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CHAPTER 1 
 

Introduction  

Overview 

As a first-year teacher, I was introduced to Cognitively Guided Instruction (CGI) 

on two separate occasions. My first introduction to this approach, a daylong professional 

development session held at my school, caught my attention in a powerful way. “You’ll 

have kindergarteners working with fractions by Halloween,” the facilitators told us. As 

my colleagues and I sat in what we expected to be just another training on best teaching 

practices to get us geared up for the new school year, my excitement began to build. Over 

the course of the day, we learned about this constructivist approach to teaching math and 

its benefits. Instead of teaching our students algorithms, procedures, and facts to 

memorize, we were urged to draw on their natural curiosity and inquisition to build deep 

conceptual understanding and engage in rich discourse about the mathematical concepts 

that serve as the foundation to future understanding. I left this session energized, excited, 

and eager to shift our focus to building this strong conceptual foundation in our 

elementary students. But many of my colleagues did not share my excitement. They 

doubted whether our students, many of whom were significantly below grade-level and 

needed intensive intervention in math, would benefit from this new style. They worried 



 2 

about giving up the fast-paced approach to teaching math that allowed us to cover nearly 

two years of content in just ten months. They worried that CGI was not a practical 

solution for our situation. 

I heard a separate group of peers and colleagues express similar reservations when 

I was introduced to CGI a second time, this time in a graduate course about teaching 

math to elementary students. Like me, most of my peers taught at schools serving high-

needs populations, where many students were below grade-level in math. Though we all 

agreed that the approaches we were being exposed to were fascinating and powerful, I 

heard the phrase “I just wish this would work for my kids” more times than I can count. 

Though my fellow teachers believed in the validity and importance of the approach just 

like I did, they doubted its effectiveness when working with students who were so far 

below grade-level.               

As I learned more and reflected on the most effective elements of my own math 

education, I was struck by the power of using a CGI-based instructional approach in the 

elementary school classroom. I believe deeply in the importance of building strong 

conceptual understanding and flexible thinking, and agree that the focus in a math 

classroom should be on using conceptual understanding to shape procedural fluency 

rather than seeing procedural fluency as the primary goal of instruction. However, I 

understood my colleagues’ hesitation and doubt. As I spent the next few years trying to 

find the right approach to teach my students—most of who were severely below grade-

level when they began second grade—I found myself constantly living in the tension 

between approaches. I was not confident enough that a CGI-based teaching model would 

effectively catch my students up to grade-level in the short time I had with them to fully 
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shift to using CGI as my primary approach to instruction. But, I also was not comfortable 

focusing only on procedural fluency and prioritizing rapid growth at the expense of deep 

conceptual understanding. This tension has led me to explore my research question: What 

is the effect of Cognitively Guided Instruction practices on the math beliefs and abilities 

of below grade-level second grade students? 

In my work with over one hundred students who have entered second grade 

significantly below grade-level, I have noticed that their difficulties with math are often 

accompanied by a dislike of all math activities and extremely low self-confidence in their 

own math abilities. Thus, this study will examine the way that Cognitively Guided 

Instruction practices affect students’ math abilities and beliefs, as both are powerful 

components of students’ elementary math experiences that undoubtedly impact them 

when they leave second grade.  

In this chapter, I provide context and background for my research question. I will 

explain my personal interest in this topic, as well as my motivation for studying it. In 

doing so, this chapter will examine the impact that this work will have on educators, 

students and their stakeholders, and educational policy makers. By better understanding 

the effect of constructivist approaches on the math achievement and beliefs of students 

who are below grade-level, I hope to be able to improve my instruction for the students 

who need it the most while working more efficiently and strategically to close the 

achievement gap that students are already experiencing at such a young age. I also hope 

to gather data to share with my administration so that our school and others like it can set 

up all students to be successful mathematicians now and in the future. 
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Context 

In order to understand the significance of this question, it is important to 

understand the context in which I teach. I spent my first two years of teaching at a charter 

school in a major metropolitan city in the Upper Midwest whose mission is to close the 

achievement gap and give all students access to a high quality college-preparatory 

education. The school serves predominantly low-income students of color, and the 

majority of students are learning English as a second language. After that, I moved to a 

smaller city on the East Coast, where I teach at a charter school serving predominantly 

African American students and families. This school has a similar mission of providing a 

college preparatory education for all students, regardless of race or economic status.  

 In both schools, the majority of my students have entered second grade 

significantly below grade-level in math. Many of them begin school without the 

prerequisite skills needed to meet kindergarten standards, and though they make progress 

each year, it is not enough to get them to grade-level. While some students come in 

needing review of just a few concepts, I have had students begin second grade who 

cannot count to twenty, and others who are not able to recognize numbers past ten. Often, 

these low-achieving students have also internalized negative beliefs and attitudes about 

math that contribute to their difficulty. I have seen students enter second grade already 

convinced that they will never be good at math, while others have displayed high levels 

of anxiety and frustration around the subject.  

Though students come in with a wide range of abilities, my goal is the same for 

all of them: that they leave second grade at or above grade-level. Because of the urgency 

of this task and the extensive amount of content that must be taught in one school year, 
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teachers at these schools often use an “I Do, We Do, You Do” approach to teaching math. 

In this approach, teachers decide on a strategy or procedure that students will use to solve 

a particular type of problem. They introduce the procedure by explicitly modeling it 

before guiding students through it together. Students are then released to execute the 

procedure on their own while receiving rapid feedback from the teacher. Though this 

approach does not prioritize conceptual understanding, it is relied on so commonly 

because of the speed at which it allows teachers to move through material. While I 

believe deeply in the importance of building conceptual understanding and engaging 

students in discourse about mathematical concepts, I have found it hard to completely 

abandon this explicit approach to teaching math, quite simply because I do not know if I 

could get through everything I need to teach without it. 

Experiencing the Tension 

 During my first year of teaching, I immediately felt the pressure to cover almost 

two years of material in just ten short months with my students. I focused on fostering an 

active discourse environment in which students discussed concepts and solution strategies 

with each other and assessed students’ conceptual understanding in lessons when I had 

time, but often found myself sacrificing those elements of my instruction because of the 

urgency I felt to catch my students up to grade level. However, as I learned about CGI 

and other constructivist approaches to teaching math in professional development 

sessions and my graduate coursework, I began to wonder if my urgency and speed were 

actually doing my students a disservice in the long run. By going so quickly and 

sometimes sacrificing conceptual understanding for procedural fluency, was I setting 

them up for massive confusion and conceptual breakdown in the future? I thought about 
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this question as I sat in a graduate class one night during my first year of teaching and 

learned about the importance of building conceptual understanding from an early age. As 

we watched five and six year-old children solve complex story problems while teachers 

listened to, interpreted, and then utilized their thinking to drive instruction, we saw how 

effectively this type of teaching could be used to build deep conceptual understanding of 

foundational skills. In addition to building the conceptual understanding that all teachers 

want their students to have, CGI-based instruction models have been found to teach 

flexible thinking, problem-solving skills, and build engagement and joy in elementary 

students (Jacobs & Ambrose, 2008). Like I frequently did when I left this class, I felt a 

renewed commitment to focusing on encouraging student-led discourse and building 

conceptual understanding with my students the next day. But when I got to school, I was 

reminded of the tension that I felt. How could shift my focus to bigger conceptual 

understandings when several of my students still needed to master adding and subtracting 

within ten? How could this approach allow me to teach remedial kindergarten skills like 

identifying numbers while also introducing second grade content like counting coins and 

making change? As much as I wanted to devote more time to CGI-based instruction and 

transfer its practices to the rest of my instruction, I struggled to find balance in the 

tension.  

