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Mathematical Epidemiology Goes To College

Every year waves of illnesses sweep through college campuses. This seems a natural result
of sleep-deprived college students living, working, and playing together. Such outbreaks
suggest questions: How many people will become infected? How can illnesses be contained?
And crucially: How is mathematics involved?

Mathematical epidemiology is the study of modeling diseases, often using compartmental
models. Read on to see how to build compartmental models so you can use them to learn
from past outbreaks and investigate theoretical future outbreak scenarios. The models shown
are inspired by two real-life outbreaks with different dynamics at the same small residential
campus: H1N1 influenza in 2009, and a surprising outbreak of mumps in a highly vaccinated
population in 2016.

Compartmental Models

Consider an illness in a population. An SIR model assumes that at each time t, each per-
son in the population belongs to exactly one of three subgroups of the population, called
compartments: the Susceptible compartment, people who have not contracted the illness but
could get it, the Infectious compartment, people who have the illness and can spread it to
Susceptibles, and the Removed compartment, people who are immune and are not spreading
the illness. People can move from one compartment to another, so population sizes of com-
partments change over time. “Change” suggests a derivative, and indeed the change in each
compartment’s size is written as a differential equation. Figure 1 shows one such model as a
diagram; below is the same model as a system of differential equations. In both, parameters
β and γ affect outbreak dynamics. The next section describes their roles and the form of
the equations.

Figure 1: SIR compartmental model diagram.

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

Different outbreaks may require different models. The choices of compartments, number of
arrows, and formulas associated with each arrow can all change, depending on the outbreak’s
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biology and the modeler’s focus. Yet the connection between diagram and equations stays
consistent: one differential equation per compartment, each arrow showing flow into one
compartment and/or flow out of another compartment.

The model in Figure 1 has only outward flow from S, meaning dS
dt
≤ 0; in words, population

S cannot increase. Similarly, R has only inward flow and cannot decrease. However, I
has both inflow βSI and outflow γI. Think about what this might mean. If dI

dt
> 0 then

population I is increasing, for example at the start of an outbreak. If dI
dt
< 0 then γI > βSI,

meaning more recoveries than new infections: the outbreak may be nearing its end. Also
possible is dI

dt
= 0, meaning no net change in I. Ponder what dI

dt
= 0 could signify; there are

multiple options.

Some useful epidemiological vocabulary:

Incidence =
Number of new cases in one time unit

Total population size during time unit
;

Prevalence =
Number of existing infectious cases at one time unit

Total population size during time unit
.

Data are often in terms of the incidence numerator: new cases per time unit, modeled as
βSI. The prevalence numerator is I(t), total current cases on a given day. Time t has units
of days throughout this article.

The basic reproduction number R0 is the average number of new disease cases caused by a
single Infectious person in an otherwise Susceptible population. When R0 > 1, the disease
initially spreads. WhenR0 < 1, the disease dies out. Epidemiologists gather data to estimate
R0 for diseases like influenza and mumps [7] and R0 plays many roles in modeling.

With these ideas in mind, we use the SIR model for a common campus outbreak: the flu.

Influenza

For a basic flu model, Figure 1 is a good choice for the following reasons. The novel virus
strain in 2009 meant every student was initially considered Susceptible (except the first
Infectious student). Once a student contracted the flu, the time till they could infect others
was quite short [3]. We therefore leave this time period out of our model, calling these
students Susceptible until they start infecting others. (Another option is introducing a
new compartment for these students. This idea resurfaces in the mumps section.) Once
no longer contagious, students go to the Removed compartment and stay there: they have
gained immunity to that flu strain, hence cannot return to the Susceptible compartment [3].

Each differential equation term has flu-related biological meaning. The γI term governs
movement from the I compartment to the R compartment. To estimate γ, consider the
infectious period. For H1N1, this could be as much as 5 to 7 days, though the period of
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highest infectivity lasts just 2-3 days. Supposing a 3-day infectious period, then in a typical
day about 1

3
of the members of I move to R, which indicates γ = 1

3
. To be biologically

reasonable, any modeled gamma should correspond to real-life values.

