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Abstract - This study concerns the problem of finding 
shortest paths in time-expanded networks by repeatedly 
combining the source node’s nearest neighbor, time-
expanded network is derived from dynamic network G= 
(V,A,T) and contains one copy of the node set of the 
underlying ‘static’ network for each discrete time step 
(building a time layer). we use node combination (NC) 
method in networks which arc costs can vary with time, 
each arc has a transit time and parking with a 
corresponding time-varying cost is allowed at the nodes. 
The NC algorithm finds the shortest paths with three 
simple iterative steps: find the nearest neighbor of the 
source node, combine that node with the source node, 
and modify the costs on arcs that connect to the nearest 
neighbor. The NC algorithm is more comprehensible 
and convenient for programming as there is no need to 
maintain a set with the nodes’ distances. 
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1. Introduction  

The problem of finding the shortest path between two 
nodes lies at the heart of network flows. It is alluring 
to both researchers and to practitioners for several 
reasons: (1) they arise frequently in practice since in 
a wide variety of application settings we wish to send 
some material(e.g., a computer data packet, a 
telephone call, a vehicle) between two specified 
points in a network as quickly, as cheaply, or as 
reliably as possible; (2) they are easy to solve 
efficiently; (3) as the simplest network models, they 
capture many of the most salient core ingredients of 
network flows and so they provide both a benchmark 
and a point of departure for studying more complex 
network models; and (4) they arise frequently as sub 
problems when solving many combinatorial and 
network optimization problems. Even though shortest 
path problems are relatively easy to solve, the design 
and analysis of most efficient algorithms for solving 
them requires considerable ingenuity.  
 Consequently, the study of shortest path 
problems is a natural starting point for introducing 
many key ideas from network flows, including the 
use of clever data structures and ideas such as data 
scaling to improve the worst case algorithmic 
performance [1]. Researchers have studied several 
different types of (directed) shortest path problems: 

 1. Finding shortest paths from one node to all 
other nodes when arc lengths are nonnegative 
 2. Finding shortest paths from one node to all 
other nodes for networks with arbitrary arc lengths 
 3. Finding shortest paths from every node to 
every other node. 
 4. Various generalizations of the shortest path 
problem. 
  
 Time-dependent graphs are useful for real word 
applications. A simple example is that of a computer 
communications network composed of dial up links 
each with its individual dialing schedules. Since 
delays depend on these predetermined schedules, 
finding the best route for a message from source to 
destination involves the computation of time-
dependent functions [2]. Many types of networks 
exhibit this kind of dynamic behavior. This paper 
develops an algorithm to find the dynamic shortest 
path from the source node to the sink node in acyclic 
networks with the following specifications. Consider 
a network that represents a city with the usual rush 
hour traffic patterns. The dynamic shortest path 
problem is a generalization of the shortest path 
problem whose aim is to find a path of minimum cost 
(length) through a network for which  
 1. Each arc has a transit time which specifies the 
amount of time to traverse through each arc,  
 2. Parking (or waiting) is permitted at the nodes 
of the network for later departure, and Network 
characteristics such as arc transit times and costs (or 
length) can change over time and are known for all 
values of time.  
 

 The aim of this paper is to study the dynamic 
shortest path problem in a discrete time setting with 
positive transit times. We show that the problem is 
reduced to a classical shortest path problem on a so-
called time-expanded network. This allows us to 
apply algorithms that are available in the classical 
case to the dynamic case. Then we use Node 
Combination (NC) algorithm which introduced by 
Xin Lu in 2011 to implement Dijkstra’s algorithm, 
with which the source node iteratively combines 
nodes into a new source node and updates the edge 
weights of the remaining node. When all of the nodes 
in the connected component of the source node are 
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finally combined into a single node, the shortest paths 
from the source node to all other nodes are known. 
With the method of node combination, the process of 
finding shortest paths is comparatively simple and 
much more vivid than with Dijkstra’s algorithm [3].  
 The paper is organized as follows: After review 
of the shortest path problem in Section 2, we define 
necessary notation of the dynamic shortest path 
problem and Node Combination in Section 3, then we 
use Node Combination (NC) algorithm for solving 
this problem and summarize our conclusions the 
related problems in Sect. 4, 5 respectively. 
 
