They utilized chemical mass balance (CMB) and positive matrix factorization 

(PMF) to characterize aerosol speciation, identify likely sources and their contributions 

(Zhang et al., 2013). CMB and PMF are receptor models to identify the likely sources 

and quantify source contributions (EPA, 2017). In their research, the PMF model 

identified six main sources: soil dust, coal combustion, biomass burning, traffic and 

waste incineration emission, industrial pollution, and secondary inorganic aerosol in 

Beijing urban area (Zhang et al, 2013). Each of these sources has an annual mean 

contribution of PM2.5 is 16%, 14%, 13%, 3%, 28%, and 26%; however, the relative 

contributions of these identified sources significantly vary with changing seasons (Zhang 

et al, 2013). 

 

2.3 The Studies of Temporal and Spatial Distribution of Air Particulate Pollution and 
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Its Influential Factors 

2.3.1 Temporal Distribution of Air Particulate Pollution 

In these recent years, air particulate pollution occurred many times in winter in Beijing 

(Zhao et al., 2014). Seasonal variation of air particulate pollution was significant, with 

the highest concentration in the winter and the lowest in the summer (He et al, 2001). 

Using PM2.5 and PM10 as examples, the maximum values of PM2.5 and PM10 mass 

concentrations appeared in January, while the minimum values in April in 2012 in Beijing 

urban area (Zhao et al., 2014). Both these two sizes of particulate matter were 

significantly influenced by meteorological conditions (Zhao et al., 2014). Meteorological 

factors, such as daily average temperature (℃), relative humidity (%), wind speed (wind 

scale) and precipitation (mm), were the main factors influenced the daily changes of 

PM2.5 and PM10 (Zhao et al., 2014). However, seasonal changes of PM2.5 and PM10 mass 

concentrations demonstrated that they were positively correlated with temperature and 

relative humidity, respectively, and strongly negatively correlated with wind speed (Zhao 

et al., 2014). Wind speed and relative humidity are two major factors affecting the 

temporal distributions of PM2.5 and PM10 mass concentrations (Zhao et al., 2014). 

 

In addition, anthropogenic factors are also important that cannot be ignored (Shi et al., 

2012). Shi et al. (2012) discussed diurnal variations trends of PM2.5 concentrations which 



14 

 

 

 

showed a distinctive bimodal pattern with two marked peaks during the morning and 

evening rush hour times, that can be explained as the impact of high volume of traffic on 

the streets. Higher concentrations of PM2.5 were observed in rush hours on weekdays 

compared to weekends, suggesting the influence of anthropogenic activities on the fine 

particulate levels, for example, traffic-related local PM2.5 emissions (Shi et al., 2012). 

Bernosky and Vermette (2012) monitored PM10 along Phnom Penh roads and created 

road-side temporal profiles. They established “commuter profile” and “business district 

profile” to study temporal relationships between PM10 and field survey locations. 

 

2.3.2 Spatial Distribution of Air Particulate Pollution 

Air particulate pollutions have significant spatial characteristics which are very important 

for us to study. In general, the PM2.5 pollution is higher in the south and east part of 

Beijing and is lower in the north and west, but when south or southeast wind is blowing, 

the situation could be totally the opposite (Hu et al., 2013).  Meanwhile, Beijing is 

surrounded from the north, west, and east by the Yanshan Mountains (Yang et al., 2011).  

Due to the mountain terrain, it is not beneficial to the horizontal diffusion of air pollutants 

and leads to higher PM2.5 concentrations (Chen et al., 2016).  

 

A GRIMM 180 aerosol particle spectrometer which measures both the dust mass in 
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real-time and simultaneously the according particle sizes and their distribution in 

different size ranges can be used to analyze the vertical distributions of air particulate 

pollution (GRIMM Aerosol Technik, 2016). The concentrations of PM10, PM2.5, and 

PM1.0 decreased with height in vertical profiles (Deng et al., 2015). PM, especially PM2.5 

showed complex vertical distributions and they had distinct layered structures with 

elevated levels extending to the 100, 200 and 300m heights (Chan et al., 2005). The 

meteorological evidence suggested that atmospheric layers over urban Beijing were 

featured by strong temperature inversions close to the surface (< 50m) and more stable 

conditions aloft. They enhanced the accumulation of pollutants and probably caused the 

complex vertical distributions of PM over urban Beijing (Chan et al., 2005). 

 

Other factors such as measuring sites near main traffic roads (bus or subway stations), 

densely inhabited district or factories influence the concentrations of air particulate 

pollution (Phuleria et al., 2007). Because individual organic compounds such as hopanes 

and steranes and selected polycyclic aromatic compounds (PAHs, generated via 

combustion) were found in emissions of vehicles, they were considered as sources of 

particulate matter (Phuleria et al., 2007). 

 

2.4 The Studies of Real Property Value and Its Influential Factors 
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China has become one of the world’s fastest growing economies and has the most active 

as well as interesting real estate markets in the world (Deng et al., 2009). In the past 

decade, the Chinese real estate market had dramatic growth (Qiao, 2010). The data from 

National Bureau of Statistics of China and Bank of China showed that the average price 

of commercial houses in Beijing area (including urban and suburban districts) in 2015 

was 22633.00 CNY/m2, about 3478.79 USD/m2 (Exchange rate: 100USD=650.6CNY). 

While in 2014, the average price of real estate was 18833.00 CNY/m2, about 3019.56 

USD /m2 (Exchange rate: 100USD=621.64CNY). From the average housing price map 

(Figure 2), Xicheng District, Dongcheng District and Haidian District which are the 

developed regions and had the highest average housing prices. While Fangshan district 

which is one of the Beijing suburb regions had the lower prices (Fangjia, 2015).  
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Figure 2: Average Housing Prices in Beijing (Fangjia, 2015) 

in the figure, 万元/m2 represents 10,000 CNY/m2,  

according to the exchange rate in 2015:  

100USD=650.6CNY, 10,000 CNY/m2=1537 USD/m2 

 

Case and Shiller (1990) found that housing prices had the positive relationship with some 

economic factors such as construction costs, population growth, and income (Case et al., 

1990). Potepan (1996) further analyzed more factors, including social environmental 

factors such as rent, land prices, household income, population, quality of public services, 

crime rate, air pollution, non-housing prices, mortgage, interest rates, property tax rates, 

construction costs, agricultural land prices, and legal land use constraints. Yang et al. 
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(2015) concluded that the natural landscape characteristics had the significant impact on 

housing price, especially the cottages and villas. Cui et al. (2010) analyzed the influential 

factors of housing prices in Beijing, and he summarized three major factors that were 

consumers, the real estate agencies and the government.  

 

2.5 Applications of GIS 

2.5.1 GIS Application in Air Particulate Pollution Studies 

Geographic Information System (GIS) is one of the powerful technologies that can be 

used to map and model the distributions of air particulate pollution (Zhang et al., 2015). 

In order to conduct spatial analyses in GIS, various geostatistical methods, such as 

inverse distance weighting (IDW) and Kriging have been developed to interpolate 

pollutant values at locations where data are unavailable collected (Wong et al., 2004; 

Moore et al., 2007). Dashtpagerdi et al. (2012) utilized IDW and ordinary kriging (OK) 

interpolation to interpolate data for evaluating the distribution of air pollutant (NO2) in 

the south west of Iran. They found ordinary kriging had less error (Dashtpagerdi et al., 

2012).  Tang et al. (2010) applied universal kriging (UK) to analyze the spatial 

distributions of concentrations for PM0.3, PM0.5, PM1.0, PM3.0 and PM5.0. UK was selected 

as the interpolation tool because it does not assume that the predicted value on average is 

a constant in study area (Tang et al. 2009). UK also was suggested as potential prediction 
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methods for evaluating the health effects of long-term exposure to ambient air pollution 

(Mercer et al. 2011).  

 

Geographically weighted regression (GWR) is an exploratory tool that can generate a 

separate regression equation to address spatial variation (Fotheringham et al., 2002). 

GWR provides a spatial statistical model of the variables for predicting if a variable can 

fit the separate regression equation to every feature (Brunsdon et al., 1996; 

Ogneva-Himmelberger et al., 2009; Tang et al., 2009). Tang et al. (2009) conducted GWR 

model for analyzing the coefficients or relationships between spatial concentrations of air 

particulate pollution and residential respiratory diseases in Beijing in 2008. Li et al. 

(2015) developed a GWR model to examine the impacts of urban structure and activities 

on PM2.5 concentrations in Beijing.  

 

Traditional two-dimensional (2D) maps require the creation of many scenes, one at each 

height for studying the change of pollution concentrations with elevations (Sears and 

Jacko, 2008). In 2008, University College London (UCL) Centre for Advanced Spatial 

Analysis (CASA) and Environmental Research Group (ERG) in Kings College London 

created an interactive three-dimensional (3D) air pollution map (CASA and ERG, 2008). 