 The next year, I became the math planner for the second grade team at my school. 

As I planned lessons for our students, I attempted to incorporate more principles of CGI 

into our approach. Instead of deciding on one procedure or strategy that we expected 

students to use, lessons included discourse about possible strategies and allowed students 

to come up with their own solutions to new problems. I planned more CGI-based 
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problem-solving lessons and set out to do them three or four times per week, with ways 

to differentiate so the work would be accessible to all of our students. Our leadership 

team was eagerly on board with these adjustments, and we began the year ready to make 

these constructivist elements a priority. But yet again, tensions arose. Because so many of 

my students were below grade-level, time was extremely important. We had a tight 

schedule to keep, which became tighter when we received beginning of the year 

assessment data and identified the kindergarten and first grade skills that we would need 

to address before moving on to second grade content. And even though everything was 

differentiated to meet the needs of our wide range of learners, certain grade-level 

concepts were still inaccessible to the majority of students. As the year went on, we 

slowly abandoned some of the CGI-based practices in exchange for more time spent 

explicitly teaching the more basic skills that our students had not yet mastered, like skip 

counting, identifying coins, and counting to one hundred. By the spring, I had 

significantly lessened my focus on using story problem lessons as a way to respond to 

students’ thinking and instead frequently reverted back to the speed and efficiency of 

teacher-centered direct instruction. We did not always have time to discuss different 

strategy choices in lessons, and I occasionally taught students procedures and strategies 

before eliciting their own thinking. But, as we took mid- and end of year-assessments, we 

were pleased with our results. Students were growing, and they were getting closer to 

(and some far surpassing) grade-level expectations. But still, I wondered if we were 

celebrating too early. What were our students not getting from our math instruction that 

they needed? When would their lack of conceptual understanding become apparent? 

Though my teaching did not always reflect it, I still believed deeply in the importance of 
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using CGI and other constructivist approaches to teaching math, and I continued to 

wonder if these strategies would be effective when working with students who enter 

second grade significantly behind grade level.  

Personal Educational History and Beliefs 

 In addition to being motivated by questions that have come of my own teaching 

experiences, my desire to study this topic also comes from my own educational 

experiences. As a child and adolescent, I had the enormous fortune of having exceptional 

math teachers who used constructivist teaching practices to prioritize and build 

conceptual understanding. I was able to build a deep conceptual understanding of 

mathematical concepts in elementary school and beyond, which cultivated a love of math 

and the flexibility and confidence to continue learning and solving problems into 

adulthood. As a teacher, though, I often hear parents express frustration that they were 

“never good at math,” or that they “just never liked math very much as a child.” I believe 

that my early experiences of math were foundational to my enjoyment of the subject, and 

that all students can have a strong relationship with math if they are taught in a way that 

builds understanding and allows them to feel successful in different ways from a young 

age.  

 As a teacher, I believe that it is my responsibility to create this confidence, joy, 

and engagement in my students. As a teacher at a school that serves primarily low-

income students of color who often already experience the achievement gap that prevents 

far too many low-income students and students of color from receiving the education that 

they deserve, this responsibility is even more important. In my experience, charter 

schools provide many incredible services to their students and work to close the 
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achievement gap in powerful ways. However, we can always learn from other successful 

educators and approaches. While I currently have not found a way to consistently 

integrate constructivist approaches into my math instruction, I believe that their proven 

success makes researching their effectiveness with students who are below grade-level an 

urgent priority. Additionally, because these practices draw upon students’ life 

experiences and allow them to be sources of knowledge and information in the 

classroom, they help provide the culturally responsive education that students of color 

deserve. 

Impact on Stakeholders 

 The answer to the question, What is the effect of Cognitively Guided Instruction 

practices on the math beliefs and abilities of below grade-level second grade students? 

has significant importance for educators, students, their families, and educational policy 

makers alike.  

Better understanding the effect that CGI practices have on students who are below 

grade-level has the potential to fundamentally shift the way that educators and 

administrators think about teaching math to these students. It will help relieve the tension 

between the speed and urgency with which I currently teach and the desire to focus on the 

conceptual understanding and rigorous discourse that I know are so foundational to high 

math achievement (Carpenter, Fennema, Franke, Levi, & Empson, 2015). In short, this 

research will help educators identify and use the most effective strategies for teaching 

elementary students who are below grade-level in math, and will better allow educators to 

catch these students earlier in their educational careers and send fewer below grade-level 

students to the next grades.   
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As it affects educators, this research will also have a powerful impact on students 

and their families. Research has shown that using constructivist approaches like CGI 

helps engage students in mathematics and builds feelings of enjoyment and 

accomplishment as students grapple with and solve complex problems (Jacobs & 

Ambrose, 2008). The students that I teach are coming into second grade below grade-

level, and many have accepted that they simply will never be good at math. After just two 

years of elementary school they are already missing key understandings, skills, and 

mindsets, and they deserve better. Better understanding how to best teach them will give 

them a mathematics education that will set them up for success and confidence in 

elementary school and beyond.  

Finally, policy makers will greatly benefit from better understanding the impact of 

using constructivist approaches with students who are below grade-level. Having a 

clearer idea about how to best instruct these students will lead to more effective curricula, 

teacher training programs, and models of instruction. It will allow students to enter high 

school and college better prepared in the field of mathematics and with a stronger 

conceptual foundation than many currently have. And most importantly, it will make 

education more equitable for all students. All students deserve access to the best teaching 

approaches, and I hope that this research will help clarify what those approaches are.  

Conclusion 

 While CGI instructional practices have been found to be quite successful at 

building conceptual understanding, flexible thinking, and engagement in elementary 

students, these approaches present challenges when students are significantly below 

grade-level. In this introduction, I have presented my research question, which attempts 
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to better understand this tension: What is the effect of Cognitively Guided Instruction 

practices on the math beliefs and abilities of below grade-level second grade students? I 

have described my personal and professional motivation for exploring this question, as 

well as the beliefs that are driving my research. I have also explained the significance of 

this research on educators, students, and policy makers. My capstone will involve a study 

of below grade-level students’ achievement after participating in Cognitively Guided 

Instruction-based classroom practices, as well as surveys about their beliefs and 

perceptions about math before and after this instruction. In Chapter Two, I will explore 

literature on Cognitively Guided Instruction and other constructivist approaches to 

teaching math, their principles and benefits, and the mechanisms by which they work. I 

will examine currently used approaches to teaching students who are below grade-level, 

and will look at the specific challenges that teachers face when working with these 

students.  
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CHAPTER 2 

Literature Review 

Introduction 

        In 2003, 23% of fourth graders and 32% of eighth graders in the United States 

performed below grade-level on standardized math assessments (Witzel & Riccomini, 

2007). In an effort to correct this massive problem, educators have turned to Cognitively 

Guided Instruction (CGI) as a way to improve students’ conceptual understanding and 

math abilities. Because it allows teachers to guide students to build strong conceptual 

understanding of key concepts, many educators believe that CGI can develop stronger 

mathematicians and build better enjoyment of math. However, there is a perception that 

CGI has been used primarily with students who are performing on grade-level, and less 

frequently with students who are not meeting grade-level standards. The research 

question, What is the effect of Cognitively Guided Instruction practices on the math 

beliefs and abilities of below grade-level second grade students?, requires a thorough 

understanding of constructivist teaching practices (CGI) and the different components of 

students’ mathematical experiences that they influence. This literature review focuses on 

four important themes that are central to the research question: Cognitively Guided 

Instruction (CGI), conceptual understanding in mathematics, mathematics ability, and 
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mathematics beliefs. In doing so, it will explain CGI and its key components as an 

instructional approach, and will discuss the major areas that CGI aims to address. 

