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(both cross-track and radial) was only, 0.0209 km., with the angle of the drag vector to
the velocity vector being 0.29 degrees. . For a 10% increase in drag, the increase in drag
retardation was 0.415110 km., and the out-of-track angle was 0.27 degrees. This
indicates that the along-track approximation is typically good to a fraction of a percent.
The small out-of-track component is likely due to the fact that the drag is actually with
respect to an atmosphere which co-rotates with the earth to a first approximation. This
results in a small out-of-track drag retardation.

The clear conclusion is that, to the extent atmospheric drag is the dominant
prediction error source, the errors in the along-track positions of two objects are
correlated. This is the case now for many LEO objects, and will be the case increasingly
in the future as orbital determination techniques improve. It means that, where the drag
dominates, the error volume approaches a curve in space with the equation above, and
independent variable dp, the atmospheric density variation. The actual error bound will
have a cross dimension of the cross-track error, which is normally only weakly dependent
on drag. :

The previous analysis has taken an experimental physicist’s approach, with little
mention of the underlying dynamical equations. This has been done purposely to
emphasize the physical traceability of the errors discussed without getting distracted by
complex mathematics. There is an important conceptual difference between this
approach and the commonly used method of using the covariance matrix of the solution
to predict position errors. The covariance method uses mathematical analysis to relate
errors from all causes in the orbit determination to possible uncertainty in the predicted
position of the RSO solved for. This analysis, in contrast, uses knowledge of the physics
of atmospheric drag retardation and its effect on both objects that could only be put
formally into the methematical model by a simultaneous solution. Even in this case, the
constancy of the B term is determined by additional longer term analysis. To summarize,
the optimum prediction of the actual etror volume in possible collisions will be obtained
by use of this simple drag-related variance algorithm, together with accuracy estimation
for the atmospheric drag model in use which can be supplemented with real time updates.
This needs to be coupled with associated knowledge of the constancy of the B term for
the two RSOs. Is also needs to be supplemented by estimates of the errors in position
from all other sources including sensor accuracy.
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DETERMINING IF TWO ELLIPSQIDS SHARE
THE SAME VOLUME

Salvatore Alfano’r and Meredith L. GreerJr

An analytical method is presented for determining if two ellipsoids share the
same volume. The formulation involves adding an extra dimension to the solu-
tion space and examining ecigenvalues that are associated with degenerate
quadric surfaces. The eigenvalue behavior is characterized and then demon-
strated with an example. The same method is also used to determine if two
ellipsoids appear to share the same projected area based on an oberver’s view-
ing angle. The following approach yields direct results without approximation,
iteration, or any form of numerical search. It is computationally efficient in the
sense that no dimensional distortions, coordinate rotations, transformations, or
eigenvector computations are needed.
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Introduction e

As the US Satellite Catalog transitions from General Perturbations to
Special Perturbations, the positional accuracy of each space object will be readily
available in the form of a covariance matrix. These covariances can be used to
determine probability of collision, radio frequency interference, and/or incidental
1aser illumination. Because the probability calculations can be computationally
burdensome, it is desirable to prescreen candidate objects based on user-
defined thresholds. Specifically, each object can be represented by a
covariance-based ellipsoid and then processed to determine if its uncertainty
volume shares some space in common with another’s. Ellipsoids (or their
projections) that do not touch or overlap can be eliminated from further
processing. This article presents a simple analytical method to perform such
screening. -

To date, all ellipsoidal prescreening methods involve numerical searches
(Ref. 1). For computational efficiency, such prescreening is often reduced to
spheres or “keep-out” boxes that have much larger volumes but allow for quick
distance comparisons. The drawback to such screening is that these larger
volumes cause many objects to become candidates for further (albeit
unnecessary) processing. These methods result in increased downstream
computational processing and /or increased operator workload to further assess
potential satellite conjunctions.