They produced the 3D virtual scenes of Central London and air pollution predictions of 
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NO2, NOx and PM10 which were fused in these 3D virtual scenes to build the 3D air 

pollution map (CASA and ERG, 2008; Zahran et al., 2010). Meike (2016) made 3D 

models of air pollutants data in the “Project Sky Nose” by using ArcGIS. The data was 

collected by a quadcopter with a sensor payload. Meike (2016) visualized the data points 

and created a 3D map. 

 

2.5.2 GIS Application in the Real Property Analyses 

GIS can be used in scientific investigations, resource management, and development 

planning (He, 2001). The real estate designing and planning is one of the essential 

applications of GIS. The GIS model has become a main tool in real estate designing and 

planning (Lin et al., 2001). Lin et al. (2001) introduced the technology of GMN which 

abbreviating GIS+MIS (Management Information Systems)+Network in developing real 

estate management software. GIS provides geographic information and 3D visualization 

capabilities to traditional real estate software system (Lin et al., 2001). GIS technology is 

particularly fitting to the application of real estate analyses because the real estate 

property is geospatial in nature (Donlon, 2007). Amaneddine and Chmait (2009) 

developed another tool called UGIS (“You Get It Simply”) for helping customers and real 

estate agents to search and explore different types of real estates around Lebanon. UGIS 

is based on GIS platform and enhanced with GIS to build indexed search engine and 
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visualize the spatial distribution of real properties (Amaneddine and Chmait, 2009). 

 

2.6 Applications of Remote Sensing to Air Particulate Pollution and Land Use and 

Land Cover (LULC) Studies. 

Remote sensing has been widely used for environmental applications such as for air 

quality and water quality studies (Penner, et al. 2002). Lim et al. (2009) utilized Landsat 

satellite images to test the algorithm which was developed to map the spatial distribution 

of PM10 concentrations. Hadjimitsis et al. (2002) investigated the potential of using 

satellite remotely sensed imagery for assessing atmospheric pollution. Aerosol optical 

thickness was detected from Landsat-5 TM band 1 images (Hadjimitsis et al., 2002). Zhai 

et al. (2015) utilized high resolution remote sensing images to estimate the spatial 

distribution of PM2.5 concentrations in Shijiazhuang, China. 

 

Barrett and Ben-Dov (1967) stated LIDAR (laser radar) could meet the needs of 

measuring vertical profiles of atmospheric particulate concentrations. Warren (1969) 

discussed the fundamental capabilities and limitations of the LIDAR in observing 

particulate concentrations in atmosphere. The accuracies of return signal of backscatter 

and attenuation as well as the optical parameters related to the characteristics of the 

aerosol limited the technique (Warren, 1969). The main areas of utility for LIDAR in air 
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pollution are observing the structure and height of mixing layers; measuring the transport 

and diffusion of clouds of particulates; detecting the opacity of smoke-plume (Warren, 

1969).  

 

Land use and land cover (LULC) are two important geographic categories record 

socio-economic activities and land management practices (Comber, 2008). Anderson et al. 

(1976) utilized remote sensor data to identify nine basic classes in United States: “Urban 

or Built-up Land”, “Agricultural Land”, “Rangeland”, “Forest Land”, “Water”, 

“Wetland”, “Barren Land”, “Tundra” and “Perennial Snow or Ice”. Colditz et al. (2011) 

did a LULC study in both South Africa and Germany. They identified five categories, 

which were “urban”, “agriculture”, “forested and semi-natural land”, “wetland”, and 

“water” (Colditz et al., 2011). Han et al. (2015) did simulation and projection of land use 

changes in Beijing in 1985, 2000 and 2010. They found that cultivated land converts to 

urban built-up land, which will become the main feature of LULC changes (Han et al., 

2015). Tian et al. (2014) also developed LULC datasets for Beijing in 1978, 1987, 1992, 

2000 and 2010 from Landsat images and Sun et al. (2016) mentioned LUCC is a key 

factor affects atmospheric particulate pollution.  

 

3. Methodology 
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3.1 The Study Area  

Beijing is located in the northern tip of the North China Plain, the latitude and longitude 

in Beijing are 39.9042°N and 116.4074°E (Figure 3). The Yan Mountain surrounds the 

area of city in the north, northwest and west sides. The climate in Beijing is a 

monsoon-influenced humid continental climate which is characterized by relative high 

humidity, hot and moist in the summers; and cold, windy, and dry in the winters (People’s 

Daily, n.d.). The municipality covers 16,410 km2 and is composed by 16 urban and 

suburban districts and 2 counties (Figure 4). The major urban transportation framework 

in the city is shaped by circular freeways that are called the ‘Ring Roads’: starting from 

the “Second Ring Road” and expanding to the “Sixth Ring Road”. Owing to the 

economic development, landscape and density of residential and commercial buildings, 

the “Fourth Ring Road” could be regarded as the boundary between the urban and the 

suburban regions in Beijing (Yang et al, 2013). Six urban districts are within the “Fourth 

Ring Road” namely Xicheng, Dongcheng, Chaoyang, Haidian, Fengtai and Shijingshan.  

 

In this research, we conducted the field measurements and analyzed spatial distributions 

of air particulate pollution and real property values in the urban areas of Beijing that are 

within the “Fourth Ring Road”. According to the most recent (6th) census of China, the 

total municipal population in 19.6 million, and 86% of this population are considered as 
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urban residents (Beijing Statistic Bureau, 2011) or people who live in these six districts. 

In addition, Beijing has estimated more than 6 million migrant workers (people from 

other provinces and cities). These people traveled to Beijing for better economic 

opportunities (Yang et al, 2013). 

Figure 3: Beijing’s Location in China Map 

(ChinaHIGHLIGHTS, 2012) 
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Figure 4: The Map of Urban Districts in Beijing Municipality 

(CHINATouristMaps, 2010);  

the orange lines represent the Beijing “Ring Roads” 

 

3.2 Field Data Collection 

The concentrations of air particulate pollutants (PM0.5, PM1.0, PM2.5, PM5.0, PM10) were 

collected by a team of the graduate students and faculty of Capital Normal University and 

SUNY Buffalo State College. A handheld GrayWolf Laser Particle Counters 3016-IAQ 

which was made by GrayWolf Company in U.S. (Figure 5) was used to collect and record 

air particulate data during the two-time periods without precipitations: June 15th to June 

24th, 2015, and December 24th to December 26th, 2015 (in this research, “summer” and 
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“winter” refer to these dates, including tables and graphs). Table 1 and Figure 6 show 

both the positions and the sequence of data collection in different seasons.  

Figure 5: Handheld GrayWolf Laser Particle Counter Model: 3016-IAQ 

(the data inside the red circle show concentrations 

of air particulate pollution) 
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Table 1: Data Collections in 2015 a)summer, b)winter 

Site/Profile Number of 

Jun.15th Jun.16th Jun.17th Jun.22th Jun.23th Jun.24th 

1 2,3 4-8 9-12 13-18 19-23 

a) 

 

Site/Profile Number of 

Dec. 24th Dec. 25th Dec.26th 

1-7 8-14 15-23 

b) 
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a) 
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b) 

Figure 6: Positions and the Sequence of Data Collection 

 in a) summer 2015 and b) winter 2015  

(Printed in Google My Maps) 

 

The handheld GrayWolf Laser Particle Counter 3016-IAQ provides up to six particle 

sizes (PM0.3, PM0.5, PM1.0, PM2.5, PM5.0, PM10) simultaneously in counting and 

displaying the cumulative and differential particle count and concentration data 

(GrayWolf Sensing Solutions, 2011). The concentrations of PM that were recorded are 

the cumulative data. In this study, the concentrations of PM0.5 are the concentrations of 
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particles equal to and less than 0.5μm (≤ PM0.5); the concentrations of PM1.0 are the 

concentrations of particles equal to and less than 1.0μm (≤ PM1.0). PM2.5 concentrations 

mean the concentrations of particles less than (includes PM0.5, PM1.0) and equal to 2.5μm. 

The concentrations of PM5.0 also mean the concentrations of particles equal to and less 

than 5.0μm (≤ PM5.0); The concentrations of PM10 mean the cumulative concentrations 

which include the concentrations of particles equal to and less than 10μm (≤ PM10). The 

laser particle counter was operated for the default one- minute sampling period, with a set 

flow rate of 2.83 L/min (0.00283 m3/min). Three one-minute samplings run were taken 

simultaneously, and the mean concentrations were reported in microgram per cubic meter 

(μg/m3).  

 

Twenty-three field survey sites were selected randomly in the Beijing urban districts 

within the “Fourth Ring Road”. The conditions of these sites are selected in densely 

populated residential areas which are not close to the main transportation roads or streets. 

