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 EFFECTS OF GENERAL INCIDENCE AND POLYMER JOINING
 ON NUCLEATED POLYMERIZATION IN A MODEL OF PRION

 PROLIFERATION*

 MEREDITH L. GREERt, P. VAN DEN DRIESSCHE*, LIN WANG§, AND G. F. WEBB*

 Abstract. Two processes are incorporated into a new model for transmissible prion diseases.
 These are general incidence for the lengthening process of infectious polymers attaching to and
 converting noninfectious monomers, and the joining of two polymers to form one longer polymer.
 The model gives rise to a system of three ordinary differential equations, which is shown to exhibit
 threshold behavior dependent on the value of the parameter combination giving the basic reproduc-
 tion number 1Zo. For Ko < 1, infectious polymers die out, whereas for Kq > 1, the system is locally
 asymptotic to a positive disease equilibrium. The effect of both general incidence and joining is to
 decrease the equilibrium value of infectious polymers and to increase the equilibrium value of normal
 monomers. Since the onset of disease symptoms appears to be related to the number of infectious
 polymers, both processes may significantly inhibit the course of the disease. With general incidence,
 the equilibrium distribution of polymer lengths is obtained and shows a sharp decrease in comparison
 to the distribution resulting from mass action incidence. Qualitative global results on the disease free
 and disease equilibria are proved analytically. Numerical simulations using parameter values from
 experiments on mice (reported in the literature) provide quantitative demonstration of the effects of
 these two processes.

 Key words, prion diseases, nucleated polymerization, general incidence, polymer joining, prion
 proliferation

 AMS subject classifications. 92D30, 34D23, 35Q80

 DOI. 10.1137/06066076X

 1. Introduction. Prion diseases, though widely studied at many levels, continue
 to challenge understanding. A prion is an infectious protein. Several prion diseases
 are known, or suspected, to be transmissible, both via ingestion and iatrogenically;
 as a group, they are thus referred to as transmissible spongiform encephalopathies
 (TSEs). Examples include scrapie, which affects sheep and goats; bovine spongiform
 encephalopathy (BSE), which affects cows; chronic wasting disease (CWD), which
 affects mule deer and elk; and variant Cruetzfeldt- Jakob disease (vCJD), which affects
 humans [8, 9]. Additionally, mice and hamsters in laboratory experiments can be
 infected with scrapie [30].

 Though incidence of vCJD in humans has declined to just a few new cases per
 year [36] and BSE incidence also appears to be declining [23], prion diseases warrant
 ongoing study for reasons that include the following. First, there may be previously
 unrecognized routes of infection: new research shows that prions can bind to some
 soils and cause infection via inoculation with those soils [17], indicating that graz-
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 PRION GENERAL INCIDENCE AND POLYMER JOINING 155

 ing animals may acquire TSEs despite having safely prepared feed. Second, prions
 are extremely difficult to destroy, remaining infective despite heat or radiation that
 would inactivate other known infectious agents [1, 5]. Third, prion replication offers
 a new frontier in scientific understanding: protein-only replication cannot depend on
 nucleic acids, but must occur somehow for TSEs to spread. Comprehending how this
 replication works may provide great insight to other biological processes.

 A specific naturally occurring protein is vulnerable to infection by prions; it is
 therefore known as prion protein. In its noninfectious form prion protein is denoted
 by PrPc, and in its infectious form it is denoted by PrPSc; see, for example, [22]
 for discussion of this notation. The forms differ only in the folding of the protein
 [27]. Humans, cows, sheep, and other animals susceptible to TSEs produce PrPc
 normally [4]. There is evidence both that an accumulation of PrPSc may be toxic
 [24, 21] and that a lack of PrPc may leave the brain overly susceptible to stress [29].
 Either or both of these may lead to symptoms associated with TSEs. In the case of
 transmissible prion disease, some portion of PrPSc is introduced into the system, and
 this PrPSc can cause more infectious protein to be made. Though the mechanism for
 such protein replication is not fully understood, nucleated polymerization is a likely
 candidate [15, 18].

 Nucleated polymerization involves PrPSc attaching to PrPc and converting it to
 prpSc \Ymje proteins usually exist as individual units, also known as monomers,
 it appears that PrPSc benefits from aggregating in some way [11, 16]. Aggregation
 confers greater stability, and may even be necessary to maintain the alternate pro-
 tein folding. We assume within this paper that these aggregates have a linear form
 [18, 26], and we typically refer to the aggregates as polymers. In our nucleated poly-
 merization model, each polymer may attach at either end to a PrPc monomer, quickly
 converting it to the infectious form of PrPSc. Since the polymer has thus increased
 its length by one unit of protein, we refer to this process as lengthening. Nucleated
 polymerization also involves polymer splitting. We assume a minimum viable polymer
 length, so that when polymer splitting results in pieces below the minimum length,
 these pieces must break apart into their component units of PrPc. Additionally, our
 model includes polymer joining, in which two PrPSc polymers join together to form
 one longer polymer.

 Models of nucleated polymerization for PrPc monomers and PrPSc polymers
 containing a discrete number of monomers are formulated and analyzed in [20] and
 [22]. Based on these, a model with continuous polymer length is introduced in [13]
 and further analyzed in [12, 14, 28]. All these models assume mass action incidence for

 the lengthening process of infectious polymers attaching to PrPc units. We generalize
 this form of incidence in a way that reduces lengthening when the total amount of
 infectious protein becomes large in proportion to the number of polymers. Some
 research [24] has indicated that only truncated forms of polymers are able to lengthen
 this way; it is also possible that polymers within a specific range of lengths are able
 to lengthen at the fastest rate, but that all polymers are capable of lengthening [31].
 Our general incidence term captures these features by reducing the rate of lengthening
 when total PrPSc mass is large relative to the total number of PrPSc polymers. That
 is, we reduce the rate of lengthening as the average polymer length becomes greater.
 In addition, our model is the first to include polymer joining. Joining is implied by
 the fact that large fibrils or aggregates of PrPSc are observed in late stages of disease
 [2, 10].

