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A Design Method of Robust Non-Fragile Guaranteed Cost Controllers
for Linear Systems with Structured Uncertainties

Hidetoshi Oya＊

　This paper deals with a design problem of robust non-fragile stabilizing controllers with guaranteed cost for linear 
systems with structured uncertainties. In this paper, we consider two classes of control gain perturbations and show that 
sufficient conditions for the existence of the robust non-fragile guaranteed cost controller are given in terms of linear 
matrix inequalities (LMIs). Additionally, a design method of optimal robust non-fragile guaranteed cost controllers which 
minimize an upper bound on a given quadratic cost function is discussed. Finally, numerical examples are presented to 
demonstrate the effectiveness of the proposed robust non-fragile controller.
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1.　Introduction

　Robustness of control systems to uncertainties has 
always been the central issue in feedback control and 
therefore for uncertain systems, a large number of 
design methods of robust controllers have been derived1-3). 
In particular, for so-called structured uncertainties in 
the  form o f   ,  a 
connection between quadratic stabilization and  
control has also been established4).
　By the way in most practical situations, it is desirable 
to design robust control systems which achieve not 
only robust stability but also an adequate level of 
control performance. One approach to this problem is 
the guaranteed cost control approach first introduced 
by Chang and Peng5). This approach has the advantage 
of providing an upper bound on a given cost function 
and thus the system performance degradation incurred 
by the uncertainties is guaranteed to be less than this 
bound. Based on this idea, many significant results have 
been presented6-9). Petersen and McFarlane6） adopted a 
parameter dependent Riccati equation approach and Yu 
and Chu8),9) presented a controller design method based 
on linear matrix inequalities (LMIs).
　On the other hand, there have been some efforts to 
tackle the design problem of robust non-fragile 
controllers10-13). Because, uncertainties in controllers 
appear for many reasons such as imprecision inherent 
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in analog-digital and digital-analog conversion, finite 
word length, and f inite resolution measuring 
instruments and roundoff errors in numerical 
computations, and any useful design procedure should 
generate a controller which also has sufficient room for 
readjustment of its coefficients in the final controller 
implementation14),15). In practice, Keel and Bhattacharyya14) 
have shown through a series of examples that the 
robust controller design without considering the 
re l a t ive ly  sma l l  uncer ta in t i e s  in  contro l l e r 
implementation could lead to even closed-loop instability 
under small perturbations in controller parameters. 
Therefore, it is necessary to design controllers 
tolerating some uncertainties in their parameters. For 
linear systems with structured uncertainties existing 
only in the system matrix, a design method of a robust 
non-fragile LQ controller has been shown11). Also a non-
fragile  controller for linear systems has been 
derived12). However, so far the LMI-based design 
method of robust non-fragile guaranteed cost controllers 
for l inear systems with so -ca l led structured 
uncertainties which are included in both the system 
matrix and the input one has little been considered as 
far as we know.
　From this viewpoint, in this paper we present a 
design method of a robust non-fragile guaranteed cost 
control ler for l inear systems with structured 
uncertainties existing in both the system matrix and 
the input one. In this paper, we deal with plant 
uncertainties in the form of  

 and additive and multiplicative control gain 
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variations, and we show that sufficient conditions for 
the existence of the robust non-fragile guaranteed cost 
controller are given in terms of LMIs. Besides, a design 
method of optimal robust non-fragile guaranteed cost 
controllers which minimize an upper bound on a given 
cost function is considered.
　This paper is organized as follows. In Sec. 2, notations 
and two useful lemmas which are used in this paper are 
shown and in Sec. 3, we introduce the classes of 
uncertain systems and the control gain perturbations 
under consideration. Sec. 4 and Sec. 5 contain the main 
results. The design method of the robust non-fragile 
guaranteed cost controller is presented. Finally, 
illustrative examples are included to illustrate the 
results developed in this paper.

2.　Preliminaries

　In this section, we show notations and two useful 
lemmas which are used in this paper.
　In this paper, we use the following notations. For a 
matrix , the transpose of the matrix  and the inverse 
of one are denoted by  and  respectively. Also 

 means  and  represents n-dimensional 
identity matrix. For real symmetric matrices  and , 

 (resp. ) means that  is positive (resp. 
nonnegative) definite matrix and  and  denote 
its expectation and its trace, respectively. Furthermore, 
the following two useful lemmas are used in this paper.
　Lemma 1　For given constant real symmetric matrix 
, the following arguments are equivalent.

