
Int. J Sup. Chain. Mgt Vol. 1, No. 1, June 2012

39

Using Node Combination Method in
Time-expanded Networks

Sahar Abbasi

Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Esfahan, Iran
Abbasi.iaun.ac@gmail.com

Abstract - This study concerns the problem of finding
shortest paths in time-expanded networks by repeatedly
combining the source node’s nearest neighbor, time-
expanded network is derived from dynamic network G=
(V,A,T) and contains one copy of the node set of the
underlying ‘static’ network for each discrete time step
(building a time layer). we use node combination (NC)
method in networks which arc costs can vary with time,
each arc has a transit time and parking with a
corresponding time-varying cost is allowed at the nodes.
The NC algorithm finds the shortest paths with three
simple iterative steps: find the nearest neighbor of the
source node, combine that node with the source node,
and modify the costs on arcs that connect to the nearest
neighbor. The NC algorithm is more comprehensible
and convenient for programming as there is no need to
maintain a set with the nodes’ distances.

Keywords - shortest path, time-expanded networks,
node combination; Node Combination Algorithm

1. Introduction

The problem of finding the shortest path between two
nodes lies at the heart of network flows. It is alluring
to both researchers and to practitioners for several
reasons: (1) they arise frequently in practice since in
a wide variety of application settings we wish to send
some material(e.g., a computer data packet, a
telephone call, a vehicle) between two specified
points in a network as quickly, as cheaply, or as
reliably as possible; (2) they are easy to solve
efficiently; (3) as the simplest network models, they
capture many of the most salient core ingredients of
network flows and so they provide both a benchmark
and a point of departure for studying more complex
network models; and (4) they arise frequently as sub
problems when solving many combinatorial and
network optimization problems. Even though shortest
path problems are relatively easy to solve, the design
and analysis of most efficient algorithms for solving
them requires considerable ingenuity.
 Consequently, the study of shortest path
problems is a natural starting point for introducing
many key ideas from network flows, including the
use of clever data structures and ideas such as data
scaling to improve the worst case algorithmic
performance [1]. Researchers have studied several
different types of (directed) shortest path problems:

 1. Finding shortest paths from one node to all
other nodes when arc lengths are nonnegative
 2. Finding shortest paths from one node to all
other nodes for networks with arbitrary arc lengths
 3. Finding shortest paths from every node to
every other node.
 4. Various generalizations of the shortest path
problem.

 Time-dependent graphs are useful for real word
applications. A simple example is that of a computer
communications network composed of dial up links
each with its individual dialing schedules. Since
delays depend on these predetermined schedules,
finding the best route for a message from source to
destination involves the computation of time-
dependent functions [2]. Many types of networks
exhibit this kind of dynamic behavior. This paper
develops an algorithm to find the dynamic shortest
path from the source node to the sink node in acyclic
networks with the following specifications. Consider
a network that represents a city with the usual rush
hour traffic patterns. The dynamic shortest path
problem is a generalization of the shortest path
problem whose aim is to find a path of minimum cost
(length) through a network for which
 1. Each arc has a transit time which specifies the
amount of time to traverse through each arc,
 2. Parking (or waiting) is permitted at the nodes
of the network for later departure, and Network
characteristics such as arc transit times and costs (or
length) can change over time and are known for all
values of time.

 The aim of this paper is to study the dynamic
shortest path problem in a discrete time setting with
positive transit times. We show that the problem is
reduced to a classical shortest path problem on a so-
called time-expanded network. This allows us to
apply algorithms that are available in the classical
case to the dynamic case. Then we use Node
Combination (NC) algorithm which introduced by
Xin Lu in 2011 to implement Dijkstra’s algorithm,
with which the source node iteratively combines
nodes into a new source node and updates the edge
weights of the remaining node. When all of the nodes
in the connected component of the source node are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ExcelingTech Publishing Company (E-Journals)

https://core.ac.uk/display/230744235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Int. J Sup. Chain. Mgt Vol. 1, No. 1, June 2012

40

finally combined into a single node, the shortest paths
from the source node to all other nodes are known.
With the method of node combination, the process of
finding shortest paths is comparatively simple and
much more vivid than with Dijkstra’s algorithm [3].
 The paper is organized as follows: After review
of the shortest path problem in Section 2, we define
necessary notation of the dynamic shortest path
problem and Node Combination in Section 3, then we
use Node Combination (NC) algorithm for solving
this problem and summarize our conclusions the
related problems in Sect. 4, 5 respectively.

