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ABSTRACT

When designing a tension structure the shape is not known at the beginning of the process. Form-finding methods al-
low the designer to obtain an initial shape from given boundary conditions. Several form-finding methods for tension 
structures are already available in the technical literature; all of them posses certain limitations and drawbacks and no 
single method is optimal for all problems. The engineer may select the proper combination of methods best suited to the 
designer’s needs. In this paper it is proposed a combined method to achieve satisfactory equilibrium configurations for 
fabric tension structures. The force density method (FDM) implemented with topological mapping (TM) is used as a search 
engine for the preliminary design, and a procedure that employs nonlinear structural analysis is proposed for final refine-
ment of the initial equilibrium configuration hence allowing the use of the same analysis tool for both refinement of the 
solution and analysis under loading.

Keywords: Tension structures; form-finding; structural optimization.

RESUMEN

Al diseñar una estructura tensada la forma inicial es normalmente desconocida. Los métodos de búsqueda de forma 
permiten al ingeniero obtener una geometría inicial dadas unas condiciones de contorno. Existen diferentes métodos 
de búsqueda de formas de equilibrio, pero todos tienen limitaciones y no existe uno único óptimo para cualquier tipo de 
problema. El ingeniero debe elegir la combinación de métodos que mejor se adapte a sus necesidades. En este artículo se 
propone un método combinado para generar configuraciones de equilibrio satisfactorias en estructuras tensadas. Como 
motor de búsqueda para el diseño preliminar se emplea el método de las densidades de fuerza (FDM) implementado con 
mallado en topología (TM), y se propone un procedimiento basado en análisis no lineal de estructuras para el refina-
miento de la configuración inicial de equilibrio, permitiéndose así el empleo de las mismas herramientas tanto para el 
refinamiento de la solución inicial como para el cálculo posterior bajo condiciones de carga.

Palabras claves: Estructuras tensadas; búsqueda de forma; optimización de estructuras.
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1.  INTRODUCTION

The design of tension structures is a relatively complex 
problem because of the relationship between the stress dis-
tribution and the final shape (1) (2). The design of a tension 
structure (3) can be described in three steps: initial shape-
finding, stress analysis of the structure and patterning. In the 
process of shape-finding (or form-finding), the designer gives 
a set of parameters, calculates other parameters and solves 
the shape of the structure that satisfies equilibrium. Under 
stress analysis, loads are applied to a structure whose initial 
equilibrium configuration is given by the previous step, and 
then the membrane adapts its configuration to the applied 
loads. Patterning is concerned with how a curved surface can 
be formed from fabric rolls; several techniques are available 
for this step.

Form-finding for tension structures is nowadays accom-
plished by numerical methods and computers. The param-
eters involved in the form-finding process are: i) type of ele-
ment to model the fabric, ii) surface topology, iii) body forces, 
iv) surface tractions, v) nodal coordinates of the model, vi) 
geometry boundary conditions, and vii) internal stress dis-
tribution. Body forces and surface tractions are usually ne-
glected during the shape-finding stage due to their insignifi-
cant influence in the geometrical shape at equilibrium. They 
can also complicate the initial equilibrium problem since the 
local direction and net magnitude of the loads may depend 
on an unknown initial surface shape. These loads are usually 
incorporated later into the stress analysis stage.

In most existing methods of equilibrium configuration, the 
shape is treated as an unknown. Then, it is necessary to intro-
duce a set of parameters to ensure a unique solution. Ideally, 
one can use a nonlinear displacement analysis technique to 
solve the initial equilibrium problem using surface finite ele-
ments. In this case, the element stresses and the fixed nodes 
can be prescribed by the designer to guarantee a unique solu-
tion to the problem. The results of the equilibrium problem 
are the non-fixed nodes position. This technique has an im-
portant drawback: a geometrical initial mapping with a guess 
of the nodal coordinates is needed.