Twenty-three vertical profiles were surveyed in the randomly selected locations with a 

total of 115 air pollution sampling points. Five samples were collected on each vertical 

profile, and the three one-minute continuous samplings were conducted at each five 

samples. Twenty-three high-rise residential buildings were used to collect the samples 

from the ground (1st floor) to the elevation of 44.8 meters (16th floor) to form 
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twenty-three vertical profiles: each of the vertical profiles from the ground to 44.8 meters 

elevation has been divided into 5 levels, that means one sampling measurement was 

conducted every 11.2 meters (four building stories increase) elevation increase. 

According to the Harmonized Building Modulus Standard (2014), in China, the standard 

height of one story of high-rise residential buildings in the country is 2.8 meters.  

 

In order to normalize the twenty-three profiles monitoring data collected at different 

times in a day with possible varying background conditions, temporal analyses were 

conducted at two field survey sites (Yiyuanju, Shuixingyuan) that were chosen randomly 

in the west and east areas in Beijing (Figure 7). The two fields measured air particulate 

pollution datasets were also recorded by using a GrayWolf Laser Particle Counter. The 

data of air particulate concentrations were collected 10 hours (without precipitations) 

from 8:00 am to 6:00 pm in the winter of 2016 (January 15th, Yiyuanju; January 19th, 

Shuixingyuan). The three one-minute continuous samplings were taken every half-hour 

through the 10 hours a day and the mean concentrations of each three one-minute 

sampling were also reported in microgram per cubic meter (μg/m3). Student’s T-Test 

were utilized to test if the two datasets which collected at the two locations were similar 

or dissimilar; and Mann-Whitney U-Test were utilized to test the data collected at 

different time periods in 10 hours were similar or dissimilar. The statistical analyses were 
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conducted in R 3.4.3 and Mann-Whitney U Test Calculator (Social Science Statistics, 

2018). Based on the statistical results, the temporal data were utilized to normalize the 

data collected at the twenty-three profiles and the two temporal profiles (Yiyuanju Profile 

and Shuixingyuan Profile) were defined.  

 

Figure 7: Locations at Yiyuanju and Shuixingyuan 

(red points; printed in Google My Maps) 

 

3.3 Data-mining of Real Property Values Online 

The real property values in the study area of urban Beijing were collected from the three 
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main and official websites in the real property market in China. They are Fangjia.com, 

58.com and Lianjia.com. The real property data from these three websites have been 

certified by the National Bureau of Statistics, the Notary Office of the central government 

and other government agencies in China. The three real estate websites provide the 

housing prices of the different apartments at the twenty-three field survey locations as a 

reference to research. We collected the housing prices of apartments at each the 

twenty-three field survey locations and calculated the mean price of these apartments at 

each the twenty-three field survey locations. The unit price per square meter in US dollars 

(USD) were utilized, converting from Chinese Yuan (CNY). The price values are 

concurrent values at the twenty-three field survey locations both in June and December of 

2015 (in this research, “June” and “December” stand for the field survey periods: June 

15th to June 24th, 2015, and December 24th to December 26th, 2015, including tables and 

graphs). 

 

3.4 Spatial Analyses in ArcGIS Environment 

3.4.1 Kriging Interpolation 

Spatial interpolation is the procedure of estimating the values of the variable under study 

at unsampled locations, using point observations within the same region (Lozano et al., 

2009; Mofarrah & Husain, 2010; Nejadkoorki et al., 2011; Deligiorgi and Philippopoulos, 
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2011). Statistical interpolation methodologies which based on data provided from air 

quality monitoring sites are applied in air pollution modeling for estimating the spatial 

distribution of pollutants (Lozano et al., 2009; Mofarrah & Husain, 2010; Nejadkoorki, 

2011; Deligiorgi and Philippopoulos, 2011). Inverse-Distance-Weighting (IDW) 

interpolation, Kriging, Natural Neighbor, Spline, Trend, etc are used commonly as spatial 

interpolation methods. Kriging is similar with IDW in that it weights the surrounding 

measured values to derive a prediction for each new location in the output raster dataset 

(Jensen and Jensen, 2013). In addition, Kriging is the best choice for phenomena with a 

strong random component or for estimation of statistical characteristics (Mitas and 

Mitasova, 1999). In this study, the field survey sites/profiles were selected randomly from 

the urban area in Beijing. Therefore, kriging interpolation was applied to analyze the 

concentrations of air particulate pollution. The weights come from a semivariogram 

model that was developed by looking at the spatial structure of the data (Deligiorgi and 

Philippopoulos, 2011). To create a continuous surface or map of the phenomenon, 

predictions are made for locations in the study area based on the semivariogram model 

and the spatial arrangement of measured values that are nearby (Tyagi and Singh, 2013). 

Goovaerts (1997): “All kriging estimators are but variants of the basic linear regression 

estimator Z*(u) defined as 

Z*(u)-m(u) = ∑ 𝜆𝛼
𝑛(u)
𝛼=1 [ Z(u)-m (u)].” 
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with 

u, u: location vectors for estimation point and one of the neighboring data points, indexed 

by ;  

n(u): number of data points in local neighborhood used for estimation of Z*(u); 

m(u), m(u𝛼): expected values (means) of Z(u) and Z(u); 

𝜆𝛼 (u): kriging weight assigned to datum z(u) for estimation location u; same datum 

will receive different weight for different estimation location;  

Z(u) is treated as a random field with a trend component, m(u), and a residual component, 

R(u) = Z(u)- m(u). Kriging estimates residual at u as weighted sum of residuals at 

surrounding data points. Kriging weights, 𝜆𝛼, are derived from covariance function or 

semivariogram, which should characterize residual component. Distinction between trend 

and residual somewhat arbitrary; varies with scale (Goovaerts, 1997).  

 

Three Kriging interpolation methods are widely used: Simple Kriging (SK), Ordinary 

Kriging (OK) and Universal Kriging (UK). Simple Kriging (SK) requires the stationary, 

constant and known mean value (mu) of the quantity to be predicted to be known (Bezzi 

and Vitti, 2005, Bohling, 2005; Gundogdu and Guney, 2007). Ordinary Kriging (OK) 

assumes the mean is constant but an unknown spatial value (Luo et al., 2008, Wang et al., 

2014). Universal Kriging (UK) is used to estimate means when the data have a strong 
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trend which can be modeled by simple functions (Lefohn et al., 2005, Yamamoto,2005; 

Gundogdu and Guney, 2007). In this study, raster surfaces of concentrations for each of 

the five particle sizes were generated by applying universal kriging (UK) model. The 

reason of using UK model is the predicted value on average is not a constant in the study 

area. Because of that, SK model and OK model were not chosen in this study. The 

concentration surfaces were converted to vector map layers with tangible attribute 

databases of value distributions.  

 

3.4.2 Geographically Weighted Regressions (GWR) 

The spatial relationships between the concentrations of air particulate pollution and real 

property data can also be analyzed and tested by using the newly developed Geographic 

Weighted Regression (GWR) model. In ArcGIS, a dependent variable and one or more 

explanatory or independent variables need to be provided when using Geographic 

Weighted Regression (GWR; Charlton and Fotheringham, 2009). Universal kriging (UK) 

raster surfaces of air particle concentrations were converted to vector polygons and 

intersected to the distributions of real property data. In essence, the major difference of 

GWR with most of other spatial statistical analyses, such as UK is that the GWR model 

test and predict the spatial relations of two variables. If the GWR predictions are not 

significant at the most locations in the study area, it approves there is no strong relations 
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of the two variables. The purpose of using GWR is to spatially quantify the relations 

between air particulate pollution and the real property data in order to evaluate the 

impacts of former to the latter.  

 

GWR generates a regression residual feature map. It shows the standard deviation values 

of modeling errors. The ideal GWR regression model presents randomly distributed over 

or under predictions across the study area. In this case, GWR were conducted in ArcGIS 

for the concentrations of all sizes air particulate pollution and real property data. The real 

property values at twenty-three sites were used as dependent variable and the 

concentrations of all sizes air particulate as the explanatory or independent variables. 

Regression coefficients (β) were computed by the regression models imbedded in the GIS 

software. These are values, one for each explanatory variable, that represent the strength 

and type of relationship between the predicted variable and the dependent variable. 

Positive coefficient indicates a positive relationship. By contrast, negative coefficient 

represents a negative relationship. The larger the coefficient, the stronger the relationship 

is.  

 

3.5 Land Use and Land Cover (LULC) Analyses 

Land use and land cover (LULC) are two important geographic categories record 
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socio-economic activities and land management practices (Comber, 2008). In this 

research, we discussed the spatial relationships of LULC, the concentrations of air 

particulate pollution. The supervised classification was conducted in the environment of 

the remote sensing software, ERDAS IMAGINE 2016, for exploring the LULC of the 

field survey area in Beijing and producing classification maps of geographic features. 