 We start in section 2 by incorporating the processes of general incidence and poly-
 mer joining into an ordinary differential equation (ODE) for the number of monomers,
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 coupled with a partial integrodifferential equation for the density of polymers depend-
 ing on polymer length. Under some assumptions, this system is converted to a system
 of three ODEs, which is analyzed in section 3. Numerical simulations for parameters
 obtained from experimental data on mice [30] are presented in section 4, and we
 conclude in section 5 with a discussion.

 2. Model formulation. A core model of nucleated polymerization exists in
 [12, 13, 14, 28] with some extensions in [32]. We continue to use the same variables
 and parameters and introduce two new parameters, u and r/, to account for general
 incidence and polymer joining, respectively:

 • V(t) is the number of PrPc monomers at time t\
 • u(x, t) is the density of PrPSc polymers of length x at time t;
 • xo is the lower bound for polymer length; that is, polymers have length x

 with xo < x < oo;
 • U(t) = f™ u(x, t)dx is the number of PrPSc polymers at time t\

 • p(t) = f™ xi/(x, t)dx is the number of PrPSc monomers comprising polymers
 at time t]

 • W(t) = P(t) - xoU(t) is the number of PrPSc units not accounted for within
 the minimal polymer lengths;

 • A is the source rate for naturally produced PrPc monomers;
 • 7 is the metabolic degradation rate for PrPc;
 • r is a rate associated with lengthening of PrPSc polymers by attaching to and

 converting PrPc monomers;
 • uj is a parameter associated with polymer lengthening;
 • /?(x) is the length-dependent rate of polymer breakage;
 • k(x, y) is the probability, when a polymer of length y breaks, that one of the

 two resulting polymers has length x;
 • /x(x) is the length-dependent metabolic degradation rate of PrPSc polymers;
 • rj is the rate at which PrPSc polymers join together.

 All parameters are assumed to be positive with the exception of u and 77, which
 may also be zero.

 2.1. PDE model. Our model, incorporating both general incidence and poly-
 mer joining into the model formulated and discussed in [12, 13, 14, 28], has monomer
 dynamics governed by

 (2.1) V'(t) = \-<yV(t)- 1 + " u)P(t) )>+2 Jo x JXo P(y)K(x,y)u(y,t)dydx 1 + u)P(t) Jo JXo

 with V'(t) = ^, and polymer dynamics given by

 rV(t) f°°

 rx y.00
 (2.2) + 77 / u(x - y, t)u(y, t)dy - 2t?u(x, t) I u(y, t)dy,

 subject to nonnegative initial conditions and the boundary condition

 (2.3) u(xo,0=0.

 We write the polymer lengthening term in (2.1) in the general form T^ffff •
 Note that in the case u = 0 this is a mass action term. Otherwise, as P(i) becomes
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 PRION GENERAL INCIDENCE AND POLYMER JOINING 157

 large there is a saturation effect, with the result that less lengthening occurs overall.
 This matches the in vitro observations of [24, 31].

 The polymer joining term r\ f* u(x - y, t)u(y, t)dy introduces the joining param-
 eter 77 and indicates that a new polymer of length x results from the joining of two
 smaller polymers of lengths x - y and y. Note that the upper integration limit can be
 written as x or x - xq with identical results, as there are zero polymers of length less
 than xq. Changing the form of the integration limit does not affect analysis of the
 model. The last term 2r]u(x, t) /^° u(y, t)dy describes the loss of a polymer of length
 x when it joins with another polymer, of any length, to create a larger polymer.
 Symmetry mandates the factor 2.

 Note that with mass action incidence and no polymer joining, i.e., u = 0 and
 7/ = 0, our model reduces to that in [12, 13, 14, 28]. For this case, a model with
 bounded (3(x), /x(x), and a general kernel n(x,y) is analyzed in [32].

 2.2. Conversion to ODEs. Under an assumption of equidistributed splitting,
 a system of three ODEs in V, £/, and P can be obtained from (2.1) and (2.2). Equidis-
 tributed splitting means that splitting is equally likely wherever two protein units have
 joined together; hence the splitting rate (3(x) is proportional to polymer length x, i.e.,
 (3(x) = (3x. The accompanying splitting kernel is then

 K/T ?,\ - f 1/V if V > xo and 0 < x < y,
 MX'^-\ K/T ?,\ - 0 if y<x0 or y<x.

 We make the additional assumption that polymer metabolic degradation occurs
 at a constant rate, i.e., /x(x) = //. A form of the PDEs that assumes mass action
 and no polymer joining was converted to ODEs in [28] by integrating (2.2), and
 integrating the product of x and (2.2), over [a:0, 00). Proceeding similarly, the general
 incidence term is independent of x and converts analogously. The joining integral
 f™u(x,t)f™u(y,t)dydx simplifies to U2(t). The remaining joining integral from
 (2.2) gives

 poo px /.00 px-xo
 / / u(y,t)u(x-y,t)dydx = / u(x - z,t)u(z,t)dzdx
 «/£() JXu Jxo JO

 /»OO /»OO

 = / / u(x - z,t)u(z,t)dxdz
 JO Jz+xo

 /»OO /»OO

 = / / u(w,t)u(z,t)dwdz
 Jo Jx0

 = u2(t).

 The resulting system of equations is

 V =/3P-»U- 20xoU - r)U2,

 (2-4) v'^X-rV-^p+fi^U,

 It is useful to have equations for infectious polymers, noninfectious monomers,
 and infectious monomers comprising polymers. To use analysis appropriate for com-
 partmental models, we replace the U equation with an equation for x0U, and the
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 A /~s

 T/l O H

 y | ^v | /x(x0i/)

 Fig. 1. Compartmental diagram of system (2.5).