Examination of these themes will highlight ways in which CGI positively impacts 

students’ math abilities and beliefs, as well as ways in which it can be supplemented to 

better meet the needs of all students. 

Cognitively Guided Instruction 

        Overview.  Cognitively Guided Instruction (CGI) is a constructivist approach to 

teaching math that uses problem solving and rich discourse to build conceptual 

understanding of fundamental mathematical ideas (Carpenter, Fennema, & Franke, 

1996). CGI was initially developed in the late 1980s by Thomas Carpenter and Elizabeth 

Fennema, who noticed that, instead of entering school with little mathematical 

understanding as educators thought, students in fact begin elementary school with a 

“great deal of informal or intuitive knowledge of mathematics” that can serve as the 

foundation of their mathematical understanding (Carpenter et al., 1999, p. 4). Carpenter 

and Fennema (1999) argued that, instead of being taught traditional algorithms, formulas, 

and procedures for fundamental mathematical concepts, students can use this implicit 

understanding to find multiple solutions to complex problems. As students use their 

intuitive knowledge of mathematical concepts to solve story problems and are cognitively 

guided by teachers, they discover “big ideas” and key properties of math, and learn how 

to think, reason, and dialogue mathematically (Carpenter, Franke, & Levi, 2003). If 

students’ informal understandings are accessed and developed properly in a CGI 

classroom, children develop key conceptual understandings and grade-level skills without 

the need for explicit procedural or formulaic instruction. 
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CGI is rooted in the belief that elementary-aged children are naturally curious, 

and that students have the capacity to use this curiosity and inquisitiveness to find 

solutions to complex story problems, even without the traditional, formal instruction that 

schools often provide (Carpenter et al., 1996; Carpenter et al., 1999). As Carpenter and 

colleagues (1999) initially studied elementary students’ mathematical learning and 

achievement, they discovered that the ways in which children naturally think and reason 

about math did not align with the math instruction that they were receiving in school. 

They found that adults’ mathematical reasoning is often entirely different from the way 

that young children think about math, yet formal math instruction for students was 

commonly based on teachers’ understandings and thinking patterns instead of those of 

elementary children (Carpenter et al., 2015; 1999). In an attempt to correct this 

discrepancy, the researchers continued to study children’s thinking and created an 

instructional approach that supports and extends development of their intuitive 

mathematical thinking and reasoning. They found that, as teachers learned to better 

understand the ways in which children’s mathematical thinking develops, their teaching 

fundamentally shifted in ways that were reflected in students’ learning (Carpenter et al., 

2015, p. 200). As Franke and Kazemi (2001) explained, CGI brings together research on 

how children’s mathematical thinking develops and research on teaching to enable 

teachers to offer the most effective form of instruction. CGI, then, is not a prescription or 

recipe for instruction, but rather a “philosophy, a way of thinking about the teaching and 

learning of mathematics” (Franke & Kazemi, 2001, p. 103). 

        Instructional components.  As an instructional practice, CGI focuses on using 

story problems and rigorous questioning as instructional techniques to extend and 



 15 

promote deep conceptual understanding in students. In a typical CGI classroom, students 

are presented rigorous but contextualized story problems. They are given the freedom to 

solve the problems using whatever strategy they select, and engage in rich discourse with 

their instructor and their peers about the problem and their strategy choice (Carpenter, et 

al., 1996). 

The use of story problems is central to this approach because story problems 

allow students to make meaning of mathematical concepts and apply their existing 

understandings in new situations. Jacobs and Ambrose (2008) examined the ways in 

which teachers effectively use story problems to guide instruction. They found that using 

story problems in instruction allows math to be meaningful to students, as they work to 

solve authentic and relevant problems. When problems are meaningful, students are 

better able to make sense of the story and apply their existing mathematical 

understandings to solve. They also found that story problems build engagement and 

enjoyment in elementary students, allow teachers to identify and address misconceptions 

as they arise, and encourage students to “construct strategies that make sense to them 

rather than parrot strategies they do not understand” (Jacobs & Ambrose, 2008, p. 260). 

As students wrestle with conceptually rigorous problems, they invent and discover 

different mathematical strategies that provide information about key concepts including 

addition, subtraction, multiplication, and division. They then have the opportunity to 

share these strategies with their peers, learn from classmates’ strategies, and continue to 

develop more efficient and sophisticated strategies as they progress (Carpenter et al., 

1999). 
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Though most instruction in CGI occurs around the story problem, teachers who 

are well versed in CGI can adjust and manipulate story problems to elicit a variety of 

strategies and conceptual understandings. In their beginning work with teachers 

implementing CGI-based approaches, Carpenter and colleagues (1999) found that both 

the structure of the story problem and the magnitude of the numbers involved influence 

the strategies that students produce and use to solve. Thus, when careful decisions about 

problem type and magnitude are made, CGI-based approaches can be used to encourage 

development of various strategies and solutions. In order for this to happen, instructors 

must have a thorough understanding of the way that students reason mathematically and 

are likely to solve problems (Carpenter et al., 1999). Thus, strong content knowledge by 

instructors is a key component of successful implementation of CGI-based approaches. 

        Benefits of CGI.  Since its introduction in educational spheres nearly thirty years 

ago, researchers have identified several benefits of using CGI as an instructional 

approach in the elementary school classroom (Carpenter, et al., 1999; Carpenter, et al., 

2003; Franke & Kazemi, 2001; Ladson-Billings, 2000; Moscardini, 2014). Among its 

primary benefits is the fact that CGI-based approaches allow teachers to utilize and 

extend children’s already existing mathematical knowledge to build deep conceptual 

understanding that is meaningful instead of procedural. As Carpenter and his colleagues 

(1999) explained, “until recently, we have not clearly recognized how much young 

children understand about basic number ideas, and instruction in early mathematics too 

often has not capitalized on their rich store of informal knowledge” (p. xiv). Students 

enter elementary school with a rich knowledge base about mathematics, and CGI allows 

teachers to access that prior knowledge and take advantage of preexisting understandings 
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and curiosities. Building on this knowledge allows students to make connections and 

come to understandings that educators previously did not expect them to make. In their 

work integrating arithmetic and algebraic thinking into elementary school math, 

Carpenter and colleagues (2003) saw “glimpse[s] of the profound mathematical thinking 

of which ordinary children are able” when they are encouraged to build on their 

preexisting understandings (p. v). Because it elicits this powerful reasoning, research by 

the National Council of Teachers of Mathematics (2000) and the National Research 

Council (2001) has found that math instruction that builds on children’s thinking and 

existing knowledge, like CGI, produces rich instructional environments and leads to 

gains in student achievement. 