The model’s βSI term describes interaction between Susceptible and Infectious people. To
think through the SI part, note that the student population was a fixed 1714 throughout
the flu outbreak. When either S or I is very small—1 or 2 students—SI is relatively small.
As flu spreads, a still-sizable S population, multiplied by an I population in the dozens (or
more), is much larger. Later in the outbreak, S has decreased, and some people have moved
to R, making SI again smaller.

Mathematical software (e.g. Mathematica) turns differential equations, initial conditions,
and parameter values into graphs. Figure 2 shows a modeled Infectious population (the
smooth curve) compared with real prevalence values computed from campus health center
incidence data by supposing students were Infectious for three days. The model sets γ = 1/3,
β = 0.000305, S(0) = 1713, I(0) = 1, and R(0) = 0.
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Figure 2: Influenza model compared with 3-day prevalence data.

Natural questions follow. How do you use these models? And how do they connect with real
data?

One answer is to use models for mathematical understanding. For instance: How does in-
creasing or decreasing γ or β change your model’s graphs and underlying biological assump-
tions? How are non-integer-valued populations interpreted? What happens if parameter
values are not constant? Try these yourself!

We can also ask questions with models, such as: How does student failure to report illness
change the model? Faculty and Health Center employees in 2009 heard of many unreported
cases; a model assuming double the number of reported cases (γ = 1/3, β = 0.00038) appears
in Figure 3.

Models can also be fit to data, keeping parameters within biologically feasible ranges. One
approach is Residual Sum of Squares (RSS): given data points y1, y2, . . . , yn and modeled
values I(1), I(2), . . . , I(n) at corresponding times 1, 2, . . . , n,
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Figure 3: Influenza model compared with double the 3-day prevalence data, to account for
unreported cases.

RSS =
n∑
i=1

(yi − I(i))2.

A model with smaller RSS fits the data more closely than a model with larger RSS.

Once a model is fit to data, it can help estimate R0. The Next Generation Method uses
partial derivatives and linear algebra to determine a formula for R0 [2]. The basic SIR

model has formula R0 = βS(0)
γ

, where S(0) is the initial Susceptible population. The curve
in Figure 2 has R0 ≈ 1.57. Because R0 > 1, disease spreads, but R0 is close enough to
one that changes in human behavior make a difference. Hand washing and social distancing
reduce β, bringing R0 closer to 1 and reducing new flu cases significantly. (For contrast: R0

for pre-vaccination measles outbreaks was 12 or greater! Hand washing had much less effect
on those outbreaks.)

Above, β helps estimate R0. Given insufficient data to compute β, we can instead use epi-
demiologists’ estimated R0 values to estimate β. This approach makes sense when modeling
an ongoing outbreak, which happened when the mumps appeared in Fall 2016.

The Mumps

While the flu appears often, sometimes a rarer illness emerges. In one year, just a few
hundred to a few thousand cases of mumps occur in the United States. . . and they cluster
at places like residential college campuses [4] despite nearly 100% vaccination. The campus
focus heightens our interest in mumps, and the trajectory of mumps illness contrasts notably
with that of influenza.

When a Susceptible contracts mumps, there is a long time lag till they become Infectious
[5, 6], prompting a new compartment: L, or Latent. (Note that epidemiologists’ definition of
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“Latent” differs somewhat.) The time from infection till symptom appearance is typically 16-
18 days. Symptoms last about 5 days. Infectiousness—ability to spread mumps to others—
begins about 2 days before symptoms appear and ends about when symptoms end.

Figure 4 shows one possible diagram.

Figure 4: SLIR compartmental model diagram.

Most parameters are familiar from the SIR model. New is the factor (1 − p) multiplied by
βSI, where p is vaccination effectiveness. If everyone receives two doses, then mumps vaccine
averages 88% effectiveness across a population [4]; this corresponds to p = .88.
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Figure 5: Mumps model compared with data.

