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Abstract 

Compared with the extensor longus digitorum (EDL) muscle of control rats (C), 

the EDL muscle of rats fed a low-protein, high-carbohydrate (LPHC) diet 

showed a 36% reduction in mass. Muscle mass is determined by the balance 

between protein synthesis and proteolysis; thus, the aim of this work was to 

evaluate the components involved in these processes. Compared with the 

muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a 

reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in 

the in vitro basal proteolysis suggesting that the reduction in the mass can be 

associated with a change in the rate of the two processes. Soon after 

euthanasia, in the EDL muscles of the rats fed the LPHC or C diet for 15 days, 

the activity of caspase-3 and of components of the ubiquitin-proteasome system 

(atrogin-1 content and chymotrypsin-like activity) were decreased. The 

phosphorylation of p70S6K and 4E-BP1, proteins involved in protein synthesis, 

was also decreased. We observed an increase in the insulin-stimulated protein 

content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC 

rats seemed to contribute to the lower proteolysis in LPHC rats. However, even 

with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70S6K 

indicates a reduction in protein synthesis, showing that factors other than insulin 

can have a greater effect on the control of protein synthesis.  

 

Keywords: Low-protein, high-carbohydrate diet; protein synthesis; proteolytic 

pathways; extensor digitorum longus; insulin sensitivity; growing rats. 

 



1. Introduction 

In developing countries, malnutrition is an early and usual event in the human 

life. Normally, children in these countries consume a great amount of 

carbohydrates and a small quantity of protein, which can lead to structural 

damage in several organs and increased mortality [1, 2]. 

Skeletal muscle is considered the most abundant tissue in the body, making up 

approximately 40-50% of the total body mass and serving as the largest body 

protein pool [3, 4]. Skeletal muscle exhibits a high resting metabolic rate and is 

one of the most adaptable tissues that responds to numerous external and 

physiological stimuli [5], which induce changes in its phenotypic profile in terms 

of size and composition [6]. Thus, particularly in conditions of protein 

malnutrition, the adaptations of muscles are fundamental to body homeostasis. 

Several authors have suggested that protein restriction during the critical stage 

of development results in a reduction in the skeletal muscle mass and in the 

number and size of fibers [7, 8], along with higher vulnerability to atrophic 

reactions [9]. However, other authors have shown that muscle fibers are 

capable of adapting their metabolism, optimizing protein turnover to preserve 

the primary functions in malnutrition conditions [10-13].  

Studies from our research group showed that rats that were fed a low-protein, 

high-carbohydrate diet (LPHC; 6% protein and 74% carbohydrate) for 15 days 

soon after weaning showed an increase in the diet and calorie intake with a 

reduction in the body weight gain compared to the corresponding factors in the 

rats fed a control diet (C; 17% carbohydrate and 63% protein) [14]. Even when 

the increase in the food intake was accounted for, the LPHC rats ingested 60% 

less protein than the rats fed the C diet at the end of 15 days, which was 



confirmed by the reduced post-prandial amino acid concentration in the blood of 

these rats [14]. The protein-deficient state in LPHC rats could also be indicated 

by the hypoproteinemia and impairment in the body growth (evaluated by Lee 

index) compared to the condition of the rats receiving a C diet [13]. Moreover, 

LPHC rats showed a reduction in the body mass with a higher energetic gain as 

a consequence of an increase in the body lipid content and a reduction in the 

water and protein contents [13] (data are shown in Table S1 of the 

supplementary material). Additionally, the LPHC diet promotes an increase in 

serum epinephrine and norepinephrine levels, and 10 times higher levels of 

tumor necrosis factor alpha (TNF-α) and 100% higher levels of corticosterone 

and leptin [13, 15, 16]; thus, the LPHC diet seems to promote a highly catabolic 

environment (data are shown in Table S2 of the supplementary material). A 

previous study also showed a reduction in the mass of different skeletal 

muscles in LPHC rats compared with C rats [13]. 

The mass and protein content of skeletal muscle are determined by the 

dynamic equilibrium between the rates of protein synthesis and proteolysis [6]. 

In addition to the availability of essential amino acids, insulin and insulin-like 

growth factor-1 (IGF-1) are considered to be factors that mediate normal muscle 

development [17, 18]. These factors bind with their respective receptors, 

resulting in activation/phosphorylation of protein kinase B (PKB), also known as 

Akt. Akt stimulates protein synthesis by activating the mammalian target of 

rapamycin (mTOR) and its downstream effectors and inhibits glycogen 

synthase kinase-3β, a negative regulator of protein synthesis [19]. Activation of 

Akt also induces the phosphorylation of the forkhead box transcription factor 



(Foxo) and its subsequent nuclear exclusion, which results in the inhibition of 

atrogene transcription and consequently in the inhibition of proteolysis [20]. 

In turn, there are different proteolytic systems in cells. Intracellular proteolysis 

may occur in lysosomes after fusion with the autophagosome, which requires 

the expression of microtubule-associated protein 1 light chain 3 beta (LC3) and 

gamma-aminobutyric acid receptor-associated protein (GABARAP). The 

proteolytic capacity of the lysosomes is determined by the activity of cathepsins 

L, B, D and H [21]. Extralysosomal proteolytic pathways in the skeletal muscle 

cells of mammals include the calpains or Ca2+-dependent proteases, caspase-3 

and the ubiquitin-proteasome proteolytic system [16]. The specificity in protein 

breakdown by this last proteolytic system is dependent on the content of 

ubiquitin ligase enzymes (E3s). Two E3s, muscle F-box protein atrogin-1 

(atrogin-1 or MAFbx) and the protein muscle RING finger-1 (MuRF-1) are 

known as atrogenes, and they play a decisive role in mediating the loss of 

muscle mass [20]. Studies indicate the participation of calpains and caspase-3 

in the dissociation of actin and myosin from myofibrils before they are degraded 

by the proteasome [22, 23]. 