The original images were download from Google Earth Pro 7.3.1.4507 (download in 

March 17, 2018) with the spatial resolution of 4800*3059 grid cells (Figure 8).  

a) 
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b) 

Figure 8: The Original Imagine of Beijing 

a) the urban districts of Beijing within the “Fourth Ring Road”;  

b) the area of Beijing within the urban and suburban districts  

(Printed in Google Earth Pro 7.3.1.4507)  

 

Classification is the most popularly used information extraction techniques in digital 

remote sensing (Richards, 1986; Lillesand and Kiefer, 2000). There are several methods 

to classify the geographic features on the images in ERDAS Imagine software 

environment. Supervised and unsupervised classifications are two commonly used 

approaches of digital image classification (Rundquist, 2010). Unsupervised classification 

groups pixels into “clusters” based on their properties using image clustering algorithms 

such as K-means and the Iterative Self-Organizing Data Analysis Technique (ISODATA; 

Rundquist, 2010). While in supervised classification, representative samples need to be 
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selected for each land cover class and then ERDAS software uses these representative 

samples and applies them to the entire image (GISGeography, 2017). The supervised 

classification was used to analyze the images and we classified four features of land use 

(river, street and highway, building and green belt) in this research to explore the spatial 

relationships of LULC, the concentrations of air particulate pollution. Because the 

unsupervised classification was used for the unknown areas and it is hard to identify the 

ground features from the satellite images (Rundquist, 2010), and the supervised 

classification method was adopted. 

 

The supervised classification makes the signature files of the different geographic 

features and five areas of each class (geographic feature) were selected as the samples for 

classification (Figure 9). The green represents the green belts (vegetation); black shows 

the streets and highways; blue areas are rivers and grey stands for buildings (Figure 10).  
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Figure 9: A Sample of Supervised Classification 

 

Figure 10: Attribute Table after Supervised Classification 

 

4. Results 

Temporal distributions of air particulate pollution concentrations in the two sites of 

Beijing (Yiyuanju, Shuixingyuan) were described and analyzed; the results of 

two-dimensional spatial distributions of air particulate pollution were analyzed and the 
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differences were compared; spatial patterns in two dimensions of real property values 

were conducted and the spatial relationships between the air particulate pollution and its 

distributions of real property values were analyzed. The results from three-dimensional 

vertical distributions of air particulate pollution were visualized and the differences of 

each five stories in the twenty-three profiles were compared.  

 

4.1 Results of Temporal Distribution 

Table 2 shows the mean of each particulate matter (PM) in 10 hours daytime in the west 

of Beijing (Yiyuanju) and east of Beijing (Shuixingyuan). The mean of PM2.5 and PM10 

in 10 hours at the two sites were compared with 24 hours mean in WHO standards, 

National Ambient Air Quality Standards (NAAQS) and China Air Quality Standards 

(Table 3). 

Table 2: Mean of Air Particulate Pollution (μg/m3) 

   

Size of 

  

 
PM0.5 PM1.0 PM2.5 PM5.0 PM10 

Mean value in 10 

hours daytime, 

Yiyuanju 

(West of Beijing) 

23.48 42.26 64.79 124.09 287.72 

Mean value in 10 

hours daytime, 

Shuixingyuan 

(East of Beijing) 

23.52 47.17 76.9 127.14 285.17 
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Table 3: 24-hours mean in Standards (μg/m3) 

 

Standards 

Size of  

PM2.5 PM10 

WHO 25 50 

NAAQS 35 150 

China Air Quality Standards 

(GB3095-2012) 

75 150 

 

Based on Table 2 and Table 3, the mean of PM2.5 concentrations in 10 hours is 

64.79μg/m3 at Yiyuanju (west of Beijing) and at Shuixingyuan (east of Beijing) is that 

76.90μg/m3, both of the two means are two times more than the 24-h mean in WHO 

standard; the mean of PM10 concentrations in 10 hours is 287.72μg/m3 at Yiyuanju and 

285.17μg/m3 at Shuixingyuan, almost six times more than WHO standard and two times 

more than NAAQS and China Air Quality Standards. The means of PM2.5 and PM10 

concentrations were much higher than all the three standards, that is to say, the PM 

concentrations in 10 hours measured at the two sites in Beijing urban area were very 

high.  
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Table 4: Statistical Data of Air Particulate Pollution (Yiyuanju, μg/m3) 

  Size of 

  PM0.5 PM1.0 PM2.5 PM5.0 PM10 

Mean 23.48 42.26 64.79 124.09 287.72 

Median 23.68 41.27 69.39 128.55 250.52 

Standard deviation 6.77 15.18 23.25 38.98 112.03 

 

It is clearly to see the mean, median and standard deviation of each size PM. The fine 

particles (PM2.5) taken at Yiyuanju (west of Beijing urban area) had a mean concentration 

of 64.79μg/m3, a median concentration of 69.39μg/m3 and a standard deviation of 

23.25μg/m3 (Table 4). Concentrations of PM taken at two field survey sites from 8:00 am 

to 6:00 pm, incorporating morning, afternoon and evening traffic flow. PM2.5
 rose from 

8:00 am to 9:00 am and fall before noon. There was a sharp increased from 12:00 pm to 

12:30 pm, reaching a peak of 77.72μg/m3 and then decreased sharply from 12:30 pm to 

1:30 pm. The PM2.5 trend upward after 1:30 pm, reaching the highest value at 

116.51μg/m3. The results from the line chart (Figure 11) show the trend of PM0.5 and 

PM1.0 concentrations are similar with PM2.5.  
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Figure 11: Temporal Distribution of Fine PM Concentrations at Yiyuanju 

 

The PM10 taken at Yiyuanju (west of Beijing urban area) had a mean concentration of 

287.72μg/m3, a median concentration of 250.52μg/m3 and a standard deviation of 

112.03μg/m3 (Table 4). Trend of PM10 concentrations from 8:00 am to 6:00 pm at 

Yiyuanju is shown in Figure 12. There was a dramatic decrease of total PM 

concentrations from 8:00 am to 10:00 am and then it rose up slightly. The temporal 

distribution of PM5.0 concentrations displays the same as PM10 concentrations.  
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Figure 12: Temporal Distribution of Total PM Concentrations at Yiyuanju 

 

The mean of PM2.5 concentrations of Shuixingyuan (east of Beijing urban area) is 

76.90μg/m3, with a median of 70.05μg/m3 and a standard deviation of 39.72μg/m3 (Table 

5). 

 

Table 5: Statistical Data of Air Particulate Pollution (Shuixingyuan, μg/m3) 

  Size of 

   PM0.5 PM1.0 PM2.5 PM5.0  PM10 

Mean 23.52 47.17 76.90 127.14 285.17 

Medium 23.99 45.61 70.05 118.08 276.30 

Standard deviation 9.47 23.66 39.72 50.15 79.91 
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Figure 13: Temporal Distribution of Fine PM Concentrations at Shuixingyuan 

 

Based on Figure 13, PM2.5 concentrations at Shuixingyuan rose steadily from 8:00 am to 

11:30 am; while from 11:30 am to 12:30 pm, they increased dramatically and reached a 

peak of 141.79μg/m3 at 12:30 pm; the concentrations of PM2.5 fall from 12:30 pm to 1:00 

pm before rising until another peak which was reached at 146.95μg/m3. PM2.5 

concentrations sharply fall again from 1:30 pm to 3:30 pm. They fluctuated for the 

following two and a half hours until 6:00 pm. Concentrations of PM0.5 and PM1.0 

displayed the similar trend with PM2.5. 

 

Table 5 indicates a mean concentration of PM10 is 285.17μg/m3, with a median 
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concentration of 276.30μg/m3 and a standard deviation of 79.91μg/m3. As shown in 

Figure 14, concentrations of PM10 kept an upward tendency before 1:00 pm; and 

gradually went down from 1:00 pm to 6:00 pm. The temporal distribution of PM5.0 

concentrations displayed similar trend with concentration of PM10.  

Figure 14: Temporal Distribution of Total PM Concentration at Shuixingyuan 

 

Since the different temporal patterns of PM concentrations appeared at the two field 

survey sites of Beijing urban area (Yiyuanju, Shuixingyuan). Student’s T-Test was 

utilized in order to test if there is a significant difference of each site’s mean of each PM 

concentration (the codes of Student’s T-Test in R were attached in Appendix A). 

Student’s T-Test is a method of testing hypotheses about the mean of a small sample 
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drawn from a normally distributed population when the population standard deviation is 

unknown (Fisher, 1987). The results show that all the p-values are above 0.05, which 

means the mean of each PM concentration do not have significant difference between the 

two field survey sites (Yiyuanju,Shuixingyuan).  