  
 

Proof: See Boyd. et al16).
　Lemma 2　For matrices  and  which have 
appropriate dimensions and a positive scalar , the 
following relation holds.

Proof: See Lemma 1 of Oya and Hagino17).

3.　Problem Formulation

　Consider the uncertain linear system described by 
the following state equation (see Remark 1).

 
（1）

　
where  and  are the vectors of the 
state (assumed to be available for feedback) and the 
control input, respectively. The matrices  and  
are supposed to have appropriate dimensions and the 
following time-varying structure.

 
（2）

　
In (2), the matrices  and  denote the known nominal 
values and the pair  is assumed to be stabilizable. 
The matrices  and  represent the structure of 
uncertainties. The matrices  and 

 denote uncertainties and satisfy 
 and , respectively. Furthermore, 

the quadratic cost function associated with the 
uncertain system (1) is given by

 
（3）

　
where  and  are positive definite 
symmetric matrices and can be adjusted by designers.
　In order to consider control gain perturbations, the 
actual control input implemented is assumed to be

 （4）　
where  represent the control gain matrix 
and the following two classes of uncertainties for the 
control gain matrix  are considered13).
　◦the multiplicative form:

 
（5）

　
　◦the additive form:

 
（6）

　
where  is the nominal control gain matrix. In (5) and 
(6),  and  denote the structure of 
uncertainties for the control gain matrix and are known 
constant matrices with appropriate dimensions. Also, 
the matrices  and  
represent the control gain variations and satisfy the 
relation  and 

 where  and  are known positive scalars.
　Note that the manipulated control input for the 
uncertain system (1) is , because the control 
gain variations  and  
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cannot be handled. In this paper, we simply consider 
the actual control input  described by (4), (5) and (6) 
so as to design the guaranteed cost controller under 
control gain perturbations.
　From (1) and (4), we get

 
（7）

　
　For actual controller implemented, we shall give the 
following two definitions, which are similar to that in 
the work of Petersen and McFarlane6).
　Definition 1　The closed-loop uncertain system (7) is 
said to be quadratically stable if there exists a feedback 
gain matrix  and a matrix  which satisfy the 
matrix inequality (8) for all uncertainties  and 

 and all control gain perturbations  or 

　Definition 2　The control law (4) is said to be a 
robust non-fragile guaranteed cost control with a cost 
matrix  for the uncertain system (1) and the 
quadratic cost function (3) if the closed-loop uncertain 
system (7) is quadratically stable and there exists the 
symmetric positive definite matrix  satisfying

 （9）　

for all uncertainties  and  and all control 
gain perturbations  or .
　The following lemma shows that a robust non-fragile 
guaranteed cost control will achieve quadratic stability 
of the uncertain closed-loop system (7) and define an 

upper bound on the cost function (3).
　Lemma 3　Consider the uncertain system (1) with 
the quadratic cost function (3). Suppose that the control 
law (4) with control gain perturbations (5) or (6) is a 
robust non-fragile guaranteed cost control with the cost 
matrix . Then the uncertain closed-loop system (7) 
is quadratically stable and the following relation holds.

　　　
　　　　  

（10）
　

Proof: From the Definition 1 and Definition 2, the 
quadratic stability of the uncertain closed-loop system (7) 
is immediate. Let  be a Lyapunov 
function candidate. Then from the Definition 2, the time 
derivative of the quadratic function  along the 
trajectory of the uncertain closed-loop system (7) can be 
computed as (11). By integrating both sides of the 
inequality (11) from 0 to , we have

　　
　　　  

（12）
　

　Since the uncertain closed-loop system (7) is 
quadratically stable, that is,  when , 
we obtain . Thus we get the upper bound on 
the quadratic cost function (10).
　It follows that the result of the lemma is true. The 
proof of Lemma 3 is completed. □
　From the above discussion, our control objective is to 
design the robust non-fragile guaranteed controller. 
That is to find the state feedback gain matrix 

（8）　

（11）　

（13）　

（14）　
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 and the symmetric positive definite matrix 
 satisfying the inequality (9).