A previous study on soleus muscles of LPHC rats showed that the reductions in 

mass and protein content resulted from decreases in protein synthesis [14] and 

overall proteolysis. The proteolysis was reduced mainly due to inhibition of both 

the ubiquitin-proteasome system and caspase-3 activity [14]. The results also 

indicated higher insulin sensitivity in the soleus muscles of the LPHC rats, which 

was evidenced by increases in the insulin receptor content and in insulin-

stimulated Akt phosphorylation [14], suggesting that the higher insulin sensitivity 



in the soleus muscle of the LPHC rats was responsible for the inhibition of the 

proteolytic processes.  

However, the alterations observed in the protein metabolism of the soleus 

muscles from LPHC rats are not necessarily valid for other skeletal muscles 

because the metabolic response in different metabolic situations seems to be 

muscle-type specific. Differences in the sensitivity of skeletal muscles to dietary 

manipulations have also been reported by several authors. Mizushima et al. [24] 

showed that transgenic mice subjected to nutrient starvation experienced rapid 

and intense macroautophagy in the extensor digitorum longus (EDL) muscle, 

which almost exclusively contains fast-twitch fibers (glycolytic, type II), and 

experienced moderate and slow macroautophagy in the soleus muscles, which 

contains a high percentage of slow-twitch fibers (oxidative, type I). Furthermore, 

the regulation of extralysosomal proteolytic pathways can differ in skeletal 

muscles with different fiber-type compositions [25, 26].  

Thus, the aim of this study was to evaluate the effect of the LPHC diet on 

components of the systems for protein synthesis and proteolysis as the first 

stage in establishing possible mechanisms that explain the reduced mass of 

EDL muscle. For this purpose, we evaluated the following in EDL muscles from 

control and LPHC rats: 1. mass and protein content of the EDL muscle; 2. in 

vitro basal protein synthesis and proteolysis; 3. protein contents and enzyme 

activities related to proteolytic pathways; 4. insulin signaling pathway protein 

content; 5. basal and phosphorylated contents of 4E-BP1, p70S6K, GSK-3β, 

CREB and AMPK, which are proteins involved in the regulation of protein 

synthesis; and 6. basal and phosphorylated content of Foxo1, which is involved 

in the regulation of proteolysis. 



2. Methods and Materials. 

 

2.1. Animals and treatment. 

The animals used in the experiments were provided by the Central Animal 

House of Universidade Federal de Mato Grosso (UFMT). The animals were 

handled according to the Brazilian College of Animal Experimentation 

Regulations, and the experiments were approved by the Animal Ethics 

Committee of UFMT (protocol no. 23108.043335/08-1). Male Wistar rats (5-10 

animals) with an initial body weight of approximately 90-100 g (~30 days old) 

were randomly distributed into 2 groups: i) control group (C) that was fed a diet 

composed of 17% protein, 63% carbohydrate and 7% lipid and ii) LPHC group 

that was fed a diet composed of 6% protein, 74% carbohydrate and 7% lipid. 

The reduction of protein in the LPHC diet, in term of calories, was compensated 

by carbohydrates (Table 1). The diets are isocaloric (16.3 kJ·g–1) and were 

administered for 15 days. The rats were housed in individual metabolic cages at 

22 ± 1 °C with a 12 h:12 h light:dark cycle; they also received water and food ad 

libitum. The body weight and food intake of each rat were recorded daily. All 

rats were euthanized on the 15th day of treatment, and the EDL muscles were 

collected, weighed and stored at -80 ºC or immediately used in experiments.  

 

2.2 Total protein content of the EDL skeletal muscle 

For the LPHC and C fed rats, both EDL muscles (right and left) were used for 

the analysis. The muscles were minced and homogenized using a glass-Teflon 

homogenizer (Wheaton Overhead Stirrer) in buffer containing 50 mM potassium 

phosphate dibasic, 5 mM EDTA, 0.5 mM DTT, 1.15% KCl, 1 mM phenylmethyl 



sulfonyl fluoride, 5 µg·mL-1 aprotinin and 1 µg·mL-1 leupeptin at pH 7.4 in a 

proportion of 4% wt/vol. The homogenate was centrifuged at 600 g for 10 min at 

4ºC. The total protein content was determined by the Bradford method [27], and 

the data are expressed in mg·g-1 muscle. 

 

2.3. In vitro, basal protein synthesis and proteolysis. 

Groups of rats were treated with the C or LPHC diets. After 15 days of 

treatment, the animals in the fed state were euthanized, and the muscles were 

removed and incubated for the in vitro evaluation of the protein synthesis. The 

same process was performed with another set of rats from the C and LPHC 

groups for the evaluation of muscle proteolysis.     

The EDL muscles were rapidly dissected, weighed and fixed by the tendon in 

appropriate supports (to maintain the muscles at the resting length) and 

incubated in Erlenmeyer flasks (1 muscle/flask) containing Krebs-Ringer 

bicarbonate buffer (0.120 M NaCl, 0.015 M NaHCO3, 4.828 mM KCl, 1.2 mM 

MgSO4, 1.212 mM KH2PO4, 2.4 mM CaCl2 at pH 7.4) and 5 mM glucose, and 

aerated with 95% O2 and 5% CO2. 