 P equation with an equation for W = P - xqU. The xqU compartment contains all
 prpSc unfts that make up the minimum lengths of the polymers. The W compartment
 contains all additional PrPSc units. The resulting system of equations is

 (x0U)f = (3x0W - n(x0U) - (3xo(xoU) - ^-(x0U)2y
 x0

 The compartmental diagram of this system appears in Figure 1.

 3. Model analysis.

 3.1. Nondimensionalization. To facilitate analysis, rewrite the ODE system
 (2.5) in a nondimensionalized form. Let a = /i 4- (3xq and T = at. Rewrite U(t) =

 *X(T), V(t) = £Ty{T), and W(t) = fTZ(T). Define a = &£, p = a, 6 = &*,
 f=^, and<A=f. Then

 X' = Z-X-<j)X2,

 1 + v\Z + oA; )

 with #' = ^ . The nondimensionalization process reduces the number of parameters

 from eight to five. Note that 8 = J^*^_ G (0, 1). Setting v = 0 simplifies the incidence
 term to mass action, whereas setting 0 = 0 simplifies the model to the case with no
 polymer joining.

 In all that follows, disease is assumed to be initially present; thus the nonnegative
 initial conditions for the nondimensional system are X(Q) > 0, ^(0) > 0, Z(0) > 0,
 with X(0) + Z(0) > 0.

 Proposition 3.1. Let v,<\> > 0, <r,p > 0, and 6 e (0,1). For each (X(0),y(0),
 Z(0)) G R\ the system (3.1) has a unique bounded solution in R+ defined for all
 T>0.
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 Proof. Let F : R% -> R^. be given by

 F((X,y,Z)) = (FuF2,F3)

 and observe that F is Lipschitz continuous on bounded sets of R+. For T > 0 and
 (A\ y, 2)gR3, it follows that Fi > 0 when X = 0, F2 > 0 when ^ = 0, and F3 > 0
 when Z = 0. Thus by Corollary A. 5 in [35] there exists a unique nonnegative solution
 to (3.1) in R3 for T G [0,oo). Since

 2f(6X(T) + y(T) + Z{T)) = a-(l- 6)SX(T) - Py(T) - (1 - 6)Z(T)
 <a- 6{6X{T) + y(T) + 2(T)),

 where 0 = min{l - 6, p} > 0, it follows that 6X(T) -f ^(T) + Z(T) < max{f , 6X(0) +
 y(0) + -2(0)} = M. Thus the existence of a unique global nonnegative bounded
 solution is proved. D

 3.2. Computing and interpreting 71q. The disease free equilibrium (DFE)
 for this nondimensionalized general model of nucleated polymerization is (X, y, Z) =
 (0, ^,0). Note that in the absence of disease, y is stable. The DFE may be used to
 fincfthe basic reproduction number llo, which indicates the average number of new
 infections caused by a single infective introduced to an entirely susceptible population.
 One technique [37] examines the infective compartments, in this case the equations
 within (3.1) for X and Z. The Jacobian J of the (X,Z) system about the DFE is
 apportioned into two matrices F and G such that J = F - G, where F contains
 all elements resulting from new infections and G contains all remaining movement
 between compartments. Then 1Z0 is the spectral radius of the matrix FG~l. For the
 model given in (3.1),

 '■[?:]■ °-[iv].
 and the spectral radius of FG~l is ^. Hence 1Z0 = |. The next result follows from
 Theorem 2 of [37].

 Lemma 3.2. IfH0 < 1, then the DFE of (3.1) is locally asymptotically stable; if
 Uq > 1, then the DFE is unstable.

 In the biological variables,

 <32) k-W^W'
 The same 7£0 results from the model of nucleated polymerization in which the length-
 ening mechanism proceeds according to mass action and polymer joining does not
 occur [28]. This result makes it clear that general incidence and joining do not affect
 the potential success of infection via nucleated polymerization. However, as shown
 later, the inclusion of a generalized incidence term and polymer joining does affect
 the distribution of polymer lengths as time progresses during disease and alters the
 disease equilibrium.
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 3.3. Global stability of the DFE. Assuming that p > 1, the DFE of the
 general model of nucleated polymerization given in (3.1) is globally attractive for
 llo < 1 and globally asymptotically stable (GAS) for 7£0 < 1. The assumption that
 p > 1 is justified biologically; see data in section 4. To show the DFE results, first
 consider the model in the case with v = 0, that is, where polymer lengthening occurs
 via mass action.

 Lemma 3.3. IfU0 < 1, then the DFE (X,y,Z) = (0, ^,0) of the system

 X1 = Z-X-<f>X2,
 (3.3) y = a - Py - xy + s2x,

 z' =xy-z+ 6(j)X2

 is globally attractive.
 Proof. Consider the Liapunov function

 * = \(y-y)2 + h(x + z)

 with ki = (2 - 62 - y). Since both 6 < 1 and y = Ko < 1, then fci > 0. This
 Liapunov function is the same as that used by [28] for the nondimensionalized model
 with mass action and no joining. Its derivative given by

 & = -P(y - yf - 0(i _ e)klx2 - X[(y - l)2 + (l - 62)(i - y)]

 is nonpositive for 7£o ^ 1- Also $' = 0 only if y = y and X = 0. Thus by LaSalle's

 invariance principle [19] the DFE (0, ^,0) of (3.3) is globally attractive. D
 Theorem 3.4. Assume p>\. IfU0 < 1, then the DFE (X,y,Z) = (0, ^,0) of

 the system (3.1) is globally attractive. IfU0 < 1, then the DFE is GAS.
 Proof. From systems (3.1) and (3.3), create the equivalent respective systems

