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The tick species Dermacentor andersoni and Dermacentor variabilis are known 

vectors of pathogens. One such pathogen is the bacteria Rickettsia rickettsii, which causes 

Rocky Mountain spotted fever. The detection of this bacterium in ticks at Turnbull 

National Wildlife Refuge (TNWR) indicates a potential risk to human health. In order to 

follow up on this discovery, we had two separate objectives. First we developed a high 

resolution predictive map for Dermacentor spp. distribution across the public use area of 

TNWR. To do so, 50m transects (27 in total) were established across the public use area. 

Ticks were collected weekly within the transects from March 26th – June 5th, 2018. The 

transects were characterized by measuring percent vegetative cover, small mammal 

abundance, and large mammal usage (20 transects). Additionally, land cover class and 

2017 burn status were determined for each transect. Generalized linear modeling (GLM) 

was used to evaluate which factors were the strongest predictors of Dermacentor spp. 

abundance. The strongest predictors included 2017 burn status, percent forb cover, 

percent shrub cover, and land cover class. All factors with the exception of forb cover 

were mapped across the public use area of TNWR at a 10m resolution using LiDAR and 

data from TNWR. These predictors were used with the corresponding GLM to map 

Dermacentor spp. density across the public use area of TNWR at a 10m resolution. The 
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highest predicted Dermacentor density occurred in open shrubland cover class with high 

shrub density, which was not burned in 2017. To confirm previous detections of 

Rickettsia rickettsii in ticks, 452 Dermacentor ticks collected in 2018 were tested for 

Rickettsia spp. by PCR amplification of the rOmpB gene fragment. Ticks that were 

putatively infected with R. rickettsii (positive for rOmpB) were further assessed by 

amplifying fragments of the gltA and rOmpA genes. Sequencing of the rOmpB gene 

fragment showed 21 ticks positive for Rickettsia spp. and 6 ticks positive for R. rickettsii. 

However, both gene fragments (gltA and rOmpA) were positive for Rickettsia peacockii, 

a non-pathogenic Rickettsia spp. that may also block the infection of R. rickettsii in ticks. 

While our results are inconclusive, they suggest that Rickettsia rickettsii is likely not 

present at TNWR. 
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Chapter 1 
 

High resolution modeling of Dermacentor spp. density in the public use area of 

Turnbull National Wildlife Refuge, WA 

1.1 INTRODUCTION 
 

Vector-borne diseases are of growing concern throughout the world. The two 

most threatening vectors to human populations are mosquitoes and ticks. In the United 

States, there is more than double the number of tick-borne disease cases relative to those 

transmitted by mosquitoes (Rosenberg et al. 2018). Tick-borne disease cases continue to 

rise, nearly doubling in the last 10 years to ~60,000 cases annually in the U.S. (CDC 

2017). The ability of ticks to pass disease-causing pathogens through a single bite makes 

them effective vectors (Anderson and Magnarelli 2008). Because many tick-borne 

diseases begin with non-specific symptoms, it is likely that many infections are 

unreported (Schiffman et al. 2018). Common tick-borne diseases include Lyme disease, 

spotted fever rickettsiosis, babesiosis, and tularemia (Rosenburg et al. 2018). 

The rising number of tick-borne disease cases can be attributed to two main 

reasons. One, as human populations continue to grow, urbanization is pushing 

communities into forested areas. This increases human crossover with the animal 

community, increasing human exposure to ticks and the pathogens they may carry 

(Uspensky 2014). Secondly, as overall climate warming trends continue, ticks and 

pathogens continue their expansion into once unsuitable regions. Host reservoirs’ ranges 

are shifting with climate warming, facilitating tick and pathogen movement into these 

environments (Kilpatrick and Randolph 2012). Such is the case with Lyme disease as the 
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primary host, the white-footed mouse (Peromyscus leucopus), continues its northward 

expansion into Canada due to shorter and milder winters. With an estimated 80% of 

white-footed mice infected with the causative bacteria of Lyme disease (Borrelia 

burgdorferi), the uninfected ticks that reside in these locations are becoming infected and 

able to transmit the bacteria (Roy-Dufresne et al. 2013). This has resulted in an increase 

of Lyme disease cases along the northern expansion border of the white-footed mouse, 

creating an elevated public health risk (Bouchard et al. 2015). 

Nearly all Ixodidae (hard-bodied) tick species of public health importance are 

characterized by a three-host life cycle (Figure 1.1). These include species in the genera 

Amblyomma, Rhipicephalus, Dermacentor and Ixodes (CDC 2017). The life cycle of all 

ticks begins when an engorged female mates, and drops off its’ final host to lay thousands 

of eggs (Matheson 1950). After 2 to 6 weeks the eggs hatch into six-legged larvae and 

immediately seek out and attach to a first host, typically a small rodent. Once larvae 

become fully engorged they drop off of the host, digest their meal, and molt into eight- 

legged nymphs. Nymphs will then begin seeking a second host, generally another rodent 

or lagomorph. After attachment, nymphs will take over a week feeding on the host before 

becoming fully engorged (Loomis 1961). Following engorgement, nymphs drop off of 

the host, digest the blood meal, and molt into adults. Adults begin searching for a third 

and final host, typically a large mammal. Once an adult is attached to the third and final 

host it begins taking a final blood meal before searching for a mate on the host. When a 

mate is found, copulation occurs, and the female tick drops off of the host to lay eggs and 

restart the life cycle. During any stage of the life cycle ticks may go into a period of 

suspended development and energy conservancy known as diapause (Belozerov 1982). 
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While in diapause ticks can survive harsh climatic conditions such as extreme heat or 

overwintering with a survival rate over 60% (Brunner 2012, Cerny er al. 1982). Under 

ideal conditions Ixodidae tick species can complete their life-cycle in less than 170 days 

(Troughton and Levin 2007). When no hosts are present, the ability to enter diapause at 

any life stage can extend the life-cycle to greater than 4 years. During favorable 

conditions, ticks break diapause and begin searching for a host. 

The process of ticks actively searching for a host is known as questing. Questing 

is accomplished by two different strategies that vary by species. In the hunter strategy 

ticks remain hidden, but once stimulated by host odorants or CO2 they emerge and 

actively chase the host (Hess and De Castro 1986). The majority of Ixodidae tick species 

use the more common ambush strategy. Using this strategy, ticks crawl up emergent 

vegetation and extend their front legs waiting for a passing host. When an unsuspecting 

host brushes against the vegetation, the tick will latch on and move to a feeding location. 

Ticks can remain on vegetation for multiple hours at a time as long as they maintain 

appropriate water balance. Once this water balance threshold is met they will descend 

into a humid microenvironment where they reabsorb water before returning to vegetation 

to continue questing. This cycle is maintained until climate becomes too hot/dry or too 

cold. At this point they will die if they do not enter into diapause to sustain the 

conditions. When suitable conditions return the next year, ticks will reemerge and 

continue questing (Sonenshine and Roe 2014). 

The seasonal periodicity of ticks is mediated by two main factors, photoperiod 

and temperature. Photoperiod is the hypothesized mechanism that cues the emergence of 

ticks from diapause (Belozerov et al. 2002). Through evolutionary time, ticks have 
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evolved adaptive behaviors that allow them to align questing activity to favorable times 

of the years when seasonal temperatures allow maximum questing efficiency. They avoid 

times of high temperature and low humidity (e.g. summer) or when temperatures are too 

low for questing (e.g. winter), to increase their survival (Burg 2001). Seasonal cues 

mediated by photoperiod allow ticks to enter diapause before natural occurring conditions 

become unfavorable for questing (Smith and Cole 1941). At a daily level, temperature is 

the important factor mediating questing behavior. Daily temperature affects a tick’s 

ability to maintain water balance, determining times of activity throughout the day. Burg 

(2001) showed temperatures below 10°C significantly reduced the number of host- 

seeking Dermacentor variabilis adults. At the other end of the spectrum, surface 

temperatures over 24°C cease questing activity of Dermacentor occidentalis adults (Lane 

et al. 1995). This allows for two peaks of tick density in most areas of the United Sates, 

as ticks are active from early spring to late fall (Clark et al. 1998, Goddard and Paddock 

2005). In the Western U.S., where high temperature and low humidity persists during the 

summer, there tends to be one peak of tick density. Ticks tend to be active from early 

spring to mid-summer, where they enter diapause and do not reemerge until the following 

year (Eisen 2007). 

As ticks begin questing for passing hosts, vegetation becomes a crucial 

component. Tall vegetation such as grass, forbs and shrubs provides a rigid structure for 

adult ticks to ascend as they wait for a passing host. These types of vegetation support 

high questing tick densities in many regions (Shadix 2016, Micher and Rockett 1993, 

Dodds 1969). Shrubs can also be a primary and secondary food source of large mammal 

hosts (McCorquodale 1993, Campbell and Johnson 1983). Dense shrubs provide cover 
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for small mammals as they forage for food, creating higher small mammal densities 

(States 1976). Vegetation can create a favorable humid microenvironment, increasing tick 

survival and questing efficiency (Eisen et al. 2006). Therefore the presence of tall 

vegetation, such as shrubs, can be beneficial to ticks and mammals alike, potentially 

creating a hot spot of tick activity. Knowing the importance of these factors, it is 

reasonable to believe tick density could be predicted based off field-derived biotic 

measurements. 

Many researchers in the past have attempted to predict habitat suitability for ticks. 
 

The majority have used maximum entropy algorithm (MaxEnt) to construct habitat 

suitability models (Warren and Seifert 2011). MaxEnt models are generally constructed 

in ArcGIS using land cover and climatic data from public sources such as Landsat and 

WorldClim.org. Data attributed to tick distribution, such as land cover class, elevation, 

temperature and humidity, are then extracted from these sources and used in the habitat 

suitability prediction. Presence only data is then collected from passive surveillance, such 

as ticks reported to local health departments from physicians or the public. Presence only 

data is incorporated with land cover and climatic variables to produce predicted habitat 

suitability maps at various scales. Passive surveillance data has many limitations and 

potential biases such as uncertainty of collection location, a bias towards populated areas, 

and variation in regional collection programs (Johnson et al. 2004, Ogden et al. 2015). 

This approach is commonly used to predict Ixodes spp. expanding habitat suitability due 

to climate change at a 1km resolution (Cheng et al. 2017, Brownstein et al. 2005). 

Researchers have also used MaxEnt to predicted Dermacentor spp. habitat at a 500m 

resolution (Atkinson et al. 2012). While these broad-scale predictive models are useful 
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for identifying larger areas (e.g. counties) where a vector may be present, they provide 

little usefulness for public health on a fine scale. In attempt to provide more localized 

information researchers have developed models to predict Ixodes ticks in state parks 

(Brownstein et al. 2003) and questing Ixodes ticks in small, forested areas (Khatchikian et 

al. 2012). To date, a high resolution habitat suitability model at a 15m resolution was 

accomplished by Soucy et al. (2018) to predict Ixodes scapularis, marking the highest 

resolution documented. 

Recent advancements in remote sensing technologies give the potential to map 

habitat at a minute scale. LiDAR (Light Detection and Ranging) is a new remote sensing 

technology that is lacking in tick habitat suitability studies. LiDAR data is collected 

during LiDAR “flights.” During flights the LiDAR instrument emits light pulses to the 

Earth’s surface, which refract off of the surface structure back to the LiDAR instrument 

(Figure 1.2). The travel time of each light pulse is then used to calculate the height of the 

structure of which the pulse refracted from, resulting in point clouds (Dubayah and Drake 

2000). Each pulse is within <1m of each other giving a high point density, with extremely 

accurate height for each point (NOAA 2012). LiDAR point clouds can then be used in a 

multitude of ways to look at different vegetative characteristics across a landscape 

(Martinuzzi et al. 2009). The ability to gather vegetative characteristics at a scale of 1m 

using LiDAR presents a unique opportunity to map habitat suitability at a higher 

resolution than previous research has achieved. LiDAR data is readily available for many 

areas in Washington State through the Puget Sound LiDAR Consortium 

(pugetsoundlidar.ess.washington.edu). 
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In Washington State there are 3 common Ixodidae tick species. These species 

include Ixodes pacificus (Western black-legged tick), Dermacentor variabilis (American 

dog tick), and Dermacentor andersoni (Rocky Mountain wood tick) (WDOH 2019). 

Ixodes pacificus, the state vector for Borrelia burgdoferi, the etiological agent for Lyme 

disease, is found primarily west of the Cascade Mountains (Eisen et al. 2016). Both 

Dermacentor variabilis and Dermacentor andersoni are found throughout Eastern 

Washington (James et al. 2006, Easton et al. 1977). These Dermacentor species are 

capable of vectoring pathogens that cause human diseases such as spotted fever 

rickettsiosis (including Rocky Mountain spotted fever) and tularemia (CDC 2019). Both 

Dermacentor species also vector important cattle diseases such as bovine Anaplasmosis 

(Kocan et al. 1981). 