 

The Mann-Whitney U-Test was also be used to test if the temporal distributions of PM 

concentrations are similar in shape. The Mann-Whitney U-Test is a non-parametric test 

were utilized in place of an unpaired Student T-Test (Shier, 2004). Based on Figure 11, 

concentrations of PM2.5
 taken at Yiyuanju from 8:00 am to 12:00 pm gradually goes 

down, however, they reach a peak in the period between 12:00 pm and 1:30 pm, and then 

go up. In order to study the temporal distribution of the PM2.5
 concentrations at Yiyuanju, 

the Mann-Whitney U-Test was used to test if there is a significant difference of the time 

periods. The results from Mann-Whitney U Test Calculator indicate that the 

concentrations of PM2.5
 from 1:30 pm to 6:00 pm have significant difference to the 

concentrations of PM2.5
 from 8:00 am to 1:30 pm (the U-value is 19, the critical value of 

U at p < .05 is 24). From Figure 13, we found that the temporal distribution of PM2.5
 

concentrations at Shuixingyuan also need to be analyzed. The results show that PM2.5
 

concentrations at Shuixingyuan from 11:30 am to 3:00 pm are significant different from 

other survey periods (the U-value is 6, the critical value of U at p < .05 is 24). The same 
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method was also used to test if there is significant difference of PM10 concentrations at 

the two survey sites. The results indicated that PM10 concentrations at Yiyuanju from 8:00 

am to 10:00 am are significant different from the PM10 concentrations from 10: 00 am to 

6:00 pm (the U-value is 12, the critical value of U at p < .05 is 15); however, at 

Shuixingyuan, PM10 concentrations from 11:30 am to 3:30 pm have a significant 

difference of other survey periods (the U-value is 15, the critical value of U at p < .05 is 

26).  

 

Because the concentrations of PM0.5 and PM1.0 display the similar trend with PM2.5 at 

Yiyuanju and Shuixingyuan, the differences also be tested by using the Mann-Whitney 

U-Test. The results indicate that the concentrations of PM0.5 and PM1.0 from 1:30 pm to 

6:00 pm have significant difference to the concentrations of them from 8:00 am to 1:30 

pm at Yiyuanju (the U-value is 24, the critical value of U at p < .05 is 26, both PM0.5 and 

PM1.0); PM0.5 and PM1.0 concentrations at Shuixingyuan from 11:30 am to 3:00 pm are 

significant different from other survey periods (the U-value is 7, the critical value of U at 

p < .05 is 24, both PM0.5 and PM1.0). The temporal distribution of PM5.0 concentrations at 

Yiyuanju and Shuixingyuan also have the similar trends with the PM10 concentrations 

measured at the two sites, that is to say, the differences of temporal distributions of PM5.0 

concentrations also need to be analyzed. The results show that PM5.0 concentrations at 
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Yiyuanju do not have significant difference in 10 hours. However, PM5.0 concentrations at 

Shuixingyuan from 11:30 am to 3:30 pm are significant different from other survey 

periods (the U-value is 4, the critical value of U at p < .05 is 26). Table 6 shows the 

different temporal distributions of each PM concentrations at the two sites. 

Table 6: Temporal Distributions of PM Concentrations 

 

Size of 

Profile 

Yiyuanju Shuixingyuan 

PM0.5 8:00am-1:30pm; 

1:30pm-6:00pm 

11:30am-3:00pm; 

8:00am-11:30am, 3:00pm-6:00pm 

PM1.0 8:00am-1:30pm; 

1:30pm-6:00pm 

11:30am-3:00pm; 

8:00am-11:30am, 3:00pm-6:00pm 

PM2.5 8:00am-1:30pm; 

1:30pm-6:00pm 

11:30am-3:00pm; 

8:00am-11:30am, 3:00pm-6:00pm 

PM5.0 No significant difference 11:30am-3:30pm; 

8:00am-11:30am, 3:30pm-6:00pm 

PM10 8:00am-10:00am; 

10:00am-6:00pm 

11:30am-3:30pm; 

8:00am-11:30am, 3:30pm-6:00pm 

 

In summary, there is no significant difference of each PM concentration at the two field 

survey sites measured in 10 hours. However, the PM concentrations are significantly 

different at the different time periods in 10 hours. The reasons of this situation may be the 

traffic flow; but there are no enough evidences to prove. Two temporal profiles (Yiyuanju 

Profile and Shuixingyuan Profile) were conducted in order to normalize entire field 
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survey data collected at different times in a day of the twenty profiles. Based on the 

distances between each twenty-three profile and the two sites (Yiyuanju or 

Shuixingyuan), the temporal profile can be determined to normalize field survey data 

(Table 7). 
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Table 7: Temporal Profiles of Three-three Sites 

 

Locations 

Distance of 

Yiyuanju (m) 

Distance of 

Shuixingyuan (m) 

 

Profile 

Yiyuanju 0.00 14307.07 Yiyuanju 

Weigongcun 4586.63 11571.18 Yiyuanju 

Huangzhuangxiaoqu 7451.26 11394.16  Yiyuanju 

Taipingqiaoxili 3106.03 14548.47 Yiyuanju 

ZiChenyuan 4168.20 17895.91 Yiyuanju 

Zhouzhuangzijiayuan 6035.04 18040.75 Yiyuanju 

Caoqiao 8996.23 16061.25 Yiyuanju 

Dinghuisi 2365.74 15546.26 Yiyuanju 

Huafujingyuan 11361.97 2832.45 Shuixingyuan 

Shuixingyuan 14307.07 0.00 Shuixingyuan 

Xinyuannan Road 13228.81 2591.04 Shuixingyuan 

Zaoyingnanli 14902.53 3508.37 Shuixingyuan 

Anzhenxili 10203.24 4779.75 Shuixingyuan 

Shichang Street 11716.02 5874.11 Shuixingyuan 

Hexieyayuan 14516.28 9398.57 Shuixingyuan 

Zhonghaicheng 14661.12 14194.41 Shuixingyuan 

Fengzhuyuan 10863.07 16914.21 Yiyuanju 

Xinanzhongli 12810.38 10509.02 Shuixingyuan 

Gexinnanlu 10010.12 12906.94 Yiyuanju 

Yinghuazuo 12166.64 9462.94 Shuixingyuan 

Laoqianggen 5970.67 11442.44 Yiyuanju 

Baiwanzhuang Street 3492.28 10718.23 Yiyuanju 

Chuihongyuan 5407.40 14468.00 Yiyuanju 

 

4.2 Result of Spatial Distribution 

4.2.1 Two-Dimensional Spatial Distributions of Air Particulate Pollution 

Based on the two temporal profiles, the coefficients () which were used to normalize the 
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field survey data were defined as: 

=(M/m)*100% 

With 

m: mean of each PM concentration at each survey period (Table 6) within 10 hours at the 

two sites (Yiyuanju, Shuixingyuan); 

M: mean of each PM concentration at the two sites (Yiyuanju, Shuixingyuan) in 10 hours. 

Table 8 shows the coefficients () used to normalize the field data collected at the 

twenty-three profiles. 

Table 8: Coefficients of Each PM Concentration of a)Yiyuanju , b)Shuixingyuan  

 

Time 

Size of 

PM0.5 PM1.0 PM2.5 PM5.0 PM10 

8:00am-1:30pm 112.52% 116.45% 114.27%   

1:30pm-6:00pm 87.06% 84.17% 16.64%   

8:00am-10:00am    100% 71.68% 

10:00am-6:00pm    106.39% 114.08% 

a) 
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Time 

Size of 

PM0.5 PM1.0 PM2.5 PM5.0 PM10 

8:00am-11:30am 130.81% 143.09% 146.70% 

  
3:00pm-6:00pm 130.81% 143.09% 146.70% 

  
11:30am-3:00pm 72.35% 67.13% 65.90% 

  
8:00am-11:30am    136.03% 123.62% 

3:30pm-6:00pm      136.03%  123.63% 

11:30am-3:30pm    73.90% 79.70% 

b) 

 

The field survey shows that PM concentrations are very high both in summer and winter 

2015. From the tables (9-10), we can see the mean of PM2.5 concentrations (238.76μg/m3) 

collected at the twenty-three sites in winter is higher than the mean of PM2.5 

concentrations (145.66μg/m3) collected in summer; the mean of PM10 concentrations 

(466.96μg/m3) in winter is also higher than the mean of PM10 concentrations 

(299.84μg/m3) in summer. In order to test if there is a significant difference of the data 

collected at the twenty-three sites in the two seasons, Student T-Test is used again (the 

codes of Student’s T-Test in R3.4.3 were attached in Appendix B). The results show that 

the concentrations of PM0.5 and PM1.0 do not have significant difference between summer 

and winter 2015; however, the concentrations of PM2.5, PM5.0 PM10 are significant 
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different between summer and winter 2015.  