        Research has also shown that the conceptual understanding that CGI-based 

instruction produces builds a strong foundation for elementary students to be successful 

in later grades. Carpenter and colleagues (2003) found that the conceptual understanding 

that children build in elementary school “provides children with a solid basis for 

extending their knowledge of arithmetic to learn algebra” (p. xi). CGI-based instruction 

contributes to this future success in a few ways. Firstly, when students have a solid 

understanding of fundamental concepts and operations, they are prepared to be successful 

as they learn more rigorous skills and concepts (Carpenter et al., 1999). Additionally, as 

Carpenter and colleagues (2003) explained, “students who learn to articulate and justify 

their own mathematical ideas, reason through their own and others’ mathematical 

explanations, and provide a rationale for their answers develop a deep understanding that 

is critical to their future success in mathematics” (p. 6). The kind of thinking that CGI-
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based instruction develops serves students well in later grades, and contributes to greater 

mathematical success that extends beyond elementary school. 

        Another benefit that researchers have identified is that CGI encourages the 

development of deep critical thinking and flexible thinking in students. Using alternative 

approaches to problem solving and prompting students to come up with their own 

solutions instead of formally introducing algorithms and procedures builds flexible 

thinking in students (Jacobs & Ambrose, 2008). In a study on the effectiveness of CGI-

based instruction in classrooms in Scotland, Moscardini (2014) found that CGI benefitted 

students because it gave them opportunities to “lead in their learning as opposed to being 

the passive recipients of knowledge” (p. 74). As students create their own approaches to 

solving problems and hear their peers share their own strategies, students expand their 

thinking and practice thinking critically about problems and solutions. This critical 

thinking that develops as a result of CGI-based instruction has also been shown to spread 

to other subject areas, benefitting students holistically (Ladson-Billings, 2000). As 

Ladson-Billings (2000) shared at the 1999 CGI Institute for Teachers, “the thinking that 

students develop in a CGI classroom is not likely to be constrained to mathematics” (p. 

8). The benefits of CGI benefit students mathematically and beyond. 

        In addition to benefitting students, implementing CGI-based instruction has also 

been shown to benefit educators. Research on teachers who implement CGI in their 

classrooms has found that shifting towards this model of instruction contributes to 

professional growth in educators. Franke and Kazemi (2001) tracked the development of 

teachers trained in CGI for four years following the initial professional development. 

They found that teachers who used CGI-based teaching practices in their classrooms were 
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better able to analyze and respond to students’ thinking, and that many of the teachers 

they followed experienced significant professional growth (p. 105). Moscardini’s (2014) 

work with teachers in Scotland supports this finding, as teachers were found to gain 

deeper insight into their students’ mathematical understandings after implementing CGI 

in their classrooms. CGI, then, has been found to benefit both students and teachers alike 

in many powerful ways. 

        Criticisms of CGI. While research has illustrated several benefits of using CGI-

based instruction in the elementary classroom, criticisms exist as well. Though its 

supporters do not often consider this to be a criticism, there is widespread agreement 

among researchers that executing CGI effectively requires what Carpenter and colleagues 

(2003) referred to as “a complex work of teaching” (p. v). In order to effectively 

implement CGI-based instruction, teachers must have a strong understanding of 

children’s thinking, be able to detect this thinking quickly, and know how to respond to 

misconceptions and requests for support in the moment (Jacobs & Philipp, 2010). 

Because it depends on higher-rigor teaching moves, executing CGI-based instruction well 

requires more professional development for educators (Jacobs, Franke, Carpenter, Levi, 

& Battey, 2007). This professional development requires an investment of time and 

resources, and often includes changes to already existing curricula, which some educators 

find threatening (Ladson-Billings, 2000). 

        Another criticism of using CGI-based instruction in elementary classrooms is the 

lack of predictability that it produces. As Ladson-Billings (2000) discussed, using CGI 

makes instruction less predictable than it is in traditional approaches (p. 8). Many schools 

expect daily objectives, reports on weekly mastery of those objectives, and predictable 
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routines and assessments. CGI-based instruction does not fit well with these expectations, 

and teachers who use CGI must leave flexibility in their lessons and preparation to allow 

for students thinking to take the group in a variety of different directions. This 

unpredictability may be uncomfortable to educators who are used to tight structures and 

routine, though it is not argued that CGI-based instruction has a negative impact on 

student learning. 

        CGI-based instruction focuses on students’ mathematical thinking in order to 

guide their understanding of new concepts, and has been shown to benefit students and 

educators alike, though it requires more teacher content knowledge and comfort with 

unpredictability in instruction. These findings suggest that CGI-based instruction can be 

used to improve all students’ math abilities, including those who are below grade-level, 

when done carefully and by well-trained teachers. By understanding students’ thinking 

through CGI, teachers are able to better support the development of conceptual 

understanding in students, which will be discussed in greater detail in the following 

section. This research suggests that the use of CGI-based instruction in my study will 

positively influence students’ mathematical abilities, even though they are below grade-

level, as long as it focuses on building conceptual understanding. It also highlights the 

importance of teachers who work with below grade-level students being extremely 

knowledgeable about the content they teach and able to understand students’ thinking, 

respond to misconceptions, and guide their students to deep understandings. Thus, it will 

be important that the CGI-based lessons used in the study include a large focus on 

conceptual understanding and that I am well-equipped to guide my students to conceptual 

growth in order to maximize the benefits of CGI-based instruction. 
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Conceptual Understanding 

In order to fully understand CGI as an instructional practice, it is important to 

know what conceptual mathematical understanding is, why it is a key component of CGI-

based instruction, and how it can be developed in the elementary math classroom. 

        Overview. According to the National Research Council, conceptual 

understanding and procedural fluency are the two major components of mathematical 

proficiency (as cited in Kilpatrick, Swafford, & Finnell, 2001). Procedural fluency is 

defined as “the understanding of the rules and steps to be able to solve a mathematics 

problem,” while conceptual understanding is “an understanding of the underlying 

relationships for why the procedure works” (Kanive, Nelson, Burns, & Ysseldyke, 2014, 

p. 83). In other words, procedural fluency is the “how,” or the ability to solve a problem. 

Procedural fluency involves the ability to successfully carry out an algorithm or execute a 

procedure; a student who can successfully carry out the standard American algorithms for 

addition and subtraction (what many adults remember as “borrowing” and “carrying”) 

show procedural fluency. However, conceptual understanding is the “why,” or the ability 

to understand why a procedure or algorithm works and what is being done when numbers 

are manipulated (Kanive et al., 2014). A student who shows strong conceptual 

understanding would be able to explain with understanding what is happening when they 

borrow or carry and how the numbers are being manipulated. As Baroody & Benson 

(2001) explained, “many people view teaching as telling or showing children something 

they need to know, then having them imitate and practice it” (p. 156). This instructional 

practice, where students are shown a procedure or skill and then asked to repeatedly 

practice it until they achieve independence, is a procedural approach to teaching math. 
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Students learn how to do something, but not why they are doing it or even what exactly it 

is that they are doing. However, as Carpenter and colleagues (2003) argued, learning 

mathematics involves “learning powerful mathematical ideas rather than a collection of 

disconnected procedures for carrying out calculations” (p. 1). Thus, while procedural 

fluency is important, it does not independently lead to proficiency; conceptual 

understanding is also needed to achieve true mathematical proficiency (Carpenter et al., 

2003). 