4.　Design of Robust Non-Fragile 
Guaranteed Cost Controllers

　In this section, we show that the design method of 
the robust non-fragile guaranteed cost controller based 
on the LMI framework. Firstly, we give the following 
theorem for the guaranteed cost controller under 
multiplicative control gain perturbations of the form (5).
　Theorem 1　Consider the uncertain system (1) with 
the quadratic cost function (3). There exists the state 
feedback gain matrix  such that the control law (4) 
with the multiplicative control gain perturbations of the 
form (5) is a robust non-fragile guaranteed cost control, 
if there exist  and  
satisfying the LMI condition (13). In (13),  is the 
matrix given by  
and  is the matrix given by (14).
　If the solution  and 

 of the LMI (13) exists, then the state feedback 
gain matrix  is obtained as

 
（15）

　
Proof:  By using a symmetric positive definite matrix 

, we introduce the quadratic function 
 as a Lyapunov function candidate. 

From (2) and (5), the time derivative of the quadratic 
function  along the trajectory of the closed-loop 
system (7) with uncertainties and control gain variations 
can be computed as (16).
　Now we consider the condition (17) corresponding to 
the inequality (9). Note that if there exist the matrices 

 and  which satisfy the condition 

(17), then the inequality (9) is also satisfied. If there exist 
the state feedback gain matrix  and the 
symmetric positive definite matrix  which 
satisfy the condition (17), then the uncertain closed-loop 
system (7) is quadratically stable and the upper bound 
on the quadratic cost function (3) is given by (10), i.e. the 
control law (4) becomes a robust non-fragile guaranteed 
cost control (see Lemma 3).
　Let us introduce the matrix  and consider the 
change of variable . Then pre- and post-
multiplying (17) by  and using Lemma 2, we get the 
matrix inequality condition (18). If the inequality 
condition (18) holds, then the matrix inequality (17) is 
satisfied, because the following relation is obvious.

 （19）　
　Furthermore, applying Lemma 1 to the condition (18), 
simple algebraic manipulation gives the matrix 
inequality (20) at the top of the next page. Also by using 
Lemma 2, we obtain the condition (21) at the top of the 
next page. One can see from the Lemma 2 that if the 
matrix inequality (21) is satisfied then the inequality 
condition (20) holds. Note that the matrix  in (21) 
is given by

 
（22）

　
　From Lemma 1, it is easy to verify that the condition 
(21) is equivalent to the LMI (13). If the solution 

 and  of the LMI condition (13) exists, then 
from the relation , the state feedback gain 
matrix is given by (15).
　It follows that the result of the theorem is true. Thus 
the proof of Theorem 1 is completed. □

（16）　

（17）　

（18）　
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　Theorem 1 provides a sufficient condition for the 
existence of a robust non-fragile guaranteed cost 
contro l ler  under mult ip l icat ive contro l  ga in 
perturbations. Next, we show the theorem for a design 
method of a robust non-fragile guaranteed cost 
controller under additive one.
　Theorem 2　Consider the uncertain system (1) with 
the quadratic cost function (3). There exists the state 
feedback gain matrix  such that the control law (4) 
with the additive control gain perturbations of the form 
(6) is a robust non-fragile guaranteed cost control if 
there exist  and  
satisfying the LMI condition (23). In (23),  is the 
matrix given by  and 

 is the matrix given by (24).
　If the solution of the LMI (23) exists, then the state 
feedback gain matrix  is obtained as

 （25）　
Proof:  The result of Theorem 2 is derived in a similar 
way as for Theorem 1. □

5.　Design of Optimal Robust Non-Fragile 
Guaranteed Cost Controllers

　Since (13) and (23) are LMIs in 
 and , the matrix inequalities (13) and (23) 

define a convex solution set of . Therefore 

various efficient convex optimization algorithms can be 
used to test whether the LMIs are solvable and to 
generate particular solutions. Moreover, its solutions 
parametrize the set of guaranteed cost controllers. The 
parametrized representation can be exploited to design 
the guaranteed cost controller with some additional 
requirements. In particular, the optimal robust non-
fragile guaranteed cost control which minimizes the 
upper bound on the quadratic cost function (10) can be 
determined by solving a certain optimization problem. 
In this section, we consider the problem of the optimal 
robust non-fragile guaranteed cost control.
　We now consider to design the optimal robust non-
fragile guaranteed cost controller. In (10), the upper 
bound  depends on the initial vector . Thus in 
order to avoid this dependence, we assume that the 
initial vector  is zero mean random vector satisfying 