2. Literature Review

Shortest path algorithms have been a subject of
extensive research, resulting in a number of
algorithms for various conditions and constraints [4–
6]. Some algorithms that are based on dynamic
programming, zero-one programming and also
network flows theory can be found in [7]. Deo and
Pang [8] provided a taxonomy and annotation for the
shortest path algorithms. When arc lengths are
random variables, the problem will become more
difficult. Martin found the distribution function of
shortest path and also the expected value of shortest
path in stochastic networks, in which the arc lengths
are independent random variables with polynomial
distribution functions, in the form of multiple
integrals [9].
 Frank computed the probability that the time of
the shortest path of the network is smaller than a
specific value [10]. He assumed that the arc lengths
are continuous random variables. Mirchandani
presented another method for obtaining the
distribution function of shortest path in stochastic
networks [11]. It is not required to solve multiple
integrals in this paper, but this method can only be
used for the special case where arc lengths are
discrete random variables.
 Among the various shortest path algorithms
developed, Dijkstra’s algorithm is probably the most
well-known. Though the efficiency and various
applications of Dijkstra’s algorithm have been widely
studied [12], Dijkstra’s algorithm may not be easily
understood, especially when implementing the
labeling method [13].The general properties and
algorithms have been discussed in both discrete time
and continuous time settings by Ahuja et al. [14], Cai
et al. [15], Chabini [16] Orda and Rom [2] among
others.
 The problem considered in this paper is that of a
dynamic network, where the weights (costs) Cij(t)
change as a function of time. Given a dynamic
network G = (V, E, T) with discrete-time consists of a
set of nodes V, (|V| = n), node set V = {1, 2, . . . , n}, a
set of arcs E, (|E| = m), arc set E ⊆ V × V and a fixed
time horizon T �R+.

 We assume that every pair of nodes is connected
by at most one arc. Each arc (i, j) � E has an
associated transit time λi,j , if a vehicle leaves node i
at time t along the arc (i, j) then it arrives at node j at
time t + λi,j. we define a node-time pair to be a
member of V ×{0,1,…,T-1}. A discrete-time dynamic
path from node-time pair (i, α) to node-time pair (j,
β) is a sequence of distinct node-time pairs as P : (j,
α) = (i1, t1), (i2, t2), . . . , (is , ts) = (j, β), in which
either (ik , ik+1) ∈ E and ��+1= ��+��� ,��+1 , in which
case traffic leaves node ik for node ik+1 at time tk and
arrives at tk+1, or ik = ik+1, in which case parking
occurs at node ik at the time step tk+1. Such a sequence
is called a discrete-time dynamic cycle if (i, α) = (j, β)
and the other node-time pairs are distinct.
 The cost of a dynamic path P is defined by where
ci,j (t) is the traversal cost along arc (i, j) at time t, and
���() is the parking cost at node i at time t. A path P
is said to be a dynamic shortest path from to node-
time pair (i,α) to node-time pair (j, β), if Cost [P] ≤
Cost [P'] for all dynamic paths P’ from (i,α) to (j, β).
We assume that the dynamic network G contains a
dynamic path from node-time pair (1,0) to every
other node-time pair (i, t) by introducing artificial
arcs (1,i) joining node 1 to node i for each node i � V
\{ 1} .
 Each artificial arc (1, i) has a zero transit time
and a large traversal cost. It is clear that no such arc
would appear in a dynamic shortest path from (1, 0)
to any node-time pair (i,t) unless network G contains
no dynamic path from (1,0) to (i,t) without artificial
arcs [17].

2.1 Time-expanded Network

Ford and Fulkerson introduce the notion of time-
expanded networks. A time-expanded network
contains one copy of the node set of the underlying
‘static’ network for each discrete time step (building
a time layer). For a dynamic network G= (V,A,T) the
time expanded network GT= (VT,AT) is defined as
follows: A time-expanded network of G, denoted by
G(
),where
={ �0,�1,…,��} contains p+1 copies of
V, denoted by V0, V1,…, Vp ,in which Vq-1
corresponds to the time step tq-1 for q = 1, . . . , p −1,
and Vp to the time horizon T.
 Subsequently, index q varies from 1 to p. The
copy of node i ∈ V in Vq-1 is denoted by iq-1. For each
arc (i,j) � E and each time ��−1�
 with 0≤ ��−1+��,≤�,
Traversing through arc(iq-1, jq') where, tq' = tq-1+��,
corresponds to leaving node i at time tq-1 and arriving
at node j at time tq'. Hence, arc (iq-1, jq) has an
associated cost ci, j (tq−1).
 For each node i , there is a holdover arc from iq−1
to iq. Traveling through arc (iq−1, iq) corresponds to
the parking at node i from time tq−1 to tq . So holdover
arc (iq−1, iq) has an associated cost fi (tq−1). An

Int. J Sup. Chain. Mgt

illustration of a time-expanded network is given in
Fig. 1.