2.   Literature Review 
 
Shortest path algorithms have been a subject of 
extensive research, resulting in a number of 
algorithms for various conditions and constraints [4–
6]. Some algorithms that are based on dynamic 
programming, zero-one programming and also 
network flows theory can be found in [7]. Deo and 
Pang [8] provided a taxonomy and annotation for the 
shortest path algorithms. When arc lengths are 
random variables, the problem will become more 
difficult. Martin found the distribution function of 
shortest path and also the expected value of shortest 
path in stochastic networks, in which the arc lengths 
are independent random variables with polynomial 
distribution functions, in the form of multiple 
integrals [9].  
 Frank computed the probability that the time of 
the shortest path of the network is smaller than a 
specific value [10]. He assumed that the arc lengths 
are continuous random variables. Mirchandani 
presented another method for obtaining the 
distribution function of shortest path in stochastic 
networks [11]. It is not required to solve multiple 
integrals in this paper, but this method can only be 
used for the special case where arc lengths are 
discrete random variables.  
 Among the various shortest path algorithms 
developed, Dijkstra’s algorithm is probably the most 
well-known. Though the efficiency and various 
applications of Dijkstra’s algorithm have been widely 
studied [12], Dijkstra’s algorithm may not be easily 
understood, especially when implementing the 
labeling method [13].The general properties and 
algorithms have been discussed in both discrete time 
and continuous time settings by Ahuja et al. [14], Cai 
et al. [15], Chabini [16] Orda and Rom [2] among 
others.  
 The problem considered in this paper is that of a 
dynamic network, where the weights (costs) Cij(t) 
change as a function of time. Given a dynamic 
network G = (V, E, T) with discrete-time consists of a 
set of nodes V, (|V| = n), node set V = {1, 2, . . . , n}, a 
set of arcs E, (|E| = m), arc set  E ⊆ V × V and a fixed 
time horizon T �R+.  

 We assume that every pair of nodes is connected 
by at most one arc. Each arc (i, j) � E has an 
associated transit time λi,j , if a vehicle leaves node i 
at time t along the arc (i, j) then it arrives at node j at 
time t + λi,j. we define a node-time pair to be a 
member of V ×{0,1,…,T-1}. A discrete-time dynamic 
path from node-time pair (i, α) to node-time pair (j, 
β) is a sequence of distinct node-time pairs as P : ( j, 
α) = (i1, t1), (i2, t2), . . . , (is , ts ) = ( j, β), in which 
either (ik , ik+1) ∈ E and ��+1= ��+��� ,��+1 , in which 
case traffic leaves node ik for node ik+1 at time tk and 
arrives at tk+1, or ik = ik+1, in which case parking 
occurs at node ik at the time step tk+1. Such a sequence 
is called a discrete-time dynamic cycle if (i, α) = (j, β) 
and the other node-time pairs are distinct.  
 The cost of a dynamic path P is defined by where 
ci,j (t) is the traversal cost along arc (i, j) at time t, and 
���(	) is the parking cost at node i at time t. A path P 
is said to be a dynamic shortest path from to node-
time pair (i,α) to node-time pair ( j, β), if Cost [P] ≤ 
Cost [P'] for all dynamic paths P’ from (i,α) to ( j, β). 
We assume that the dynamic network G contains a 
dynamic path from node-time pair (1,0) to every 
other node-time pair (i, t) by introducing artificial 
arcs (1,i) joining node 1 to node i for each node i � V 
\{ 1} .  
 Each artificial arc (1, i) has a zero transit time 
and a large traversal cost. It is clear that no such arc 
would appear in a dynamic shortest path from (1, 0) 
to any node-time pair (i,t) unless network G contains 
no dynamic path from (1,0) to (i,t) without artificial 
arcs [17]. 
 