 X1 = Z-X-<I)X2,

 (3'4) (*A\ Z= 7' X(y + Z)-XZ -2 7^.,y2 + 6<t>* (3'4) (*A\ Z= 7' l+v(Z + 6X) -2 7^.,y2 + 6<t>* '
 (y + Z)' = a - p (y + Z) + (p - \)Z + 62X + 6<t> X2,

 and (with v = 0)

 X' = Z-X-(j)X2,
 (3.5) Z1 = X(y + Z)-XZ-Z + 6<t> X2,

 (y + zy = a - p(y + z) + (p - \)z + s2x + 6$ x2,

 subject to the same nonnegative initial conditions. Since p > 1, system (3.5) is
 K-monotone. Then v > 0, 6 e (0, 1), X > 0, and Z > 0 imply by a standard
 comparison theorem given in [34, Appendix Bl] that (X, Z,y + Z)(3A) < (X, Z,y +
 2)(3.5). Let T^o < 1. Since by Lemma 3.3, the DFE of (3.5) is globally attractive, and
 by Proposition 3.1, X > 0 and Z > 0, it follows that X -> 0 and Z -> 0 for system
 (3.4). From the second equation of (3.1), the theory of asymptotically autonomous

 systems [6] shows that y - > |. The global asymptotic stability result then follows
 from Lemma 3.2. D

 In order to use the comparison theorem to show that the DFE of system (3.1) is
 GAS, it is required that p > 1 in Theorem 3.4. Next we apply the Liapunov method
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 to establish that the DFE is GAS without assuming that p > 1 but at a cost: T^o is
 required to be less than 1 - 62.

 Theorem 3.5. The DFE of system (3.1) is GAS if Ho <l-62.
 Proof Define

 $ = y-y]n(y/y) + z + x.

 Notice that o = py. The derivative of $ along the solution of system (3.1) is
 given by

 < -P{y ~ ^ - (i - W*2 - <>2y^ + x (s2 + y - 1) .

 This shows that $' is nonpositive for Kq = £ = y < 1 - 62 and $' = 0 only if
 y = y and X = 0. Again, by LaSalle's invariance principle and Lemma 3.2, the DFE
 is GAS. D

 3.4. Existence and stability of the EE. We now consider an endemic equi-
 librium (EE) with disease present, i.e., X > 0, y > 0, Z > 0.

 Lemma 3.6. IfH0 > 1, then system (3.1) has a unique EE. 7/0 = 0, then
 mat that tsb EE ?«j is given nivpn hn 0y ( (X X* ,y V* ,£ 7*\ ) - - ( a~p (ti/{1+6)+(1-62) g-p \ mat that tsb EE is ?«j given nivpn 0y hn (X ( X* ,y V* ,£ 7*\ ) - - ^px/(1+6)+r(1_^), a~p pl/(1+6)+(1_6i}, pi/{1+S)+(i-6*) g-p ) -
 IfU0<l, then (3.1) has no EE.

 Proof If (j) > 0, then system (3.1) cannot be solved explicitly for the EE. However,
 for 4> > 0, at equilibrium, Z and y can be expressed in terms of X by

 Z = X + <$>X2,

 (3.6) y=i[j-x(l + 4>X) + 6X((j>X + (5)]
 = [1 + i/AT(l + 6 + 0*)] [1 + <t>X{l - 6)} ,

 and X satisfies the cubic equation

 0 = pv<t>2(\ - 6)X3 + [pv<\> + pv4>(\ - 62) + 0(1 - 6)] X2

 (3.7) + [pu{\ +6)+ p<t>{\ - 6) + (1 - <52)] * + p - a.

 Since the first three coefficients of (3.7) are positive and the constant term is negative
 for 1Zo > 1, there is a unique positive root. The expressions in (3.6) show that unique
 positive equilibrium values for y and Z result from the unique positive X\ hence
 there is a unique EE (X*,y\Z*) for Uq > 1. If 0 = 0, then the solution of (3.7) is
 given explicitly as X* = pi/(l^)~/(i-6^)^ givinS ^* and Z* from (3.6) as in the lemma
 statement. If TIq < 1, then (3.7) has no positive root, and hence there is no EE. D

 The proof of the following result is standard, using the Routh-Hurwitz conditions.
 For details, see Appendix A.

 Theorem 3.7. IfUo > 1, then the unique EE of system (3.1) is locally asymp-
 totically stable.

 Remark 3.8. If Hq > 1 and p > 1, then every solution of (3.1) approaches either
 the EE or the DFE.
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 Proof. Consider the equivalent system {X,Z,y + Z) of (3.1), namely (3.4). This
 equivalent system's matrix of partial derivatives has the sign pattern

 " - + 0 "
 + - +

 in the case when p > 1 (where * is + or 0), indicating an irreducible coopera-
 tive system. Then by Theorems 2.3.2 and 4.1.2 on respective pages 18 and 57 of
 [33], the system exhibits monotone dynamical flow and solutions must approach an
 equilibrium. □

 The system equivalent to (3.1) has only two possible equilibria: the DFE (0, 0, ^)
 and the EE {X*,Z*,y* + Z*) from Lemma 3.6. If 1ZO > 1, then by Lemma 3.2, the
 DFE is unstable, and by Theorem 3.7, the EE is locally asymptotically stable. These
 facts together with numerical simulations (see section 4) indicate that the EE is GAS
 if 72,o > 1 and p > 1, but we do not have a proof.

 A Liapunov function argument is used in section 3.4 of [28] to prove a global
 asymptotic stability result in the case u = 7? = 0.

 3.5. Effects of v and <f> on the EE. The nucleated polymerization model
 with mass action and without polymer joining has been well studied in earlier work
 [12, 13, 14, 28]. It is useful to understand the effects of positive values of v and <j>
 on the EE of model (3.1). By taking partial derivatives of (3.6) and (3.7) and using
 parameter relationships at the EE, the following signs are determined. (For selected
 details, see Appendix B.)