. In this case, we consider the 
value of the quadratic cost function as its expectation. 
Then the upper bound on the quadratic cost function 
(10) is given as . Therefore we seek to 
minimize  subject to the constraint (13) or (23) 
(see Remark 2). Namely the problem of designing the 
optimal robust non-fragile guaranteed cost control is 
reduced to the following constrained optimization 
problem.

（20）　

（21）　
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　　  　subject to
　　  (13) (or (23)) and
　　  
 （26）　
Note that in the constrained optimization problem (26), 
the constraint (13) is adopted in the case of the 
multiplicative control gain perturbations of the form (5) 
and the constraint (23) is adopted in the case of the 
additive one of the form (6).
　Since (13) and (23) are LMIs in  and , we 
now introduce a complementary variable  
satisfying the following relation.

 
（27）

　
Therefore we see from the relation  that the 
minimization problem of  can be transformed 
into that of . Note that the condition (27) is also 
the LMI in  and . Consequently, the constrained 
optimization problem (26) is reduced to the following 
constrained convex optimization problem.
　

  subject to
　

(13) (or (23)) and (27) and （28）
　

　

　If the optimal solution of the constrained convex 
optimization problem (28), denoted by 

 and  is obtained then the optimal robust non-
fragile guaranteed cost control law for all unknown 
matrices  and  and al l  control gain 
perturbations  or  is given by (4) with 
the state feedback gain matrix .
　From the above discussion, the following theorem can 
be developed.
　Theorem 3　Consider the uncertain system (1) with 
the quadratic cost function (3). There exists an optimal 
robust non-fragile guaranteed cost control for all 

uncertainties  and  and all control gain 
perturbations  or , if there exist the 
optimal solution which satisfy the following constrained 
convex optimization problem.
　   subject to
　

(13) (or (23)) and (27) and　

　If the optimal solution of the constrained convex 
optimization problem (28) is obtained, then the optimal 
robust non-fragile guaranteed cost control law for all 
unknown matrices  and  and all control gain 
perturbations  or  is given by (4) with 
the state feedback gain matrix .
　Furthermore, the upper bound on the quadratic cost 
function is computed as .
　Remark 1　In this paper, the design problem of the 
robust non-fragile guaranteed cost controller for the 
uncertain system (1) has been considered. By the way, 
It might not be necessary to consider uncertainties in 
the input matrix, because by introducing additional 
actuator dynamics and constituting an augmented 
system, uncertainties in the input matrix are embedded 
in the system matrix of the augmented system18). 
However, even if such augmented system is constituted, 
the dimension of the resulting LMI needed to be solved 
is more larger than one of this paper. Namely, the 
amount of computation required to solve becomes large 
for problems with large state dimension. Additionally, 
the resulting controller in this case is not static 
feedback controller but dynamic one, i.e. the controller 
is more complex than the proposed controller. One can 
see from this fact that the proposed design method is 
useful.
　Remark 2　In the above, the minimization problem 
of  instead of the upper bound  
is considered. However, the minimization problem of the 

（23）　

（24）　
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upper  bound  can  be  d i rec t ly 
considered. In this case, we introduce a scalar variable 
 satisfying the following LMI condition instead of the 

complementary variable  which satisfies the 
constraint (27).

　 
 

（29）
　

　Therefore in this case, considering the LMI condition 
(29), the design problem of the optimal guaranteed cost 
control is reduced to the following constrained convex 
optimization problem.
　

  subject to
　

(13) (or (23)) and (29) and （30）
　

　

　If the optimal solution of the constrained convex 
optimization problem (30), denoted by 

 and , is obtained then 
the optimal non-fragile guaranteed cost control law for 
all unknown matrices  and  
and all control gain perturbations  
or  is given by (4) with the state 
feedback gain matrix . Furthermore, the 
upper bound on the quadratic cost function is computed 
as .