The in vitro basal protein synthesis was evaluated as previously described [14, 

28]. After a 1-h pre-incubation period at 37°C with shaking, the EDL muscles 

were incubated in the same Krebs-Ringer bicarbonate buffer described above 

containing all amino acids at concentrations similar to those of the rat plasma 

during fed period [29] and L-[U-14C] tyrosine (0.05 µCi/mL) for 2 h. After the 

incubation, the specific activity of the intracellular tyrosine pool in each muscle 

was estimated by measuring the radioactivity and the concentration of free 

tyrosine. After measurement of the radioactivity incorporated into the protein of 



the same muscle, the in vitro basal protein synthesis was calculated using the 

specific activity of the intracellular pool of tyrosine, assuming that there was no 

recycling of the label during the incubation period [14]. 

The in vitro basal proteolysis was evaluated as previously described [14, 30], by 

determination of the tyrosine release in the medium. After a 1-h pre-incubation 

period at 37°C with shaking, the EDL muscles were incubated for 2 h in the 

same Krebs-Ringer bicarbonate buffer described above without any amino 

acids in the medium but with 0.5 mM cycloheximide to prevent protein synthesis 

and the reincorporation of the released tyrosine back into proteins. At the end of 

the incubation period, 1 mL of the medium was collected and added to 0.25 mL 

of perchloric acid (1.5 N), and the released tyrosine was evaluated using the 

fluorimetric method described by Waalkes and Udenfriend [31]. 

 

2.4. Enzyme activities. 

The activities of caspase-3, calpain, cathepsin B and proteasome 

(chymotrypsin-like activity) were determined fluorometrically (PerkinElmer) with 

excitation and emission wavelengths of 380 and 460 nm, respectively. The 

protein content of the muscle homogenates was determined by the Bradford 

method [27]. The enzyme proteolytic activities were determined by 

measurement of the released fluorogenic product (AMC; 7-amino-4-

methylcoumarin), and a standard curve of AMC was prepared (Calbiochem). 

Data are expressed in nmol of AMC·mg protein-1·min-1. 

Chymotrypsin-like proteasome activity was assayed according to Klaude et al. 

[32]. EDL muscles were homogenized in Tris-HCl buffer (pH 7.2) containing 50 

mM Tris-HCl, 1 mM EDTA, 100 mM KCl, 5 mM MgCl2, and 1.8 mM ATP. The 



homogenate was centrifuged at 700 g at 4 °C for 10 min to remove cell debris. 

The supernatant was centrifuged at 15,000 g for 10 min. Glycerol was then 

added to the supernatant (10% v/v), which was used to measure the total 

protease activity. Duplicates of the supernatant were incubated with the assay 

buffer (50 mM Tris-HCl, 1 mM ATP, 5 mM MgCl2, and 1 mM DTT; pH 7.5), and 

150 µM substrate succinyl-Leu-Leu-Val-Tyr-AMC (Calbiochem, Germany) was 

added after 1 min of stabilization. In parallel, the same incubation procedure 

was performed with the addition of proteasome inhibitor (100 µM MG132; 

Sigma Aldrich) to the mixture. After incubation at 37°C for 45 min, the reaction 

was stopped by the addition of 100 mM sodium acetate buffer (pH 4.3). The 

proteasome activity was determined by the difference between the amounts of 

AMC generated in the absence and the presence of MG 132. 

Calpain activity was assayed according to Douillard et al. [33]. EDL muscles 

were homogenized in Tris-HCl buffer (pH 7.4) containing 20 mM Tris–HCl, 5 

mM EDTA, 0.1% Triton X-100 and 1 mM DTT. The homogenates were 

centrifuged at 1,000 g at 4 °C for 10 min to remove cell debris. The calpain 

activity was measured using the same substrate mentioned above. Duplicates 

of the supernatant were incubated with the assay buffer (20 mM Tris-HCl, 5 mM 

CaCl2 and 1 mM DTT; pH 7.4), and after 5 minutes, the substrate was added 

(50 µM).  In parallel, the same incubation procedure (at 37°C for 30 min) was 

performed with the addition of calpain inhibitor (50 µM calpeptin; Santa Cruz 

Biotechnology) to the mixture (20 mM Tris-HCl, 10 mM EDTA and 1 mM DTT; 

pH 7.4). The reaction was stopped by the addition of the stop buffer (100 mM 

sodium chloroacetate, 30 mM sodium acetate and 70 mM acetic acid; pH 4.3). 



The calpain activity was determined by the difference between the amounts of 

AMC generated in the absence and presence of calpeptin. 

Caspase-3 activity was determined as described by Du et al. [34], with minor 

modifications. Briefly, EDL muscles were homogenized in HEPES buffer (100 

mM HEPES, 10% sucrose, 0.1% Triton X-100, and 10 mM DTT; pH 7.5) and 

centrifuged at 15,000 g for 45 min. The supernatant was added to the assay 

buffer (100 mM HEPES, 10 mM DTT, 10% sucrose; pH 7.5), and the mixture 

was pre-incubated at 30°C for 30 min. The substrate for caspase-3, Ac-Asp-

Glu-Val-Asp-AMC (Calbiochem, Germany), was added (50 µM), and the mixture 

was incubated at 30°C for 60 min. The reaction was stopped by the addition of 

100 mM sodium acetate buffer (pH 4.3). The caspase-3 activity was determined 

considering data from the standard curve of AMC. 

Cathepsin-B activity was determined as described by Barrett and Kirschke [35].  