2.1 Time-expanded Network 
 
Ford and Fulkerson introduce the notion of time-
expanded networks. A time-expanded network 
contains one copy of the node set of the underlying 
‘static’ network for each discrete time step (building 
a time layer). For a dynamic network G= (V,A,T) the 
time expanded network GT= (VT,AT) is defined as 
follows: A time-expanded network of G, denoted by 
G(
),where 
={ �0,�1,…,��} contains p+1 copies of 
V, denoted by V0, V1,…, Vp ,in which Vq-1 
corresponds to the time step  tq-1 for q = 1, . . . , p −1, 
and Vp to the time horizon T.  
 Subsequently, index q varies from 1 to p. The 
copy of node i ∈ V in Vq-1 is denoted by iq-1. For each 
arc (i,j) � E and each time ��−1�
 with 0≤ ��−1+��,≤�, 
Traversing through arc(iq-1, jq' ) where, tq' = tq-1+��, 
corresponds to leaving node i at time tq-1 and arriving 
at node j at time tq'. Hence, arc (iq-1, jq ) has an 
associated cost ci, j (tq−1). 
 For each node i , there is a holdover arc from iq−1 
to iq. Traveling through arc (iq−1, iq ) corresponds to 
the parking at node i from time tq−1 to tq . So holdover 
arc (iq−1, iq ) has an associated cost fi (tq−1). An 
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illustration of a time-expanded network is given in 
Fig. 1. 

 
Figure 1.  A network G with transit times on the arcs 

is given on the left hand side
On the right side, corresponding time
network G (
) with respect to the partition 

depicted [18]  
 
2.2 Node Combination  
 
The fundamental idea of the NC algorithm is to 
combine nodes instead of maintaining the labeling 
sets in Dijkstra’s algorithm. Suppose that all nodes in 
the network are connected by ropes. The source node 
is placed in a pool, and other nodes are successively 
dragged into the pool one by one. Over time, there 
will be fewer and fewer nodes outside, and finally all 
nodes will have been dragged into the pool. The 
combined nodes correspond to the set of solved 
nodes whose distances have been established in 
Dijkstra’s algorithm. The adjacent neighbors of the 
combined node correspond to the set of potential 
nodes from which the closest one is picked. In the 
meantime, we can update the edge weights to store 
the distance labels from the source node, instead of 
maintaining a vector of distances, making the 
procedure more comprehensible [3].
 
 

3.   Node Combination Algorithm
 
Given a nonnegative time-expanded network G
(VT, ET, C) with NT nodes let CNT×NT 

matrix, node-time pair (1,0)  be the source node, 
the vector whose element d(i,tα)
distance between  source node-time pair (1,0) to 
node-time pair (i,tα), then iterations of NC algorithm 
can be described as follows: 
 
Step 0 Initialization . Set d(1,0)=0 
 
Step 1 Find the nearest neighbor
(i,tα) from the neighbors of (1,0), which makes 
C1i(0)= min{ C(1,0)(1,1), C(1,0)(i,t
C1i(0). 

            

expanded network is given in 

 

network G with transit times on the arcs 
n the left hand side.  

corresponding time-expanded 
respect to the partition 
 is 

 

The fundamental idea of the NC algorithm is to 
combine nodes instead of maintaining the labeling 

algorithm. Suppose that all nodes in 
the network are connected by ropes. The source node 
is placed in a pool, and other nodes are successively 
dragged into the pool one by one. Over time, there 
will be fewer and fewer nodes outside, and finally all 

will have been dragged into the pool. The 
combined nodes correspond to the set of solved 
nodes whose distances have been established in 
Dijkstra’s algorithm. The adjacent neighbors of the 
combined node correspond to the set of potential 

e closest one is picked. In the 
meantime, we can update the edge weights to store 
the distance labels from the source node, instead of 
maintaining a vector of distances, making the 

]. 

Node Combination Algorithm 

expanded network GT = 
NT×NT   be the cost 

be the source node, d be 
) is to save the 

time pair (1,0) to 
then iterations of NC algorithm 

Find the nearest neighbor. Select (1, 1) or 
) from the neighbors of (1,0), which makes  

C(1,0)(1,1), C(1,0)(i,tα)}. let d(i,tα)= 

If there are no adjacent nodes to (1,0)
 
Step 2 Combine nodes. Delete (i,t
If V =∅, stop. 
 