Several methods for solving the initial equilibrium problem 
(form-finding) have been developed to overcome some of 
the drawbacks associated with the nonlinear displacement 
method. In many of these methods a variety of limitations 
are imposed on the solution to transform the general nonlin-
ear problem into a linear form. Siev and Eidelman (4) showed 
that if equilibrium is satisfied over a grid in the horizontal 
plane, vertical equilibrium can be used to calculate the eleva-
tion at the grid points. In the force density method (FDM) 
the membrane is modelled by a cable network. FDM is based 
upon the force-length ratios or force densities which are de-
fined for each branch of the net structure; a simple example 
will be shown later. Schek (5) shows that the force densities 
are suitable for the description of the equilibrium state of any 
general network. The FDM renders a simple linear system of 
equations for a possible initial configuration.

Haber and Abel (6) presented the ‘smoothing concept’ which 
allows the designer to solve the shape of a reference configura-
tion in terms of an assumed prestress distribution. Using this 
method the equilibrium equations are nonlinear and conse-
quently iterative techniques are required for the solution.

Other methods of form-finding are based on dynamic anal-
ysis. One of the main contributors to these methods was 
Barnes (7) who used a method of dynamic relaxation with 
kinetic damping for form-finding.

Hernandez-Montes et al. (8) employed an important prop-
erty of the FDM by which knowledge of the initial position 
of the non-fixed nodes of the structure is not needed; only 
the connectivity of the nodes is necessary to solve the prob-
lem. Accordingly, a new mapping method based on topology 
called topological mapping (TM) was presented; in contrast 
to the mapping methods used so far based exclusively on ge-
ometry.

Each of the methods mentioned above possesses certain limi-
tations and drawbacks, therefore, no single solution meth-
od is optimal for all problems. The engineer may select the 
proper combination of methods best suited to the problem at 
hand and the designer’s needs. In this paper we take advan-
tage of some of the existing methods to propose a combined 
method for computing satisfactory equilibrium configura-
tions. The objective is to develop a straightforward method-
ology to achieve final equilibrium configurations for fabric 
tension structures, making use of stress control over surface 
elements, and taking advantage of the FDM with topological 
mapping as preliminary shape-finding.

2.  DESCRIPTION OF THE PROCEDURE

The procedure presented in this paper is shown in Figure 1. 
There are three stages with one or several steps. The first 
stage of the method uses topological mapping and the force 
density method (TM-FDM); in the second stage the obtained 
cable network is transformed into a membrane model; and in 
the third stage a new surface with a prescribed stress field is 

Figure 1.  Flowchart of the applied method.
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components p
x
, p

y
 and p

z
. This allows to obtain a general for-

mulation of the FDM for a complete network:

	

( )
( )
( )

C QC x + p = 0

C QC y + p = 0

C QC z + p = 0

T
x

T
y

T
z

	 [3]

where Q is the diagonal matrix that contains the force den-
sities for the branches q

j
. The above system of equations 

constitutes a linear system where the known values are the 
coordinates of the fixed points, the topology of the pin-joint 
network, and the force density values. The unknowns are the 
coordinates of non-fixed nodes. The CTQC matrix is positive 
definite if we have a prestressed network (q

j
 > 0) without iso-

lated points, so in this case we obtain exactly one equilibrium 
state by solving [3].

TOPOLOGICAL MAPPING

An initial guess of the shape is needed in order to generate 
a network, for instance the approximate shape of the hori-
zontal projection. With this horizontal projection it is easy 
to consider a network even when only the connections are 
picked as input for the FDM; this way of doing is called “geo-
metrical mapping”, in order to differentiate it from the topo-
logical mapping method (TM).

The main feature of the topological mapping (TM) introduced 
by Hernández-Montes et al. (8) is that with a few topological 
rules a meshing can be performed independently of the fi-
nal geometric configuration. TM considers two types of net-
works: closed and open networks. In this paper only closed 
networks will be used, so all explanations will be referred to 
this type of network.

The topology of the network is obtained with the following 
input data: the number of nodes in the second step, the num-
ber of steps and the type of relation between one step and the 
following one.

