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ABSTRACT:

5-HT neurotransmission system is targeted by drugs useful in behavioural disorders, including anxiety, depression, psychosis
and eating disorders. 5-HT1A autoreceptors, located on 5-HT neurones of the midbrain raphe nuclei, are coupled to K channels
through a pertusis toxin-sensitive G-protein. 5-HT1A receptor agonists inhibit adenylyl cyclase, while 5-HT2C receptor
agonists activate two signal transduction pathways coupled with these receptors. 5-HT1A and 5-HT2C receptors have lots

potential in treating the disorders with less or no side effects.
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INTRODUCTION:

The 5-HT neurotransmission system is targeted by drugs
useful in behavioural disorders, including anxiety,
depression, psychosis and eating disorders.

5-HT1A autoreceptors, located on 5-HT neurones of the
midbrain raphe nuclei, are coupled to K channels through
a pertusis toxin-sensitive G-protein’. Their activation
hyperpolarizes 5-HT neurones and inhibits their firing
activity?. 5-HT1A receptors are localised
postsynaptically to 5-HT terminals, mainly in limbic and
cortical structures®. The activation of postsynaptic 5-
HT1A receptors in cortical and hippocampus pyramidal
neurones is also associated with hyperpolarization and
reduction of their firing activity’, mediate the inhibition
of forkolin-stimulated adenylyl cyclase activity; using
the method of partial irreversible receptor activation®.

5-HT1A receptor agonists exhibit anxiolytic and/or
antidepressant activity in experimental models, and some
members of the azapirone family, e.g., buspirone and
gepirone, are used in the treatment of affective
disorders®’. These drugs are also found to decrease
feeding in food-deprived animals®.

In anxiety disorders, changes in the corticosteroid
concentration and serotonergic transmission are
observed, on which 5-HT1A receptor agonists are
clinically effective®, via the activation of glucocoticoid
receptors by corticosterone, stressful stimuli enhance the
activity of tryptophan hydroxylase and increase brain 5-
HT turnover and extracellular 5-HT levels'®. Reduction
of 5-HT neurotransmission is thought to have an
anxiolytic effect. The role of presynaptic 5-HT1A
receptors located in the raphe nuclei in mediating the
anxiolytic effects of 5-HT1A agonists has been
demonstrated in animal models®’. It has been suggested
that the anxiolytic effect of 5-HT1A receptor agonists
require action in the dorsal raphe nucleus through the
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stimulation of somatodendritic 5-HT1A autoreceptors,
resulting in less firing of serotonergic neurones and a
subsequent reduction in 5-HT release’’. Moreover, the
glucocorticoid receptor antagonists like RU 38486 were
shown to display anxiolytic-like activity in rats™. Thus, it
can be hypothesised that the decreased density of
glucocorticoid receptor binding sites in the raphe nuclei
following 5-HT1A receptor activation contributes to the
anxiolytic action of 5-HT1A agonists by restoring the
efficiency of 5-HT1A autoreceptor in the negative
control of the electrical activity of serotonergic
neurones*. The regulation of 5-HT1A receptor is of
considerable clinical importance as its adaptive changes
appear to play an important role in the therapeutic effect
of antidepressants.

The stimulation of 5-HT1A receptor attenuates the
extrapyramidal side effects of antipsychotic. For
example, 5-HT1A receptor agonists attenuate
antipsychotic-induced extrapyramidal side effects in
human® and non-human primates®, and antipsychotic-
induced catalepsy in rats'’. The increased interest in 5-
HT1A receptors in antipsychotic research is evidenced
by reports of novel antidopaminergic compound with
affinity at 5-HT1A receptors®®.

5-HT1A receptor may have a beneficial effect for
treatment of schizophrenia, since the activation of
postsynsptic 5-HT1A receptors results in the activation
of cortical dopaminergic system which may be important
for ameliorating effect of atypical antipsychotic drugs on
negative symptoms in schizophrenia’® %, Also it is
known that 5-HT1A receptors can induce the deficits
passive avoidance retention, not 5-HT2A receptors®.

5-HT1A agonists induce multiple behavioural effects,
e.g. modulate both general locomotor activity?,
nonciceptive thresholds” and elicit a characteristic
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behavioural syndrome (5-HT syndrome) 2*. These factors
may interfere with learning performance by alteration of
sensory input at the initial stage of information
processing®.