The following method adds an extra dimension to the solution space. The
subset of eigenvalues that are associated with intersecting degenerate quadric
surfaces are then examined. The same method is also used to determine if two
ellipsoids appear to share the same projected area based on viewing angle. The
approach yields direct results without approximation, iteration, or any form of
numerical search. 1t is computationally efficient in the sense that no dimensional
distortions, coordinate rotations, transformations, or eigenvector computations
are needed. This method expands the two-dimensional work of Hill (Ref. 2) in
his formulation of degenerate conics. It also furthers his work by examining the
associated eigenvalue behavior.

This approach is not limited to Satellite Catalog applications. For

computer graphics users, such screening could be used to invoke a hidden line
removal algorithm.
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Ellipsoidal Formulation

. .Rogers and Adams (Ref. 3) give various representational forms for an
ellipsoid. Algebraically, the representation is

2 2 2
Ax +By +Cz +Dxy+ Eyz+ Fxz+ Gx+ Hy+ Jz+ K =0 (1)

where A, B, C,D, E, F, G, H, J, and K are constants. In matrix form, the same
ellipsoid can be written as

X-8x =0 2)
where

) X=[xyzli] 3

2A D F G

D 2B E H
s=1. (4)

2 F E 2Cc J

G H J 2K

The translation of the ellipsoid’s center from the origin to [X0, YO, Z0] can be
accomplished by the matrix

1 0 0 0
o 1 0 0
T= (5)
\ 0 0 1 0
X0 -YO -Z0 1
where
XTST.X =0 . (6)

Similarly, all points contained within the ellipsoid satisfy the constraint

X.T.8.T x'<0 . (7)

Given a 3x3 covariance matrix C centered about [X0, Y0, Z0], the quadric
representation of the ellipsoid would then be




Ciy1 Ciqz2 Ciiz 0
Cipq Cizo Ci 0

.7 G121 Cizz Cizs 0. i (®)
Cis1 Cizz Cizz 0

0 0 o -

where Ci are the elements of the inverted covariance matrix.

Ellipsoidal Solution

For simplicity, assume a primary object is centered at the origin. An
ellipsoid that corresponds to its positional covariance can be computed from the
above, resulting in the equation

XAX =0 . 9)

In the same manner, a secondary object (center not co-located) and its ellipsoid
can be appropriately translated relative to the primary object such that

X.B-X =0 . (10)

If any X exists such that it satisfies Egs. (9) and (10), then the primary and
secondary ellipsoids intersect at that point. If some value of X satisfies the
constraint for both objects as represented by Eq. (7), then that point lies inside
both ellipsoids.

Eq. (9) can be multiplied by a scalar constant A with no loss in generality,
the constant is then brought inside the equation.

AX-AX =0 (11)

X-(0-A)-X =0 (12)

Assuming a subset of X satisfies both Egs. (9) and (10), then it must also satisfy
any linear combination of the two. Such a combination is shown by differencing
Egs. (10) and (12) to produce

X-(L-A-B)}X' =0 . (13)

As explained by Hill (Ref. 2), A is chosen so that the parenthetical term is
degenerate; this occurs when its determinant is zero. Because A is the
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characteristic matrix of an ellipsoid, it is invertible and can be used to alter Eq,.
(13) to produce

x-A-(M-A“-B)-xT=o : (14)

This representation is more readily recognized as an efgenvalue formulation and
also lends itself well to many mathematical software packages.

-Substituting selected eigenvalues into Eq. (14) will produce characteristic
matrices that represent degenerate quadric surfaces. If the X subset assumption
holds regarding overlapping objects, then these surfaces must also pass through
the points shared by the primary and secondary ellipsoids. It can be deduced
that if the ellipsoids just touch (i.e. share a single point in common) then that

solution vector must also be an eigenvector of A~ 1.8 (Ref 4). The converse is

not true as not all eigenvectors of A~ 1.8 will satisty the ellipsoidal constraints of
Egs. (9) and (10). Eigenvectors with a zero in their last component are
considered inadmissible because this formulation has been framed in a four-
dimensional space with the last dimension fixed as shown in Eq. (3). An
admissible eigenvector can be tested by simply scaling it to produce a one in the
last component and then determining if it meets the ellipsoidal conditions as
represented by matrices A and B.