Step 3 Modify edge weights. For each arc
((i,tα),(j,tβ)), Update C(1,0)(i,t
C1i(0)+C((i,tα),(j,tβ))} 
 
Go to Step 1. 
 
Theorem 3.1 NC algorithm solves the Single
Shortest Path problem in an increasing order of 
(i,tα). 
 
Theorem 3.2 Given a Time-expanded network 
(VT, ET, C) with nonnegative arc costs and a source 
node (1,0) � VT , NC algorithm computes d
every (i,tα) � VT. 
For proofs these theorems refer 
 

4. Discussions 
 
The NC algorithm can be easily implemented to find 
the shortest paths, not just the distances.
 Let p(1,0)(i,tα)(1<i<NT) be the shortest path from the
source node(1,0) to node (i,tα), 
last node on p(1,0)(i,tα). To record
declare a vector P with length of 
all the elements as(1,0). If C(1,0)(i,t

3 ( C(1,0)(i,tα) ← C(1,0)( j,tβ) C(j,tβ)(k,t
 

 When the NC algorithm terminates, 
information of shortest paths between and all the 
other nodes. To find the shortest path between
time pair (1,0) and node-time pair (i,t
from P ( j,tβ) : if u(1,0)( j,tβ) =(k,tθ
k,tθ),…, till  
P ( k,tθ)=(1,0).  
 

The shortest path is: 
(1,0),..., P(P( P(j,tβ))),..., P(

 
 

5.  Conclusions 
 
In this paper we considered the dynamic shortest path 
problem, motivated by its applications in dynamic 
minimum cost flows. We showed that this problem is 
equivalent to a classical shortest path problem in a 
so-called time-expanded network. Using the NC 
algorithm, we found the shortest path by node 
combination instead of by labeling operations. The 
difference between the NC algorithm and Dijkstra’s 
algorithm is, first, the set of visited (solved) nodes 
whose distances have been established. In the NC 
algorithm, nodes are combined into the new source 
node, which means that we need not maintain this set. 
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If there are no adjacent nodes to (1,0) , stop. 

. Delete (i,tα) , V=V-(i,tα).  

. For each arc-time pair 
C(1,0)(i,tα)=min{ C(1,0)(i,tα) , 

NC algorithm solves the Single-Source 
Shortest Path problem in an increasing order of d 

expanded network GT = 
with nonnegative arc costs and a source 

algorithm computes d(i,tα)  for 

For proofs these theorems refer to [2]. 

The NC algorithm can be easily implemented to find 
the shortest paths, not just the distances. 

be the shortest path from the 
, u(1,0)(i,tα) be the second 

To record u(1,0)(i,tα) we can 
with length of NT , and initialize 

(1,0)(i,tα) is updated in Step 

,tθ)), set P ( j,tβ)= (k,tθ). 

When the NC algorithm terminates, P records the 
information of shortest paths between and all the 
other nodes. To find the shortest path between node-

time pair (i,tα). We can trace 
θ) , than  u(1,0)( k,tθ)= P ( 

(P(j,tβ)),P(j,tβ), (j,tβ) 

In this paper we considered the dynamic shortest path 
problem, motivated by its applications in dynamic 
minimum cost flows. We showed that this problem is 
equivalent to a classical shortest path problem in a 

expanded network. Using the NC 
gorithm, we found the shortest path by node 

combination instead of by labeling operations. The 
difference between the NC algorithm and Dijkstra’s 
algorithm is, first, the set of visited (solved) nodes 
whose distances have been established. In the NC 

thm, nodes are combined into the new source 
node, which means that we need not maintain this set.  
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 Second, the relaxation is done on the arc cost 
directly, which means that no additional memory or 
CPU-cycles are needed to record the temporary 
distances. Third, the NC algorithm is carried out by 
repeatedly finding the source node’s nearest 
neighbor, which makes the process of finding 
shortest paths more comprehensible and vivid. Node 
combination makes the process of finding the shortest 
paths much more straightforward, Comprehensible, 
and memory-sparing. 
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