Three types of basic relations are defined between steps: A, 
B and C, see Figure 3. Relation A corresponds to a pattern in 
which each node at a given step is connected to the adjacent 
ones on the same step as well as three more nodes of the fol-
lowing step (Figure 3a). In relation B, each node at a given 
step is connected to the adjacent ones on the same step as 
well as two nodes of the following step (Figure 3b). Case C is 
such that each node at a given step is connected alternatively 
to one or to three nodes of the next step, and also to the adja-
cent ones of the same step (Figure 3c).

In order to correctly close the topological mapping a classi-
fication of nodes and connections has been defined for these 
networks. For the basic relationships A, B and C (Figure 3) 
there are three black nodes and one grey node in the second 
step. The grey node must coincide with the black one located 
on the border of the step, so the grey one is called ‘repeated 
node’. Due to this procedure thick lines in Figure 3 are con-
nections and dashed lines represent ‘repeated connections’.

The construction of the network begins with one node which 
is connected to the n nodes of the second step. However, this 
initial node may be suppressed whenever there is the need 

searched. The details of the steps belonging to each stage are 
explained later along the manuscript.

In order to make the paper self-contained an introduction to 
FDM and TM are included.

2.1.  Initial equilibrium configuration

FORCE DENSITY METHOD

The starting point for the FDM (5) is a pin-joint network con-
sisting of cable or bar elements, in which some of the points 
are fixed and the others are free. The free points will have to 
find a position in the equilibrium configuration. 

For a given pin-joint network with n nodes and m branches, 
the branch-node matrix C is a m × n matrix used in the FDM 
to define the connectivity of the nodes. Defining i(j) and k(j) as 
node i and k of branch j respectively, for i < k the elements of 
the branch-node matrix C can be built as follows (see Figure 2):

	 =
+ =
− =










C( , )

1 if ( )

1 if ( )

0 for the rest

j r

i j r

k j r 	 [1]

The nodes Pi have coordinates (x
i
, y

i
, z

i
), i=1, ..., n. Some of 

these nodes are fixed, and they will constitute the input data 
for the initial equilibrium configuration problem. If nodal 
forces with components p

ix
, p

iy
 and p

iz
 are applied at each node 

i, letting l
j
 and s

j
 be the length and the branch force of each 

branch j, the equilibrium equations for each node may be es-
tablished. In the case of Figure 2, the equilibrium equations for 
node 3 result from the projections of the forces along each axis:
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	 [2]

The great advantage of the FDM is the introduction of a pa-
rameter q

j
, which represents the force-length ratio (s

j
/l

j
) or 

force density for the branches. If q
j
 is constant for all the 

branches then the equilibrium equations become a linear 
system.

Next, the x, y and z-coordinates for each of the nodes are 
grouped in the n-vectors x, y and z, and the nodal loads are 
characterized by means of n-vectors containing the force 

Figure 2.  Example for the construction of the branch-node matrix.
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uniform as possible, i.e., a mesh having triangles whose areas 
are as similar as possible. We have conducted an empirical 
analysis in which, for a given shape of the contour and a cer-
tain topological relationship, we have calculated the devia-
tion from the average of the area of the triangles forming the 
equilibrium configuration. This analysis was repeated for a 
sample consisting of:

• � Varying number of steps from 10-16.
• � All possible topological relationships (once the number of 

steps is fixed).
• � Different forms of the contour: regular and irregular.

From the obtained results, we have deduced a series of topo-
logical relations for the different number of steps. These rela-
tions are recommended in the generation of equilibrium con-
figurations with the TM-FDM method and are shown in Table 
1. Its use provides uniform meshes in the reached equilibrium 
configurations for both regular and irregular contour shapes.

2.3.  �Transforming the cable model into  
a membrane model

The constant stress triangular element is used; it is described 
in Figure 5 and 6. In the standard formulation of this ele-
ment, the node equilibrium equation appears in the local co-
ordinate system as

to create a new interior contour in the net. Moreover, the 
nodes and ring branches located in the last step constitute 
the contour of the equilibrium shape. The number of nodes 
on each step is double the amount on the previous one when 
relationship type A is used, and remains constant when using 
a relationship type B or C.