When the primary and secondary ellipsoids overlap, then a family of
solutions describes the intersection. For such cases, two of the eigenvalues
become complex. This is demonstrated in Appendix A and proven in (Ref 4).

Observed Eigenvalue Behavior

To gain an understanding of the eigenvalues when the ellipsoids don't just
touch, the locus of values was plotted for various cases by altering size, shape,
orientation, and location. Figure 1 is representative of all cases tested. In each
set of cases, the two ellipsoids were initially defined to be completely outside
each other. There were always two negative, real eigenvalues that produced
admissible eigenvectors. The vectors did not satisfy Egs. (9) and (10) and no
point was shared in common between the ellipsoids.

The primary ellipsoid was continually scaled up until it just touched the
secondary. This meant that only a single, unique point satisfied Egs. (9) and
(10). The two eigenvalues moved towards each other until they met (repeated).
At this point the admissible eigenvectors gave the solution to where the ellipsoids
touch.

The scaling then continued so that both ellipsoids shared some volume in
common. The two admissible eigenvalues became complex conjugates. The
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real portion of the eigenvectors satisfied the inequality for both ellipsoids as | common. If two were negative real and identical, then they shared a single point
defined in Eq. (7). The location indicated by these vectors was always shown to : in space (just touching on the secondary ellipsoid’s side nearest the origin). If
be inside both ellipsoids; therefore they intersected. i two were complex conjugates, the surfaces intersected. If two were positive real
and identical, then they shared volume and a single point in space (just touching
As the primary ellipsoid continued to grow, it eventually touched the far on the side farthest from the origin). If all were positive real, then one ellipsoid
side of the secondary. The two admissible eigenvalues again became real and | completely penetrated the other without necessarily engulfing it (as demonstrated

repeated, but were positive instead of negative. Again, those eigenvectors : in the following figure).
defined the exact point where the ellipsoids touched.

Scaling beyond this point always gave two positive real admissible r
eigenvalues that moved away from each other. In all cases tested it meant that :
some portion of the primary surface had entered and exited the secondary
ellipsoid. It did not mean that the primary had completely engulfed the
secondary. This example can best be visualized as a broom stick going
completely through a rugby ball. A simplified mathematical explanation for K
eigenvalue behavior is presented in Appendix A. The complete, n-dimensional, ‘ Figure 2. Complete penetration of one ellipsoid by another

mathematical proof is the subject of another paper (Ref. 4).

-

3 ] , Simple Ellipsoidal Example

AN
Just Touching

7\ (Far Side)
/

T DV

< =

§ ’ Q/F / i -} 02500 0
( ’ 0 100
. A=
0 010 19

This example involves a primary ellipsoid that is 4 units long on the x axis
and 2 units long on the y and z axes. The secondary is 6 units long on the x
axis, 4 on the y and 8 on the z with its center at [7, 0, 0]. The primary should just
touch the secondary on the near side when scaled by 2 and just touch the far
side when scaled by 5. The touching will occur on the x axis.

The initial A and B matrices are

T A . AP s Pen o

o

Lo
¢

“1Just \ /
Touching 0 001
(NeaJSide)
=1 1000Y(0111 0 O 0Y)(1007
. g_|0100]|] 0 025 0 0[[0100 (16)
, | Secna® 0010|| 0 o0 00630(|0010
-6 -4 -2 9 2 4 6 g 1 12

7001/ 0 0o o -1)looo1

Real

0111 O ¢ -0.778

0 025 O 0

Figure 1. Representative locus of admissible eigenvalues :
f B= (17)

To summarize the results, the admissible eigenvalues of A~ 1.8 were ' 0 0 00683 O
examined. If two were negative real and different, then they shared no volume in { .0.778 0 0 4.444
776 3 ' 777
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Scaling the primary ellipsoid by a factor of n is done by simply multiplying the last
element of A by n2.