 

Table 9: Data of Air Particulate Pollution (summer 2015, μg/m3) 

  Size of 

  PM0.5 PM1.0 PM2.5 PM5.0 PM10 

Mean 30.08 76.60 145.66 197.97 299.84 

Highest Value 38.02 110.75 268.64 341.49 571.56 

Lowest Value 19.17 27.34 41.01 78.05 126.01 

 

Table 10: Data of Air Particulate Pollution (winter 2015, μg/m3) 

  Size of 

  PM0.5 PM1.0 PM2.5 PM5.0 PM10 

Mean 32.68 113.96 238.76 305.16 466.96 

Highest Value 42.81 207.40 430.90 571.84 869.24 

Lowest Value 12.88 21.59 32.69 65.78 162.85 

 

In order to study the different spatial distributions of PM concentrations in Beijing urban 

area in the two seasons, spatial interpolation maps were conducted in ArcGIS 

environment (Figure 15-19). 
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a) 
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b) 

Figure 15: PM0.5 Spatial Interpolation Map 

a)summer, b)winter 
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a) 

 



60 

 

 

 

b) 

Figure 16: PM1.0 Spatial Interpolation Map 

a)summer, b)winter 
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a) 
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                                          b)      

Figure 17: PM2.5 Spatial Interpolation Map 

a)summer, b)winter 
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a) 
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b) 

Figure 18: PM5.0 Spatial Interpolation Map 

a)summer, b)winter 
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a) 
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b) 

Figure 19: PM10 Spatial Interpolation Map 

a)summer, b)winter 
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Based on the 0m spatial interpolation maps of each size PM (Figure 15-19), the spatial 

patterns of each size air particle concentrations distributed differently in different 

seasons. Generally, PM0.5，PM1.0，PM2.5 and PM5.0 concentrations distributed similar in 

summer 2015 in Beijing urban area: the concentrations in the east of Beijing was higher 

than the concentrations in the west of Beijing. PM10 had higher concentrations in the 

northeastern part and southwestern part of Beijing in summer 2015. In winter 2015, all of 

the PM concentrations had the same spatial distribution: the concentrations of PM 

decreased from the south to the east of Beijing, that is to say, they may had the same 

sources in the southern part of Beijing. 

 

Figure 15 shows that in summer, the PM0.5 concentrations in the east of Beijing were 

slightly higher than that were in the west of Beijing. However, the concentrations of 

PM0.5 in the south of Beijing were higher than that were in the north in winter; the trend 

of the PM0.5 concentrations in winter increased from the north to south. The spatial 

distribution of PM1.0 was similar with the spatial distribution of PM0.5 both in summer 

and winter (Figure 16). Figure 17 indicates that the highest concentration of PM2.5 in 

summer was 268.64μg/m3, which was located in the northeastern part of the study area; 

while the lowest concentration was 41.01μg/m3 in the southwest of Beijing. In winter, the 

spatial distribution of PM2.5 concentrations were also similar with PM0.5 and PM1.0. The 
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highest concentration of PM5.0 (341.49μg/m3) in summer appeared in the northeastern 

part of Beijing and the concentrations decreased from the northeast to the west, southwest 

and southeast of Beijing (Figure 18). The spatial distribution of PM5.0 concentrations in 

winter was similar with the spatial distributions of PM0.5, PM1.0 and PM2.5. However, the 

distribution of PM10 concentrations was different from the other PM (PM0.5, PM1.0, PM2.5 

and PM5.0) concentrations. According to Figure 19, the highest concentration of PM10 was 

571.56μg/m3 which was located in the southwest of Beijing in summer; the northeastern 

and the southwestern parts of Beijing had high concentrations of PM10 in summer, while 

the northwestern and southeastern parts of Beijing had relative low concentrations of 

PM10. In winter, the trend of PM10 concentrations decreased from south to north with the 

highest concentration of 869.24μg/m3 and the lowest concentration of 162.85μg/m3.  

 

4.2.2 Three-Dimensional Spatial Distributions of Air Particulate Pollution 

The mean values of each size PM concentration at each elevation (0m, 11.2m, 22.4m, 

33.6m and 44.8m) of the twenty-three profiles were shown in Figure 20 and Figure 21.  
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Figure 20: Change of PM Concentration in Summer 2015 

 

 

Figure 21: Change of PM Concentration in Winter 2015 
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As can be seen in Figure 20, in summer 2015, concentrations of PM0.5 shew similarity 

with the increasing elevations; the highest concentration of PM1.0 (76.60μg/m3) appeared 

on the surface (0m), and the concentrations of PM1.0 decreased from surface to 33.6m. 

However, at 44.8 m, the PM1.0 concentration increased again with the value of 

73.86μg/m3. The trend of PM2.5 and PM5.0 concentrations in vertical direction displayed 

similarity with the trend of PM1.0 concentrations in vertical direction; the highest 

concentration of PM10 (299.84μg/m3) also appeared on the surface, while the lowest 

concentration (232.93μg/m3) of PM10 appeared at 22.4m, that is to say, the total PM10 

concentrations decreased from the surface to 22.4m and then increased from 22.4m to 

44.8m. In winter 2015, the concentrations of PM0.5 also show similarity with the 

increasing elevations; the vertical distribution of PM1.0 concentration in winter 2015 were 

same as the vertical distribution of PM1.0 concentration in summer: the highest 

concentration of PM1.0 (113.96μg/m3) appeared on the surface (0m), and they decreased 

from surface to 33.6m. At 44.8 m, the PM1.0 concentration increased again with the value 

of 73.58μg/m3. The trend of PM2.5 and PM5.0 concentrations in vertical direction 

displayed similarity: they decreased from the surface to 22.4m and then increased from 

22.4m to 44.8m. However, the highest concentration of PM10 (466.96μg/m3) appeared on 

the surface, while the lowest concentration (361.43μg/m3) of PM10 appeared at 11.2m, 

PM10 concentration increased from 11.2m to 44.8m in winter 2015 (Figure 21). 
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In order to visualize and compare the different spatial patterns of air particulate pollution 

at different levels of elevations, the PM concentrations spatial distribution maps from 

surface (0m) to 44.8m (0m, 11.2m, 22.4m, 33.6m and 44.8m) were conducted in ArcGIS 

environment (Figures 15-19 and Figure 22-31).  
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d) 

Figure 22: PM0.5 Spatial Distribution Map in Summer 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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According to Figure 15a and Figure 22, the spatial distributions of PM0.5 concentrations 

at 11.2m, 22.4m, 33.6m and 44.8m were similar with the spatial distribution of PM0.5 

concentration on the ground (0m), that is to say, the concentrations PM0.5 increased from 

the west to the east of Beijing at the five levels of elevations in summer 2015. 
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d) 

 

Figure 23: PM0.5 Spatial Distribution Map in Winter 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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Based on Figure 15b and Figure 23, the spatial distributions of PM0.5 concentrations at 

11.2m, 22.4m, 33.6m and 44.8m were also the same as the spatial distribution of PM0.5 

concentration on the ground (0m). The trend of PM0.5 concentrations increased from the 

southern part to the northern part of Beijing in vertical direction in winter 2015. 
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d) 

Figure 24: PM1.0 Spatial Distribution Map in Summer 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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At the altitude of 11.2m, 22.4m, 33.6m and 44.8m, the spatial distributions of PM1.0 

concentrations were similar with the spatial distribution of PM1.0 concentration on the 

ground (Figure 16a and Figure 24). The trend of PM1.0 concentrations increased from the 

western part to the eastern part of Beijing in vertical direction in summer 2015. 
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d) 

Figure 25: PM1.0 Spatial Distribution Map in Winter 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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Spatial distributions of PM1.0 concentrations at 11.2m, 22.4m, 33.6m and 44.8m were 

different from spatial distribution of PM1.0 concentrations at surface in winter 2015. 

Figure 25 shows the concentrations of PM1.0 in winter at the four levels of elevations 

decreased from the southeast to the northwest of Beijing.  
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d) 

Figure 26: PM2.5 Spatial Distribution Map in Summer 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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At the altitude of 11.2m and 22.4m, the spatial distributions of PM2.5 concentrations were 

similar with the spatial distribution of PM2.5 concentration on the ground (Figure 17a and 

Figure 26). However, at 33.6m, the concentrations of PM2.5 in the eastern part of Beijing 

were higher than the western part of Beijing; at 44.8m, the concentrations of PM2.5 

decreased from the northeast to the southwest of Beijing. 
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d) 

Figure 27: PM2.5 Spatial Distribution Map in Winter 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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The concentrations of PM2.5 at 11.2m, 22.4m and 33.6m distributed same as the 

concentrations of PM2.5 on the ground (Figure 17b, Figure 27a, b, c), they increased from 

the southern part to the northern part of Beijing; while the concentrations of PM2.5 at 

44.8m increased from the northwest to the southeast of Beijing in winter 2015 (Figure 

27d).  
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d) 

Figure 28: PM5.0 Spatial Distribution Map in Summer 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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The spatial distribution of PM5.0 concentrations at 11.2m and 44.8m were similar with the 

spatial pattern of PM5.0 concentrations on the ground, they decreased from the northeast 

to the west, southwest and southeast of Beijing in summer (Figure 18a, Figure 28a, d). 

The concentrations of PM5.0 distributed homogeneously at 22.4m and 33.6m levels.  
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d) 

Figure 29: PM5.0 Spatial Distribution Map in Winter 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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The concentrations of PM5.0 at 33.6m distributed similarly to the concentrations of PM5.0 

at surface (Figure 18b, Figure 29c), they decreased from the south to the north in Beijing. 