The stimulation of presynaptic 5-HT1A receptor is
involved in the ability of 8-OH-DPAT, a 5-HT1A
receptor agonist, to cause attentional dysfunction and
enhance impulsivity while slowing of responding and
increase in errors of omission mainly depend on
stimulation of postsynaptic 5-HT1A receptors®.

The 5-HT is a major inhibitory agent of glutamatergic
transmission in the human cerebral cortex. Not only
serotonin inhibits the evoked release of glutamate from
nerve terminals by acting at presynaptic 5-HT1D
receptors, it also can inhibit events triggered by
glutamate release by acting at presynaptic receptors of
the 5-HT1A and of the 5-HT2C subtype. Whatever the
mechanisms, agonists at human 5-HT1D, 5-HT2C and 5-
HT1A receptors may be the potentially useful drugs in
neuropathologies with underlying excessive
glutamatergic transmission®.

The human 5-HT2A and 5-HT2C receptor agonists
differentially activate two signal transduction pathways

independently  coupled to  these  receptors®
(Phospholipase ~ C-mediated  inositol ~ phosphate
accumulation  and  Phospholipase  A2-mediated

arachidonic acid release). The transcript encoding the 5-
HT2C receptor undergo RNA editing events in which
genomically encoded adenosine residues are converted to
inosines by the action of double-stranded RNA
deaminase®. It has been suggested that this may affect
receptor G-protein coupling efficiency, and hence the
potency and efficacy of agonists may vary depending on
the being studied.

Newton et al*® (1998) expressed human 5-HT2A and 5-
HT2C receptors in SHSYS5Y cells. Both studies found 5-
HT to be more potent at 5-HT2C receptor than 5-HT2A
receptor.

Recently it is found that the selective 5-HT2C receptor
agonist Ro60-0175 can mimic many of the specific
effects of the prototypical anorectic drug d-fenfluramine
on feeding behaviour. In addition, the selective 5-HT2C
receptor antagonist SB 242084 either completely blocks,
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or, substantially attenuates the behavioural effects on
feeding of both d-fenfluramine and R0o60-0175 with the
exception of meal size®. These results strongly support
the investigation of 5-HT2C receptor agonists as
clinically effective anorectic drugs that avoid the
peripheral cardiovascular side effects that may be
associated with indirect agonist such as d-fenfluramine®.

Orexin-A-induced grooming is primary mediated by
OX1 receptors with involvement of downstream 5-HT2C
receptors. This study also suggested that orexin-A does
not indirectly activate 5-HT2C receptors throughout the
rat CNS, but instead activates a neuroanatomically
discrete population of 5-HT2C receptors to increase rat
grooming. In preliminary findings by Brown and Haas**
(2000) demonstrated that orexin-A increases firing of
neurones in the dorsal raphe nucleus. This suggests that
antagonism of 5-HT2C receptors can useful in anxiety
and anxiety related disorders.

Lithium effectively controls manic-depressive illness®®.
A possible explanation is that lithium modifies a
downstream pathway to re-establish normal responses to
the 5-HT2C receptor, which is proposed to be one of the
receptor responsible for manic-depressive illness,
perhaps by interaction with phosphoinsitide metabolic
pathway. Lithium inhibits inositol signalling mainly by
its specific effect on the 5-HT2C receptor and acts as an
inhibitor of inositol phosphate metabolism®.

Like the 5-HT 1A receptor agonism, the 5-HT2C receptor
antagonism also decreases the extrapyramidal side
effects of “atypical’ antipsychotic drugs®’.

CONCLUSION:

The 5-HT1A receptor agonists inhibit adenylyl cyclase,
while 5-HT2C receptor agonists activate two signal
transduction pathways coupled with these receptors. The
above findings suggests that selective subtype drugs of
5-HT1A and 5-HT2C receptors have lots potential in
treating the disorders with less or no side effects.

The 5-HT1A receptors are potential target for anxiety,
depression, eating disorders and for extrapyramidal side
effects of atypical antipsychotics, the 5-HT2C receptors
for anxiety /panic, anxiety related disorders like OCD,
maniac-depressive illness.
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