Briefly, EDL muscles were homogenized in 20 mM sodium phosphate buffer 

(pH 6.0) containing 0.15 M KCl and 0.1% Triton X-100 and centrifuged at 

15,000 g at 4°C for 10 min. Duplicates of the supernatant were pre-incubated 

with assay buffer (340 mM sodium acetate, 60 mM acetic acid, 4 mM disodium 

EDTA, and 8 mM DTT; pH 5.5) at 30°C.  After one minute, 20 µM of the 

substrate for cathepsin B (Z-Arg-Arg-AMC, 2 HCl; Calbiochem) was added. The 

reaction was stopped after 20 min by the addition of the same stop buffer used 

in the calpain activity evaluation. The cathepsin-B activity was determined 

considering data from the standard curve of AMC. 

 

2.5. Insulin signaling study. 



Rats from the C or LPHC groups were fasted for 5 h and were then 

intraperitoneally injected with saline (C and LPHC non-stimulated groups) or 

insulin (10 mU/g body weight; C and LPHC stimulated groups).  Ten minutes 

after the insulin or saline administration, the animals were anaesthetized with a 

mixture of ketamine hydrochloride (Dopalen, Agribrands) and xylazine 

hydrochloride (Rompun, Bayer®) (2:1), and after the loss of pedal and corneal 

reflexes, the EDL muscles were quickly removed. The protein content of the 

insulin receptor (IRβ) and Akt and the p-AKt protein content were determined 

through Western blotting. 

 

2.6. Western blot for protein analysis 

EDL muscles from C and LPHC rats were homogenized in 50 mM Tris-HCl 

buffer pH 7.4, at 4°C, containing 1% Triton X-100, 150 mM sodium chloride, 10 

mM sodium pyrophosphate, 100 mM sodium fluoride, 1 mM 

ethylenediaminetetraacetic acid, 10 mM sodium orthovanadate, 1 mM 

phenylmethyl sulfonyl fluoride, and 5 µg·mL-1 aprotinin. The total protein 

concentration was determined by the Bradford method [27]. For each sample, 

100 µL of total homogenate was incubated for 5 min at 100ºC with Laemmli 

buffer (0.250 mM Tris-HCl buffer at pH 6.8, 0.5% bromophenol blue, 50% 

glycerol, 10% sodium dodecyl sulfate, and 500 mM dithiothreitol) (4:1, v/v). 

Samples containing 100 µg of protein were separated by 8% to 10% SDS-

PAGE, transferred to nitrocellulose membranes and blotted with the following 

antibodies: anti-cathepsin L (1:500; Santa Cruz), anti-cathepsin B (1:500; Santa 

Cruz), anti-ubiquitin conjugates (1:1000; Santa Cruz), anti-LC3 (1:1000; Santa 

Cruz), anti-GABARAP (1:1000; Santa Cruz), anti-AMPK (1:1000; Cell 



Signaling), anti-phospho-[Thr-172]-AMPK (1:1000; Cell Signaling), anti-IRβ 

(1:750; Santa Cruz), anti-Akt (1:500; Santa Cruz), anti-phospho-[Ser-473]-

Akt1/2/3 (1:500; Santa Cruz), anti-CREB (1:750; Cell Signaling), anti-phospho-

[Ser-33]-CREB (1:750; Cell Signaling), anti-Foxo1 (1:500; Cell Signaling) and 

anti-phospho-[Thr-24]-Foxo1 (1:500; Cell Signaling), anti-atrogin-1 (1:1000; c), 

anti-4E-BP1 (1:500; Cell Signaling), anti-phospho-[Thr-70]-4E-BP1 (1:500; Cell 

Signaling), anti-p70S6K (1:500; Cell Signaling), anti-phospho-[Thr70]-p70S6K 

(1:500; Cell Signaling), anti-GSK-3β (1:500; Cell Signaling), anti-phospho-[Ser-

21/9]-GSK-3 (1:500; Cell Signaling) and anti-α-tubulin (1:750; Santa Cruz). All 

antibodies used are recommended for the detection of rat proteins. Proteins 

were detected after membrane incubation overnight (4ºC) in the respective 

primary antibodies diluted in TBS-T containing 5% dry albumin. Specific bands 

were detected with a Supersignal West Pico chemiluminescent substrate 

(Pierce), and the protein band intensity was normalized to the α-tubulin band 

intensity (internal control). The band intensity was quantified with the ImageJ 

Program (Wayne Rasband, National Institutes of Health, New York, NY), and 

the results are expressed as the relative ratio using the internal control as the 

baseline.  

 

2.7. Statistical analysis 

All data were expressed as the mean ± standard error (SE) for the number of 

rats indicated between parentheses. Statistical analysis was performed using 

the Statistica Software package (Statsoft, Tulsa, OK, USA). Bartlett’s test for the 

homogeneity of variances was initially used to determine whether the data 

complied with the assumptions for parametric analysis of variance. When 



necessary, the data were log-transformed to correct for variance in 

heterogeneity or non-normality. All statistical significances of the other 

experiments were analyzed using Student´s t-test. The sample size used in all 

experiments was calculated by considering a 15% coefficient of variation for the 

biological effect [36]. A value of p<0.05 was taken as the criterion for 

significance. 

 

3. Results 

3.1 General physiological and biochemical parameters. 

At the end of the 15th day of treatment, the total food intake of the LPHC rats 

was approximately 13% higher than that of the control rats. However, despite 

this increase in the food intake, the total protein intake and final body weight of 

the LPHC rats were 61% and 23% lower, respectively, than the control rats. 