Table 1 shows the history of the eigenvalues and their interpretations.

Scale [1 2 3 4 5 6
Eig 1 -0.114 {-0.333 |-0.025+0.221i .083+0.114i 0.133 | 0.276
| Eig 2 -3.886 |-0.333 |-0.025-0.221] .083-0.114i 0.133 | 0.045

4 5.429 — 2.556i 7.429 - 2.969i 10

Vector | N/A 0 g 0 0 N/A
0 0 0 0
1 1 1 1

Notes | Outside | Touch | Overlap Qverlap Touch | Past

Table 1; Effects of scaling on eigenvalues and eigenvectors.

Coordinate Reduction through Projection

Although two ellipsoids may not share the same space, when viewed from
certain angles one may appear to cover or overlap the other. Analysis of such
circumstances is necessary to prevent accidental laser illumination if a secondary
object is in or near the line of sight of the primary. Equally important is
determining the possibility of radio frequency interference on a secondary object.
For computer graphics users, such analysis would indicate when to invoke a
hidden line removal algorithm. Coordinate rotations are accomplished through
the following matrix representation

X-RSR X =0, (18)

where rotation about the x axis of angle « produces

1 0 0 0
0 cos(a) sin(oc) 0
Rx = _ (19)
0 —sm(oc) cos(a) 0]
0 0 0 1

rotation about the y axis of angle p yields

i
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cos(p) 0 —sin(B) 0
e 0 1 0 0 (20)
2= sin(ﬁ) 0 cos(B) 0
0 0 0 1) .
and rotation about the z axis of angle 0 is
cos(B) sin(e) 00
Ry - —sm(e) cos(B) 00 1)
0 0 10
o 0 01

The individual matrices can be multiplied to produce an overall rotation matrix R.
The reader is cautioned to pay close attention to the signs of the sine terms; this
is necessary for a positive right-hand rule convention. Also, the order of
multiplication is important to assure the desired overall coordinate rotation.

Coordinate reduction is done by means of a simple orthographic projection
in the rotated space to eliminate one component. The choice of coordinate for
reduction is a matter of personal preference. The new z component was chosen
for this work, resulting in

1000
1
p_|0 100 (22)
0000
0001
X-(P-R-S-RT-PT)~XT=0 : : (23)

When the projection is completed, the expression in parentheses becomes
singular. To proceed, it is necessary to reduce the dimension of the state vector
and associated formulation as will be explained in the next section.

It is still necessary to translate the resuftant based on the new coordinate
frame. To do so, a new translation vector is computed and inserted into the
translation matrix

X1 Y1 Z1 1]=[X0 YO 20 1]-R (24)




1 0 0 O
0 1 0 0
Tnew = (25)
0 1 0
-X1 -¥Y1 -Z1 1
Combining all terms in the correct order produces
X.Tnew-P-R-S-R"-P' .Tnew -X' =0 . (26)

Elliptical Formulation and Solution

As one would expect, determining if two ellipses share the same area is
identical to the ellipsoidal formulation reduced by one dimension. In matrix form,
the new z component resulting from coordinate rotation is eliminated and the
equations are reduced by one dimension such that

X=[xy1] . (27)

An ellipsoid described by the rotated 4x4 A matrix is projected into the
new x-y plane by removing the third row and column to produce the 3x3 AP
matrix. The relationship

X-AP-X' =0 (28)

now describes the primary object's projected ellipse in the new, dimensionally-
reduced frame. The same projection and reduction is done for the secondary
object to determine the BP matrix

X-BP-X'=0 . (29)

If any X exists such that it satisfies Egs. (28) and (29}, then the primary and

secondary projections intersect at that point. If some value of X satisfies the
constraint for both projections as represented by Eq. (7), then that point lies

inside both ellipses.