        Research has shown that conceptual understanding begins to develop even before 

formal math instruction begins. In fact, Baroody and Benson (2001) found that students 

begin to develop conceptual understanding as early as the preschool years. Conceptual 

understanding includes a variety of different understandings and conceptions, including 

understanding of number (often referred to as “number sense”), the ability to understand 

different operations and number manipulations, and relational thinking (Baroody & 

Benson, 2001; Carpenter et al., 1996; Jacobs et al., 2007). Relational thinking, a key 

component of conceptual understanding, involves “looking at expressions and equations 

in their entirety, noticing number relations among and within these expressions and 

equations,” and using those relations to solve problems (Jacobs et al., 2007, p. 260). 

Instead of simply carrying out a procedure or algorithm, relational thinking uses 

fundamental properties and conceptual understandings to solve algebraic problems 

(Jacobs et al., 2007). As such, it is a key marker of a student with strong conceptual 

understanding. 

        Importance of conceptual understanding. Conceptual understanding has been 

found to be important in elementary mathematics instruction for a variety of reasons. At 
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the early stages of math instruction, conceptual understanding of number is the 

foundation for future mathematical instruction (Baroody & Benson, 2001). In their initial 

studies on CGI in 1989, Carpenter and colleagues found that students in CGI classes 

scored just as well as control classes on a test of number skills, even though the CGI 

classes placed much less emphasis on number skills than the control classes did 

(Carpenter et al., 1999). Though these students did not practice fact fluency like those in 

control classes did, they were able to recall number facts just as well as (and in some 

cases, better than) students in the control class (Carpenter et al., 1999, p. 109). This 

finding suggests that the conceptual understanding that these students developed in their 

CGI classes provided them with an important foundation from which they could then 

perform other key mathematical operations and tasks. 

        Conceptual understanding in mathematics is also important because it has often 

been found to be lead to greater overall mathematical achievement. As Fyfe and 

colleagues (2014) explained, conceptual instruction and understanding “is thought to 

support key learning processes including knowledge integration and procedure 

generation” (p. 504). That is, students who receive conceptual instruction and develop 

strong conceptual understanding are better able to learn new concepts and apply those 

concepts to solve problems. Conceptual understanding has also been found to aid in 

problem solving and the generation of accurate problem-solving procedures (Fyfe et al., 

2014), another way in which it leads to greater mathematical achievement. 

        Additionally, building conceptual understanding has been found to be an effective 

way of helping students who struggle mathematically. Burns (2011) found that while 

interventions that focus on building fact fluency improve students’ performance on a 
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variety of different math problems, they have more of an impact on students who have 

basic conceptual understanding of underlying concepts than on students who do not have 

this conceptual understanding. Further, studies have shown that interventions that focus 

on building conceptual understanding are more effective than those that address and 

reinforce procedural fluency. Kanive and colleagues (2014) argued that “interventions 

that target students’ conceptual understanding have been shown to be effective in 

correcting students’ misconceptions of fundamental mathematical principles and in 

establishing an understanding of underlying mathematics concepts for problem-solving” 

(p. 83). Because they are able to address misconceptions and build strong conceptual 

foundations, these interventions are more effective than those that simply target 

procedural fluency. 

        Building conceptual understanding. Educators involved in CGI and beyond 

have spent a considerable amount of time studying how teachers can best promote the 

development of conceptual understanding in mathematics students. A common strategy 

for developing conceptual understanding is altering the traditional order of instruction. 

Traditionally, educators introduce and model a procedure or problem-solving approach, 

and then students use the procedure to solve problems. However, when the order of 

instruction is changed, students are allowed to work with problems on their own before 

being instructed about a particular strategy or procedure (Fyfe et al., 2014). As Fyfe and 

colleagues (2014) found, “when instruction includes procedures, it may be best to delay 

instruction to give learners a chance to generate procedures on their own” (p. 503). This 

switch allows students the opportunity to create their own solution strategies and come to 

their own understandings about underlying concepts, and opportunity that they do not 
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always have when their task is to simply regurgitate a procedure that they have been 

taught. When they create these authentic procedures and understandings, students are 

able to carry out procedures and solve problems with understanding (Carpenter et al., 

1999). This change in the order of instruction can be done in the early stages of math 

instruction and exploration by creating opportunities for students to explore new 

problems independent of explicit instruction. Teachers can also create this effect by 

allowing students to create their own strategies to solve problems while teachers interact 

and converse with them as they work through solutions (Baroody & Benson, 2001, p. 

156). Teachers can also change the order of instruction when introducing basic addition, 

subtraction, multiplication, and division facts. When this is done, students are able to 

develop their own derived strategies and can expose what Brickwedde (2012) referred to 

as “key algebraic properties of number operations” (p. 1), including the distributive, 

associative, and commutative properties, that can aid future development of more 

advanced algebraic understandings. 

However, despite the success that has been found by changing the order of 

instruction, Fyfe and colleagues (2014) found that the effectiveness of this approach 

depends on the type of content that is being taught. They found that children who were 

asked to solve equality-concept problems, which depend on students understanding that 

the equals sign indicates equality in quantity on both sides of an equation rather than a 

“get the answer” sign, were more successful when they had received instruction about the 

concept prior to being asked to solve problems than when they were allowed time to 

work independently and develop their own approaches and strategies (Fyfe et al., 2014). 

This finding suggests that instructors must carefully select the concepts for which they 
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choose to use this kind of instruction. Simply put, the type of instruction matters. 

Specifically, Fyfe and colleagues (2014) found that when instruction involves both 

procedures and concepts (as word problems do), allowing students to work by themselves 

and develop their own approaches first is a better approach than beginning by offering 

explicit instruction because it allows students to build on and strengthen their existing 

understandings. However, when the instructional point is solely conceptual, like it is with 

equivalency problems, providing conceptual instruction first seems to be beneficial, 

because it guides students in their problem solving when concepts are unfamiliar (Fyfe et 

al., 2014). Thus, while allowing students to grapple with problems and discover their own 

strategies and solutions can be an effective way to build conceptual understanding, 

teachers must carefully select the problems that they choose for this approach. 

Educators can also develop conceptual math understanding through teacher 

questioning. Research has found that effective teacher questioning elicits and demands a 

particular kind of dialogue that builds conceptual understanding in students, shifting the 

balance from more “teacher talk” to more student discourse (Franke et al., 2009). Franke 

and colleagues (2009) described this effective style of teacher questioning as “a probing 

sequence of specific questions” (p. 390), which often leads students to complete and 

accurate explanations of their thinking. They found that teachers who use a rigorous and 

extensive form of questioning that involves multiple follow-up questions elicit more 

descriptive and elaborative thinking than teachers who do not use questioning or who ask 

a few simple questions (Franke et al., 2009). Good questioning pushes students to 

verbalize their conceptual understanding and expand their thinking. As Franke and 

colleagues (2009) described, “beyond providing answers, students must describe how 
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they solve problems and why they propose certain strategies and approaches” (p. 381). In 

order to be most effective, students also “must be precise and explicit in their talk, 

especially providing enough detail and making referents clear so that the teacher and 

fellow classmates can understand their ideas” (Franke et al. 2009, p. 381). 

This form of teacher questioning has been found to benefit all students in the class 

and “lead to increased student mathematical knowledge and understanding” (Franke et 

al., 2009, p. 381), because it allows teachers to better understand students’ thinking, 

students to solidify and correct their own thinking, and lets other students connect what is 

being discussed with their own understandings. This discourse can serve to either 

strengthen existing understandings or correct existing misunderstandings (Franke et al., 

2009). It also provides opportunities for students to extend their ongoing understandings 

to build towards more complex concepts and understandings (Jacobs et al., 2007). In 

addition to helping teachers monitor their students’ thinking, it encourages students to 

help each other build more comprehensive mathematical understandings by sharing ideas 

and strategies. And, the actual act of talking about math has also been found to help 

students deepen their conceptual understanding (Franke et al., 2009).  