6.　Illustrative Examples

　In order to demonstrate the efficiency of the proposed 
controller, we have run a simple example.In this 
example we deal with the multiplicative control gain 
perturbations of the form (5) and using Theorem 3, we 
consider to design the optimal robust non-fragile 
guaranteed cost controller. Also, the simulation results 
are shown for the proposed optimal robust non-fragile 
guaranteed cost controller, the conventional guaranteed 
cost controller designed without thinking of control gain 
perturbations based on the existing results6),8) and the 
standard linear quadratic regulator (LQR) which is 
designed for the nominal system.
　Note that the control problem considered here are 
not necessary practical. However, the simulation results 
stated below illustrate the distinct feature of the 

proposed robust non-fragile controller.
　Consider the uncertain linear system (33). In this 
example, we assume that  (i.e. 

,  and ) and  and  
in (5) and  are given as ,  and 

 respectively.
　Now we select the weighting matrices  and 

. Then by applying Theorem 3 and solving 
the constrained optimization problem (28), we obtain the 
following optimal solution.

　  （32）　

Thus, we get the following state feedback gain matrix.

 （33）　
Furthermore, the upper bound on the quadratic cost 
function  can be computed as 

 （34）　
　On the other hand, selecting the same weighting 
matrices  and , the feedback gain 
matrix for the conventional guaranteed cost control 
based on the existing results6),8), denoted by , has 
been derived as

 （35）　
Also the optimal gain matrix for LQR, denoted by  
has been obtained as

 （36）　
　For numerical simulations, the initial value for the 
uncertain linear system (31) is selected as 

. Besides, for the uncertain parameters 
 and  and the control gain perturbations 

, Case 1) and Case 2) in (37) are considered. The 
results of the simulation of this example are depicted in 
Fig. 1–8. In these figures, Proposed represents the 
transient time-response, the manipulated control input 
and the actual control input generated by the proposed 

（31）　



湘南工科大学紀要　第 43 巻　第 1 号

─ 44 ─

guaranteed cost controller. Furthermore, Conventional 
and LQR show the time histories of the state and 
control input for the conventional guaranteed cost 
controller and LQR with the optimal gain matrix  
(36) for the nominal system, respectively.
　From Fig. 1–4, we find that the proposed guaranteed 
cost control ler (Proposed in f igures) and the 
conventional guaranteed cost controller (Conventional in 
figures) stabilize the linear dynamical system (31) with 
parameter uncertainties and control gain perturbations. 
However, the closed-loop uncertain system for LQR 
with the optimal gain matrix  is unstable.
　On the other hand, we see from Fig. 5–8 that though 
the uncertain closed-loop systems for Conventional and 
LQR are unstable, the proposed controller stabilizes the 
closed-loop system with plant uncertainties and control 
gain perturbations. Namely this result shows that 
although the conventional guaranteed cost controller 
designed without thinking of control gain perturbations 
is fragile under the control gain perturbations, the 
proposed guaranteed cost controller is not fragile.
　Therefore the effectiveness of the proposed robust 
non-fragile guaranteed cost controller is shown.

7.　Conclusions

　In this paper, a design method of a robust non-fragile 
guaranteed cost controller for linear continuous-time 
systems with structured uncertainties which are 
included in both the system matrix and the input one 
under control gain perturbations has been presented 
and the multiplicative control gain perturbations of the 
form (5) and the additive one of the form (6) have been 
considered. Additionally, an optimal robust non-fragile 
guaranteed cost control which minimizes an upper 
bound on a given quadratic cost function has been 
discussed. Finally, simple numerical examples are given 
for illustration of the proposed robust non-fragile 
guaranteed cost controller and the simulation result has 

shown that the closed-loop system is well stabilized in 
spite of plant uncertaint ies and control gain 
perturbations.
　We have shown that the proposed robust non-fragile 
guaranteed cost controller can be easily obtained by 
solving LMI and the design problem of the optimal 
robust non-fragile guaranteed cost controller has been 
reduced to a constrained optimization problem. 
Therefore, the proposed robust non-fragile guaranteed 
cost controller can be easily obtained by using software 
such as MATLAB’s LMI Control Toolbox and Scilab’s 
LMITOOL.
　The future research subjects are extension of the 
proposed design to such a broad class of systems as 
large-scale interconnected systems and discrete-time 
systems and output feedback systems.
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