Previous researchers have collected both Dermacentor andersoni and 

Dermacentor variabilis at Turnbull National Wildlife Refuge (TNWR) in Eastern 

Washington. In 2016, 829 Dermacentor ticks were collected on the 30-Acre Lake trail in 

the public use area of TNWR. Of these, 472 ticks were analyzed for the presence of 

Rickettsia species. Rickettsia rickettsii, the etiological agent for Rocky Mountain spotted 

fever, was detected in roughly 1% of these ticks (Shadix 2016). Rocky Mountain spotted 

fever has the highest fatality rate of any tick-borne disease (Chapman et al 2006), 

indicating a threat to visitors of TNWR. This presents a need to predict tick density for 

Dermacentor species within the public use area of TNWR. 

The purpose of this research was to evaluate factors that influence Dermacentor 

spp. density within the public use area of TNWR through active field surveillance in 

order to create a high resolution predictive map for questing tick density. The 



8 
 

 

significance of these factors were determined using generalized linear modeling. GIS 

layers were created for significant factors using LiDAR and other data sources. These 

layers were then used in correspondence with a generalized linear model to create a 

predictive questing Dermacentor spp. density map at a 10m resolution within the public 

use area of TNWR. 

1.2 METHODS 
 

Study Site 
 

TNWR is a federal wildlife refuge located in Spokane County, 20 miles southwest 

of Spokane, WA. The public use area is located in the southeast corner of TNWR and 

encompasses 3,276 acres of the 18,000 acre refuge (Figure 1.3). This area of Channeled 

Scabland is representative of much of the Inland Northwest as it contains basalt 

outcroppings, ponderosa pine forests, shrub-steppe habitat and aspen stands along many 

wetlands, marshes and lakes. The area is vital for many migratory nesting waterfowl and 

boasts local residents such as elk, moose, and deer. Each year the public use area attracts 

over 30,000 visitors to enjoy numerous hiking trails, and to photograph wildlife in their 

natural habitat (USFWS 2017). 

Vegetation 
 

Land cover classes were determined based on a classification system used by 

TNWR. A land cover shapefile from 1993 was acquired from TNWR and used in ArcGIS 

to preliminarily establish transects (Figure 1.4). In total, 30 transects were established 

among the 6 dominant vegetation classes (5 transects per class) present (Figure 1.5). 

Transects were 50m in length. Land cover classes consist of meadow (M), open 



9 
 

 

shrubland (S), closed pine (CP), open pine (OP), wetland vegetation (W) and aspen (A). 

Each transect was field-confirmed for land cover class prior to starting the study. 

In 2017, TNWR burned approximately 170 acres of the public use area during a 

prescribed burn. This process removed all understory vegetation during our collection 

period. Two transects were established in the burned areas to determine how burning 

affected tick density. Each transect was given a value relative to its’ 2017 burn status (0 = 

no burn, 1 = burn). 

Within each transect, percent cover of each vegetation type was measured using 

the line interception method described by Canfield (1941). Vegetation cover 

measurements were carried out from April 20th, 2018 to June 4th, 2018. Areas of no 

vegetation were classified as “charred” (areas of burned ground), “litter” (areas of leaf 

litter), or “ground_other” (moss, rock, bare ground, etc.). Areas where vegetation was 

present were classified accordingly as either “grass”, “forb” or “shrub.” All wetland 

vegetation was combined into “wetland_veg.” Percent cover for each vegetation class 

was calculated across each transects. 

Tick Collections 
 

Ticks were collected weekly at each transect during a 10 week period when ticks 

are most active in the area: March 26th, 2018 to June 5th, 2018. Each transect was sampled 

weekly over the 10 week period. The three transects where ticks were most abundant (S4, 

OP1, and CP1) were sampled an additional six times (once weekly for six weeks) until 

July 20th, 2018 to determine when tick activity ceased. All ticks were collected using 

standardized dragging techniques. With this technique, a 1m x 1m corduroy cloth is 
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dragged across the ground and vegetation, collecting any questing ticks. All collections 

were made between 1200 and 1430 hours. Prior to collection, both temperature and 

humidity were measured at the transect using a Lab Quest 2 Vernier Probe 

(www.vernier.com). During dragging the collector walked along the transect line, 

stopping every 10m to collect ticks present on the drag cloth and/or themselves. Genus 

and gender were determined for collected ticks before they were preserved in 70% 

ethanol for future DNA extraction. Within 24 hours of collection ticks were stored at 

-20°C. 
 

Small Mammal Abundance 
 

To investigate the relationship between small mammals and questing tick density, 

a trap line method (Malcolm 1988) was used to obtain overall small mammal abundance 

within each transect. To reduce the impact of seasonal activity, all trapping occurred 

during a 5 week period: April 30th, 2018 to June 1st, 2018. Trapping occurred for five 

subsequent days at each transect using standard sized (7.5 x 9 x 23 cm) Sherman live 

traps (www.shermantraps.com). Traps were arranged such that they encompassed the 

entire transect (Figure 1.6). A total of 18 traps were used at each transect. Each trap was 

baited with an oat and peanut butter mixture, and insulated with polyester fiber. Traps 

were initially set Monday morning prior to 0900. After initial set-up, traps were checked 

each afternoon by 1800 and each morning by 0900. During abnormal weather conditions 

(e.g. extreme heat or extreme cold), traps were checked an additional time during the day. 

Following trap check on Friday evening, traps were collected and placed at new locations 

the following Monday. Captured small mammals were identified to species, weighed and 

sex was determined. Small mammals were also examined for ectoparasites. All 
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ectoparasites were removed and stored in 70% ethanol. Each captured individual was 

marked with a non-toxic permanent marker so that subsequent recaptures could be noted. 

The total number of small mammals captured at each transect was used for relative 

abundance. A Spearman’s rank correlation test was used to test for any significance 

between small mammal abundance and total tick numbers. 

Large Mammal Usage 
 

Motion detecting game cameras were used to observe large mammal usage within 

each transect. Four Stealth Cam Sniper Shadow (www.stealthcam.com) and two Moultrie 

Panoramic 150 Game Cameras (www.moutriefeeders.com) were used. Both types of 

game cameras have the ability to take daytime and nighttime images. The Moultrie game 

cameras were panoramic and therefore had a wider radius of capture. During the study 

period (March 26th – June 5th, 2018) 20 of our 30 transects were monitored for large 

mammal usage. The other 10 transects were in close proximity of trails or roads so 

camera observations were forgone. During monitoring, one game camera was affixed to a 

nearby tree in a way to best cover the entire transect. Of the 20 transects, 14 were 

observed for seven consecutive days, and six were observed for 14 days; two separate 

seven day periods. Usage of large mammals at each transect was calculated by dividing 

the total number of large mammals observed by the number of weeks in the observation 

period. A Spearman’s rank correlation test was used to test for any significant correlation 

between large mammal usage and total tick numbers. 
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Statistical Model 
 

A statistical model for tick abundance was created using the software package R 

(R Core Team 2013). A generalized linear model (GLM) was constructed with total tick 

abundance at each transect over the 10 week study period as the response variable, 

assuming a Poisson distribution. We used each of our field measurements within each 

transect as predictor variables. These included land cover class, 2017 burn status, small 

mammal abundance and large mammal usage. The percent cover for each vegetation type 

were also used as predictor variables. This included charred (CH), litter (L), ground other 

(G_OT), wetland vegetation (WL), shrubs (S), forbs (F), and grass (GR). Temperature 

and humidity data were excluded from the models because they were uniform within the 

transects across the study period. Three of our 30 transects remained flooded throughout 

the entire study period and were removed from the model. This included three transects 

without large mammal data. Only data collected between weeks 1-10 was used in the 

model. The inability to acquire large mammal data for all 27 transects required generating 

two sets of models. The first included large mammals but excluded the seven transects 

where no data was collected. The second excluded large mammals, but included all other 

data for each of the 27 transects. GLMs were established for each of the two sets of 

models. The dredge function in R package ‘MumIn’ (Barton 2012) was used to run all 

possible model combinations. A correction of the Akaike information criterion (AICc) 

values were used to determine the best combination of predictor variables (Zuur et al. 

2007). An ANOVA was used to determine the significance of each predictor variable 

within the GLMs. 
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Mapping Tick Density 
 

A geospatial model was created for tick density using the software package R and 

ArcGIS 10.6. The ‘importance’ function in R Package ‘MumIn’ was used to evaluate the 

relative importance of each predictor variable. Importance is calculated as the 

standardized sum of the AIC weights of all models including the predictor variable. 

Those predictors deemed important were evaluated for their ability to be mapped in 

ArcGIS. Mapping of those variables was completed where feasible. 

LiDAR data was used to map shrub density across the public use area. LiDAR 

point clouds for the public use area of TNWR were retrieved from Puget Sound LiDAR 

Consortium (pugetsoundlidar.ess.washington.edu). This LiDAR flight was conducted by 

Watershed Sciences, Inc. (WSI) for TNWR between October 2012 and July 2013. The 

LiDAR survey utilized a Leica ALSS60 sensor mounted in a Cessna Caravan 208B. 

Vertical accuracy was reported by WSI to be 0.01m. Average LiDAR point spacing was 

0.33m. LiDAR points were first separated into ground and non-ground points returns 

using the Multi-scale Curvature Classification (Evans and Hudak 2007). Ground points 

were removed from the surface. All non-ground points were classified by height into 

three separate categories; class code 3 (0-1.5m), 4 (1.5 – 5m), 5 (5 – 50m). Henceforth, 

class code 3 was altered to represent shrub points. A height of 1.5m represented our 

tallest shrub measurement. Points greater than this value were removed from surface. The 

remaining LiDAR points included a misleading high density in wetland vegetation, in 

rocky outcroppings, and along the bottoms of trees; likely points reflecting from branches 

<1.5m in height. To remove these from shrub points, the wetland polygons from the 1993 

land cover shapefile was added to the map. Orthoimagery from 2013 at a 1m resolution 
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was obtained from TNWR and added to the surface. With the aid of the orthoimagery, 

wetland polygons were edited to best match the 2013 representation of wetland 

vegetation. The “Set LAS Class Codes Using Features” tool was used to reclassify all 

LiDAR points within the wetland polygon. Rock outcroppings were heads-up digitized 

by creating a polygon shapefile around the rock outcroppings using the orthoimagery. 

This shapefile was then used to reclassify all LiDAR points within the polygon, removing 

them from the shrub layer. To correct LiDAR points along the bottoms of trees, a 

polygon for trees was created with the LiDAR points in class codes 4 and 5. “Set LAS 

Codes Using Features” tool was used again to reclassify all points within the trees 

polygon at a buffer distance of 1m. Within the southern half of the refuge in open 

meadow areas, apparent banded artifacts were picking up extremely high density non- 

ground LiDAR points. Upon field-confirmation of extremely low to no shrub cover in 

these locations, all points within the meadow classification were also reclassified outside 

of class code 3. After modifying the dataset to exclude wetlands, rock outcroppings, and 

meadows, this resulted in all points within class code 3 representing LiDAR points where 

shrubs are present. 

To map shrub density across the public use area of TNWR, LiDAR points within 

class code 3 were converted to rasters at a cell size of 1m. Each raster cell was 

reclassified to a value of 1 (data/shrubs present) or 0 (no data/shrubs present). A 10m x 

10m fishnet grid was overlaid across the public use area of TNWR. The “Zonal 

Statistics” function was used to sum all raster values within each 10m x 10m fishnet cell, 

creating a shrub density raster at a 10m resolution. The shrub density raster was then 

exported as a TIFF file at 10m x 10m cell size. 
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A polygon layer for land cover classification was obtained from TNWR. Each 

polygon was classified in accordance with classification during preliminary transect 

establishment. After field determination for transects, two polygons were changed from 

meadow to open shrubland due to their high shrub density. The resulting layer was 

converted to a 10m x 10m raster at the same extent as the fishnet grid used for calculating 

tick density. The value of each cell represented one of the seven land cover 

classifications. The land cover raster was exported as a TIFF file at a 10m x 10m cell 

size. 

A shapefile containing the locations of prescribed burns in 2017 was also obtained 

from TNWR. This indicated areas where no understory vegetation was present. First, the 

layer was clipped to the public use area to exclude burns outside of this area. The layer 

was converted to a raster with a cell size of 10m x 10m at the same extent as the fishnet 

grid. The raster was then reclassified into the values of 1 (burned) and 0 (no burn). The 

burn 2017 layer was exported as a TIFF file at a 10m x 10m cell size. 

The construction of the predictive tick density layer was created using the ‘raster’ 

(Hijmans et al. 2011) and ‘rgdal’ (Bivand et al. 2015) packages in R. Each raster layer 

used in the final model creation was uploaded to R in TIFF format. Due to the limited 

ability to map all predictor variables across the landscape, only important variables 

feasible to map were used in the final GIS model (here after gisGLM). The predict 

function with type “response” was used to predict tick density across the public use area. 

With the predict function, the gisGLM is used to predict questing tick numbers. The 

function takes the value associated with each of the three predictor variables in each 10m 

cell and runs the model with the associated predictor values, resulting in a predicted 
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questing tick abundance map at a 10m resolution. Predicted questing tick numbers were 

divided by 500, giving us predicted questing tick density per 1m2. The value of 500 was 

used because we collected for 10 weeks at each of our 50m transects (10x50=500). The 

resulting predicted questing tick density map was exported as a TIFF file at a 10m 

resolution and can be used in ArcGIS. 