 Proposition 3.9. At the EE of (3.1), for Hq > 1, ^ < 0, ^ > 0, and

 Proposition 3.10. At the EE o/(3.1), for Uo > 1, ^- < 0 and ^ > 0.
 3.6. Summary of ODE results for biological variables. The previous results

 are now summarized in terms of the original biological variables in system (2.5). Recall
 that X, y, and Z in (3.1) are respectively proportional to xqU (the number of PrPSc
 units in the minimum lengths of the polymers), V (the number of PrPc monomers),
 and W (the PrPSc units not accounted for within the minimum lengths of the poly-
 mers), all satisfying system (2.5). With nonnegative initial conditions, system (2.5)
 has a unique bounded solution in R+ defined for all t > 0. The basic reproduction

 number 1Z0 is given by (3.2). The DFE (x0U, V, W) = (0, ^,0) is globally attractive
 if 7 > /3x0 + \i and Hq < 1 and is GAS if 1Z0 < 1. If Ho > 1 and 7 > (3x0 + //, then
 the unique EE (#ot/*, V*, W*) demonstrated in Lemma 3.6 is locally asymptotically

 stable in R% \ [{0} x R+ x {0}]. For 1Z0 > 1, at the EE, d{x^] < 0, $£- > 0,
 TC1 < °> d{XdT] < °' and %- >0' The siSn of ^F is undetermined in general,
 since the sign of ^- is unknown.

 We can also interpret the results in terms of P (the number of PrPSc monomer
 units comprising the polymers) from (2.4). At the DFE, P = 0, and at the EE,
 P* = W* + XoU*. By adding the second and third equations in (2.4), it follows
 that ^- < 0 and ^^ < 0 at the EE. The ratio ^ gives the mean polymer length.
 Dividing the last equation of (2.4) by U and differentiating with respect to 77, it is

 seen that ^(^-) > 0 at the EE.
 3.7. A solution of the PDE system in the case of general incidence.

 Returning to (2.1) and (2.2), consider the case of general incidence but no joining,
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 i.e., rj = 0. The corresponding system of ODEs given in system (2.4), again with
 7/ = 0, has EE from Lemma 3.6 given by the following:

 /3703*q + /z)2-/?2At
 (2/3xo + l*)[un(0xo + /i)2 + 0ht] '

 /» R, v. = {pxo + n)2(u\ + n)
 ( R, ' v. = w7(/3x0 + m)2H-/3/xt'

 p._ l(0xo + h)2-(3\t
 wy(/3x0 + fi)2 + Put'

 To find an equilibrium distribution of polymer lengths, set J^u(x,t) = 0 in (2.2).
 Compute the derivative with respect to x of the rest of (2.2), substituting in values
 of U*,V*, and P* from (3.8) to obtain

 The boundary condition u(x0) = 0, first given in (2.3), can be used to find solutions
 to (3.9) of the form

 (3.10) u(x) = Ce W'o+i*)* (z-zo)(/?z + /3xo + 2^).

 Note that from (2.2) with x = xo,

 (3.11) |Wl)] = W.(il^l).
 Substitute into (3.11) values of £/*, V*, and P* from (3.8). Then compute the deriva-
 tive of (3.10) and set it equal to (3.11) to find

 /?3(/?AT-7(/?*o + /i)2)

 (0xo + /i)3(2/3x0 + /i)ky03xo + A*)2 + /*/?r] '

 The equilibrium solution from (3.10), denoted by ti*(x), is thus

 / fl(«-«n)(fl«+fl*o+3/o\ /33(x - xQ)(/3x -h /3x0 4- 2/x)[^Ar(l - l/1Z0)]

 (3.12) «-(x)=^e ^.-> j {/3xo + M)3(2/3xo + ^(^ + M)2 + ^T] '

 where 7^0 is given in (3.2). Note that the numerator of u*(x) requires x > x0 and
 Hq > 1. The denominator of u*(z) shows that an increase in u> decreases the number
 of polymers of length x at steady state for all viable lengths x.

 Prom (3.10), it can be seen that the value of x at which u*(x) achieves its maxi-
 mum is independent of u and is given by

 (3.13) x = (VS - 1)^ + VZx0.
 However, from (3.12), the magnitude of this maximum decreases as u increases.
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 Fig. 2. Varying lj = 0, 10"5, 10"4, 10"3, 10"2 for populations U(t), V(t), andP(t) withxo = 6,
 A = 4400, 7 = 5, r = 0.3, /x = 0.04, j3 = 10~4, n = 0. Range of lj runs top to bottom on U and P
 graphs, bottom to top on V graph.

 Fig. 3. Steady-state polymer distribution u*(x) with xo = 6, A = 4400, 7 = 5, r = 0.3,
 /i = 0.04, /3 = 10~4, 77 = 0, and lj = 0, 10"5, 10~4, 10"3, 10~2. Range of lj runs from top curve to
 bottom on graph.

 4. Numerical simulations. To complement the previous analytical results, we
 present some numerical simulations. All simulations shown, unless otherwise noted,
 use the same parameters as in [14], namely xq = 6/(SAF/sq), A = 4400/day, 7 =
 5/day, r = 0.3/(SAF/sq * day), \i = 0.04/day, and 0 = 10"4(SAF/sq)/day, giving
 p«2x 105 > 1. These parameters follow from data and observations in [3, 7, 20,
 25, 30]. Some broader ranges include that x0 « 6-30 [20], PrPc has a half-life of
 3-6 hours [3, 7, 25] and hence 7 « 3-5/day, \x < 7 [20, 25], and A » 103-104/day
 [20]. The units SAF/sq are a measure of scrapie-associated fibrils counted in spleens of
 Compton white mice that had been given intracerebral injections of the 139A scrapie
 strain [30]. Note that the above parameter set gives 7£o » 16. We vary values of u
 and rj to investigate the changes introduced by these parameters.