TM-FDM method assigns the fixed points to the nodes located 
at the last step through the calculation of the distance between 
consecutive fixed points and the perimeter formed by them in 
such a way that the distribution of nodes of the last ring is done 
proportionally to the real distance between the fixed points. 
This assignation is then performed automatically.

Figure 4a shows an example of tension structure meshed 
in topology with a sequence of basic relations A and B, and 
Figure 4b shows another one with basic relation type C and 
with the consideration of an interior hole. 

2.2.  Types of topological relations in TM-FDM

The number of steps used in TM depends on the desired de-
gree of refinement. A large number of steps will result in a 
mesh formed by a higher density of triangles. Once the num-
ber of steps has been decided, it is desirable to automatically 
generate the topological relations. These topological relations 
can be analyzed so as to achieve one goal: to obtain a mesh as 

Figure 3.  a) Topology of network Type A. b) Topology of network Type B. c) Topology of network Type C.

Figure 4.  Examples of the use of meshing in topology a) using relations A and B b) using relation C and an interior hole.
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where ∆ is the area of the triangle. Let Q
rs 

and L
rs

 be the force 
and the length of the branch connecting the nodes r and s 
(Figure 6b). [5] renders the three force densities (q

rs
 = Q

rs
  

/ L
rs

) for a constant stress triangular element. For a given 
stress distribution over a membrane divided into triangles, 
[5] is used to obtain the three force densities for the virtual 
cable network in each triangle. In the case of an equilibrated 
network calculated by the force density method with topo-
logical mapping, the corresponding stress distribution over 
an equivalent finite element membrane model can be ob-
tained as the inverse problem of [5]. This equilibrated mem-
brane model will be referred as Initial Equilibrium Surface 
Model (IESM).
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where σ
x
, σ

y
, τ

xy
 are the usual stresses of plane elasticity, 

t is the thickness of the membrane, fe is a vector that contains 
the nodal forces of the element, and b’s and c’s are defined 
as follow:

b
i
 = y

j
 – y

m
 ; c

i
 = x

m
 – x

j

b
j
 = y

m
 – y

i
 ; c

j
 = x

i
 – x

m

b
m

 = y
i
 – y

j
 ; c

m
 = x

j
 – x

i

Figure 5.  Triangular Finite Element in its Local Coordinate System.

A link is established between the stresses in a membrane mod-
el and the cable forces in its corresponding virtual triangulated 
network. First, a local coordinate system coplanar with the ele-
ment is used. Afterwards, the components of the nodal forces 
(in a Cartesian system) are transformed into a skew system 
parallel to the edges of the element (Figure 6b), such that the 
following three independent equations can be obtained:

Table 1.  Recommended topological relations based on the number of steps. 

NUMBER 
OF STEPS

Number of nodes 
for the second step

Topological relations from steps 3 to end

3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 6 A B A B B A B B

11 6 A B A B B A B B B

12 6 A B A B B A B B B B

13
6 A B A B B A B B B B B

6 A A B B A B B B B A B

14
6 A B A B B A B B B B B B

6 A A B B A B B B B A B B

15
6 A B A B B A B B B B B B B

6 A A B B A B B B B A B B B

16
6 A B A B B A B B B B B B B B

6 A A B B A B B B B A B B B B

Figure 6.  a) Standard constant stress triangular element  
b) same element with equivalent nodal force components  

in the direction of the edges.
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a, e and c are illustrated in Figure 5.