Statistical analysis of predicted questing tick density was also carried out in R. An 

effects plot was created to show the relationship between each predictor and predicted 

questing tick numbers. The predict function was used with the gisGLM to predict 

questing tick numbers at each of our 27 transects. A linear model was used to compare 

the field collected total tick abundance vs. the predicted total tick abundance using the 

gisGLM. 

1.3 RESULTS 
 

Tick Collections 
 

Over the 10 week period a total of 410 adult ticks and 1 Dermacentor nymph tick 

were collected by dragging. An additional 83 adult Dermacentor ticks were collected in 

weeks 11 through 16 at transects S4, OP1, and CP1. The highest questing tick density 

was observed at transect S4 (0.198 ticks/m2). Questing tick density for land cover classes 

ranked highest to lowest were: open shrubland (0.074 ticks/m2), open pine (0.032 

ticks/m2), closed pine (0.03 ticks/m2), meadow (0.016 ticks/m2), aspen (0.011 ticks/m2), 

and wetland vegetation (0.007 ticks/m2). Within the burned transects (OP5 and CP5), one 

tick was collected. Questing ticks were active during our first collection week, the week 

of March 26th, 2018. Questing tick activity peaked during the week of May 28th (study 
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week nine, Figure 1.7). Questing tick numbers were much lower the following week. 

This concluded our collections at all 27 transects. In our three most abundant transects 

(OP1, CP1, and S4), we saw a late season peak of questing tick activity during the week 

of June 25. During the final week of collection, July 18th, there was minimal tick 

questing activity. 

Vegetation 
 

The percent cover for each vegetation type is presented in Table 1.1. Results were 

as expected. Transects established in wetland vegetation consisted of >90% wetland 

vegetation cover. Transects established in meadow vegetation tended to have higher 

values of grass cover. Open shrubland transects contained higher shrub values than most 

of the other transects. Both open and closed pine transects contained diverse understories, 

although there tended to be more litter in closed pine transects. Transects in aspen stands 

showed no distinguishable patterns of vegetation cover. 

Small Mammal Abundance 
 

Four separate species of small mammals were collected over the study period. 
 

Species ranked by individuals captured were: 30 deer mice (Peromyscus maniculatus), 17 

yellow-pine chipmunks (Tamias amoenus), 2 meadow voles (Microtus pennsylvanicus), 

and 1 long-tailed weasel (Mustela frenata). The most small mammals were captured in 

transect S1. Trapping efforts yielded no captures at eight transects (Table 1.1). The land 

cover class with the highest weekly small mammal abundance was meadow (2.6 

mammals/week). This was followed by aspen (2.33), open shrubland (2.2), open pine 

(2.0), closed pine (0.8) and wetland vegetation (0.5). Yellow-pine chipmunks had greater 
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larvae/nymph ticks present (14 total) than did deer mice (1) and meadow voles (1). No 

significant correlation was found between small mammal abundance and total questing 

tick numbers (p=0.5611). 

Large Mammal Usage 
 

Four large mammal species were present in our transects. These included white- 

tailed deer (Odocoileus virginianus), elk (Cervus canadensis), coyote (Canis latrans) and 

moose (Alces alces). White-tailed deer were the most captured species (13 captures) 

followed by elk (10 captures), coyotes (2 captures) and moose (1 capture). Transect S3 

had the most large mammal usage with two deer captures and five elk captures over a two 

week period (Table 1.1). Wetland vegetation land cover class had a large mammal usage 

of 2.0 per week. This was followed by open shrubland (1.38), meadow (1.17), closed pine 

(1.0), aspen (0.67) and open pine (0.25). No significant correlation was found between 

large mammal usage and total tick numbers (p=0.1672). 

Statistical Model 
 

Generalized linear models were run with every possible predictor combination, 

excluding interactions for the 20 transects where large mammal usage data was collected. 

The dredge function in R evaluated 2,048 different GLM model combinations. The best 

model (AICc=143.16, pseudo-R2=0.952) included the predictors percent forb cover, 

percent ground_other cover, land cover class, percent shrub cover and small mammal 

abundance (Table 1.2). Outside of percent ground other cover, all predictors had a 

positive relationship with tick abundance. Each predictor was a significant predictor of 

total tick abundance ([F, p= 0] [G_OT, p= 1.3e-11] [LC, p=0] [S, p=0] [SM, p=3.7e-07]). 
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The best model that included large mammal usage was ranked sixth (AICc=152.48, 

pseudo-R2=0.910). A delta AICc value greater than 9.0 indicates it was far inferior to our 

best model. Therefore, large mammals were excluded from further analysis in order to 

incorporate data from all 27 transects. 

Generalized linear models were run with data from all 27 transects, excluding 

large mammal usage. The dredge function in R evaluated 1,024 different GLM model 

combinations. The best model (AICc=189.95, pseudo-R2=0.880) included the predictors 

2017 burn status, percent forb cover, land cover class and percent shrub cover (Table 

1.3). All predictors had a positive correlation with tick abundance, except 2017 burn 

status. Each of the predictors was a significant predictor of tick abundance ([Burn17, 

p=1.74e-13] [F, p=0] [LC, p=0] [S, p=0]). 

Mapping Tick Density 
 

The results for relative importance of each predictor are shown in Table 1.4. This 

function determined the four most important factors to be land cover class, percent forb 

cover, percent shrub cover and 2017 burn status. Due to the variability of forb cover from 

year to year, it is extremely difficult to map using remote sensing data. Therefore percent 

forb cover was excluded from predictive tick density mapping. A GLM with the 

predictors 2017 burn status, land cover class and shrub density was used to predict tick 

density across the public use area of TNWR, henceforth gisGLM. The gisGLM had an 

AICc of 254.37, explaining 74.4% (pseudo-R2) of the variation in tick numbers between 

transects. Each predictor was significant in predicting tick abundance ([S, p=0] [LC, 

p=1.56e-14] [Burn17 p=3.96e-4]). Linear model results showed the gisGLM was 



20 
 

 

successful at predicting tick abundance within transects (p=2.153e-09, R2=0.6599) 

(Figure 1.8). It predicted increasing tick abundance with increasing shrub cover (Figure 

1.9). Areas within the 2017 prescribed burn had decreased predicted tick abundance 

(Figure 1.10). Within land cover class, open shrubland had the highest predicted tick 

abundance. Aspen and wetland vegetation had the lowest predicted tick abundance 

(Figure 1.11). 

GIS raster layers were created for the predictors 2017 burn status, land cover 

class, and percent shrub cover using the previously stated methods (Figure 1.12). These 

layers were used with the gisGLM to create a predictive tick density map for the public 

use area of TNWR (Figure1.13). The values for tick density represent the weekly tick 

density per 1m2 averaged across the dates March 26th - June 5th. The highest predicted 

tick density was 1.01 ticks/m2/week. The areas of high tick density were represented by 

open shrubland areas of high shrub cover and no recent burning. The lowest predicted 

tick density (0.0006 ticks/m2/week) was the area represented by the 2017 prescribed burn. 

Generally, the model predicted greater tick density in the northern portion of the public 

use area compared to the southern portion. 

1.4 DISCUSSION 
 

Our results suggest that ticks emerge from diapause and begin questing prior to 

the last week in March at Turnbull National Wildlife Refuge. Their activity continues to 

increase until a point where questing becomes too costly and the number of questing ticks 

decreases. In 2018, questing peaked in late May. A second small peak in tick density 

during the week of June 25th may be attributed to Dermacentor variabilis’ ability to 
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successfully quest in higher temperatures (McEnroe 1979). Questing activity became 

extremely reduced in mid-July, indicating that most Dermacentor ticks had either died 

after completing their life cycle, found a host, or entered diapause prior to or at this time. 

Tick abundance within transects of the same land cover classes varied greatly. This was 

expected because ticks tend to have clumped distributions (Ostfeld et al. 1996) and there 

is substantial variation of many factors between transects. However, land cover classes 

were useful to show an overall trend of habitats preferred by questing Dermacentor ticks. 

Contrary to a similar study conducted by Shadix (2016) at TNWR, we did not 

find any significant relationship between small mammal abundance and total tick 

abundance. It is possible our study design was too limited, as trapping grids are generally 

employed in small mammal studies. However this method was chosen because we were 

not estimating small mammal densities. We used small mammal abundance because we 

wanted to ensure each mammal trapped was indeed using space within the transect, as not 

to include individuals outside of the transect within the predictive model. We were 

limited by our ability to successfully handle each captured small mammal. On a few 

occasions we were unable to successfully mark and examine individuals. While we 

attempted to account for these individuals by sex and weight observations, it is possible 

that our counts could be slightly overestimated. However, we do not believe these few 

miscounts would affect model output. The majority of larvae/nymph ticks on small 

mammals were present on yellow-pine chipmunks. This difference could be attributed to 

the diurnal nature of yellow-pine chipmunks as well as their sizeable home ranges 

(Broadbooks 1970), increasing the potential contact with immature tick stages. It is 

worthwhile to note that all small mammals using our transects were assumed to be using 
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areas outside of the transect. Therefore it is entirely possible that attached larvae/nymph 

ticks could have been contracted outside of the transect where the animal was trapped. 

No significant correlation was found between large mammals and questing tick 

abundance. We were limited in two ways for this portion of the study. First, by only 

placing one camera at each transect we were unable to observe the full transect at many 

locations. Secondly, we were only able to observe transects for a one to two week period. 

An adequate number of game cameras would have allowed us to cover the entire transect, 

as well as expand the length of observation at each transect. This would have given us a 

more complete dataset, and could have affected the model results. Camera trapping was 

also foregone in seven transects. Alternative methods such as scat collection could have 

been used to collect data in these locations, although these alternative methods have their 

own limitations. 

Although the inclusion of large mammals in the GLM evaluated more models 

(2,048) it was not a valuable predictor for tick abundance within our transects. If large 

mammal data was collected at all 27 transects this could have changed. Because large 

mammal usage was not present in the top ranked models, it was dropped for further GLM 

analysis. Dropping large mammal usage allowed us to evaluate data at all 27 transects. 

Although AICc values were greater after dropping large mammal usage (189.95 vs. 

143.16), the top five models were capable of predicting total tick abundance within 

transects at >85%. It is important to note that AICc values between datasets excluding 

and including large mammals are not comparable because we included data at all 27 

transects when excluding large mammals. Our best GLM model excluding large mammal 

usage included the predictors 2017 burn status, land cover class, percent forb cover and 
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percent shrub cover. Only two transects were within areas where the 2017 burn occurred. 

Only one tick was collected over both transects during the 10 week study period. 

Surprisingly our model predicted meadow land cover class to have the second highest 

impact on total tick abundance excluding all external factors. This was an interesting 

result as more ticks were collected in both open and closed pine land cover classes as 

compared to meadow. The model prediction may be because the value of shrub and forb 

cover is low within the meadow land cover class. Therefore, if values of shrub and forb 

cover are equal within each land cover, we would expect to find more ticks in the 

meadow land cover class. Due to low sample size, we were unable to include interactions 

within the GLM which would have accounted for these differences. 

The gisGLM model represented only the 392nd ranked model. As expected by 

field observation, the gisGLM model was successful in predicting increasing tick 

abundance with increasing shrub cover. This result is similar to previous studies done on 

the refuge (Shadix 2016). Also expected was a predicted decrease in tick abundance from 

the 2017 burn status value 0 to 1. Likely, this is because prescribed burning in the 

previous year removes all ground vegetation, limiting the areas where ticks are able to 

quest. It is also possible that prescribed burning may effectively kill ticks in the area. 

Burning does reduce all tick life stages (Davidson et al. 1994), but the effects are short 

lived (1-2 years). Further research is required to determine the time after burning in 

which ticks are no longer affected at TNWR. 

We were able to successfully predict Dermacentor tick density at a 10m 

resolution using ArcGIS and GLM functions in R. The predictive map shows average 

weekly tick density over the entire study period, March 26th to June 5th 2018. Our highest 
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predicted tick density was 1.01 ticks/m2/week. This was greater than the highest tick 

density we observed during our collections in 2018. Our greatest tick density found was 

0.198 ticks/m2/week (S4). We know based on previous studies, that our tick densities are 

not the highest recorded within the public use area of TNWR. Shadix (2016) found an 

average tick density of 1.57 ticks/m2 along the 30-Acre Lake Trail between the dates of 

March, 30th and May, 18th 2016. We expect our values for tick density to change 

depending on the time of the season. We would expect density values to be greatest 

during the last week of May. In contrast, these numbers would be reduced in both the 

beginning (late March – early April) and end (mid-June) of the tick season.  Results of 

the predictive map show tick density tends to be greater in the northern half of the public 

use area around the auto tour loop. This is likely due to the presence of more open 

shrubland in that area, as the southern half of the public use area contains most of the 

meadow area. As we traveled from transect to transect, we subjectively found a trend of 

more ticks in the northern end of the public use area. Many highly used trails are located 

along the auto tour loop. It is possible that the higher presence of humans and dogs in this 

area could be contributing to increased tick density, by ticks moving on and off of dogs. 