 First consider general incidence. The effects of the parameter u on £/, V , and P,
 discussed in section 3.6, are shown in Figure 2. Additionally, the equilibrium solution
 for u(x) found in (3.12) allows a comparison of steady-state polymer distributions,
 given differing values of u. This appears in Figure 3, computed from (3.12). Note
 that, for all values of a;, the maximum value of u(x) occurs at x « 303, as can be
 computed from (3.13).

 Next consider joining. Section 3.6 describes the effects of 77 on the EE of system
 (2.4), shown numerically in Figure 4. As discussed in section 3.6, the sign of @£- is

 undetermined; hence the sign of ^-p is also undetermined. It turns out that most

 parameter combinations, but not all, support ^- < 0. The opposite can occur in the

 250i
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 °0 50 100 150 200 °0 50 100 150 200 °0 50 100 150 200
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 0.5 1

 0.45 f\

 0.4 If \\
 0.35 ■ I \
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 0.25 / /~\ \
 0.2 / / \ \
 0.15 // \ \

 0.05 # /"
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 Fig. 4. Varying rj = 0, 10"4, 10"3, 10"2, 10"1 for populations U(t), V(t), and P(t) with x0 = 6,
 A = 4400, 7 = 5, r = 0.3, /x = 0.04, 0 = 10~4, w = 0. Range of rj runs top to bottom on U and P
 graphs, bottom to top on V graph.

 Fig. 5. Dependence of W* on n with x0 = 6, A = 4400, 7 = 5, r = 0.3, /x = 0.02, & = 10~4,
 u> = 0.

 case that 6 - ♦ 1, which is possible in the case that /x is small or (3xo is large. A brief

 explanation appears in Appendix C. Even so, it appears that ^- > 0 for only small

 values of (f). This effect is demonstrated in Figure 5 for ^^ , which is proportional

 to ^- > 0. The parameters used in Figure 5 are the same as those listed above, but
 with smaller /i, namely \i = 0.02, and u = 0.

 Last, combine general incidence with joining. Lemma 3.2, Theorem 3.7, and
 Remark 3.8 together suggest that the EE of system (3.1) is GAS. Numerical simula-
 tions such as those shown in Figure 6 support this suggestion. The pair of surfaces
 in this figure show long-term equilibrium values of U and P, denoted C/qq and P^, as
 both u and 77 vary. For all shown pairs of u) and rj values, both Uqq and P^ remain
 positive, indicating (as a consequence of Remark 3.8) that they correspond to U* and
 P*. The shown ranges for u and rj correspond to the lower range of values used in
 Figures 2, 3, 4, and 5. Similar graphs generated using higher values of lj and rj also
 result in positive values of £/qo and Poo- The parameter values used for xo, A, 7, r, /i,
 and /? are the same as those given at the beginning of this section.

 Figures 2, 3, and 4 were computed using MATLAB, with odel5s for Figures 2
 and 4. Figures 5 and 6 were computed using Mathematica.

 5. Biological interpretation and discussion. We now discuss the analytical
 results and numerical simulations (for the assumed parameter values) in terms of prion
 biology. From sections 3.2 and 3.3, the system (2.4) always has a DFE (£/, V, P) =
 (0, ^,0), which attracts all solutions if 7 > /i + (3 * x0 and 1Z0 = ^fj^^ < 1. This
 is the only equilibrium for 7£0 < 1, but for Ho > 1 there is a unique EE ([/*, V*, P*),
 with P* = W* 4- xqU* and V* < A/7, as can be seen from (3.6). This equilibrium

 250,
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 200 / 800 ^W^

 0 50 100 150 200 °0 50 100 150 200 % ^50 100 150 200

 W

 210500 /^ "^\^^
 210000 ^v
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 Fig. 6. Long-term values Uoo and Poo as r\ and uj vary. In both gmphs xq = 6, A = 4400,
 7 = 5, t = 0.3, \i = 0.04, and (3 = 10~4. On the U^ graph, 10"6 < r/ < 10"3, 10~6 < u> < 10"4,
 and 50 < C/oo < 250. On the Poo graph, 10~6 < r\ < 10~2, 10~6 < a; < 10~4, and 20,000 < Poo <
 100,000.

 is given explicitly by (3.8) in the case of no joining, and with joining it can be found
 from the solution of a cubic (see Lemma 3.6). If 1Zo > 1, then this EE is locally
 asymptotically stable.

 Prom section 3.6, both increased u and increased rj cause U* to decrease. The
 change related to u indicates that as the total population of PrPSc has a greater
 effect on general incidence, the total number of polymers at the EE decreases. For
 the parameters used, if u> > 10~3, then the values of ([/*, V*, P*) are close to those at
 the DFE, as seen in Figure 2. The change related to 77 indicates that a higher rate of
 polymer joining results in fewer total polymers at the EE. Increased u and increased
 77 cause V* to increase. Hence the same biological changes cause both a decrease in
 prpSc poivmers anci an increase in PrPc at the EE. Additionally, increased u and
 increased rj cause the equilibrium value P* of total PrPSc to decrease. If 77 increases,
 then at the EE the mean polymer length ^ increases, with lnP* decreasing more
 slowly than In U* .

 The effects on W* are more complicated. Increased a;, that is, increased depen-
 dence of incidence on the total PrPs<r^>opulation, decreases W*. On the other hand,
 an increased rate of polymer joining has a variable effect on W*. Differing parameter
 combinations can cause W* to either increase or decrease with a positive change in
 T)\ see Figure 5. That noted, it is also true that most viable parameter combinations
 cause W* to decrease when 77 increases.