In addition to using questioning to further develop the understanding of new 

concepts, discussing misconceptions has been found to build conceptual understanding in 

elementary students. Fyfe and colleagues (2014) found that the “activation of 

misconceptions” (p. 515), in which teachers recognize a misconception in a student’s 

work and engage in dialogue about it, is an important component of strengthening 

conceptual understanding. When a teacher notices a misconception and asks the child to 

verbalize it, the misconception can be understood and corrected at the conceptual level. 
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In conjunction with strong teacher questioning, activating and correcting misconceptions 

can develop strong conceptual understanding in elementary students (Franke et al. 2009). 

Building strong conceptual understanding in elementary mathematics students leads to 

higher levels of achievement in elementary school and beyond. This section of literature 

suggests that CGI can be effective in improving even low-achieving students’ 

mathematical achievement because of its focus on building conceptual understanding. 

My research will attempt to build conceptual understanding and confidence in order to 

lead below grade-level students to higher achievement. Higher achievement is measured 

in students’ mathematical abilities, a theme which will be discussed in greater detail in 

the following section. 

Math Abilities 

        In order to study how CGI affects students’ math abilities, it is important to fully 

understand the different components of students’ mathematical abilities, how are 

developed, and the factors that lead to low mathematical ability in elementary aged 

children. 

        Overview. Mathematical ability is an overall measure of students’ procedural 

fluency and conceptual understanding (Kilpatrick et al., 2001). Students can be identified 

has having high, average, or low math ability, and those with low math ability can be 

students with learning disabilities or those who simply struggle in math for other reasons. 

These students, who struggle with math ability for reasons other than a learning 

disability, are referred to as low-achieving or low-attaining mathematics students 

(Moscardini, 2010). Math ability has been a growing concern in the United States in 

recent years, and it is not just students with learning disabilities who are struggling 
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(Witzel & Riccomini, 2007). The 2000 National Assessment of Educational Progress 

(NAEP) found that only 2% of students in the United States were able to attain advanced 

levels of math achievement by the twelfth grade (Witzel & Riccomini, 2007). 

Additionally, large numbers of students in the United States are continuing to score 

below basic levels of proficiency in math. In 2003, 23% of fourth graders and 32% of 

eighth graders were below proficiency in the United States (Witzel & Riccomini, 2007). 

Though these numbers are staggering, as Pool and colleagues (2012) found, it is 

important to identify and address the needs of these low-attaining students as early as 

possible in the elementary years, because “students who fail to develop proficiency and 

automaticity and computational skills…and problem solving in the primary grades are 

more likely to experience difficulties in math curriculum later (p. 211). Though many 

students struggle with math ability in the United States, bringing these students to 

proficiency is a growing priority in math instruction (Pool, Carter, Johnson, & Carter, 

2012).  

Challenges. A variety of factors have been found to prevent students from 

developing high levels of mathematical achievement in elementary school. Research has 

shown that one of the most limiting factors in the development of students’ math ability 

is their language abilities and reading skills. While many students with low reading 

ability also struggle with low math ability, Vista (2013) found that reading 

comprehension ability, or a student’s ability to understand what they are reading, 

mediates the relationship between reading ability and math growth. Similarly, Vilenius-

Tuohimma and colleagues (2008) found that, even when gender and parental education 

are controlled for, there is a strong relationship between students’ reading and problem 
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solving abilities. This finding suggests that a major factor in elementary students’ ability 

to perform at grade-level in math is their ability to read with understanding, with students 

who struggle to read having a much more difficult time achieving high levels of math 

ability (Vista, 2013). 

Similarly, students’ language capabilities have been found to powerfully affect 

their math performance. In a test of the relationship between working memory and math 

skills, Wilson and Swanson (2001) found that verbal skills significantly predict students’ 

math ability. Students with better verbal skills were more likely to have higher math 

achievement, and students with lower verbal skills struggled more (Wilson & Swanson, 

2001). This is especially important for students who are learning English as a second 

language. For these students, language difficulties have been found to hinder math 

performance (Orosco, 2014). As Orosco (2014) found, learning math in a new language 

is more “arduous” because of a variety of factors (p. 45). Students who are learning 

English for the first time have limited vocabulary development and do not have prior 

math content knowledge in English. They also struggle to solve word problems and 

comprehend what is being asked of them in a new language (Orosco, 2014). These 

challenges often lead to low math performance in students who are learning English as a 

second language (Orosco, 2014). 

Another limiting factor in the development of students’ mathematical ability is the 

lack of particular foundational skills that many elementary students have. Research has 

found that elementary students are often limited in their ability to develop proficiency in 

math by their understanding of number concepts (Kamii & Rummelsburg, 2008). In her 

work with first graders at a Title-I school, Kamii and Rummelsburg (2008) found that 
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many first grade students had little or no understanding of number concepts, which are 

foundational to mathematical success in elementary school and beyond. Using simple 

assessments, she found that students were not able to conserve number and did not have 

what she refers to as “a strong cognitive foundation for number” (Kamii & 

Rummelsburg, 2008, p. 389). 

Additionally, research has found that many elementary students are held back in 

their math achievement by a lack of visual-spatial skills. In their test of the relationship 

between working memory and math skills, Wilson and Swanson (2001) found that visual-

spatial measures in working memory tests significantly predicted students’ math ability. 

Students with greater performance on visual-spatial measures were more likely to show 

high math achievement, while lower performance on visual-spatial tasks was correlated 

with low math achievement (Wilson & Swanson, 2001). More specifically, van Garderen 

(2006) found significant positive correlations between spatial-visualization measures and 

a student’s ability to solve word problems. Students with lower spatial-visual skills were 

found to use less sophisticated types of imagery when solving problems, which likely 

limits performance by interfering with students’ ability to understand, represent, and 

solve word problems. This finding suggests that the lack of visual-spatial and 

visualization skills limits students’ math achievement by impeding their ability to 

mentally represent and understand and subsequently solve math problems. 

In addition to being held back by specific skills, students’ math abilities can be 

limited by their negative beliefs about math. This is especially true for low-performing 

students, who are more likely to hold negative attitudes towards math (Phillips, Leonard, 

Horton, Wright, & Stafford, 2003). As Phillips and colleagues (2003) explained, “low-
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attaining students begin to develop strong negative attitudes towards school and 

mathematics” (p. 107). Additionally, math anxiety has been found to have a powerful 

effect on students’ achievement (Jameson, 2014; Ramirez et al., 2016). These negative 

attitudes contribute to lower math achievement in a variety of ways, which will be 

discussed in much greater detail in the last section of this chapter. 

Finally, low-attaining students’ mathematical abilities are also frequently affected 

by behavioral challenges and social skills. Pool and colleagues (2012) found that 

difficulties with motivation, attention, and self-regulation might play an important role in 

students’ academic achievement. Interventions that addressed motivation, behavior, and 

self-regulation in struggling students were found to be successful at improving third 

graders’ math performance (Pool et al., 2012). This finding suggests that social and 

behavioral challenges are another factor that can limit the development of mathematical 

ability in elementary students. 

Strategies to improve math ability. Though there are many factors contributing 

to low math achievement in elementary students, research has identified a variety of 

instructional tools and strategies that can be used to improve students’ math abilities. 