Predicted tick density was greatest in open shrubland areas. There is the potential that 

areas of closed pine are creating a dense enough canopy to shade light from the 

understory. This would result in minimal understory growth, and less suitable questing 

locations. Ticks also have a tendency to be in higher abundance along trails (Carroll et al. 

1991). Our predictive map did not include any data associated with trails. Higher tick 

density is expected adjacent to highly used trails. 
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The process of creating the shrub density layer in ArcGIS left room for error. All 

points within 1m of the created tree canopy layer were removed from the shrub layer. 

Therefore any shrubs present underneath trees were excluded from the shrub density 

layer. We also excluded any points within the meadow land cover class. While shrubs are 

not present in the vast majority of meadows, there are some areas of sagebrush. Therefore 

the predictive map is underestimating tick density in these few locations. 

Future work is needed to validate the accuracy of our predictive tick density map. 

Specifically research is warranted on location of tick activity from year to year. If spatial 

activity varies from year to year, these changes will need to be further assessed in order 

to be incorporated into of our predictive map. The seasonal activity of ticks at TNWR 

also warrants further research. If ticks begin questing earlier or later in the year then that 

may hinder the ability of our map to successfully predict tick density. Collections within 

areas indicated by high tick density would allow for further evaluation, and fine tuning of 

our predictive map. This model has the capability to be expanded to areas outside of the 

public use area of TNWR, where habitat is similar. 

Conclusions 
 

While there are limitations, we have successfully created a predictive tick density 

map at a high resolution of 10m. With a high resolution map, visitors of the public use 

area of TNWR will now be able to avoid areas of high predicted tick density. This in turn 

will reduce visitors’ risks to potential pathogens present within Dermacentor ticks. We 

predicted higher tick density in areas of open shrubland habitat, where shrub density is 

highest. Methods similar to ours could be employed in areas with higher pathogen 
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prevalence in ticks (e.g. areas of Lyme disease). To our knowledge this is the first 

successful predictive tick density map at a 10m resolution. 
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Chapter 2 
 

Detection of Rickettsia spp. in Dermacentor spp. ticks at Turnbull National Wildlife 

Refuge, WA 

2.1 INTRODUCTION 
 

In the United States, ticks are the number one vector for disease causing 

pathogens (Rosenberg et al. 2018). Ticks can be infected with viruses, bacteria, or 

parasites (CDC 2011). Their ability to transmit these disease-causing pathogens through a 

single bite makes them effective vectors (Anderson and Magnarelli 2008). Of these 

infectious pathogens, bacteria are responsible for > 90% of the reported disease cases 

each year (CDC 2017). Common bacterial diseases transmitted by ticks include Lyme 

disease, anaplasmosis, spotted fever rickettsiosis, and tularemia (Rosenburg et al. 2018). 

While Lyme disease is responsible for greater than 70% of tick-borne diseases in 

the U.S., Rocky Mountain spotted fever (RMSF) has the highest mortality rate. With 

appropriate and timely treatment the fatality rate of RMSF is 2% - 6% in the U.S. This 

rises to 23% if untreated (Chapman et al. 2006) making it the most fatal tick-borne 

disease. Cases of RMSF are reported with infections caused by other similar Rickettsia 

pathogens under spotted fever group rickettsiosis (SFGR). Common infectious SFGR in 

the United States include R. rickettsii, R. parkeri, Rickettsia species 364D, and R. akari 

(CDC 2019). Other species are classified as SFGR, although their pathogenesis to 

humans is currently unknown (Sahni et al. 2013, Zeringóta et al. 2017). The SFGR cases 

have increased dramatically from 495 cases in 2000 to more than 6,200 in 2017 (CDC 

2019). 
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Rickettsia rickettsii is the bacterial causative agent of RMSF (Burgdorfer et al. 
 

1966). Ticks are capable of becoming infected with R. rickettsii by two different modes. 

A tick may feed on a host infected with R. rickettsii, becoming infected and able to 

transmit the bacteria to other hosts (Sonenshine and Roe 2014). Infected females can pass 

the bacteria on to nearly 100% of their offspring via transovarial transmission 

(Burgdorfer 1963), creating a sustainable infected population. While ticks are easily 

infected, R. rickettsii has lethal effects on each life stage, resulting in <20% survival of 

infected individuals (Niebylski et al. 1999). Macaluso et al. (2008) has also demonstrated 

that ticks infected with non-pathogenic Rickettsia spp. may block the infection of other 

Rickettsia spp. (e.g. R. rickettsii). This contributes to the low R. rickettsii prevalence rate 

of ~1% within ticks in areas where R. rickettsii is known to occur (Stromdahl et al. 2011, 

Wikswo et al. 2008, Berrada et al. 2011). 

Within the United States there are two main vectors for R. rickettsii. Dermacentor 

andersoni (Rocky Mountain wood tick), found primarily in Rocky Mountain states, and 

Dermacentor variabilis (American dog tick) found primarily east of the Rocky 

Mountains and along the California coast line (Burgdorfer 1975). A few cases have also 

shown Rhipicephalus sanguineus (brown dog tick) capable of vectoring the pathogen in 

the southwestern U.S. (Demma et al. 2005). In 2017 there were nearly 6,500 reported 

cases of SFGR in United States. Five states (North Carolina, Oklahoma, Arkansas, 

Tennessee, and Missouri) accounted for over 60% of SFGR cases (CDC 2019). In 

Washington State there were 90 cases of RMSF from 1920-1949, in contrast to only 10 

cases from 2004-2016. In 2017 there were five reported cases of SFGR in the state, only 

one of which was contracted from a tick in the state (WDOH 2017). The last reported 
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cases of RMSF from in-state ticks were in 2011 when there were three such cases 

(WDOH 2011). 

The timing of transmission of R. rickettsii to a human can vary greatly. On first 

contact, a tick will usually take ~24 hours to find a suitable spot and begin attachment. 

Transmission of R. rickettsii by Dermacentor adults takes an average of 10 hours, but can 

happen as quickly as 1 hour and 45 minutes after attachment (Ricketts 1909, Moore 

1911). Early symptoms of RMSF include fever, headache and nausea and occur within 24 

hours of infection. The most identifiable symptom is a petechial rash which forms 2-4 

days post fever (Dantas-Torres 2007). The timing of rash development becomes crucial 

to assist in RMSF diagnosis. RMSF can be easily treated with common antibiotics such 

as doxycycline, but the timing of its administration is directly correlated to RMSF fatality 

rate. A case study by Regan et al. (2015) investigated RMSF infection in 205 patients. 15 

cases were fatal. In each fatal case doxycycline treatment was not started until at least day 

6 of symptom onset. Fatality occurred on average 9 days after symptom onset. 

In 2014 and 2016 Dermacentor spp. ticks were collected by dragging at the public 

use area of Turnbull National Wildlife Refuge (TNWR) in Eastern Washington. 

Dermacentor spp. were tested to determine presence of Rickettsia spp. including 

Rickettsia rickettsii. In both cases presence of Rickettsia spp. was determined by using 

polymerase chain reaction (PCR) to amplify a fragment of the rOmpB gene (Simser et al. 

2001). Between the two years a total of 594 Dermacentor ticks were collected and 

analyzed. Only Dermacentor andersoni and Dermacentor variabilis were identified. Of 

the 594 Dermacentor ticks, 56 (9.4%) were positive for Rickettsia spp. Sequencing 

results showed 42 ticks infected with R. rhipicephali, a SFGR of unknown pathogenesis 
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(Labruna et al. 2007). Five ticks were infected with R. prowazekii, the etiologic agent of 

epidemic typhus, and eight ticks were infected with R. rickettsii (Shadix 2016). The 

detection of multiple pathogenic bacteria in this location suggests a threat to the visitors 

of the refuge, and a need to further investigate their distribution. 

The purpose of this research was to determine the distribution of SFGR within the 

public use area of TNWR. We also aimed to determine the identity of SFGR present, in 

order to assess the potential threat to visitors of the refuge. We report varying results with 

different primer sets, which may suggest there is no human risk to SFGR within the 

public use area of TNWR. 

2.2 METHODS 
 

Collection of ticks 
 

TNWR is a federal wildlife refuge located in Spokane County, 20 miles southwest 

of Spokane, WA (see Figure 1.3). The public use area is located in the southeast corner of 

TNWR and encompasses 3,276 acres of the 18,000-acre refuge. Tick collections in 2018 

occurred weekly in 27 separate 50m transects across the public use area (Figure 2.1). 

Collections occurred weekly at each transect from March 26th, 2018 to June 6th, 2018. 

Collections continued at our three most abundant transects (OP1, CP1, and S4) an 

additional six weeks until July 20th, 2018. Standard dragging techniques with a 1m by 1m 

corduroy cloth were used to collect questing ticks. Few nymph ticks were also collected 

from small mammals trapped within transects between the dates of April 30th, 2018 and 

June 1st, 2018. All collected ticks were immediately identified to genus. Ticks were then 

placed in 70% ethanol and stored at -20°C until DNA extraction. 
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PCR for Rickettsia presence 
 

DNA was extracted from collected ticks using an established DNAzol 

(www.thermofisher.com), bead-beating protocol (Appendix B). In short, this method 

requires homogenization of each individual tick, followed by phase separation, DNA 

precipitation and DNA wash. Ending with DNA dissolved in 8mM NaOH which is stored 

in -20°C freezer. Following extraction, DNA quality and concentration were determined 

using a Thermo Scientific NanoDrop Lite spectrophotometer (www.thermofisher.com). 

Initial presence/absence of Rickettsia spp. was determined using polymerase chain 

reaction (PCR) and primer pair Rf17.61p-Rf17.492n (Table 2.1) to amplify a 431 base 

pair fragment of the rOmpB gene which encodes a Rickettsia genus-specific 17-kDa 

common antigen gene (Simser et al. 2001). The cycling conditions were initial 

denaturation at 95°C for two minutes, then 60 cycles of denaturation (30 seconds at 

95°C), annealing (60 seconds at 55°C), and elongation (60 seconds at 72°C), and a final 

extension for 5 minutes at 72°C. PCR was performed in 25 µL reactions containing 12.5 

µL Promega Master Mix (www.promega.com), 1 µL forward primer (Rf 17.492), 1 µL 

reverse primer (Rf 17.61), 9.5 µL pure water, and 1 µL template DNA or H2O (negative 

control). PCR products were electrophoresed in a 1% agarose gel with 1X TAE buffer 

(40mM Tris-acetate and 1mM EDTA, pH 8.3) that contained 0.033 µg/mL of ethidium 

bromide. The gel was electrophoresed in 1X TAE at 80V for 45 minutes. Upon UV 

imaging, those samples with a band ~400 base pairs were determined positive for 

Rickettsia. Samples positive for Rickettsia spp., including samples positive for Rickettsia 

rickettsii in 2014, were further analyzed using two alternate primer pairs. Primer pair 

RpCS.877p-RpCS.1258n was used to amplify a 381 base pair fragment of the gltA gene 
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which encodes the citrate synthase enzyme (Dergousoff et al. 2009). Primer pair 

Rr190.70p-Rr190.602n amplified a 532 base pair fragment of the rOmpA gene which 

encodes a 190-kDa outer membrane protein (Regnery et al. 1991). The cycling conditions 

for both primer pairs were an initial denaturation at 95°C for two minutes, then 40 cycles 

of denaturation (30 seconds at 95°C), annealing (20 seconds at 48°C), and elongation (60 

seconds at 72°C), and a final extension for 5 minutes at 72°C. PCR was performed in 25 

µL reactions in correspondence with the rOmpB primer pair. Gel electrophoresis was 

carried out as described above. Samples that were positive for Rickettsia showed bands at 

~500 base pair (rOmpA) and ~400 base pair (gltA). 
 

Determination of Rickettsia spp. 
 

To determine Rickettsia spp., positive PCR products for all three gene fragments 

(rOmpB, rOmpA, gltA) were sent to GENEWIZ LLC for Sanger sequencing. Forward 

and reverse sequencing was carried out for most samples; all samples for gene fragments 

rOmpB and gltA. For samples of the rOmpA gene, the results using forward sequencing 

were conclusive so reverse sequencing was forgone. Forward and reverse sequences were 

assembled into a contiguous DNA sequence using PRABI-Doua CAP3 Sequence 

Assembly Program (http://doua.prabi.fr/software/cap3). Low quality bases on the 

extremities of the DNA sequence were trimmed. The resulting DNA sequences were 

compared to homologous sequences using the National Center for Biotechnology 

Information (NCBI) BLASTn search tool. In GenBank, the closest identity match to our 

DNA sequence was used to determine the species of Rickettsia present. 
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2.3 RESULTS 
 

In total 452 ticks were tested for Rickettsia spp. presence. This included five 

nymph ticks collected from small mammals (1.1%) as well as questing adults, 227 

(50.2%) females and 220 (48.7%) males. All ticks collected were identified as either 

Dermacentor andersoni or Dermacentor variabilis but due to their equal importance as 

vectors, and the difficulty to distinguish between the two (Dergousoff and Chilton 2007), 

species was not confirmed. 