However, the concentrations of PM5.0 at 11.2m and 22.4m decreased from the southwest 

to the northeast of Beijing (Figure 29a, b). By contrast, the concentrations of PM5.0 at 

44.8 decreased from the southeastern part to the northwestern part of Beijing in winter 

2015 (Figure 29d).  
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d) 

Figure 30: PM10 Spatial Distribution Map in Summer 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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At the altitude of 11.2m, the concentrations of PM10 decreased from the northeast to the 

west, southwest and southeast of Beijing (Figure 30a). However, the concentrations of 

PM10 at 22.4m, 33.6m and 44.8m distributed homogeneously in summer 2015 (Figure 

30b, c, d). The spatial distributions of PM10 concentrations at the four levels of elevations 

were different from the spatial distribution of PM10 concentrations on the ground. 
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d) 

Figure 31: PM10 Spatial Distribution Map in Winter 

a)11.2m; b)22.4m; c)33.6m; d)44.8m 
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As it is shown in Figure 19b and Figure 31b, the concentrations of PM10 at 22.4m 

distributed the same as the concentrations of PM10 on the ground. At the altitude of 11.2m, 

22.4m and 44.8m, the concentrations of PM10 decreased from the southeast to the 

northwest of Beijing. 

 

In summary, the spatial distribution maps of each PM concentration at different altitudes 

show that the concentrations of different size PM had different spatial patterns in vertical 

direction. The spatial distributions of PM0.5 and PM1.0 concentrations were the same as 

their spatial distributions on the ground. However, the spatial distributions of PM2.5, 

PM5.0 and PM10 concentrations were different from their spatial distributions on the 

ground. This could be caused by the various factors, in particular, meteorological factors. 

 

4.2.3 Spatial Distributions of Real Property Values 

Table 11: Data of Real Property Values (USD/m2) 

 June 2015 December 2015 

Mean 8188.75 8778.47 

Highest Value 11797.24 14442.85 

Lowest Value 4212.52 4892.08 

 

According to Table 11, the average values of real property at the twenty-three sites was 

8188.75USD/m2 in June 2015 and 8778.47USD/m2 in December 2015. Figure 32 shows 
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the spatial distributions of real property values in June (Figure 32a) and December 

(Figure 32b) 2015. Based on the figure, the spatial distribution of real property values in 

June 2015 were the same as the real property values in December 2015. The high values 

appeared in the central and northwestern part of Beijing urban area both in June and 

December 2015; and the real property values decreased from the northwest to the 

southeast of Beijing.       
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a) 

 



124 

 

 

 

b) 

Figure 32: Spatial Distribution of Real Property Value 

a)June, b)December 
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4.2.4 Spatial Relations to Distributions of Air Particulate Pollution and Real Property 

Values 

The Geographically Weighted Regressions (GWR) for each of the five particle 

concentrations and the real property values in summer 2015 (Figure 33a) and winter 2015 

(Figure 33b) were conducted. Condition numbers (CN) are diagnostic evaluators of local 

collinearity; the values of CN must be smaller than 30 in order to achieve a valid 

geographic regression (ArcMap, 2016).   

 

The concentrations of PM had a small negative coefficient (-2.18) on average in summer, 

and they also had a relative small negative coefficient (-3.79) on average in winter in the 

study region with real property data (Figure 33). The coefficients represent the strength 

and type of relationship between the air particulate pollution and the real property values. 

The negative coefficients represent they had negative relationships and the small 

coefficients indicate these varieties had the weak relationships. The PM concentrations 

impose a negative impact on the real property values in the study area. The reported 

highest CN of total PM concentrations and real property values in summer is 7.53 and 

that in winter is 9.03. The results suggest that the concentrations of PM have a negative 

impact on real property values in the region, but they do not have causal relationship, that 

is to say, air particulate pollution is not a criterion of real estate choice. The mean of local 
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R2 equals to 0.21 (summer) and 0.17 (winter) The low values indicate that both the two 

local models are performing poorly. Because of the limited field data of real property 

values, the current prediction of GWR model might not be accurate. In the future, more 

real property data and more localized impact analyses of particulate matter concentrations 

on real property values are needed.  
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b) 

Figure 33: GWR Regression Residual Map 

a)summer, b)winter  
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5. Conclusion 

5.1 Temporal Distributions of Air Particulate Pollution 

According to the data of field survey, the PM concentrations are significantly different at 

the different time periods in 10 hours. The trend of PM0.5 and PM1.0 in 10 hours displayed 

similar with the trend of PM2.5 at both the western part (Yiyuanju) and the eastern part 

(Shuixingyuan) of Beijing. In addition, the temporal change of PM5.0 concentrations 

displayed the same trend as PM10 concentrations at both the west (Yiyuanju) and the 

eastern part (Shuixingyuan) of Beijing. Based on the different temporal distributions of 

PM concentrations, two temporal profiles (Yiyuanju Profile and Shuixingyuan Profile) 

were conducted in order to normalize the field survey data collected at different times in a 

day of the twenty-three vertical profiles.  

 

5.2 Two Dimensional (2D) Spatial Distributions of air particulate and Real Property 

Values 

The field survey shows that PM concentrations are very high both in summer and winter 

2015 in Beijing. In this study, the concentrations of PM0.5，PM1.0，PM2.5 and PM5.0 

similarly distributed in summer 2015 in Beijing urban area: the concentrations in the east 

of Beijing was higher than the concentrations in the west of Beijing; while, the 

concentrations of PM10 were higher in the northeastern part and southwestern part of 
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Beijing than the northwestern part and southeastern part of Beijing in summer 2015. In 

winter 2015, the concentrations of all size PM decreased from the south to the north of 

Beijing, that is to say, they may had the same sources in the south of Beijing. The spatial 

distribution of real property values in June 2015 were the same as the spatial distribution 

of real property values in December 2015. In 2015, the high real property values 

appeared in the central and northwestern part of Beijing urban area.    

 

Based on the two GWR analysis of air particulate pollution and real property values in 

the year of 2015 (summer and winter), we found that the total concentrations of PM have 

some impact on real property values in Beijing urban area, but there is no significant 

relationship between the two factors, or in other words, they do not have causal 

relationship. Air particulate pollution is not a criterion of real estate choice. However, the 

limited field data of real property values may be the reason of the inaccurate prediction of 

GWR models. Tang et al. (2009) conducted GWR models for analyzing the spatial 

relationships of air particulate and respiratory diseases in Beijing. They found that spatial 

concentrations of PM0.5, PM1.0, and PM3.0 have positive impacts on occurrences of 

residential respiratory diseases in 2008.  

 

5.3 Three Dimensional (3D) Spatial Distributions of Air Particulate Pollution 
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The vertical distribution of PM concentrations in summer were different from it is in 

winter. The concentrations of PM0.5 did not have significant differences as the elevation 

increases both in summer and winter 2015; PM1.0 concentrations distributed similarly in 

vertical direction in summer and winter. The highest concentrations of PM2.5 and PM5.0 

appeared on the ground in summer, while the highest concentration of PM2.5 and PM5.0 

appeared at 44.8m in winter. The concentrations of PM10 decreased from the ground to 

22.4m and then increased from 22.4m to 44.8m in summer; and they decreased from the 

ground to 11.2m and then increased to 44.8m in winter. The three-dimensional spatial 

distribution maps show that the concentration of each PM size in vertical direction had 

different spatial patterns. The concentrations of PM0.5 and PM1.0 at the four levels of 

elevations distributed the same as their spatial distributions on the ground; while, the 

concentrations of PM2.5, PM5.0 and PM10 were different from their spatial distributions on 

the ground.  

 

5.4 The Further Research of Studying Spatial Relationships of Air Particulate 

Pollution and Real Property Values 

In this research, we also analyzed the spatial relationships of LULC and the 

concentrations of air particulate pollution. According to Figure 34 and Figure 35, the blue 

color represents rivers; black color represents streets and highways; grey color represents 
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buildings; and green color represents vegetation. The major land use in Beijing urban 

area within the “Fourth Ring Road” is residential and commercial buildings (Figure 34). 