 Recall that the form of TZo given in (3.2) is the same with either mass action or our
 general incidence term, and with or without polymer joining. Despite the inability
 of lj and 77 to affect disease persistence, however, each of these parameters has a
 demonstrable effect on the steady-state values of £/, V, and P. Also, increasing uj
 clearly decreases the number of polymers of each possible length, with the maximum
 for u = 10~4 being about half the maximum for u = 0; see Figure 3. From data
 given by Rubenstein et al. [30], the onset of symptoms of scrapie can be estimated
 [14] to occur as U(t) reaches a critical value of 130 SAF/sq. From Figures 2 and 4,
 the inclusion of general incidence or joining may result in U* less than this critical
 value, while V* remains closer to its DFE value. Thus, if the effects of prion diseases
 are caused by either an excess of PrPSc or a lack of PrPc [24, 29], then changing
 the EE by increasing u or 77 may be enough to delay or prevent the onset of disease
 symptoms.
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 Appendix A. Proof of Theorem 3.7. Consider a system equivalent to (3.1),
 namely, the system given by (3.4). Setting each of the derivatives to zero gives

 Z*=** + 0(**)2,

 l + v{Z*+6X*)=1 + iK1-S)X-

 Set q = 1 + </>(l - S)X* and r = 1 + */**(l + 6 + 0**). Then the Jacobian of (3.4)
 at the unique EE is given by

 -1-20** 1 0

 r r r

 <52 + 20<5** p - 1 -p m

 The Jacobian yields the characteristic equation

 z3 +cxz2 + c2z + c3 = 0

 with

 c2 = ^(1 - «) + 2p(l + ^') + [2(l + W + (,+ l^ + 2^H]^;
 r

 -- (62 + 2^^*).
 r

 Notice that 0 < 6 < 1 and <V* > 0 when Uo > 1. Clearly ci > 0 and c2 > 0.
 Additionally,

 c3 > (1 + 20**) (p + ^pj - p(l + 0(1 + 6)**) - ^(62 + 20(5**) > 0.

 Rewriting C3 as

 c3 = - [1 + 20** - ((52 + 206**)] + £02*1(1 + 20** + «) + p0**(l - 6),
 r r

 it can be shown that

 ci c2 > -(2 + 20**) + £^1{2 + 20**) + p(2 + 20**) > c3.
 r r

 Hence the Routh-Hurwitz conditions are satisfied and the proof is complete. D

 Appendix B. Selected proofs of Propositions 3.9 and 3.10. Differentiate
 (3.7) implicitly to give ^- < 0, then compute from (3.6) that
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 Differentiate (3.7) implicitly to obtain

 dX* _

 d<t> ~ 3i/p02(l - 6)(X*)2 + 2[vp4> + i/p*(l - 62) + 0(1 - 6)]X* + i/p(l + <5) + p</>(l - <5) + 1 - S2 '

 which shows that ^- < 0. Next compute p$$£- and divide by (1 - 8) > 0 to find

 Substitute $£- from above, and write the full right-hand side over a common denom-
 inator. The resulting numerator can be simplified to give

 vp<t>2{\ - 8)(X*)4 + 2*/p<Kl - 62)(X*)3 + p<t>{\ - 6)(X*)2

 + i/p(l - S2)(l + 8){X*)2 + p(l - 82)X\

 The numerator is seen to be strictly positive, over a positive denominator, and hence

 Appendix C. Computing values of </> for which ^ > 0. Given the EE
 expressions for X* and Z* in (3.6) and (3.7), clearly ^ > 0 requires that

 dX* -(X*)2
 ~W > 2<t>X* + V

 where ^- is given by

 dX*

 ~&P~ ~

 Letting 6«1,

 Hence for 6 near 1, there are likely to be ranges of </> values for which %- > 0.

 REFERENCES

 [1] T. Alper, D. A. Haig, and M. C. Clarke, The exceptionally small size of the scrapie agent,
 Biochem. Biophys. Res. Comm, 22 (1966), pp. 278-284.

 [2] I. V. Baskakov, G. Legname, M. A. Baldwin, S. B. Prusiner, and t . t,. cohen, ram-
 way complexity of prion protein assembly into amyloid, 3. Biol. Chem., 277 (2002),
 pp. 21140-21148.

 [3] D. R. Borchelt, M. Scott, A. Taraboulos, N. Stahl, and b. 13. prusiner, bcrapie ana
 cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells,
 J. Cell Biol., 110 (1990), pp. 743-752.

 [4] S. BRANDNER, S. ISENMANN, A. KAEBER, M. FISCHER, A. 3AILUK, I . rvuBAYAam, o. ivi^xvn^,
 C. Weissmann, and A. Aguzzi, Normal host prion protein necessary for scrapie-induced
 neurotoxicity, Nature, 379 (1996), pp. 339-343.

 [5] P. Brown, P. P. Liberski, A. Wolff, and D. C. Gajdusek, Resistance oj scrapie mjectivny
 to steam autoclaving after formaldehyde fixation and limited survival after ashing at 360°:
 Practical and theoretical implications, J. Infect. Diseases, 161 (1990), pp. 467-472.

 [6] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epiaemic moaeib, m
 Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics,
 O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, eds., Wuerz, Winnipeg, Canada, 1995,
 pp. 33-50.

This content downloaded from 134.181.38.139 on Wed, 22 May 2019 18:01:56 UTC
All use subject to https://about.jstor.org/terms



 PRION GENERAL INCIDENCE AND POLYMER JOINING 169

 [7] B. Caughey, R. E. Race, D. Ernst, M. J. Buchmeier, and B. Chesebro, Priori protein
 biosynthesis in scrapie-infected and uninfected neuroblastoma cells, J. Virol., 63 (1989),
 pp. 175-181.

 [8] J. Chin, ed., Control of Communicable Diseases Manual, 17th ed., American Public Health
 Association, Washington, DC, 2000.