These data are in agreement with previously published results by our laboratory 

[13-16]. 

The reduction in body weight of the LPHC rats was accompanied by a reduction 

in the mass (36%) and protein content (34%) of the EDL muscles (Table 2) 

compared with the values of the control rats. 

 

3.2. In vitro, basal protein synthesis and proteolysis.  

The in vitro protein synthesis was markedly lower (34%) in the EDL muscles of 

the LPHC rats than in the control rats (Fig. 1A). Moreover, the LPHC diet 

caused a 22% reduction in the in vitro proteolysis in EDL muscles compared 

with the values found in control rats (Fig. 1B).  

 



3.3. Proteolytic pathways. 

Evaluation of the components of the lysosomal system showed that the EDL 

muscles from the LPHC rats had approximately 52% higher protein content of 

cathepsin B (Fig. 2A), without changes in the cathepsin L content (Fig. 2B). 

Despite the increase in the content of cathepsin B, the activity of this protease 

was similar between the LPHC and C groups (Fig. 2C). Additionally, there were 

no differences in the protein contents of the autophagic components, LC3 and 

GABARAP in the EDL muscles (Fig. 2D) of LPHC rats compared to C rats. 

Proteases related to sarcomere structure proteolysis were also evaluated. The 

LPHC diet had no effect on the calpain activity of EDL muscles (Fig. 3A). 

However, the activity of caspase-3 was 16% lower in the EDL muscles of LPHC 

rats than in the control rats (Fig. 3B). 

Data from the ubiquitin-proteasome system evaluation showed that the atrogin-

1 content was 34% lower in the EDL muscles of the LPHC rats (Fig. 4A). There 

were no differences in the levels of the ubiquitin conjugates of high and low 

molecular weight in the EDL muscles (Fig. 4B). The chymotrypsin-like 

proteasome activity (Fig. 4C) in the EDL muscles was 19% lower in the LPHC 

rats than in the control rats. 

 

3.4. Insulin signaling. 

There were no differences in the protein contents of IRβ and Akt in the EDL 

muscles of the experimental groups. In the control rats, the insulin-stimulated 

Akt phosphorylation was increased by 125% compared with the non-insulin 

stimulated value. In LPHC rats, this increase was approximately 230% relative 

to the basal LPHC (Fig. 5C). 



 

3.5 Basal and phosphorylated contents of 4E-BP1, p70S6K, GSK-3β, CREB and 

AMPK (regulation of protein synthesis). 

The evaluation of the contents of protein components involved in the translation 

process showed that the 4E-BP1 content was 50% higher in EDL muscles from 

LPHC rats than in C rats; however, the 4E-BP1 phosphorylation levels were 

42% lower (Fig. 6A). Similarly, there was a significant reduction (70%) in the 

phospho-p70S6K levels in the EDL muscles from LPHC rats, although the LPHC 

diet did not affect the p70S6K content (Fig. 6B). No difference was observed in 

the GSK-3 and p-GSK-3/GSK-3 ratio in the EDL muscles between the LPHC 

and C rats (Fig. 6C). 

We investigated the AMPK and p-AMPK contents because this kinase has an 

important role in the inhibition of protein synthesis by suppression of the 

function of multiple translation regulatory factors. Neither the AMPK protein 

content nor the p-AMPK/AMPK ratio was altered by treatment with the LPHC 

diet for 15 days (Fig. 6D).  

cAMP-response-element binding protein (CREB) is a well-known transcription 

factor target of cAMP-dependent protein kinase (PKA) and is considered the 

major effector of cAMP in skeletal muscles. The CREB levels were similar in the 

EDL muscle of the two groups. However, the LPHC diet reduced the levels of 

phosphorylated CREB by 48% (Fig. 6E). 

 

3.6. Basal and phosphorylated content of Foxo1 (regulation of proteolysis). 

The Foxo1 factor is implicated in the reduction of muscle protein breakdown by 

inhibition of atrogene expression via AKT. The Foxo1 content was not altered 



by the diet, but the Foxo1 phosphorylation was 85% higher in the EDL muscles 

of the LPHC rats than in the C rats (Fig. 7).  

 

4. Discussion 

In vivo and in vitro experiments were performed in the present study with the 

objective of obtaining insight into the protein metabolism in EDL muscles of 

growing rats adapted to the LPHC diet.  Our investigation showed a reduction in 

the mass and protein content of the EDL muscle of LPHC rats compared with C 

rats. Thus, initially, we evaluated the in vitro basal protein synthesis and 

proteolysis in EDL muscles from LPHC and C rats using specific media for each 

evaluations. We observed that the EDL muscle from the LPHC rats showed less 

incorporation of 14C-tyrosine and also less tyrosine release in the medium, 

suggesting lower protein synthesis and proteolysis, respectively.  However, the 

reduction in the 14C-tyrosine incorporation by the muscle was higher than the 

reduction in the tyrosine release by the incubated muscle. These results can 

explain the reduction in the EDL muscle mass. Batistela et al. [14] performed 

the same analyses in the same conditions in the soleus muscle of LPHC rats. 

Comparing our EDL data with the data obtained from the soleus muscle [14], 

we observed that the reduction in the protein synthesis was lower in the soleus 

(~19%) than in the EDL (~34%), whereas the inhibition of the protein 

breakdown was more pronounced in the soleus muscles (~36%) than in the 

EDL (~22%). These results are consistent with the higher mass loss of EDL 

compared with the soleus muscle in LPHC rats: 37% and 27%, respectively. 