Specifically, research shows that interventions and targeted instructional approaches can 

be effective ways to improve students’ mathematical performance (Moscardini, 2010). 

An effective way to improve low-attaining students’ math abilities is to strengthen their 

foundational skills (Kamii & Rummelsburg, 2008). After discovering that many first 

graders’ math achievement was held back by their lack of number concept, Kamii and 

Rummelsburg (2008) found that physical knowledge activities could be used to build 

number concept and strengthen mathematical ability in students. Physical knowledge 
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activities are “those in which children act on objects physically and mentally to produce a 

desired effect” (Kamii & Rummelsburg, 2008, p. 390). Kamii and Rummelsburg (2008) 

referred to these activities as “constructivist activities,” which included physical 

manipulation of number to build number sense in students. Students who engaged in 

these constructivist activities scored significantly higher than those who did not on an end 

of year assessment (Kamii & Rummelsburg, 2008). They “quickly strengthened their 

foundation for number concepts” and built a “good cognitive foundation” for learning 

arithmetic later in the year (Kamii & Rummelsburg, 2008, p. 394). Research has also 

found that students’ foundational skills can be improved by teaching strategy instruction 

for approaching word problems (Orosco, Swanson, O’Connor, & Lussier, 2011). This 

strategy instruction can involve practicing the academic language that is required to solve 

word problems and teaching students how to apply their contextual experiences to solve 

new problems (Orosco et al., 2011). 

The use of CGI and similar problem solving approaches has also been identified 

as a way to improve students’ mathematical abilities. Historically, educators have thought 

that direct instruction is the most effective way to teach struggling students and students 

with learning disabilities, but more recent studies have shown that low-achieving students 

and those with learning disabilities can benefit from CGI (Moscardini, 2010). As 

Moscardini (2010) explained, even lower-attaining students and students with learning 

disabilities can “invent, transfer, and retain strategies for solving arithmetical problems” 

when CGI is used as an instructional approach (p. 130). Further research supports this 

claim, finding that even mathematically low-performing students are able to effectively 

invent strategies for solving word problems and apply those strategies to accurately to 
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find solutions when CGI and other constructivist approaches are used, as long as teachers 

are effectively trained in how to use these approaches and believe in students’ abilities to 

perform (Hankes, 1996; Jacobs et al., 2007; Moscardini, 2010). Though Moscardini 

(2010) found that teachers initially had concerns that this type of constructivist learning 

would not work for their low-attaining students with learning disabilities, after using 

CGI, “no teacher expressed concerns about the suitability of CGI for any of the children 

they were working with” (p. 134). In fact, teachers reported that many of their students 

exceeded their expectations in their problem-solving abilities (Moscardini, 2010). 

One of the primary benefits of using CGI with low-attaining students is that it 

allows them to create and use strategies that hold meaning and can be done with 

understanding, instead of forcing them to use algorithms, which can be harmful when 

students attempt to use them without understanding (Kamii & Dominick, 1998). Instead 

of being taught a procedure for adding double-digit numbers, for example, students are 

presented a problem and given the freedom to solve it in a way that makes sense to them, 

while their teacher guides their thinking through questioning and discourse. Another 

benefit of CGI and other instructional techniques that involve problem solving is that 

they require students to share explanations of their thinking and collaborate with each 

other, which have been found to predict higher mathematical achievement in elementary 

students (Webb et al., 2008). When students explain their thinking and work 

collaboratively, they have opportunities to clarify misconceptions, internalize new 

understandings, and strengthen the connections between new learning and their previous 

mathematical understanding (Webb et al., 2008). Additionally, collaboration and having 

students share explanations of their thinking has been found to help students who are 
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learning English as a second language participate in math instruction (Maldonado, 

Turner, Dominquez, & Empson, 2009). 

CGI can also help low-attaining students, especially those who are learning 

English as a second language, because the nature of word problems allows more students 

to access the problem. Instead of being presented without any context or explanation, 

word problems can be told as stories, with as much elaboration and detail as is needed for 

students to understand (Turner, Celedón-Pattichis, Marshall, & Tennison, 2009). This 

prevents students from being held back by limited language proficiency. Additionally, 

hearing these problems as stories allows students who are just beginning to learn English 

to draw on their existing “funds of knowledge” and use that information to access and 

solve (Turner et al., 2009, p. 30). As they use their background knowledge and 

experiences to solve, students are also able to conceptualize and represent mathematical 

relationships in ways that have meaning for them, which builds understanding and leads 

to higher achievement (Turner et al., 2009). 

Teachers can also develop stronger math abilities in students by promoting 

mathematical discourse in their instruction. Research has shown that there is a positive 

relationship between teachers who elicit more student thinking in mathematical discourse 

and student achievement, which suggests that sharing student thinking contributes to 

higher levels of math ability (Webb et al., 2008). When students share their mathematical 

thinking, they are encouraged to create multiple strategies and compare strategies with 

their peers, which provides more opportunities for students to internalize new 

understandings (Webb et al., 2008). It allows other students to benefit from their peers’ 

thinking, and, even when incorrect ideas or strategies are shared, promotes the evaluation 
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of concepts and addresses common misconceptions (Webb et al., 2008). When teachers 

use what they know about students’ mathematical thinking to guide discussions and 

students’ learning, achievement improves (Webb et al., 2008). 

Though many strategies that can be used for all students have been found to 

effectively improve the abilities of low-attaining students, research has also found that 

differentiation for struggling students an important part of improving achievement. 

Differentiation can take many forms. Christenson and Wager (2012) found that giving all 

students the same word problem, but allowing children to select numbers that are “just 

right” for them is an effective way of differentiating for lower-attaining students (p. 196). 

In this approach, all students solve the same word problem, but are instructed to select 

numbers that are neither too easy nor too difficult for them to solve. This approach allows 

students of all math abilities to access the problem and benefit from its instructional value 

without being held back by the range of numbers it uses (Christenson & Wager, 2012). 

In addition to allowing students to use different number ranges when solving 

problems, teachers can also differentiate their instruction by allowing students to use 

different strategies (Christenson & Wager, 2012). Instead of prescribing a particular 

strategy that students must use to solve, this approach involves letting students use the 

strategy that makes the most sense for them at that point in their development of math 

ability. While using a number line might be the right strategy for one student, a less 

sophisticated choice like direct modeling might be the appropriate strategy for another 

(Christenson & Wager, 2012). Letting students use different strategies allows all students 

to access the problem and solve it in a way that has meaning and builds understanding 

(Christenson & Wager, 2012). 
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Teachers can also make accommodations for students who struggle with language 

and reading proficiency. Research has shown that language affects not only reading 

proficiency, but math proficiency as well, and must be addressed in order to boost 

mathematical achievement (Pace & Ortiz, 2015). Teachers can address language 

proficiency by integrating reading comprehension practice, vocabulary instruction, and 

problem solving strategies into math instruction for students who are learning English as 

a second language and those who struggle with reading proficiency (Orosco et al., 2011; 

Orosco, 2014; Pace & Ortiz, 2015). Research has also found that teachers can 

accommodate for students with limited language proficiency by reading word problems 

aloud multiple times (Christenson & Wager, 2012). These oral readings allow students 

who struggle with language or reading to understand and access the problem, preventing 

them from being limited by their language abilities. 