Electrophoresis of the rOmpB gene fragment yielded 21 (4.6%) positive 

detections for Rickettsia spp. (Figure 2.2). Of these, six tick samples (501, 506, 507, 508, 

510, and 511) produced extremely faint bands, although sequencing did yield results. All 

21 positives were from adult questing ticks, of which 11 (52.4%) were female and 10 

(47.6%) were male. Sequence comparison in GenBank showed 15 (3.3%) positives for 

Rickettsia rhipicephali (>98.2% identity), two (0.44%) positives for Rickettsia rickettsii 

(>99.8% identity), and four (0.88%) were 100% identical to R. rickettsii, R. parkeri, and 

R. philipii (Table 2.2). 
 

Electrophoresis of the 190-kDa rOmpA gene fragment only yielded 15 (3.3%) 

positives for Rickettsia spp. Of these, eight (53.3%) were female and seven (46.7%) were 

male. This excluded six tick samples positive for R. rhipicephali under the rOmpB 

protocol (501, 506, 507, 508, 510 and 511). These samples all produced multiple non- 

specific bands during gel electrophoresis (Figure 2.3). Sequence comparison in GenBank 

showed nine ticks were positive for Rickettsia rhipicephali (>99.2% identity), in 

correspondence with the rOmpB results. The six positive samples for Rickettsia rickettsii 
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using the rOmpB gene fragment, showed positive for Rickettsia peacockii (>99.8% 

identity) with the rOmpA gene. The three samples positive for R. rickettsii in 2014 also 

showed positive for R. peacockii (>99.8% identity) with the rOmpA gene (Table 2.3). 

In concurrence with the 190-kDa rOmpA results, electrophoresis of the gltA gene 

fragment yielded 15 (3.3%) positives for Rickettsia spp. (Figure 2.4). This again excluded 

tick samples 501, 506, 507, 508, 510 and 511 which tested positive using the rOmpB 

gene fragment. Sequence comparison in GenBank showed some matching results to the 

rOmpA gene fragment. Using only forward sequences the six samples positive for 

Rickettsia peacockii with the rOmpA gene were confirmed (>99.5% identity). Only two 

of the three samples from 2014 were positive for Rickettsia spp., excluding sample 1-14. 

These two samples were positive for Rickettsia peacockii, also in correspondence with 

results from the rOmpA gene fragment. Forward sequencing initially revealed nine 

samples positive for Rickettsia massiliae (>99.7% identity). Reverse sequencing of these 

samples only yielded six quality reads. Once assembled into continuous DNA sequences, 

these resulted in six positives (1.3%) for Rickettsia rhipicephali (>98.7% identity), 

leaving only three R. massiliae positives (Table 2.4). 

Rickettsia spp. were detected in ticks in eight different transects (CP1, OP1, OP2, 

OP3, OP4, S1, S3, and S4). This included six ticks in CP1; five ticks in OP1; three ticks 

in S4; two ticks in S1 and S3; one tick in OP2, OP3 and OP4. Tick samples 501, 510 and 

511 were in CP1. Tick samples 506, 507 and 508 were in OP1. 
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2.4 DISCUSSION 
 

All gene fragments (rOmpB, rOmpA, and gltA) yielded positive results for 

Rickettsia rhipicephali in tick samples 40, 67, 141, 171, 230, and 381 (Table 2.5). The 

rOmpB and rOmpA gene fragments were also in agreement for R. rhipicephali in samples 

243, 325, and 335. The gltA fragment was closest in identity to R. massiliae for ticks 243, 

325, and 335. These three tick samples only yielded quality forward sequences, and 

therefore their read length was shorter than the six samples positive for R. rhipicephali. 

With just the forward sequences we only saw a one base pair difference between R. 

massiliae and R. rhipicephali. R. massiliae is a pathogenic bacterium that has been 

detected in both California and Arizona but only in Rhipicephalus sanguineus ticks 

(Eremeeva et al. 2006, Beeler et al. 2011). R. massiliae has never been detected in our 

region, and is commonly found in non Dermacentor species in foreign countries 

(Matsumoto et al. 2005). R. rhipicephali is a common Rickettsia species found in 

Dermacentor ticks in the Western U.S. (Wikswo et al. 2014, Philip and Casper 1981). 

Therefore it is highly likely that all nine tick samples (40, 67, 141, 171, 230, 243, 325, 

335, and 381) contain R. rhipicephali, giving us an infection rate of 2.0%. While some 

researchers classify R. rhipicephali as a SFGR (Sahni et al. 2013, Hayes and Burgdorfer 

1979), its ability to cause human disease has never been definitively proven (Paddock et 

al. 2018). Therefore it is unknown whether this bacteria presents any threat to the public 

at TNWR. 

Tick samples 501, 506, 507, 508, 510 and 511 were also positive for R. 

rhipicephali by sequence of the rOmpB gene fragment. When PCR was carried out using 

the rOmpA and gltA gene fragments, these same samples resulted in either multiple non- 
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specific bands or negative for Rickettsia spp. (see Figure 2.4). Previous students at 

Eastern Washington University have attempted to sequence the non-specific bands, 

concluding these are not Rickettsia spp. detections (unpublished results). It is possible 

there may have been some cross contamination or inadequate storage for these tick 

samples. We conclude that these samples are not positive for Rickettsia spp. 

Collections from 2014 and 2016 suggested a low prevalence of R. rickettsii in 

Dermacentor ticks at TNWR. These detections were concluded by sequencing of the 

rOmpB gene fragment. Our preliminary results seemed to agree with previous results as 

six ticks (22, 23, 165, 239, 263, and 349) were positive for R. rickettsii by sequence of 

the rOmpB gene fragment. Upon further investigation, we could not confirm these 

results. Sequencing of the rOmpA and gltA gene fragments resulted in identification of R. 

peacockii. Previous studies have shown that PCR amplification and sequencing of the 

rOmpA gene fragment is best for distinguishing closely related Rickettsia species 

(Regnery et al. 1991). The sequences for R. peacockii only differed from published 

sequences by one base pair (rOmpA) and two base pairs (gltA). R. rickettsii was not on 

the queried list for any of the rOmpA sequences, indicating it had a greater than 10 base 

pair difference in the gene fragment. Sequencing of the rOmpB gene fragment showed 

closest relatedness to R. rickettsii from Yucatán, Mexico (Accession # DQ176856.1), 

while having only two base pair difference from R. peacockii. Therefore it appears that 

the rOmpB gene is a highly conserved region and difficult to use to distinguish Rickettsia 

species. Within our region, R. peacockii is also a common non-pathogenic bacterium 

found in Dermacentor ticks, where R. rickettsii is rare (Niebylski et al. 1997). A study by 

Burgdofer et al. (1981) suggests that R. peacockii may also prevent the infection of R. 
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rickettsii in ticks. Thus we propose that all previous detections for R. rickettsii are indeed 
 

R. peacockii. 
 

A conversation with research entomologist Dr. Glen Scoles of the Agricultural 

Research Service (ARS) in Pullman, WA led to a potential alternative explanation. It was 

suggested that the process of PCR amplification may be amplifying multiple Rickettsia 

spp. in a single tick sample. This could result in multiple different detections upon 

sequencing. While uncommon, multiple Rickettsia spp. infections in a single 

Dermacentor tick have been documented. Carmichael and Fuerst (2006) found a single 

Dermacentor variabilis adult in Ohio infected with R. bellii, R. montanensis, and R. 

rickettsii. Wikswo et al. (2014) also detected R. bellii and R. rhipicephali in a 

Dermacentor occidentalis adult in California. Recent advances in microbiome analysis 

have also been used to detect multiple Rickettsia spp. in Dermacentor andersoni ticks 

collected from Oregon (Gall et al. 2017). If there are multiple Rickettsia infections in 

some of the ticks that we collected, this may suggest why we are obtaining unclear 

results. 

All transects with ticks positive for Rickettsia spp. were located in the northern 

end of the public use area with the exception of OP4 and S3. These 2 transects yielded 3 

of the 15 positive ticks. This indicates a higher infection rate in ticks within the northern 

half of the public use area of TNWR. The northern half contains the auto tour loop, as 

well as the majority of the hiking trail in the refuge. Thus if Rickettsia rhipicephali was 

proven to be a human pathogen, there would be elevated risk to visitors in this location, 

and likely across the region. 
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Conclusions 
 

Due to the agreement between all three primer sets used in this study, we can 

conclude that nine of the 452 ticks (2.0%) collected were infected with Rickettsia 

rhipicephali. Agreement between the gltA gene fragment and our longest gene fragment 

(rOmpA) suggests that R. rickettsii detections using the rOmpB gene fragment are not 

reliable. The extremely low prevalence rate of R. rickettsii and the high prevalence rate of 

R. peacockii in our region suggest that six of the 452 ticks (1.3%) collected were infected 

with R. peacockii. Alternative methods such as vector cloning (Carmichael and Fuerst 

2010) or microbiome analysis (Gall et al. 2017) could be used to determine if there is 

multiple Rickettsia infections in a single tick. Although our results are inconclusive, they 

suggest that R. rickettsii is not present at TNWR. Therefore, there is no risk of Rocky 

Mountain spotted fever to visitors of the refuge. 
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TABLES AND FIGURES 
 
 

Table 1.1. All data collected from March 26th – June 5th 2018 at each of the 27 transects. This data was used in all generalized linear 
models to predict total tick abundance within transects. 

 

Transect 
ID 

Land 
Cover 
Class 

Total 
Ticks 

Small 
Mammal 

Abundance 

%GR %F %L %S %CH %G_OT %WL Burn17 Large 
Mammal 

Usage 
A2 A 11 1 5.6 37 21.6 20.6 0 15.2 0 0 1 
A3 A 4 0 14.4 5.2 0 0.8 0 9.6 0 0 1 
A5 A 2 6 5.2 6.8 56 0 0 32 0 0 0 
CP1 CP 35 2 39.2 1.4 0 56.8 0 2.6 0 0 0 
CP2 CP 9 0 37.2 14.6 41.8 4 0 2.4 0 0 0 
CP3 CP 29 1 12.2 2 27.6 41.8 0 6.4 10 0 0 
CP4 CP 1 0 5.2 0.4 75.4 5.2 0 13.8 0 0 3 
CP5 CP 1 1 2.8 0.4 0 0 39.6 57.2 0 1 2 
M1 M 1 2 77.6 6.2 0 0 0 16.2 0 0 1 
M2 M 10 2 96.2 0 0 0 0 3.8 0 0 NA 
M3 M 7 3 91 8 0 0 0 1 0 0 NA 
M4 M 3 0 84.2 0.2 0 0 0 0 15.6 0 1 
M5 M 19 6 90 2 0 0 0 2.4 5.6 0 1.5 
OP1 OP 40 2 22.4 23.6 0 37.2 0 16.8 0 0 0.5 
OP2 OP 20 1 52 25.4 7.6 7.2 0 7.8 0 0 0 
OP3 OP 10 0 26 1.4 35.8 31.4 0 5.4 0 0 0 
OP4 OP 11 3 48 13.8 7.6 30.6 0 0 0 0 NA 
OP5 OP 0 4 39.4 0.6 0 0 5.8 54.2 0 1 0 
S1 S 23 7 37.4 6.2 0 23 0 33.4 0 0 0 
S2 S 9 0 85.8 5 0 0 0 9.2 0 0 NA 
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S3 S 27 1 58.2 6.4 3.8 27.2 0 0.8 3.6 0 3.5 
S4 S 99 1 22.2 28.2 0 41.8 0 7.8 0 0 1 
S5 S 26 2 42.2 0 0 41.6 0 16.2 0 0 1 
W2 W 2 1 0 0 0 0 0 0 100 0 NA 
W3 W 4 3 0 0 0 0.8 0 6.4 92.8 0 NA 
W4 W 0 1 3.6 0 0 0 0 1 95.4 0 NA 
W5 W 8 0 0 1.2 0 0 0 1 97.8 0 2 
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Table 1.2: Top 5 generalized linear models in ranked order for data including large mammals. Data in transects where large 
mammal data was not obtained were excluded from this analysis. Values represent coefficients of each predictor in the model 
for total tick abundance. A negative value represents a negative relationship with predicted total tick abundance. Land cover 
class is given as a plus if it is included in the model. Values of NA indicate predictor variable was not included in that GLM. 
Models are ranked according to AICc values. 