The fact that the changes in the activity of these two processes define the mass 

of the muscle is also valid for other muscles and in other situations. Millward et 



al. [12] observed that in the gastrocnemius and quadriceps skeletal muscles of 

rats fed a diet composed of 6.8% protein, the reduced mass observed in those 

muscles resulted from the reduction in the rates of both protein synthesis and 

breakdown.  

Interestingly, EDL muscles of the LPHC rats showed higher insulin sensitivity, 

as evidenced by higher levels of insulin-stimulated AKT phosphorylation. After 

binding to its receptor in the plasma membrane of cells, insulin causes receptor 

autophosphorylation and activation of the signaling cascade, thus activating 

mTOR via Akt. mTOR plays a critical role in the regulation of protein synthesis 

and in the hypertrophy of skeletal muscles [18] because it promotes enhanced 

translation through its downstream targets, the 70 kDa ribosomal protein S6 

kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), 

which has a main role in the activation of the initiation stage of the translation 

process in eukaryotic cells. However, our results showed that although the 

insulin signaling is increased, the levels of phosphorylated p70S6K and 

phosphorylated 4E-BP1 in the EDL muscles of LPHC rats were both reduced, 

which explains the lower rate of protein synthesis despite the increase in Akt 

phosphorylation. Thus, it is clear that in addition to insulin, other factors can 

affect or stimulate protein synthesis. In our experimental animal, the amino acid 

availability seems to be a limiting factor.  Nave et al. [37] showed in mammal 

cells that both the mTOR phosphorylation and the protein synthesis that 

occurred in response to insulin were blocked by amino acid deprivation, 

showing that mTOR represents a potential integration point of signals from 

insulin and amino acids. The administration of essential amino acids, mainly 

leucine, also results in an increase in the protein synthesis in skeletal muscle 



through activation of the mTOR pathway [38, 39]. Moreover, in situations when 

the protein synthesis in rat skeletal muscle is lower due to a low level of protein 

in the diet, it is possible to reverse the reduction in the protein synthesis by 

supplementation with leucine [40] or lysine [41]. Previously, we demonstrated 

that in the post-feeding period of LPHC rats, the plasma levels of lysine were 

unaffected, but the leucine levels were reduced by 30% compared with the 

value in control rats [14] (data are shown in Table S3 of the supplementary 

material).  Taken together, these data suggest that the reduced levels of leucine 

may represent an important factor in the reduction of the protein synthesis in the 

EDL muscles of LPHC rats. Additional experiments are necessary to prove this 

possibility.  

For proteolytic pathways, our data showed that the contents of autophagy-

related genes (LC3 and GABARAP) and cathepsin L, as well as the cathepsin B 

activity, remained unchanged in LPHC rats compared with C rats. These data 

suggest that the lysosomal proteolytic system is not involved in the reduction of 

the EDL skeletal muscle of LPHC rats. However, the inhibition of both the 

caspase-3 activity and UPS in the EDL muscle of LPHC rats can reinforce the 

reduced proteolysis observed in the EDL muscle in vitro. The inhibition of the 

UPS was evidenced by the decreases in both the atrogin-1 content and the 

chymotrypsin-like proteasome activity. The expression of atrogenes, including 

atrogin-1, is inhibited by the PI3K/Akt insulin signaling, which is responsible for 

the phosphorylation of the nuclear Foxo transcription factor, which is excluded 

from the nucleus when phosphorylated [42]. Our data showed that the EDL 

muscles from LPHC rats had an increase in the phosphorylation of Foxo1 

accompanied by a reduction in the atrogin-1 content, representing a minor 



decrease in the amount of substrates that are offered to the proteasome. These 

novel results reinforce the data obtained from the in vitro evaluation of 

proteolysis, when we observed lower tyrosine release in the medium, and this 

finding is consistent with the higher insulin-stimulated AKT phosphorylation in 

the EDL muscle of LPHC rats.  

The proteasome is unable to degrade intact myofibrils [43], so upstream 

proteases are responsible for the release of myofibrillar proteins from the 

sarcomere for the subsequent ubiquitination and proteasomal degradation. 

Calpains [44] and caspase-3 [34, 45] are involved in the dissociation of 

myofibrils. According to our data, the activity of calpains was unchanged in the 

EDL muscles of LPHC rats, but a reduction in the caspase-3 activity was 

observed. Insulin has been also reported as an inhibitor of caspase-3 in skeletal 

muscles. Under muscle atrophy conditions, such as diabetes or chronic uremia, 

the accumulation of a 14 kDa actin fragment generated by the cleavage of 

actomyosin and cleaved by caspase-3 is observed [34]. When incubated in 

medium lacking metabolic substrates, L6 muscle cells showed an increase in 

actin cleavage; however, when insulin was added to the medium, the actin 

cleavage was blocked by a mechanism requiring PI3K [34]. Thus, it can be 

concluded that the decreased activity of caspase-3 in association with the 

decreased expression of atrogin-1 may be related the decreased availability of 

substrates for the proteasome in the EDL of LPHC rats. In the soleus muscle of 

LPHC rats, Batistela et al. [14] also observed similar changes in the proteolytic 

pathways and higher insulin sensitivity, with an increase in the IRβ content and 

in the insulin-stimulated Akt phosphorylation. However, in contrast to the 

findings in EDL muscle, the AMPK and p-AMPK content in the soleus muscle 



increased. Studies have shown that AMPK enhances the insulin sensitivity of 

some skeletal muscles [46, 47], and this effect has an important role in the 

inactivation of proteolysis and other catabolic pathways.  