CONFIGURATIONS WITH STRESS CONTROL

Given an initial equilibrium configuration, usually a different 
equilibrium shape close to the initial shape might be obtained, 
changing both the geometry and the stress distribution of the 
initial structure. For example, it may be attractive to obtain an 
equilibrium configuration with a constant stress field, or other 
prescribed stress patterns, by changing the Initial Equilibrium 
Surface Model (derived from the initial cable model equilibrium 
configuration obtained by FDM and TM). It is possible to gener-
ate equilibrium configurations with an imposed stress distribu-
tion using the Stiffness Matrix Method. The procedure is based 
on the same displacement analysis techniques used to study the 
behaviour of tension structures under varying load condition. 
In this method geometrical nonlinear analysis techniques are 
used to compensate unbalanced forces. These unbalanced forc-
es result from the imposition of a new stress field to the Initial 
Equilibrium Surface Model. The applied procedure contains the 
following steps, schematically described in Figure 1:

• � Step 1: Introduce the necessary data for the topology map-
ping: the coordinates of the fixed nodes, the topology of the 
pin-joint network and the force density values.

• � Step 2. Calculate an initial equilibrium configuration based 
on the force density method. The coordinates of the non-
fixed nodes are obtained.

• � Step 3: Compute the membrane stresses using [5]. The Ini-
tial Equilibrium Surface Model is obtained.

• � Step 4: Modify the membrane stresses to the desired val-
ues. This introduces a perturbation in the system, and an 
unbalanced force vector (ΔF) appears. 

• � Step 5: Assemble individual element stiffness matrices to 
form the elastic stiffness matrix K

E
 and the geometrical stiff-

ness matrix K
G
 of the structure with the desired stresses. 

• � Step 6: Equilibrium requires that the sum of all forces must 
be zero at each node, so a new equilibrium configuration of 
the structure is obtained by allowing the deformation of the 
structure under the unbalanced forces (ΔF). [9] is solved by 
iterations, as a regular second order analysis:

	 K
E
+K

G( )a =∆F 	 [9]

where a is the vector of nodal displacements and ΔF is the vec-
tor of nodal forces resulting from the perturbation induced 
by the imposed stress field, which induces a non-equilibrium 
configuration. Each iteration requires the calculation of:

– � The new nodal positions, adding to the previous nodal 
position the nodal displacements a.

– � The vector of unbalanced forces ΔF, calculated with the 
stress field variation. Small variations are preferred for 
numerical convergence; the magnitude of these vari-
ations can be easily controlled with small values of the 
Young’s modulus E.

– � The error, which can be computed as the second norm of 
the vector ΔF (I have named it as error Type 1).

2.4.  �Final equilibrium configuration with stress 
control 

The shape of tension structures depends on their internal 
stress pattern. Nonlinear structural analysis is needed to 
obtain a new equilibrium configuration when loading (or a 
perturbation) is added to the Initial Equilibrium Surface 
Model. In this paper nonlinear analysis is employed with the 
hypothesis of large rotations and small strains, together with 
the constant stress triangular finite element previously de-
scribed. New equilibrium configurations are obtained due to 
perturbations introduced in the system. Perturbations come 
from changes in the stress field, these changes generate non 
equilibrated nodal loads. New equilibrium configurations 
with subsequent geometric changes are obtained using the 
Stiffness Matrix Method (9). Following we briefly describe 
the stiffness matrix that we have employed for the constant 
stress triangular element.

THE ELASTIC AND GEOMETRIC STIFFNESS MATRIX

In case of the plane stress triangular finite element, the elas-
tic stiffness matrix of the element (Ke

E
) is (9):
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The components of the previous matrix are:
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where E and ν are Young’s modulus and Poisson’s ratio. (Ke
E
)

ij is the element in row i and column j of the matrix Ke
E
.

The geometric stiffness matrix associated with the elastic stiff-
ness matrix defined in [6] can be obtained by perturbation 
methods. The resulting geometric stiffness matrix (Ke
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) is (9):
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•  Force density values
For the inner branches: 1
For the external branches: 10

With these simple inputs the geometry corresponding to the 
initial equilibrium configuration is automatically obtained 
(Figure 7).

Step 3: Transforming the cable model into a membrane model

The cable model is transformed into a membrane model com-
posed by triangular elements; the stress (units of force per 
length) field is obtained by [5]. The corresponding stress dis-
tribution is shown in Figure 8. Stresses have been scaled so 
that the minimum value of the major principal stress is equal 
to 1. At the exterior cables the obtained values vary between 
59 and 34 with a mean value of 48 units of force.