%F %G_OT %GR %L %S %WL Land 
Cover 
Class 

Small 
Mammal 

Abundance 

df AICc ΔAICc 

0.047 -0.049 NA NA 0.032 NA + 0.247 10 143.16 0 
NA -0.102 -0.048 -0.033 NA NA + 0.34 10 145.16 2.00 

0.022 -0.092 -0.036 -0.028 NA NA + 0.33 11 146.08 2.92 

0.051 -0.049 NA NA 0.033 0.050 + 0.28 11 148.59 5.43 
0.040 -0.064 -0.018 NA 0.027 NA + 0.30 11 150.41 7.25 
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Table 1.3: Top 5 generalized linear models and gisGLM ranked in order. Data from all 27 transects are included. No large 
mammal data is included. Values represent coefficients of each predictor in the model for predicted total tick abundance. A 
negative value represents a negative relationship with predicted total tick abundance. Land cover class is given as a plus if it is 
included in the model. Values of NA indicate predictor variable was not included in that GLM. Models are ranked according to 
AICc values. 
Burn17 %F %L %S %WL Land 

Cover 
Class 

Small Mammal 
Abundance 

df AICc ΔAICc 

-2.191 0.043 NA 0.034 NA + NA 9 189.95 0 
-2.550 0.043 -0.011 0.028 NA + NA 10 191.25 1.30 
-2.222 0.046 NA 0.033 NA + 0.053 10 192.42 2.47 
-2.134 0.044 NA 0.034 0.025 + NA 10 192.96 3.01 
-2.540 0.044 -0.013 0.027 0.033 + NA 11 193.61 3.66 
-2.383 NA NA 0.039 NA + NA 8 253.37 63.42 
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Table 1.4: Importance values for all predictor variables used in the full generalized linear model. Values closer to 1 
indicate higher importance. Land cover class, % forb cover, % shrub cover, and 2017 burn status were the four most 
important predictors variables for tick abundance. 

 

Burn17 %F %G_OT %L %S %WL %CH %GR Land Cover 
Class 

Small Mammal 
Abundance 

0.86 1.00 0.10 0.31 0.98 0.20 0.15 0.10 1.00 0.26 
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Figure 1.1: The three-host life cycle of many Ixodidae tick species including 
Dermacentor species. This shows the different life stages of ticks, and a 
potential host for each of those life stages. Courtesy of CDC (www.cdc.gov) 
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Figure 1.2: An example of a LiDAR flight. Pulses are emitted from the plane 
towards the ground surface. Pulses refract off of surface objects and return to the 
plane allowing height of each pulse to be determined. 
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Figure 1.3: The location of the public use area inside Turnbull National 
Wildlife Refuge. Turnbull National Wildlife Refuge is located in Spokane 
County, 20 miles southwest of Spokane, WA. 
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Figure 1.4: Land cover classes present in the public use area of Turnbull 
National Wildlife Refuge. 
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Figure 1.5: Location of 27 transects across the public use area of Turnbull 
National Wildlife Refuge. Colors of transects indicate which land cover class 
they reside in. All transects are 50m in length. Transects are enlarged here for 
visibility. 

Wetland Vegetation 
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Figure 1.6: Small mammal trap configuration at each transect. Traps were placed in 
groups of three, 10m apart from each other starting at the beginning of the transect. 
A total of 18 traps were placed at each transect. 
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Figure 1.7: All ticks collected across the entire study period in the 
spring/summer of 2018. Ticks collected in all transects is shown in blue. All 
three transects collected for 16 weeks (OP1, CP1, and S4) are shown in red. 
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R2=0.6599 

Figure 1.8: The gisGLM model was successful at predicting total tick numbers 
across the study season in the 27 collection transects (p=2.66e-07). 
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Figure 1.9: Predicted questing tick abundance as a function of percent shrub 
cover. The blue band indicates the 95% confidence interval based on a Poisson 
distribution. 
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Figure 1.10: Predicted questing tick abundance as a function of 2017 burn 
status. The blue band indicates the 95% confidence interval based on a Poisson 
distribution. 
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Figure 1.11: Predicted questing tick abundance as a function of land cover 
class. The blue band indicates the 95% confidence interval based on a Poisson 
distribution. 
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Author: Justin Donahue 
Date Created: May 2019 
Data Sources: TNWR, 
Puget Sound LiDAR Consortium 

Figure 1.12: All raster layers used to predictive tick density within the public use area of Turnbull National 
Wildlife Refuge. Each raster was created at a cell size of 10m by 10m. 
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Wetland Vegetation  

Figure 1.13: Spatial representation of questing tick density in 2018 in public 
use area of Turnbull National Wildlife Refuge. Tick density is predicted at a 
resolution of 10m2. Predicted density values represent number of questing 
ticks per 1m2 per a week during the tick season of 2018. 



66 
 

 

Table 2.1: PCR primer sets used in the study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primer Set Gene Nucleotide Sequence (5’-3’) Approx. 
 

Size (bp) 

Rf7.61p - 

Rf17.492n 

(Rr17) 

17-kDa genus- 

common antigen 

(rOmpB) 

GCTCTTGCAACTTCTATGTT 

CATTGTTCGTCAGGTTGGCG 

434 

Rr190.70p- 

Rr190.602n 

(Rr190) 

190-kDa antigen 

(rOmpA) 

ATGGCGAATATTTCTCCAAAA 

AGTGCAGCATTCGCTCCCCCT 

532 

RpCS.877p- 

RpCS.1258n 

(RpCS) 

Citrate synthase 

(gltA) 

GGGGGCCTGCTCACGGCGG 

ATTGCAAAAAGTACAGTGAACA 

381 



 

 

 
 
 
 
 
 
 
 
 
 
 

Table 2.2: Results for the 21 Rickettsia positive ticks using the Rr17 primer set to amplify the rOmpB common antigen. These matches 
represent the highest quality hits BLASTn identified. There are 4 ticks which were 100% identical to 3 different Rickettsia spp. 

 
Tick ID Transect Primer 

Set 
Read 
Length 

BLASTn Hit Description E-value Ident (%) Accession 

22 S4 Rr17 410 Rickettsia rickettsii strain Iowa isolate Small Clone, 0.0 100.0 CP018914.1 
    complete genome    
22 S4 Rr17 410 Rickettsia parkeri str. Portsmouth, complete genome 0.0 100.0 CP003341.1 
22 S4 Rr17 410 Rickettsia philipii str. 364D, complete genome 0.0 100.0 CP003308.1 
23 OP3 Rr17 414 Rickettsia rickettsii strain Iowa isolate Small Clone, 0.0 100.0 CP018914.1 

    complete genome    
23 OP3 Rr17 414 Rickettsia parkeri str. Portsmouth, complete genome 0.0 100.0 CP003341.1 
23 OP3 Rr17 414 Rickettsia philipii str. 364D, complete genome 0.0 100.0 CP003308.1 
40 OP2 Rr17 432 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 99.5 CP003342.1 

    genome    
67 OP1 Rr17 424 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 99.8 CP003342.1 

    genome    
141 S3 Rr17 371 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 99.7 CP003342.1 

    genome    
165 CP1 Rr17 413 Rickettsia rickettsii strain Iowa isolate Small Clone, 0.0 100.0 CP018914.1 

    complete genome    
165 CP1 Rr17 413 Rickettsia parkeri str. Portsmouth, complete genome 0.0 100.0 CP003341.1 
165 CP1 Rr17 413 Rickettsia philipii str. 364D, complete genome 0.0 100.0 CP003308.1 
171 OP4 Rr17 414 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 100.0 CP003342.1 

    genome    
230 S4 Rr17 434 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 99.5 CP003342.1 

    genome    
239 S1 Rr17 436 Rickettsia rickettsii from Mexico 17 kDa protein gene, 0.0 99.8 DQ176856.1 

    partial cds    
243 S3 Rr17 427 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 0.0 99.8 CP003342.1 

    genome    
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263 CP1 Rr17 434 Rickettsia rickettsii from Mexico 17 kDa protein gene, 
partial cds 

0.0 100.0 DQ176856.1 

325 OP1 Rr17 423 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

0.0 99.8 CP003342.1 

335 S4 Rr17 425 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

0.0 99.8 CP003342.1 

349 CP1 Rr17 413 Rickettsia rickettsii strain Iowa isolate Small Clone, 0.0 100.0 CP018914.1 
 
349 

 
CP1 

 
Rr17 

 
413 

complete genome 
Rickettsia parkeri str. Portsmouth, complete genome 

 
0.0 

 
100.0 

 
CP003341.1 

349 CP1 Rr17 413 Rickettsia philipii str. 364D, complete genome 0.0 100.0 CP003308.1 
381 S1 Rr17 424 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 

genome 
0.0 99.8 CP003342.1 

501 CP1 Rr17 284 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

9e-136 98.2 CP003342.1 

506 OP1 Rr17 325 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

3e-166 99.7 CP003342.1 

507 OP1 Rr17 432 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

0.0 98.8 CP003342.1 

508 OP1 Rr17 324 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

3e-155 97.8 CP003342.1 

510 CP1 Rr17 425 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

0.0 99.8 CP003342.1 

511 CP1 Rr17 327 Rickettsia rhipicephali str. 3-7-female6-CWPP, complete 
genome 

2e-167 99.7 CP003342.1 

 
 
 
 
 
 
 
 
 
 

 
 



Table 2.3: Results for the 18 Rickettsia positive ticks using the Rr190 primer set to amplify the rOmpA gene. Of these, 15 ticks were 
collected in 2018, the other 3 were collected in 2014 (-14). These matches represent the highest quality hits BLASTn identified. 

 

 

69 

 

 
 

Tick 
ID 

Transect Primer 
Set 

Read 
Length 

BLASTn Hit Description E-value Ident (%) Accession # 

1-14 UNK Rr190 458 Rickettsia peacockii isolate Dv0333 nonfunctional outer 
membrane protein A (ompA) gene, partial sequence 

0.0 99.8 MG834531.1 

2-14 UNK Rr190 454 Rickettsia peacockii isolate Dv0333 nonfunctional outer 
membrane protein A (ompA) gene, partial sequence 

0.0 100.0 MG834531.1 

3-14 UNK Rr190 458 Rickettsia peacockii isolate Dv0333 nonfunctional outer 
membrane protein A (ompA) gene, partial sequence 

0.0 99.8 MG834531.1 

22 S4 Rr190 506 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 
gene, complete cds 

0.0 99.8 U55821.1 

23 OP3 Rr190 508 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 
gene, complete cds 

0.0 99.8 U55821.1 

40 OP2 Rr190 452 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.3 CP013133.1 
67 OP1 Rr190 463 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.4 CP013133.1 
141 S3 Rr190 475 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.4 CP013133.1 
165 CP1 Rr190 507 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 

gene, complete cds 
0.0 100.0 U55821.1 

171 OP4 Rr190 471 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.2 CP013133.1 
230 S4 Rr190 452 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.3 CP013133.1 
239 S1 Rr190 505 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 

gene, complete cds 
0.0 100.0 U55821.1 

243 S3 Rr190 472 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.2 CP013133.1 
263 CP1 Rr190 510 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 

gene, complete cds 
0.0 100.0 U55821.1 

325 OP1 Rr190 473 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.2 CP013133.1 
335 S4 Rr190 462 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.4 CP013133.1 
349 CP1 Rr190 519 Rickettsia peacockii truncated 190-kDa antigen (rOmpA) 

gene, complete cds 
0.0 99.8 U55821.1 

381 S1 Rr190 471 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.2 CP013133.1 
 



Table 2.4: Results for the 17 Rickettsia positive ticks using the RpCS primer set to amplify the gltA gene. Of these, 15 ticks were 
collected in 2018, the other 2 were collected in 2014 (-14). These matches represent the highest quality hits BLASTn identified. 

 

 

 
Tick ID Transect Primer Set Read 

Length 
BLASTn Hit Description E-value Ident (%) Accession # 

2-14 UNK RpCS 319 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

4e-164 100.0 KJ663738.1 

3-14 UNK RpCS 324 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

1e-164 99.7 KJ663738.1 

22 S4 RpCS 358 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

0.0 100.0 KJ663738.1 

23 OP3 RpCS 362 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

0.0 100.0 KJ663738.1 

40 OP2 RpCS 324 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.7 CP003341.1 
67 OP1 RpCS 357 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 100.0 CP013133.1 
141 S3 RpCS 369 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 99.5 CP013133.1 
165 CP1 RpCS 360 Rickettsia peacockii strain 5 citrate synthase (gltA) 

gene, partial cds 
0.0 100.0 KJ663738.1 

171 OP4 RpCS 315 Rickettsia rhipicephali strain HJ#5, complete genome 3e-161 100.00 CP013133.1 
230 S4 RpCS 387 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 98.7 CP013133.1 
239 S1 RpCS 361 Rickettsia peacockii strain 5 citrate synthase (gltA) 