By contrast, vegetation cover occupies the major percentage of land use if entire Beijing 

municipal jurisdiction is accounted (Figure 35). The vegetation distribution in the western 

and northwestern parts of Beijing may be one of reasons for the relative low 

concentrations of some particulate matter (such as PM0.5) in the west of Beijing. In 

addition, the high real property values appeared in the central and northwestern part of 

Beijing urban area that may also because of the vegetation distribution. More evidences 

(such as the area or percentage of vegetation) need to be provided to run a spatial 

regression to test the possible relationships of LULC, PM concentrations and real 

property values in the future. 
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Figure 34: LULC Classification of Beijing Urban Area 
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Figure 35: LULC Classification of Beijing (including urban and suburban areas) 

 

5.5 Limitations of the Study 

Owing to only one laser particle counter we have, concentrations of air particulate 

pollutions in the twenty-three sampling profiles in the urban districts in Beijing were not 

recorded in the same time and same day. However, data collected in 10 hours in one day 

were utilized to standardize the data collected in the twenty-three profiles. In the future, 

more air particulate pollution and more real property data should be analyzed for 

studying the spatial relationships between air particulate pollution and real property 

values. 
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Appendix A 

PM0.5 

yiyuanju05<-c(24.16,26.01 ,27.84,23.68,19.28,14.70,16.50,15.38,15.79,28.98,20.92,17.1

8,16.67,17.02,20.58,26.52,29.07,30.01,31.91,33.62,37.33) 

 

shuixingyuan05<-c(9.12,11.32,12.76,12.39,11.92,15.03,17.33,19.61,34.33,37.22,35.18,38

.01,36.37,33.74,25.62,24.18,25.87,25.34,21.94,22.57,23.99) 

 

var.test(yiyuanju05,shuixingyuan05) 

#the result shows that the p-value is 0.1415 (>0.05), which means the two groups have 

equal variance. 

  

t.test(yiyuanju05,shuixingyuan05,var.equal=TRUE) 

#the result shows that the p-value is 0.9897, which means the two groups do not have 

significant difference of the two means. 

 

PM1.0 

yiyuanju10<-c(42.97,46.41,50.01,41.27,32.78,24.03,27.06,25.03,25.76,54.05,37.96,28.15

,27.34,27.96,34.02,48.24,54.06,56.81,61.55,65.93,75.97) 

 

shuixingyuan10<-c(15.12,18.65,21.24,20.64,20.07,26.03,31.11,36.08,74.17,83.44,76.47,

86.69,82.05,72.70,50.51,46.54,50.59,48.77,41.34,42.84,45.61) 

 

var.test(yiyuanju10,shuixingyuan10) 

#the result shows that the p-value is 0.05368 (>0.05), which means the two groups have 

equal variance. 

 

t.test(yiyuanju10,shuixingyuan10,var.equal=TRUE) 

#the result shows that the p-value is 0.4273, which means the two groups do not have 

significant difference of the two means. 

 

PM2.5 

yiyuanju25<-c(72.71,74.26,76.71,61.93,50.77,37.55,41.69,37.99,38.41,77.72,69.39,41.26

,40.24,41.48,49.66,72.12,81.03,85.28,93.17,100.69,116.51) 

 

shuixingyuan25<-c(26.30,31.23,36.75,36.46,33.72,41.91,50.59,59.25,123,141.79,127.51,

146.95,137.42,118.10,79.48,72.91,78.06,74.90,62.95,65.64,70.05) 



152 

 

 

 

 

var.test(yiyuanju25,shuixingyuan25) 

#the result shows that the p-value is 0.02077(<0.05), which means the two groups have 

unequal variance. 

 

t.test(yiyuanju25,shuixingyuan25,var.equal=F) 

#the result shows that the p-value is 0.2365, which means the two groups do not have 

significant difference of the two means. 

 

PM5.0 

yiyuanju50<-c(217.05,167.93,142.06,110.40,102.20,82.70,92.47,84.90,75.76,130.01,152.

14,84.43,81.99,87.48,97.09,128.55,135.67,137.66,151.37,159.26,184.79) 

 

shuixingyuan50<-c(55.95,64.50,84.97,85.73,73.34,83.19,97.94,115.66,190.49,212.31,18

9.33,216.08,202.26,175.44,126.52,120.23,122.65,120.17,104.49,110.59,118.08) 

 

var.test(yiyuanju50,shuixingyuan50) 

#the result shows that the p-value is 0.2679 (>0.05), which means the two groups have 

equal variance. 

 

t.test(yiyuanju50,shuixingyuan50,var.equal=T) 

#the result shows that the p-value is 0.827, which means the two groups do not have 

significant difference of the two means. 

 

PM10 

yiyuanju100<-c(698.31,454.79,335.26,250.52,268.04,218.16,240.22,224.41,189.35,248.3

3,265.75,208.40,198.10,230.81,283.59,274.85,249.16,301.07,322.41,349.69) 

 

shuixingyuan100<-c(136.25,168.92,242.27,236.60,184.25,200.61,246.64,308.30,388.64,

408.98,378.29,416.07,382.37,362.09,287.14,288.45,269.23,276.30,261.40,268.64,277.14

) 

 

var.test(yiyuanju100,shuixingyuan100) 

#the result shows that the p-value is 0.1217 (>0.05), which means the two groups have 

equal variance. 

 

t.test(yiyuanju100,shuixingyuan100,var.equal=T) 

#the result shows that the p-value is 0.8613, which means the two groups do not have 
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significant difference of the two means. 
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Appendix B 

Summer and Winter 

summerPM0.5<- 

c(19.37,19.63,23.79,38.02,31.73,21.18,21.10,25.14,31.98,31.40,24.67,36.44,36.54,19.17,

26.32,27.07,27.27,30.70,29.65,28.29,26.88,27.81) 

 

winterPM0.5<- 

c(36.75,35.99,35.76,42.18,42.81,40.69,41.22,28.65,28.69,30.88,30.29,26.54,36.42,36.43,

12.88,14.38,16.47,18.30,18.40,17.04,17.12,24.94,20.91) 

 

var.test(summerPM0.5, winterPM0.5) 

#the result shows that the p-value is 0.01076(<0.05), which means the two groups have 

unequal variance. 

 

t.test(summerPM0.5, winterPM0.5,var.equal=F) 

#the result shows that the p-value is 0.6878, which means the two groups do not have 

significant difference of the two means. 

 

summerPM1.0<- 

c(27.81,27.34,33.50,80.84,64.81,33.53,30.91,39.04,95.38,100.79,88.37,57.80,110.75,110.

37,42.41,69.17,70.42,71.36,110.44,93.60,88.47,83.13,83.46) 

 

winterPM1.0<- 

c(193.33,186.36,179.74,207.40,194.89,196.76,195.22,130.06,106.46,87.24,57.32,50.42,9

8.56,90.08,21.59,24.29,27.65,30.64,29.57,30.28,48.00,36.19) 

 

var.test(summerPM1.0, winterPM1.0) 

#the result shows that the p-value is 7.664e-05(<0.05), which means the two groups have 

unequal variance. 

 

t.test(summerPM1.0, winterPM1.0,var.equal=F) 

#the result shows that the p-value is 0.06812, which means the two groups do not have 

significant difference of the two means. 

 

summerPM2.5<- 

c(43.52,41.01,50.08,140.03,106.97,53.42,43.37,61.80,202.70,214.83,171.93,99.45,235.9

6,230.44,70.09,119.24,121.58,268.64,207.93,185.39,167.93,167.84) 
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winterPM2.5<- 

c(430.90,320.14,315.90,396.95,347.34,425.02,381.62,304.23,208.84,330.74,119.45,104.4

6,255.05,209.52,32.69,37.43,41.04,46.95,56.18,58.87,97.89,66.91) 

 

var.test(summerPM2.5, winterPM2.5) 

#the result shows that the p-value is 0.002536(<0.05), which means the two groups have 

unequal variance. 

 

t.test(summerPM2.5, winterPM2.5,var.equal=F) 

#the result shows that the p-value is 0.04586 (<0.05), which means the two groups have 

significant difference of the two means. 

 

summerPM5.0<- 

c(84.38,78.05,100.46,332.10,174.31,102.96,78.21,142.12,299.73,324.37,332.01,112.22,

166.14,168.01,162.89,341.49,252.81,226.10,209.45,237.56) 

 

winterPM5.0<- 

c(571.84,496.35,442.03,509.59,522.77,536.57,575.12,552.12,378.03,551.61,177.69,174.

00,504.13,405.15,65.78,74.05,74.54,81.42,83.08,105.76,105.30,158.02,111.16) 

 

var.test(summerPM5.0, winterPM5.0) 

#the result shows that the p-value is 0.0007396(<0.05), which means the two groups have 

unequal variance. 

 

t.test(summerPM5.0, winterPM5.0,var.equal=F) 

#the result shows that the p-value is 0.01869(<0.05), which means the two groups have 

significant difference of the two means. 

 

summerPM10<- 

c(136.23,126.01,167.36,422.52,282.49,171.57,132.59,304.68,410.05,452.35,388.63,262.

20,571.56,439.84,164.85,223.91,223.21,206.40,370.73,277.37,251.24,230.26,296.29) 

 

winterPM10<- 

c(831.67,786.84,700.50,844.41,796.44,869.24,850.73,724.69,649.56,668.95,261.51,325.

84,677.61,620.34,162.85,183.69,149.78,205.55,137.66,258.58,226.47,278.09,186.40) 

 

var.test(summerPM10, winterPM10) 
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#the result shows that the p-value is 0.0001611(<0.05), which means the two groups have 

unequal variance. 

 

t.test(summerPM10, winterPM10,var.equal=F) 

#the result shows that the p-value is 0.002465(<0.05), which means the two groups have 

significant difference of the two means. 
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