 [9] Chronic Wasting Disease Alliance, project website at http://www.cwd-info.org/index.php,
 May 17, 2006.

 [10] J. H. Come, P. E. Fraser, and P. T. Lansbury, Jr., A kinetic model for amyloid formation
 in the prion diseases: Importance of seeding, Proc. Natl. Acad. Sci. USA, 90 (1993), pp.
 5959-5963.

 [Ill M. Eigen, Prionics or the kinetic basis of prion diseases, Biophys. Chem., 63 (1996), pp. 11-18.
 [12] H. Engler, J. Pruss, and G. F. Webb, Analysis of a Model for the Dynamics of Prions II,

 J. Math. Anal. Appl., 324 (2006), pp. 98-117.
 [13] M. L. Greer, A Population Model of Prion Dynamics, Ph.D. Thesis, Department of Mathe-

 matics, Vanderbilt University, Nashville, TN, 2002.
 [14] M. L. Greer, L. Pujo-Menjouet, and G. F. Webb, A Mathematical analysis of the dynamics

 of prion proliferation, J. Theoret. Biol., 242 (2006), pp. 598-606.
 15 J. S. Griffith, Self-replication and scrapie, Nature, 215 (1967), pp. 1043-1044.
 [16] M. Horiuchi and B. Caughey, Prion protein interconversions and the transmissible spongi-

 form encephalopathies, Structure, 7 (1999), pp. R231-R240.
 [17] C. J. Johnson, K. E. Phillips, P. T. Schramm, D. McKenzie, J. M. Aiken, and J. A.

 Pedersen, Prions adhere to soil minerals and remain infectious, Public Library of Science
 (PLoS) Pathogens, 2 (2006), pp. 296-302.

 [18] P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice
 9' metaphor, Proc. Natl. Acad. Sci. USA, 92 (1995), pp. 1-5.

 [19] J. P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Reg. Conf. Ser. Appl. Math.
 25, SIAM, Philadelphia, 1976.

 [20] J. Masel, V. A. A. Jansen, and M. S. Nowak, Quantifying the kinetic parameters of prion
 replication, Biophys. Chem., 77 (1999), pp. 139-152.

 [21] V. Novitskaya, O. V. Bocharova, I. Bronstein, and I. V. Baskakov, Amyloid fibrils of
 mammalian prion protein are highly toxic to cultured cells and primary neurons, J. Biol.
 Chem., 281 (2006), pp. 13828-13836.

 [22] M. A. Nowak, D. C. Krakauer, A. Klug, and R. M. May, Prion infection dynamics, Integr.
 Biol., 1 (1998), pp. 3-15.

 [23] Office International des Epizooties (World Organization for Animal Health), available
 online at http://www.oie.int/eng/info/en-esb.html, May 17, 2006.

 [24] K. M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn,
 Z. Huang, R. J. Fletterick, F. E. Cohen, and S. B. Prusiner, Conversion of a-helices
 into (3-sheets features in the formation of the scrapie prion proteins, Proc. Natl. Acad. Sci.
 USA, 90 (1993), pp. 10962-10966.

 [25] R. J. H. Payne and D. C. Krakauer, The paradoxical dynamics of prion disease latency,
 J. Theoret. Biol., 191 (1998), pp. 345-352.

 [26] N. Poschel, V. Brilliantov, and C. Frommel, Kinetics of prion growth, Biophys. J., 85
 (2003), pp. 3460-3474.

 [271 S. B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA, 95 (1998), pp. 13363-13383.
 [28] J. Pruss, L. Pujo-Menjouet, G. F. Webb, and R. Zacher, Analysis of a model for the

 dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 215-225.
 [29] X. Roucou, M. Gains, and A. C. Leblanc, Neuroprotective functions of prion protein, J. Neu-

 rosci. Res., 75 (2004), pp. 153-161.
 [30] R. Rubenstein, P. A. Merz, R. J. Kascsak, C. L. Scalici, M. C. Papini, R. I. Carp,

 and R. H. Kimberlin, Scrapie-infected spleens: Analysis of infectivity, scrapie-associated
 fibrils, and protease-resistant proteins, J. Infect. Diseases, 164 (1991), pp. 29-35.

 [31] J. R. Silveira, G. J. Raymond, A. G. Hughson, R. E. Race, V. L. Sim, S. F. Hayes, and B.
 Caughey, The most infectious prion protein particles, Nature, 437 (2005), pp. 257-261.

 [32] G. Simonett and C. Walker, On the solvability of a mathematical model for prion prolifer-
 ation, J. Math. Anal. Appl., 324 (2006), pp. 580-603.

 [33] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and
 Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical
 Society, Providence, RI, 1995.

 [34] H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Com-
 petition, Cambridge University Press, Cambridge, UK, 1995.

This content downloaded from 134.181.38.139 on Wed, 22 May 2019 18:01:56 UTC
All use subject to https://about.jstor.org/terms



 170 M. GREER, P. VAN DEN DRIESSCHE, L. WANG, G. WEBB

 [35] H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoret. Comput. Biol.,
 Princeton University Press, Princeton, NJ, 2003.

 [36] UK Creutzfeldt-Jakob Disease Surveillance Unit, available online at http://www.
 cjd.ed.ac.uk/figures.html, May 17, 2006.

 [37] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic
 equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002),
 pp. 29-48.

This content downloaded from 134.181.38.139 on Wed, 22 May 2019 18:01:56 UTC
All use subject to https://about.jstor.org/terms


	Bates College
	SCARAB
	2007

	Effects of General Incidence and Polymer Joining on Nucleated Polymerization in a Model of Prion Proliferation
	Meredith L. Greer
	P Van Den Driessche
	Lin Wang
	G. F. Webb
	Recommended Citation