gene, partial cds 
0.0 100.0 KJ663738.1 

243 S3 RpCS 324 Rickettsia massiliae gltA gene for citrate synthase, 
partial cds, note: sample:R32 

1e-165 99.7 AB872797.1 

263 CP1 RpCS 374 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

0.0 99.5 KJ663738.1 

325 OP1 RpCS 324 Rickettsia massiliae gltA gene for citrate synthase, 
partial cds, note: sample:R32 

1e-165 99.7 AB872797.1 

335 S4 RpCS 326 Rickettsia massiliae gltA gene for citrate synthase, 
partial cds, note: sample:R32 

8e-167 99.7 AB872797.1 

349 CP1 RpCS 383 Rickettsia peacockii strain 5 citrate synthase (gltA) 
gene, partial cds 

0.0 99.7 KJ663738.1 

381 S1 RpCS 358 Rickettsia rhipicephali strain HJ#5, complete genome 0.0 100.0 CP013133.1  
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Table 2.5: Summary table for all Rickettsia spp. detections across the study period with each primer set. Ticks negative for Rickettsia 
spp. infections using the specified primer set are indicated as NA. 
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Tick ID Rr17 Identity (rOmpB) Rr190 Identity (rOmpA) RpCS Identity (gltA) 
22 R. rickettsii, R. parkeri, R. philipii R. peacockii R. peacockii 
23 R. rickettsii, R. parkeri, R. philipii R. peacockii R. peacockii 
40 R. rhipicephali R. rhipicephali R. rhipicephali 
67 R. rhipicephali R. rhipicephali R. rhipicephali 
141 R. rhipicephali R. rhipicephali R. rhipicephali 
165 R. rickettsii, R. parkeri, R. philipii R. peacockii R. peacockii 
171 R. rhipicephali R. rhipicephali R. rhipicephali 
230 R. rhipicephali R. rhipicephali R. rhipicephali 
239 R. rickettsii R. peacockii R. peacockii 
243 R. rhipicephali R. rhipicephali R. massiliae 
263 R. rickettsii R. peacockii R. peacockii 
325 R. rhipicephali R. rhipicephali R. massiliae 
335 R. rhipicephali R. rhipicephali R. massiliae 
349 R. rickettsii, R. parkeri, R. philipii R. peacockii R. peacockii 
381 R. rhipicephali R. rhipicephali R. rhipicephali 
501 R. rhipicephali NA NA 
506 R. rhipicephali NA NA 
507 R. rhipicephali NA NA 
508 R. rhipicephali NA NA 
510 R. rhipicephali NA NA 
511 R. rhipicephali NA NA 
1-14 R. rickettsii R. peacockii NA 
2-14 R. rickettsii R. peacockii R. peacockii 
3-14 R. rickettsii R. peacockii R. peacockii 
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Figure 2.1: Location of 27 transects across the public use area of Turnbull 
National Wildlife Refuge. Ticks were collected at each of the 27 transects in 
the Spring of 2018. Transects are enlarged here for visibility. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

1.0 kb 

0.5 kb 

Figure 2.2: Positive gel electrophoresis results for Rickettsia spp. using the rOmpB 
gene fragment. Wells 1-29 are as follows: 100 bp ladder, (+) control, (-) control, 
ticks 330-355 in sequential order. Positive Rickettsia detections at well 9 (tick 335) 
and well 23 (tick 349). 
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1 2 3 4 5 6 7 8 9 10 11   12 13   14   15   16 17    18    19 20 21 

1.0 kb 
 
0.5 kb 

Figure 2.3: Gel electrophoresis results for Rickettsia spp. using the 190-kDa rOmpA 
gene fragment. Wells are as follows: 100 bp ladder, (-) control, (+) control, tick 
(2018); 40, 67, 141, 171, 230, 243, 325, 335, 338, 501, 506, 507, 508, 510, 511, tick 
(2014); 1-14, 2-14, 3-14 
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1 2 3 4 5 6 7 8 9 10 11   12    13 14 15   16 17   18 19 20 221 

1.0 kb 
 
0.5 kb 

Figure 2.4: Gel electrophoresis results for Rickettsia spp. using the citrate synthase 
gltA gene fragment. Wells are as follows: 100 bp ladder, (-) control, (+) control, tick 
(2018); 40, 67, 141, 171, 230, 243, 325, 335, 338, 501, 506, 507, 508, 510, 511, tick 
(20141.)0;kb1-14, 2-14, 3-14 
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APPENDIX I: DNA Isolation 
 

DNA Isolation Protocol with DNAzol 
(For Ticks) 

 
1. HOMOGENIZATION 

a. Homogenize ticks for 10 seconds with 5-10 Zirconium beads 
(depending on tick size) in .500mL of DNAZOL reagent. 

i. It may be necessary to do multiple homogenizations at 10 
second intervals. In 10 second intervals, homogenize until 
the abdomens are visibly opened. Try to minimize this as 
excessive heat can denature the DNA. 

ii. If necessary, use a flame sterilized scalpel to longitudinally 
cut the tick in half to expose the tick’s gut. 

b. Incubate the homogenized samples for 10 minutes at room 
temperature 

2. PHASE SEPARATION 
a. Centrifuge the samples for 10 minutes at >5,000g at 4°C 
b. Following centrifugation, transfer the resulting viscous supernatant 
to a fresh tube, careful to not transfer exoskeleton remains. 

3. DNA PRECIPITATION 
a. Add 0.5mL of 100% ethanol per 1mL of DNAzol used to the tube 
containing the fresh supernatant 
b. Mix samples to form a homogenous solution by inverting tubes 5-8 
times 
c. Incubate samples for 3 minutes at room temperature 

i. DNA should quickly become visible as a cloudy 
precipitate 

d. Centrifuge the precipitated DNA at >5,000g for 5 minutes at 4°C 
i. This should produce a gel-like whitish pellet on the side 

and bottom of the tube 
ii. Remove supernatant and discard 

4. DNA WASH 
a. Add 1.0mL of 75% ethanol 
b. Mix the samples by vortexing then centrifuge at 5,000g for 2 
minutes at 4°C 
c. Discard the ethanol 
d. Repeat steps 4a-4c 
e. Quick spin the tubes and use a pipette to discard extra ethanol at 
the bottom of the tubes 

5. DNA SOLUBILIZATION 
a. Dissolve DNA 

i. Add 0.05mL TE 
ii. Agitate sample by flicking 

iii. Store samples in -20° freezer 
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APPENDIX II: All DNA Sequences 
 

QS denoted by . signifies sequencing that direction was forgone or poor quality. 
 

Tick 
ID 

Gene QS (f/r) Read 
Length 

Sequence (5’ -3’) 

22 rOmpB 55/55 410 TATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCGGTG 
CTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTAGGT 
GCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACAGGATAGAAGACTTG 
CAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTAGAATGGCGTAATCCG 
GATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCACTGGTCAATATTGCCG 
TGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGCCAA 
CCTG 

22 rOmpA 55/56 506 TCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTCACCACCTCAACCGC 
AGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCTACTGATAATCATG 
CAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGGGTTAATTATTATT 
ACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATACTATCACTGCAGAT 
GTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTAAATATTGCTCAAA 
ATACCGTCTTTGGTTCGATTATAACGAGAGATAACTTGTTGCCTGTTACTATTACTGCCGGCAAAAGCT 
TAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACAG 
GTTTAGGAAATATAGATTTAGGGGGA 

22 gltA 53/54 358 CACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCATCGTGTATATA 
AAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAAAAT 
TATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCA  
CTG 

23 rOmpB 55/55 414 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCACTGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTGA 

 



 

 

 
 
 
 
 
 
 
 
 

23 rOmpA 46/55 508 TTCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTCACCACCTCAACCG 
CAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCTACTGATAATCAT 
GCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGGGTTAATTATTAT 
TACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATACTATCACTGCAGA 
TGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTAAATATTGCTCAA 
AATACCGTCTTTGGTTCGATTATAACGAGAGATAACTTGTTGCCTGTTACTATTACTGCCGGCAAAAGC 
TTAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACA 
GGTTTAGGAAATATAGATTTAGGGGGAG 

23 gltA 52/54 362 GCTCACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGTATATTCC 
TAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCATCGTGTAT 
ATAAAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGG 
GCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAAT 
ATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTA 
TACCGTCGCA 
AATGTTCACTGT 

40 rOmpB 54/55 432 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGACGAACAA 

40 rOmpA 55/. 452 CCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGTAGGTGTTATTTCT 
ACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGAATGATATAACGGCTAAAGG 
GGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTTACTTACGGTGGTGATCATA 
CTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGCGGGTACTACTCCCGTAGGT 
CTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTAACTTGTTGCCTGTTACTATT 
ACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAAATCATGGTTTTGATGCTCCT 
GCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGGA 

40 gltA 54/54 371 TGGGGGCCTGCTCACGGCGGGGCTAATGAAGTGGTAATAAATATGCTTAAAGAAATCGGTAGTTCAG 
AGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTAATGGGTTTTGGT 
CATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAAAGAAGTATTAA 
AGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTT 
AAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAA 
GCTATGGGTATACCGTCGCAA 
ATGTTCACTGT 
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67 rOmpB 55/55 424 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTG 

67 rOmpA 51/. 463 CCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGTA 
GGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGAATGATATA 
ACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTTACTTACGG 
TGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGCGGGTACTA 
CTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTAACTTGTTGC 
CTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAAATCATGGTT 
TTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAA CTTTAGGGGG 

67 gltA 53/54 357 ACGGCGGGGCTAATGAAGTGGTAATAAATATGCTTAAAGAAATCGGTAGTTCAGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTAATGGGTTTTGGTCATCGTATATATA 
AAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAAAATTA 
TATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAA 
ATGTTCACTG 

141 rOmpB ./55 371 CATTGTTCGTCAGGTTGGCGGCATGCATTACCGTATGCTTTTTGTTGTTTTCCGCCTATTACAACTGTTT 
GAGTGTACTCACGGCAATATTGACCGGTGCTATTTCTATAAGTTTTATTAGGTGTTATGTAACCGTAAT 
TGCCGTTATCCGGATTACGCCATTCTACGTTACTACCGCTAGGAGCTGTTTCTAAAGCTCTCTGTGAGG 
TAAGCTCTGCAAGTCTTCTATCCTGCTCATCCATACCTGCACCGATTTGTCCACCAAGAACTGCTCCAA 
GTAATGCACCTACACCTACTCCAACAAGCTGTCCTTTGCCCTTACCGAATTGAGAACCAAGTAATGCA 
CCTCCAGCACCGCCAAGAAGTGTTCC 

141 rOmpA 43/. 475 CCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGTA 
GGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGAATGATATA 
ACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTTACTTACGG 
TGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGCGGGTACTA 
CTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTAACTTGTTGC 
CTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAAATCATGGTT 
TTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGGAGCGAATGCTGC 

141 gltA 52/54 369 ACGGCGGGGCTAATGAAGTGGTAATAAATATGCTTAAAGAAATCGGTAGTTCAGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTAATGGGTTTTGGTCATCGTATATATA 
AAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
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    GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAAAATTAT 
ATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACTG 
TACTTTTTTGCA 

165 rOmpB 55/55 413 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCACTGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTG 

165 rOmpB 55/55 413 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCACTGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTG 

165 rOmpA 55/56 507 TCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTCACCACCTCAACCGC 
AGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCTACTGATAATCATG 
CAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGGGTTAATTATTATT 
ACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATACTATCACTGCAGAT 
GTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTAAATATTGCTCAAA 
ATACCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTACTATTACTGCCGGCAAAAGCT 
TAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACAG 
GTTTAGGAAATATAGATTT 
AGGGGGAG 

165 gltA 53/53 360 CACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCATCGTGTATATA 
AAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAAAAT 
TATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGC 
AAATGTTCACTGTA 

171 rOmpB 55/55 414 CTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGC 
GGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGT 
AGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCAGGATAGAAGA 
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    CTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTAGAATGGCGTAA 
TCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCACCGGTCAATATT 
GCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCG 
CCAACCTG 

171 rOmpA 55/. 471 GTCTTAAGCCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTG 
TTGCTGTAGGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGA 
ATGATATAACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTT 
ACTTACGGTGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGC 
GGGTACTACTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTA 
ACTTGTTGCCTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAA 
ATCATGGTTTTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGG 

171 gltA 53/. 315 TCGGTAGTTCAGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTA 
ATGGGTTTTGGTCATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAA 
AGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAA 
GCTATCGCTCTTA 
AAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAG 
CTATGGGTATACCGTCGCAAATGTTCACTG 

230 rOmpB 40/55 434 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGACGAACAATG 

230 rOmpA 54/. 452 CCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGTAGGTGTTATTTCT 
ACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGAATGATATAACGGCTAAAGG 
GGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTTACTTACGGTGGTGATCATA 
CTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGCGGGTACTACTCCCGTAGGT 
CTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTAACTTGTTGCCTGTTACTATT 
ACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAAATCATGGTTTTGATGCTCCT 
GCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGGA 

230 gltA 53/54 379 TGGGGGCCTGCTCACGGCGGGGCTAATGAAGTGGTAATAAATATGCTTAAAGAAATCGGTAGTTCAG 
AGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTAATGGGTTTTGGT 
CATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAAAGAAGTATTAA 
AGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTT 
AAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAA 
GCTATGGGTATACCGTCGCAA 
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    ATGTTCACTGTATTTTTTT 
239 rOmpB 55/55 436 GCTCTTGCCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAA 

CACTTCTTGGCGGTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTT 
GGAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAAC 
AGGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGT 
AGAATGGCGTAATCCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGC 
ACTGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACG 
GTAATGCATGCCGCCAACCTGACGAACAATGA 

239 rOmpA 55/55 505 TCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTCACCACCTCAACCGC 
AGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCTACTGATAATCATG 
CAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGGGTTAATTATTATT 
ACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATACTATCACTGCAGAT 
GTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTAAATATTGCTCAAA 
ATACCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTACTATTACTGCCGGCAAAAGCT 
TAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACAG 
GTTTAGGAAATATAGATTTAGGGGG 