Steps 4 to 7. Final equilibrium configuration with stress control

For simplicity, in this example an isotropic and uniform 
stress field has been chosen in the membrane. The fixed value 
of the principal stresses is 1 (force/length units). An imposed 
value of force of 48 (force units) has been given to the exterior 
cable. A Poisson’s ratio equal to zero and a Young’s modulus 
equal to 0.5 have been used. After few iterations (Newton-
Raphson) from steps 4 to 7 a new equilibrium configuration 

– � In case the error (Type 1) is bigger than an upper bound 
value, K

E
 and K

G
 are recalculated taking into account the 

new nodal position and the new stress field.

• � Step 7: Compute the vector of unbalanced forces ΔF with the 
final nodal position obtained in Step 6 and the desired stresses. 
Finally, compute the error as the second norm of the vector ΔF 
(Error Type 2). If this error is bigger than an upper bound val-
ue, go to Step 4, with the previous obtained nodal coordinates.

3.  EXAMPLE

Steps 1 and 2: Initial equilibrium configuration

A tension structure with 8 fixed points is designed. The first step 
is the solution of the form-finding problem, TM and FDM is used. 
The necessary input data for this first step are the following:
•  Boundary conditions:

Number of fixed points: 8
Coordinates of the fixed points: (-6,-45,0), (6,-45,0), 
(27,-24,15), (27, 24,15), (6, 45,0), (-6, 45,0), (-27, 24,15), 
(-27, -24,15)

•  Topology:
Desired number of steps: 12
Type of network: obtained from Table 1 for the desired 
number of steps.

Figure 7.  Initial equilibrium configuration with FDM and topological mapping methodology.

Figure 8.  a) Major principal stress (σ1), imposing 1 for the smaller value b) Ratio of principal stresses.
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4.  CONCLUSION

An extended application of topological mapping to obtain a 
final equilibrium configuration of a membrane structure un-
der controlled stress conditions is presented. The procedure 
deals with a topology based pin-joint network that is easy to 
implement and the force density method (FDM). The proce-
dure is versatile and it represents a simple and straightfor-
ward method to achieve optimal equilibrium configurations 
through the use of finite element analysis tools for both re-
finements of the solutions and for their analysis under load-
ing conditions. 

is obtained. In order to fulfill with the requirements of error 
Type 2, the numerical procedure has gone four times through 
step 7. Table 2 shows the resulting error for each step. Two 
types of error are computed: Error1 (Error Type 1) and Error2 
(Error Type 2). It can be checked that after few iterations the 
resulting residual error for the final equilibrium configura-
tion with the desired stresses is insignificant.

Figure 9 shows the initial configuration, obtained by the TM-
FDM, in black color, and the final configuration, with the 
specified stress field, in white color. A substantial change in 
the geometry can be observed. 

Table 2.  Error obtained in the iteration process.

Times through step 7 = 0

ITER 1 2 3 4 5 6 7 8 9 10

Error1 1,15E+01 3,16E+00 4,47E-01 1,38E-02 2,18E-03 5,58E-04 1,55E-04 5,61E-05 1,84E-05 6,76E-06

Error2 1,26E+00

Times through step 7 = 1

ITER 1 2 3 4 5 6 7 8 9 10

Error1 1,26E+00 1,63E-02 4,01E-04 7,83E-06 – – – – – –

Error2 2,17E-01

Times through step 7 = 2

ITER 1 2 3 4 5 6 7 8 9 10

Error1 2,17E-01 2,86E-03 4,65E-06 – – – – – – –

Error2 8,71E-02

Times through step 7 = 3

ITER 1 2 3 4 5 6 7 8 9 10

Error1 8,71E-02 9,67E-04 1,01E-06 – – – – – – –

Error2 7,34E-02

Times through step 7 = 4

ITER 1 2 3 4 5 6 7 8 9 10

Error1 7,35E-02 6,24E-04 7,78E-07 – – – – – – –

Error2 6,89E-02

Figure 9.  Initial and final configuration of the equilibrium shapes.
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