Figure 1. A network G with transit times on the arcs

is given on the left hand side
On the right side, corresponding time
network G (
) with respect to the partition

depicted [18]

2.2 Node Combination

The fundamental idea of the NC algorithm is to
combine nodes instead of maintaining the labeling
sets in Dijkstra’s algorithm. Suppose that all nodes in
the network are connected by ropes. The source node
is placed in a pool, and other nodes are successively
dragged into the pool one by one. Over time, there
will be fewer and fewer nodes outside, and finally all
nodes will have been dragged into the pool. The
combined nodes correspond to the set of solved
nodes whose distances have been established in
Dijkstra’s algorithm. The adjacent neighbors of the
combined node correspond to the set of potential
nodes from which the closest one is picked. In the
meantime, we can update the edge weights to store
the distance labels from the source node, instead of
maintaining a vector of distances, making the
procedure more comprehensible [3].

3. Node Combination Algorithm

Given a nonnegative time-expanded network G
(VT, ET, C) with NT nodes let CNT×NT

matrix, node-time pair (1,0) be the source node,
the vector whose element d(i,tα)
distance between source node-time pair (1,0) to
node-time pair (i,tα), then iterations of NC algorithm
can be described as follows:

Step 0 Initialization . Set d(1,0)=0

Step 1 Find the nearest neighbor
(i,tα) from the neighbors of (1,0), which makes
C1i(0)= min{ C(1,0)(1,1), C(1,0)(i,t
C1i(0).

expanded network is given in

network G with transit times on the arcs
n the left hand side.

corresponding time-expanded
respect to the partition
 is

The fundamental idea of the NC algorithm is to
combine nodes instead of maintaining the labeling

algorithm. Suppose that all nodes in
the network are connected by ropes. The source node
is placed in a pool, and other nodes are successively
dragged into the pool one by one. Over time, there
will be fewer and fewer nodes outside, and finally all

will have been dragged into the pool. The
combined nodes correspond to the set of solved
nodes whose distances have been established in
Dijkstra’s algorithm. The adjacent neighbors of the
combined node correspond to the set of potential

e closest one is picked. In the
meantime, we can update the edge weights to store
the distance labels from the source node, instead of
maintaining a vector of distances, making the

].

Node Combination Algorithm

expanded network GT =
NT×NT be the cost

be the source node, d be
) is to save the

time pair (1,0) to
then iterations of NC algorithm

Find the nearest neighbor. Select (1, 1) or
) from the neighbors of (1,0), which makes

C(1,0)(1,1), C(1,0)(i,tα)}. let d(i,tα)=

If there are no adjacent nodes to (1,0)

Step 2 Combine nodes. Delete (i,t
If V =∅, stop.

Step 3 Modify edge weights. For each arc
((i,tα),(j,tβ)), Update C(1,0)(i,t
C1i(0)+C((i,tα),(j,tβ))}

Go to Step 1.

Theorem 3.1 NC algorithm solves the Single
Shortest Path problem in an increasing order of
(i,tα).

Theorem 3.2 Given a Time-expanded network
(VT, ET, C) with nonnegative arc costs and a source
node (1,0) � VT , NC algorithm computes d
every (i,tα) � VT.
For proofs these theorems refer

4. Discussions

The NC algorithm can be easily implemented to find
the shortest paths, not just the distances.
 Let p(1,0)(i,tα)(1<i<NT) be the shortest path from the
source node(1,0) to node (i,tα),
last node on p(1,0)(i,tα). To record
declare a vector P with length of
all the elements as(1,0). If C(1,0)(i,t

3 (C(1,0)(i,tα) ← C(1,0)(j,tβ) C(j,tβ)(k,t

 When the NC algorithm terminates,
information of shortest paths between and all the
other nodes. To find the shortest path between
time pair (1,0) and node-time pair (i,t
from P (j,tβ) : if u(1,0)(j,tβ) =(k,tθ
k,tθ),…, till
P (k,tθ)=(1,0).

The shortest path is:
(1,0),..., P(P(P(j,tβ))),..., P(

5. Conclusions

In this paper we considered the dynamic shortest path
problem, motivated by its applications in dynamic
minimum cost flows. We showed that this problem is
equivalent to a classical shortest path problem in a
so-called time-expanded network. Using the NC
algorithm, we found the shortest path by node
combination instead of by labeling operations. The
difference between the NC algorithm and Dijkstra’s
algorithm is, first, the set of visited (solved) nodes
whose distances have been established. In the NC
algorithm, nodes are combined into the new source
node, which means that we need not maintain this set.

 Vol. 1, No. 1, June 2012

41

If there are no adjacent nodes to (1,0) , stop.

. Delete (i,tα) , V=V-(i,tα).