239 gltA 53/54 361 CCACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGTATATTCCTA 
AATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCATCGTGTATAT 
AAAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGC 
AGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATAT 
TTTATTGAGAGAAA 
ATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTT 
CACTGTA 

243 rOmpB 56/55 427 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGACC 

243 rOmpA 55/. 472 AGGTCTTAAGCCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGG 
TGTTGCTGTAGGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTG 
GAATGATATAACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCAT 
TTACTTACGGTGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTG 
CGGGTACTACTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGT 
AACTTGTTGCCTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCA 
AATCATGGTTTTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGG 
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243 gltA 54/. 324 GCTTAAGAATCGGTAGTTCAGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATC 
CATTTAGGTTAATGGGTTTTGGTCATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAA 
GAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAA 
TAGAACTTGAAGCTATCGCTCTTAAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGAT 
TTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACTG 

263 rOmpB 52/54 434 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCA 
CTGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGACGAACAATG 

263 rOmpA 54/54 510 ATTCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTCACCACCTCAACC 
GCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCTACTGATAATCA 
TGCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGGGTTAATTATTA 
TTACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATACTATCACTGCAG 
ATGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTAAATATTGCTCA 
AAATACCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTACTATTACTGCCGGCAAAA 
GCTTAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATA 
CAGGTTTAGGAAATATAGAT 
TTAGGGGGAGC 

263 gltA 39/53 374 CACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCATCGTGTATATA 
AAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAATAATT 
ATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCAC 
TGTATTTTTTTGCAATT 

325 rOmpB 55/54 423 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCACCGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTGACGAACAATG 

325 rOmpA 36/. 473 AGGTCTTAAGCCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGG 
TGTTGCTGTAGGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTG 
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    GAATGATATAACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCAT 
TTACTTACGGTGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTG 
CGGGTACTACTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGT 
AACTTGTTGCCTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCA 
AATCATGGTTTTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGG 

325 gltA 53/. 324 GCTTAAGAATCGGTAGTTCAGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCA 
TTTAGGTTAATGGGTTTTGGTCATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAAGA 
AACGTGCAAAGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATA 
GAACTTGAAGCTATCGCTCTTAAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTT 
TATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACTG 

335 rOmpB 55/55 425 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGA 

335 rOmpA 53/. 462 CGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGTAG 
GTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTGGAATGATATAA 
CGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCATTTACTTACGGT 
GGTGATCA 
TACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTGCGGGTACTACTCCCGTAG 
GTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGTAACTTGTTGCCTGTTACTA 
TTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCAAATCATGGTTTTGATGCTC 
CTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGG 

335 gltA 54/. 326 ATGCTTAAGAATCGGTAGTTCAGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATC 
CATTTAGGTTAATGGGTTTTGGTCATCGTATATATAAAAACTATGACCCGCGTGCCGCAGTACTTAAA 
GAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAA 
TAGAACTTGAAGCTATCGCTCTTAAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGAT 
TTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACTG 

349 rOmpB 55/55 413 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGCGGCGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAACAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGTGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACGTAACACCTAATAAAACTTATAGAAATAGCACTGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTG 
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349 rOmpA 55/52 519 TATGGCGAAATATTTCTCCAAAATTATTTCGAAAAGCAATACAACAAGGTCTTAAAGCCGCTTTATTC 
ACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGC 
TACTGATAATCATGCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAG 
GGTTAATTATTATTACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATA 
CTATCACTGCAGATGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCT 
AAATATTGCTCAAAATA 
CCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTACTATTACTGCCGGCAAAAGCTTAA 
CTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACAGGTT 
TAGGAAATATAGATTTAGGGGG 

349 gltA 51/54 383 GGGCCTTGCTCACGGCGGGGCTAATGAAGCGGTAATAAATATGCTTAAAGAAATCGGTAGTTCTGAGT 
ATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATTAATGGGTTTTGGTCAT 
CGTGTATATAAAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGG 
AACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAA 
GATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCT 
ATGGGTATACCGTCGC 
AAATGTTCACTGTACTTTTTTGCAATA 

381 rOmpB 55/55 424 TTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACTTCTTGGCG 
GTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTA 
GGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCAGGATAGAAGAC 
TTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTAGAATGGCGTAAT 
CCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCACCGGTCAATATTG 
CCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGCATGCCGC 
CAACCTGACGAACAATGA 

381 rOmpA 38/. 471 GTCTTAAGCCGCTTTATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGG 
TGTTGCTGTAGGTGTTATTTCTACTAATAATAATGCAGCATTTAGTGACCTTGCTGTTGCCAATAATTG 
GAATGATATAACGGCTAAAGGGGTAGCTAATGGTACTCCTGTTGACGGTCCTCAAAATGGTACGGCAT 
TTACTTACGGTGGTGATCATACTATCACTGCAGATGAAGCCGGTTGTATTATTACGGCTATAAATGTTG 
CGGGTACTACTCCCGTAGGTCTAAATATTACTCAAAATACCGTCGTTGGTTCGATTGTGACGGGAGGT 
AACTTGTTGCCTGTTACTATTACTGCCGGTAAAAGCTTAACTTTAAACGGTACTAATGCTGTTGCTGCA 
AATCATGGTTTTGATGCTCCTGCCGATAATTATACAGGTTTAGGAAATATAACTTTAGGGGG 

381 gltA 54/54 358 CACGGCGGGGCTAATGAAGTGGTAATAAATATGCTTAAAGAAATCGGTAGTTCAGAGTATATTCCTAA 
ATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGGTTAATGGGTTTTGGTCATCGTATATATA 
AAAACTATGACCCGCGTGCCGCAGTACTTAAAGAAACGTGCAAAGAAGTATTAAAGGAACTCGGGCA 
GCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGAAGCTATCGCTCTTAAAGATGAATATT 
TTATTGAGAGAAAATTA 
TATCCAAATGTTGATTTTTATTCGGGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACT 
G 
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501 rOmpB 24/. 284 CTGGCGGTATGAATAAACAAGGTACAGGATCACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCT 
CAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGG 
TGGACAAATCGGTGCAGGTATGGATGAGCAGGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCT 
TTAGAAACAGCTCCTAGCCGTAGTTAGTTAGAATGGCGTAATCCGGATAACGGCAATTACGGTTACAT 
AACACCTAATAAA 

506 rOmpB ./54 325 ATTGTTCGTCAGGTTGGCGGCATGCATTACCGTATGCTTTTTGTTGTTTTCCGCCTATTACAACTGTTTG 
AGTGTACTCACGGCAATATTGACCGGTGCTATTTCTATAAGTTTTATTAGGTGTTATGTAACCGTAATT 
GCCGTTATCCGGATTACGCCATTCTACGTTACTACCGCTAGGAGCTGTTTCTAAAGCTCTCTGTGAGGT 
AAGCTCTGCAAGTCTTCTATCCTGCTCATCCATACCTGCACCGATTTGTCCACCAAGAACTGCTCCAAG 
TAATGCACCTACACCTACTCCAACAAGCTGTCCTTTGCCCTTACCGAA 

507 rOmpB 36/52 432 CTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAACACT 
TCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTGGAG 
TAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCAGGAT 
AGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTTATTTAGAATG 
GCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCACCGGTC 
AATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGGTAATGC 
ATGCCGCCAACCTGACGAAC 
AATGA 

508 rOmpB ./21 324 TCATTGTTCGTCAGGTGGGCGGCATGCATTACCGTATGCTTTTTGTTGTTTTCCGCCTATTACAACTGTT 
TGAGTGTACTCACGGCAATATTGACCGGGGCTATTTTTATAAGTTTTATTAGGGGTTATGTAACCGTAA 
TTGCCGTTATCCGGATTACGCCATTTTACGTTACTACCGCTAGGAGCTGTTTTTAAAGCTCTCTGTGAG 
GTAAGCTCTGCAAGTCTTCTATCCTGCTCATCCATACCTGCACCGATTTGTCCACCAAGAACTGCTCCA 
AGTAATGCACCTACACCTACTCCAACAAGCTGTCCTTTGCCCTTACC 

510 rOmpB 35/43 425 GCTCTTGCAACTTCTATGTTACAAGCCTGTAACGGTCCGGGCGGTATGAATAAACAAGGTACAGGAAC 
ACTTCTTGGCGGTGCTGGAGGTGCATTACTTGGTTCTCAATTCGGTAAGGGCAAAGGACAGCTTGTTG 
GAGTAGGTGTAGGTGCATTACTTGGAGCAGTTCTTGGTGGACAAATCGGTGCAGGTATGGATGAGCA 
GGATAGAAGACTTGCAGAGCTTACCTCACAGAGAGCTTTAGAAACAGCTCCTAGCGGTAGTAACGTA 
GAATGGCGTAATCCGGATAACGGCAATTACGGTTACATAACACCTAATAAAACTTATAGAAATAGCA 
CCGGTCAATATTGCCGTGAGTACACTCAAACAGTTGTAATAGGCGGAAAACAACAAAAAGCATACGG 
TAATGCATGCCGCCAACCTGA 

511 rOmpB ./49 327 TGTTCGTCAGGTTGGCGGCATGCATTACCGTATGCTTTTTGTTGTTTTCCGCCTATTACAACTGTTTGAG 
TGTACTCACGGCAATATTGACCGGTGCTATTTCTATAAGTTTTATTAGGTGTTATGTAACCGTAATTGC 
CGTTATCCGGATTACGCCATTCTACGTTACTACCGCTAGGAGCTGTTTCTAAAGCTCTCTGTGAGGTAA 
GCTCTGCAAGTCTTCTATCCTGCTCATCCATACCTGCACCGATTTGTCCACCAAGAACTGCTCCAAGTA 
ATGCACCTACACCTACTCCAACAAGCTGTCCTTTGCCCTTACCGAATTGA 

1-14 rOmpA 53/. 485 TATTCACCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTT 
GTTGCTACTGATAATCATGCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGC 
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    TGAAGGGTTAATTATTATTACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGA 
TTATACTATCACTGCAGATGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTA 
GATCTAAATATTGCTCAAAATACCGTCTTTGGTTCGATTATAACGAGAGATAACTTGTTGCCTGTTACT 
ATTACTGCCGGCAAAAGCTTAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGC 
GCCTGCCGATAATTATACAGGTTTAGGAAATATAGATTTAGGGGGAG 

2-14 rOmpA 55/. 454 CCACCTCAACCGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGTTGTTGCT 
ACTGATAATCATGCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGGCTGAAGG 
GTTAATTATTATTACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTGATTATAC 
TATCACTGCAGATGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTTAGATCTA 
AATATTGCTCAAAATACCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTACTATTACT 
GCCGGCAAAAGCTTAA 
CTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATACAGGTT 
TAGGAAATATAGATTTAGGGGGAGCG 

2-14 gltA 52/. 319 ATCGGTAGTTCTGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTAGATT 
AATGGGTTTTGGTCATCGTGTATATAAAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACGTGCA 
AAGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTTGA 
AGCTATC 
GCTCTTAAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCGGGTATTATC 
TATAAAGCTATGGGTATACCGTCGCAAATGTTCACTGTAT 

3-14 rOmpA 54/. 458 TATTCACCACCTCAACCAGCAGCGATAATGCTGAGTAGTAGCGGGGCACTCGGTGTTGCTGCAGGTGT 
TGTTGCTACTGATAATCATGCAGCATTTAGTGATAATATTGGCAATGGTAATTGGAATGAGATAACGG 
CTGAAGGGTTAATTATTATTACTCCTGCTGACAGTCCTCAAAACAATTGGGCATTTACTTACGGTGGTG 
ATTATACTATCACTGCAGATGTAGCCGATCATATTATTACGGCTATAAATGTTGCGGATACTACTCCTT 
AGATCTAAATATTGCTCAAAATACCGTCTTTGGTTCGATTATAACGAGAGGTAACTTGTTGCCTGTTAC 
TATTACTGCCGGCAAAA 
GCTTAACTTTAAATGGTAATAATGCTGTTGCTGCAAATCATGGTTTTGATGCGCCTGCCGATAATTATA 
CAGGTTTAGGAAATATAGATTTAGGGGGA 

3-14 gltA 54/. 324 AAGAATCGGTAGTTCTGAGTATATTCCTAAATATATAGCTAAAGCTAAGGATAAAAATGATCCATTTA 
GATTAATGGGTTTTGGTCATCGTGTATATAAAAACTATGACCCGCGTGCCGTAGTACTTAAAGAAACG 
TG 
CAAAGAAGTATTAAAGGAACTCGGGCAGCTAGACAACAATCCGCTCTTACAAATAGCAATAGAACTT 
GAAGCTATCGCTCTTAAAGATGAATATTTTATTGAGAGAAAATTATATCCAAATGTTGATTTTTATTCG 
GGTATTATCTATAAAGCTATGGGTATACCGTCGCAAATGTTCACTGTATT 
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