As we previously noted, LPHC rats showed an increase in the circulating levels 

of corticosterone, TNF-α [16] and leptin [13] (Table S2; supplementary 

material), which have an inhibitory effect on protein synthesis. The results 

obtained in this present study suggested that these factors do not seem to have 

a significant effect on the reduced protein synthesis in the EDL muscle. The 

inhibitory action of TNF-α on protein synthesis occurs mainly via inhibition of the 

phosphorylation of IRS-1 at Ser307 [48], thus preventing the activation of other 

proteins downstream of insulin signaling, such as Akt. In this study, we did not 

find changes in the basal p-Akt content of the EDL muscles of LPHC rats, 

suggesting that despite the increase in the serum TNF-α level in LPHC rats, this 

cytokine did not inhibit the insulin signaling in the tissue. The inhibitory effect of 

glucocorticoids on protein synthesis occurs via activation of GSK-3β, a 

downstream target of insulin/Akt signaling that suppresses protein synthesis by 

inhibiting eukaryotic transcription factor 2B-dependent translation (eIF2B) [48]. 

In contrast, leptin decreases protein synthesis by impairing mTOR 

phosphorylation through activation of the AMPK pathway [50, 51]. In the present 

study, we did not observe changes in the GSK-3β and AMPK contents or in the 

phosphorylation levels of these proteins in the EDL muscles of LPHC rats. This 

fact suggests that the high levels of corticosterone and leptin in LPHC rats are 

not a determining factor in the reduction of the protein synthesis in EDL muscle.  

LPHC rats exhibited higher epinephrine and norepinephrine levels (Table S2; 

supplementary material) [15]. Numerous studies have shown that the 



administration of β2-agonists positively regulates skeletal muscle mass [52, 53]. 

The β2-adrenergic signaling pathway involves the activation of the Gαs protein, 

which in turn activates adenylate cyclase, resulting in increased cAMP 

production. Cyclic AMP-activated PKA initiates the transcription of many target 

genes via the phosphorylation of CREB at Ser133. In fact, CREB 

phosphorylation occurs rapidly in skeletal muscles in response to β2-adrenergic 

stimuli [52]. Furthermore, β2-adrenergic stimulation in skeletal muscle leads to 

the release of the Gβɣ subunit, which in turn activates PI3K/AKT/mTOR 

signaling and thus induces protein synthesis [52]. In the present study, a 48% 

reduction in the phosphorylation of CREB in the EDL muscles of LPHC rats was 

observed. In addition, the unaltered basal p-Akt levels suggest that β2-

adrenergic stimulation is not evoked in the EDL muscles of LPHC rats despite 

the increase in plasma catecholamine levels, suggesting that adrenergic 

signaling was not involved in the reduction of protein synthesis.  

Thus, our results suggest that despite the changes in the circulating levels of 

hormones and proinflammatory cytokines in LPHC rats, which strongly 

influenced the carbohydrate and lipid metabolism in the liver [54] and adipose 

tissues that were already reported in other studies [15, 16, 55], these factors are 

not the main determinants of protein metabolism in the EDL muscle.  

In summary, the following can be concluded: 

i) The increase in the insulin sensitivity of EDL muscles of the LPHC rats 

contributes to the reduced proteolysis through a reduction in the activity of 

caspase-3 and the ubiquitin-proteasome system. 

ii) The lower rate of protein synthesis in the EDL muscle of LPHC rats is 

probably linked to inhibition of the phosphorylation of mTOR as a consequence 



of the lower availability of specific amino acids, suggesting that the protein 

synthesis is directly affected by the quantity and quality of the amino acids from 

dietary protein.  
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TABLES. 

Table 1: Compositions (g/kg) of the control and low-protein, high-

carbohydrate diets. 

Ingredients Control diet LPHC diet 

Casein (84% protein) 202 71.5 

Cornstarch 397 480 

Dextrinized cornstarch 130.5 159 

Sucrose 100 121 

Soybean oil 70 70 

Fiber (cellulose) 50 50 

Mineral mix (AIN 93 G)* 35 35 

Vitamin mix (AIN 93 G)* 10 10 

L-cystine 3 1 

Choline bitartrate 2.5 2.5 

*For the detailed composition, see Reeves et al. (1993). 

 

 

 

 



 

Table 2: The total food and protein intake, initial and final body weights, mass and 

protein content of the EDL muscle of low-protein, high-carbohydrate (LPHC) rats 

and of control rats after 15 days of treatment. 

       Parameter  Control LPHC  

Initial body weight (g) 93.57±1.14 93.08±1.41 

Final body weight (g) 191.52±2.95  148.05±6.88*  

Total food intake (g) 216.69± 6.32 244.96±9.57* 

Total protein intake (g) 36.83±1.02 14.70±0.61* 

EDL mass (g) 0.176± 0.012  0.113 ± 0.005** 

Muscle protein content (mg·g-1 muscle) 213.50±8.24  140.98±8.98** 

The data are the mean ± SEM of rats (n=8-10 rats). 

*P<0.05 vs. control rats; **P<0.01 vs. control rats (Student t-test). 

 

 

 

 

 

 



SUPPLEMENTARY MATERIAL 

Table S1: Weight and composition of the carcasses of low-protein, high-carbohydrate 

(LPHC) rats and control rats after 15 days of treatment. 

       Carcass parameter (g) Control LPHC 

Carcass weight 146.6±3.3 131.5±3.7* 

Water 94.6±2.4 77.4±1.9** 

Protein  31.0±1.0 23.4±0.4** 

Lipids  13.2±1.0 21.7±1.2** 

Ash  7.8± 0.2 9.0±0.4* 

The data are the mean ± SEM of rats (n=6 rats). *P < 0.05 vs. control rats, **P < 0.01 

vs. control rats (Student t-test). The data were previously published by Aparecida de 

França et al. [13]. 