Figure 5 shows outbreak data and the modeled Removed curve. Parameters match given
biological data (κ = 1/15, γ = 1/7, p = .88); initial conditions are S(0) = 1793, L(0) = 6,
I(0) = 1, R(0) = 0. The R0 equation for SIR fits the SLIR model too; rearranging indicates
β = γR0

S(0)
≈ 0.00056, using R0 = 7. (Epidemiologists report R0 ≈ 4–7 for mumps [7]. Given

many campus risk factors [4], we use the largest value.) With these parameters and more
time, the Removed curve reaches 40 students. In reality, 28 students reported sickness. The
difference between 40 modeled and 28 reported cases may be due to the holiday break halting
the outbreak, along with incomplete reporting of mumps by students.

A thought experiment: what if mumps came to a completely Susceptible campus? Setting
p = 0 in the model from Figure 5 leads to mumps infecting nearly the entire student body
by late December! Pre-vaccination reality was different: most children had mumps and thus
were immune before college. Still, modeling lets us try such scenarios.

At this point, you may be wondering how we know which model to use for which disease.
The answer is: there is no one answer. Nothing stops us from modeling the same out-
break different ways, so let’s try it. We first note that a campus may isolate symptomatic
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students so they cannot infect others. Then the Infectious compartment (I) consists of not-
yet-symptomatic students mixing freely and spreading mumps, followed by an Isolated com-
partment (J) for symptomatic students whose isolation means they cannot spread mumps.
Based on above data, students remain in I approximately 2 days and J approximately 5
days. Second, as many as 20% of people infected with mumps never display symptoms [8],
suggesting an Asymptomatic (A) compartment.

The resulting model, SLIJAR, appears in Figure 6. Notice parameter q. When q = 0.2, 20%
of students leaving L move to A, and the other 80% move to I. The sum of students leaving
compartment L, qκL+ (1− q)κL, equals κL, with κ computed in a similar way in SLIJAR
as in SLIR.

Figure 6: SLIJAR compartmental model diagram.

Models with more details can be helpful for understanding new aspects of disease spread.
For example, whereas R0 = βS0/γ for the SLIR model showed the importance of length of
time spent in compartment I, R0 = βS0

(
q
δ

+ 1−q
ε

)
[2] for SLIJAR shows that time spent in

both compartments A and I matters, with weights q and 1− q respectively.

Different models raise questions about fitting data. More parameters often make a closer
fit possible—but is this necessarily better? There may not be adequate information for
estimating more parameters or ensuring they are biologically reasonable. Additionally, the
centuries-old principle Occam’s Razor encourages us to use the simplest appropriate model.
To balance closer data fitting (usually with more parameters) with the goals of simplicity
and of keeping models biologically meaningful, modelers use RSS to compute the corrected
Akaike Information Criterion (AICc):

AICc = n ln

(
RSS

n

)
+

2Kn

n−K − 1

where n is the number of data points, and K is 1 plus the number of model parameters. For
several AICc examples, see [1]. The model with lowest AICc is considered to have the best
combination of RSS and number of parameters.

Proper use of AICc requires comparing the same data to different models. For the SLIR
and SLIJAR models, our data set is all known currently infectious people, compared to the
I population of SLIR and I + J in SLIJAR. With SLIR parameter values from Figure 5,
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comparable values for SLIJAR (κ = 1/15, q = .2, ε = 1/2, γ = 1/5, δ = 1/7, p = .88), and
computing β for each model using R0 = 7, the simpler model, SLIR, has both lower RSS
and lower AICc.

Conclusion

We hope you have enjoyed this introduction to mathematical epidemiology. These models
allow for mathematically representing human interactions and simulating outbreak scenar-
ios. Consider making β piecewise constant (perhaps dropping when a campus reacts to
an outbreak) or periodic (maybe showing increased student interaction, hence infection, on
weekends). Try new diseases, new compartmental models, and new data sets. Model past
diseases, and try to predict the outcomes of new outbreaks. And enjoy the close connection
between mathematics and current campus events!
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