The evaluation is identical to the ellipsoidal one, observing the admissible

eigenvalue behavior of AP~ 1.BP to determine if the ellipses shared the same
space. If two are negative real and different, then the ellipses share no area in
common. If two are negative real and identical, then they just touch on the
secondary’s side nearest the origin. If two are complex conjugates, the ellipses
intersect at two points. If two are positive real and identical, then they share area
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and just touch on the far side. If all are positive real, then one penetrates or
engulfs the other.

Conclusions

A simple analytical method has been developed to determine if two
ellipsoids share the same volume, This method can be used to alert operators of
existing or impending conjunctions. The formulation involves adding an extra
dimension to the solution space and examining the admissible eigenvalues. The
admissible eigenvalues are examined to determine if any volume is shared. If
volume is shared, a subset of the eigenvalues define degenerate quadric
surfaces that pass through the points of intersection. The same method is used
to determine if two ellipsoids appear to share the same projected area based on
viewing angle. This approach yields direct results without approximation,
iteration, or any form of search.
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APPENDIX A

The mathematical underpinnings for the assertions of eigenvalue behavior
in two and three dimensions are proven here for a single dimension; the n-
dimensional proof is found in Ref. 4. All objects can be scaled and rotated so
that the primary is centered at the origin with unit dimensions. The primary
ellipsoid becomes a sphere, the primary ellipse a circle. By selecting the proper
viewing geometry, two ellipsoids that do not touch can be projected to two
ellipses that do not touch; these ellipses can then be projected to two lines that
do not touch. This process reduces the problem to a single dimension.

For a single dimension, the primary object is a line ranging from —1 to +1
with its “surface” represented by the end points. The secondary is also a line
ranging from (x0-a) to (x0+a). Scaling can be accomplished so that the only case
needing consideration is when x0>0 and a>0. Algebraically these endpoints can
be expressed as

2 =1 (A1)

a2 (x-x02=1 . (A2)

In matrix form these become

: 1 0Y(x b (A3)
(x ) - .\1 =

-2 4 \(1 =
- 1){ 1 o}[a 0 |[1 xo]'(x]=O | -
-x0 1 0o -1)\0 1 1
10
A=(O -1} (A5)

B= (A6)

ok 2 M- o YA TR - PRSPPI

e e

5 0%+ a2+ 1+/(@a+ 1—x0)-(a+ 1+ x0)(a—1-x0)-(a— 1+ x0)

2.2 . (A7)

The following figure helps in visualizing all possible values, both real and
complex, of the solution. ;

———“—-—"——“—_—“

-1 ] 1 #h-a =0 x04a

Figure 3: One dimensional analysis (a>0, x0=>0)

Figure 3 shows that when [(x0 - a} > 1] the lines do not touch. Placing this
constraint into Eq. (A7) wilt always produce negative, real, distinct eigenvalues.

Increasing the value [a] and/or decreasing the value [x0] such that [(x0 - a) = 1]
allows the lines to just touch on the positive (near) side. The eigenvalues repeat
with a value of [-1/a].

Continuing to increase [a] or decrease [x0] such that [-1 < (x0 - a) < 1] and [(x0 +
a) > 1] causes the lines to overlap, but not completely. The eigenvalues will
always be complex conjugates under these conditions.

Should [(x0 - a) = -1] and [(x0 + a) > 1] then the lines overlap and just touch on
the negative (far) side. The eigenvalues repeat with a value of [+1/a].

In the event that -1 < (x0 - a) < 1] while [(x0 + a) <= 1] then the secondary line is
completely inside the primary and the eigenvalues are positive, real, and distinct.

For the final case [(x0 - a) < -1] the primary line is completely inside the
secondary and the eigenvalues are again positive, real, and distinct.
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