 

 

 

 

 

 

 

 

 

 



Table S2: Hormone and catecholamine levels of low-protein, high-

carbohydrate (LPHC) rats and control rats after 15 days of treatment. 

       Hormones Control LPHC  

Fed rats   

Corticosterone (pg·mL-1) 147.5 ± 1.5 304.1 ± 1.9** 

Tumor necrosis factor-α (pg.mL-1) 54.3 ± 22.6 588.2 ± 69.6** 

Epinephrine (ng.mL-1) 3.9±0.6 5.4±0.4** 

Norepinephrine (ng.mL-1) 1.9±0.2 2.7±0.3** 

Leptin (ng.mL-1) 4.3±0.70 8.2±1.1** 

Insulin (ng.mL-1) 3.3±0.3 1.4±0.3* 

The data are the mean ± SEM of rats (n=4-12 rats).  

*P < 0.05 vs. control rats; **P < 0.01 vs. control rats (Student t-test).  

The data were previously published by Aparecida de França et al. [13], Buzelle 

et al. [15] and Dos Santos et al. [16]. 

 

 

 

 

 

 

 



Table S3: Post-feeding plasma amino acid levels of low-protein, high-carbohydrate (LPHC) 

rats and control rats after 15 days of treatment. 

Amino acid (µmol·L-1)  

Control 

 

LPHC 

 

% change †Essential 

Cysteine 36.29±1.81 23.46±2.65* −35 

Valine 110.95±4.92 66.67±5.25* −40 

Methionine 44.37±2.02 26.62±0.73* −40 

Isoleucine 52.22±2.68 31.12±1.76* −40  

Leucine 77.86±3.02 52.24±2.87* −33 

Tyrosine 39.08±1.87 20.69±1.87* −47 

Phenylalanine 27.08±1.41 22.32±1.51* −18 

Tryptophan 45.39±2.26 16.36±2.64* −64 

Histidine 39.42±2.61 41.53±2.37 NS 

Lysine 112.90±2.67 110.21±1.48 NS 

Non-essential    

Glutamic acid 47.83±1.255 62.68±4.643* +31 

Glycine 55.65±3.730 75.59±3.876* +36 

Alanine 137.94±3.449 171.27±3.675* +24 



Aspartic acid 12.35±2.895 13.33±1.228 NS 

Serine 158.05±1.646 157.47±2.211 NS 

Arginine 46.01±1.633 42.80±2.728 NS 

Note: Data are the mean ± SEM; *p < 0.05 compared with the control (Student's t test); NS= 

not significant. The data were previously published by Batistela et al. [14]. †Essential amino 

acid necessary for growing rats, recommended by Heger and Frydrych [56]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURES. 

 

Fig. 1: In vitro basal protein synthesis (A) and proteolysis (B) in the EDL muscle of 

control and low-protein, high-carbohydrate (LPHC) rats after 15 days of treatment. The 

data are presented as the mean ± SE (n=6-8 rats per group). * P<0.05 versus control 

diet (Student’s t test). 

 

Fig. 2: Protein content of cathepsins B (A) and L (B), cathepsin B activity (C) and 

protein content of autophagic components (D) in the EDL muscles of control and low-

protein, high-carbohydrate (LPHC) rats after 15 days of treatment. The data are 



presented as the mean ± SE (n=6-8 rats per group). *P<0.05 versus control diet 

(Student’s t test). 

 

Fig. 3: Activities of calpain (A) and caspase-3 (B) in the EDL muscles of control and 

low-protein, high-carbohydrate (LPHC) rats after 15 days of treatment. The data are 

presented as the mean ± SE (n=8-10 rats per group). *P<0.05 versus control diet 

(Student’s t test). 

 

 



Fig. 4: Protein content of atrogin-1 (A) and Ub conjugates (B) and chymotrypsin-like 

proteasome activity (C) in the EDL muscles of control and low-protein, high-

carbohydrate (LPHC) rats after 15 days of treatment. The data are presented as the 

mean ± SE (n=8-10 rats per group). *P<0.05 versus control diet (Student’s t test). 

 

 

Fig. 5: Protein content of IRβ (A) and AKT (B) and p-AKT/AKT ratio (C) in the EDL 

muscles of control and low-protein, high-carbohydrate (LPHC) rats after 15 days of 

treatment. The data are presented as the mean± SE (n=5-7 rats per group). *P<0.05 

versus control saline (Student’s t test). †P<0.05 versus LPHC saline (Student’s t test). 

 



 

Fig. 6: Total content and phosphorylated/total ratio of 4E-BP1 (A), p70S6K (B), GSK-3β 

(C), AMPK (D) and CREB (E) in the EDL muscles of control and low-protein, high-

carbohydrate (LPHC) rats after 15 days of treatment. The data are presented as the 

mean ± SE (n=6 rats per group). *P<0.05 versus control (Student’s t test). †P<0.05 

versus control (Student’s t test). 

 

 

 



 

 

Fig. 7: Foxo1 content and p-Foxo1/Foxo1 ratio in the EDL muscles of control and low-

protein, high-carbohydrate (LPHC) rats after 15 days of treatment. The data are 

presented as the mean ± SE (n=6 rats per group). *P<0.05 versus control diet 

(Student’s t test). 

 

 

 

 

 

 

 

 