. For each arc-time pair
C(1,0)(i,tα)=min{ C(1,0)(i,tα) ,

NC algorithm solves the Single-Source
Shortest Path problem in an increasing order of d

expanded network GT =
with nonnegative arc costs and a source

algorithm computes d(i,tα) for

For proofs these theorems refer to [2].

The NC algorithm can be easily implemented to find
the shortest paths, not just the distances.

be the shortest path from the
, u(1,0)(i,tα) be the second

To record u(1,0)(i,tα) we can
with length of NT , and initialize

(1,0)(i,tα) is updated in Step

,tθ)), set P (j,tβ)= (k,tθ).

When the NC algorithm terminates, P records the
information of shortest paths between and all the
other nodes. To find the shortest path between node-

time pair (i,tα). We can trace
θ) , than u(1,0)(k,tθ)= P (

(P(j,tβ)),P(j,tβ), (j,tβ)

In this paper we considered the dynamic shortest path
problem, motivated by its applications in dynamic
minimum cost flows. We showed that this problem is
equivalent to a classical shortest path problem in a

expanded network. Using the NC
gorithm, we found the shortest path by node

combination instead of by labeling operations. The
difference between the NC algorithm and Dijkstra’s
algorithm is, first, the set of visited (solved) nodes
whose distances have been established. In the NC

thm, nodes are combined into the new source
node, which means that we need not maintain this set.

Int. J Sup. Chain. Mgt Vol. 1, No. 1, June 2012

42

 Second, the relaxation is done on the arc cost
directly, which means that no additional memory or
CPU-cycles are needed to record the temporary
distances. Third, the NC algorithm is carried out by
repeatedly finding the source node’s nearest
neighbor, which makes the process of finding
shortest paths more comprehensible and vivid. Node
combination makes the process of finding the shortest
paths much more straightforward, Comprehensible,
and memory-sparing.

References

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network
 Flows: Theory, Algorithms, and Applications.
 Prentice-Hall, Inc., New Jersey (1993).
[2] A.Orda, R. Rom, Distributed shortest-path
 protocols for time-dependent networks,
 Distributed Computing 10 (1) (1996) 49–62.
[3] Xin Lu, Martin Camitz, Finding the Shortest
 Paths by Node Combination, Appl. Math.
 Comput. (2011), doi: 10.1016/j.amc.2011.01.019.
[4] E.W. Dijkstra, A note on two papers in
 connection with graphs, Numeriske
 Mathematics 1 (1959) 269– 271.
[5] D. Eppstein, Finding the k shortest paths, SIAM
 Journal on Computing 28 (2) (1998) 653–674.
[6] R.W. Floyd, Algorithm 97: Shortest paths,
 Communications of the ACM 5 (1962) 345.
[7] M. Bazaraa, J. Jarvis, H. Sherali, Linear
 Programming and Network Flows, second ed.,
 Wiley, New York, 1990.
[8] J. Martin, Distribution of time through a directed
 acyclic network, Operations Research 13 (1965)
 46– 66.
[9] N. Deo, C. Pang, Shortest path algorithms:
 Taxonomy and annotation, Networks 14 (1984)
 275–323.
[10] H. Frank, Shortest paths in probabilistic graphs,
 Operations Research 17 (1969) 583–599.
[11] P. Mirchandani, Shortest distance and reliability
 of probabilistic networks, Computer and
 Operations Research 3 (1976) 347–355.
[12] B.V. Cherkassky, A.V. Goldberg and T. Radzik,
 Shortest paths algorithms: Theory and
 experimental evaluation.Mathematical
 Programming, 1996. 73(2): 129-174.
[13] F.B. Zhan, Three fastest shortest path
 algorithms on real road networks: Data
 structures and procedures. Journal of
 Geographic Information and Decision
 Analysis, 2001. 1(1): 69-82.
[14] Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutella,
 M.G.: Dynamic Shortest Paths Minimizing
 Travel Times and Costs. Networks 41, 197–205
 (2003).
[15] Cai, X., Kloks, T., Wong, C.K.: Time-varying
 shortest path problems with constraints.
 Networks29, 141–149 (1997).

[16] Chabini, L.: Discrete dynamic shortest path
problems in transportation applications:
Complexity and algorithms with optimal run
time. Transp. Res. Rec. 1645, 170–175 (1998).

[17] Abbasi. S ,Ibrahimnejad. S, Finding the
Shortest Path in Dynamic Network using
Labeling Algorithm, International Journal of
Business and Social Science, Vol. 2 No. 20;
November 2011.

[18] S. Mehdi Hashemi, Shaghayegh Mokarami,
Ebrahim Nasrabadi, Dynamic shortest path
problems with time-varying costs. Optim Lett
4,147–156(2010).