In addition to differentiating for lower-attaining students, intensive data-driven 

interventions are also effective in raising math achievement in elementary students. In an 

examination of practices that support achievement of low-income students in diverse 

schools, Brown (2015) found that schools that produce gains in student-achievement 

heavily rely on data when planning instruction. This data was used to identify and plan 

interventions for low-attaining students in math and was found to lead to higher academic 

achievement (Brown, 2015). Interventions can be used for specific foundational skills, 

like subitizing, which hold students back in their math abilities (Warren, deVries, & Cole, 

2009). 

An example of this kind of intensive, data-driven instruction is the Math 

RecoveryⓇ program (Math Recovery: US Math Recovery Council, 2016). Math Recovery 
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works with students in their second year of school who are in the bottom 25% of their 

class (Phillips et al., 2003). Math Recovery intervention teachers create specialized and 

individualized intervention plans for each student, which use specific tasks to push 

struggling students to move toward more sophisticated problem-solving strategies 

(Phillips et al., 2003). In doing so, this program has been found to significantly improve 

elementary students’ arithmetical strategies, an improvement that was sustained even 

after students left the program (Phillips et al., 2003). 

Many elementary students in the United States struggle to achieve grade-level 

proficiency in mathematics for a variety of reasons. Though there are many factors 

limiting the ability of these low-attaining students, research has identified many strategies 

and approaches that can be used to improve performance, including CGI. This research 

informs the research question by suggesting that CGI can be an effective strategy for 

improving below grade-level student’s math ability. However, the literature on 

differentiation and intervention suggests that CGI must be used carefully and in 

combination with other instructional techniques in order to effectively address all of the 

factors that limit low-attaining students’ achievement (Phillips et al., 2003; Warren et al., 

2009). The following section will discuss students’ math beliefs and attitudes, which have 

also been found to powerfully affect student achievement. Understanding the impact of 

CGI on below grade-level students’ experience of math and their math beliefs is crucial 

in order to meet this study’s goal of supporting low-attaining students as they reach 

proficiency in math. 
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Math Beliefs 

        Math beliefs, including math anxiety, math self-concept, and math affect, have 

been found to powerfully affect student achievement in math (Jameson, 2014; Pinxten, 

Marsh, De Fraine, Van Den Noortgate, & Van Damme, 2014; Ramirez et al., 2016; 

Wigfield & Meece, 1988). In order to fully understand how to help low-attaining students 

improve their math ability, it is important to understand the definition of these beliefs, 

how they affect student performance, and how they are developed. 

        Math anxiety. Math anxiety is defined as the feeling of “tension and anxiety that 

interferes with the manipulation of numbers and the solving of mathematical problems in 

a wide variety of ordinary life and academic situations” (Richardson & Suinn, 1972, p. 

551). Though typically thought of as a concern for older students and adults, neurological 

research shows that math anxiety is a biological reaction that can be detected in the brain 

of students as early as age seven (NCTM, 2013). Certain features, including its precision, 

make math particularly anxiety inducing for some students (Wigfield & Meece, 1988). 

Two primary components of math anxiety have been identified: negative affective 

reactions to math and worries about succeeding in math (Wigfield & Meece, 1988). 

Negative affective reactions include the fear, nervousness, and discomfort that students 

experience when thinking about math and engaging in mathematical tasks (Wigfield & 

Meece, 1988). Worries about succeeding in math are more cognitive experiences of 

concern, and have been found to decrease student enjoyment and performance (Jameson, 

2014). Importantly, current research suggests that math anxiety contributes to students’ 

poor math performance in the United States (Jameson, 2014). 
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Math affect and self-concept. Math affect is a measure of how much students 

enjoy math (Pinxten et al., 2014). Math self-concept is defined as “students’ beliefs in 

their own domain-specific and/or global academic capabilities” (Pinxten et al., 2014, p. 

153). Math low self-concept arises from negative experiences or stereotypes about one’s 

math abilities and, like math anxiety, has been found to have a powerful, negative effect 

on students’ mathematical achievement (Pinxten et al., 2014). 

Effect of math beliefs on math ability. Research has shown that math anxiety, 

affect, and self-concept have a powerful impact on students’ math achievement. Math 

anxiety has been found to decrease students’ math achievement in a variety of ways 

(Jameson, 2014; Ramirez et al., 2016). As Ramirez and colleagues (2016) explained, 

“children’s capability for improving their math skills is contingent on children feeling 

comfortable with mathematics in general” (p. 95). When children feel anxiety instead of 

comfort, they often experience “task impairment,” which causes students to perform 

worse on mathematical tasks because of the anxiety they experience (Wigfield & Meece, 

1988, p. 214). In a study on the neurological effects of math anxiety, Young and 

colleagues (2012) found that the part of a student’s brain that is responsible for 

mathematical reasoning is less active when they experience math anxiety. This finding 

suggests that math anxiety actually inhibits the brain functioning that supports 

mathematical thinking. Consistent with this finding, Ramirez and colleagues (2016) 

found that students who experienced higher math anxiety used fewer of the advanced 

strategies that they had been taught when solving math problems. Thus, it appears that 

math anxiety limits students’ mathematical achievement by interfering with their 
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mathematical reasoning and ability to use the strategies that they have been taught to 

solve mathematical tasks. 

Math anxiety has also been found to negatively impact achievement by affecting 

students’ motivation and effort (Wigfield & Meece, 1988). Wigfield and Meece (1988) 

found that students who experience high levels of math anxiety may not put as much 

effort into math, which negatively affects math achievement over time. Additionally, 

these students report that they value math less than students who do not experience math 

anxiety, which further leads to lower expenditure of effort and lower performance. 

Although math anxiety has been found to have negative effects on development of 

math ability in elementary students, math self-concept and affect have a strong, positive 

effect on math achievement in elementary school (Pinxten et al., 2014). Students who are 

more confident in their mathematical abilities and who enjoy math more have higher 

performance in elementary school, an effect that can be leveraged to boost student 

achievement, especially when working with students who are performing below grade-

level. 

Improving math beliefs. Because of their powerful impact on student 

achievement, it is important to understand how math anxiety, affect, and self-concept can 

be improved in elementary students. One important finding is that math anxiety relates to 

low self-confidence in one’s math ability (Jameson, 2014; Stuart, 2000). This finding 

suggests that, in order to relieve students of their math anxiety, teachers must work to 

build their self-concept (Stuart, 2000). Stuart (2000) suggested several ways in which 

teachers can do this. Teachers can build students’ self-concept and minimize their anxiety 

by letting students share different strategies for solving various problems. This teaches 
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students that there is not one right way to solve math problems and begins to decrease the 

anxiety to solve things in a particular way (Stuart, 2000). Teachers can also emphasize 

the importance of mistakes and help students realize that they engage in math as part of 

their daily lives (Stuart, 2000). In doing so, teachers can build positive self-concept in 

students and begin to reduce the math anxiety that negatively impacts their math 

achievement. 

As they attempt to minimize students’ experiences of math anxiety, teachers 

should also work to improve students’ math affect. Math affect (the extent to which they 

enjoy math) has been found to positively relate to math self-concept, which decreases 

anxiety and improves performance (Pinxten et al., 2014). This relationship suggests that 

encouraging students to participate in math activities that they enjoy from a young age 

can build high self-concept and achievement in mathematics. Pinxten and colleagues 

(2014) refer to this instructional move as “making math more attractive” (p. 170). When 

math is more attractive, or enjoyable, students are likely to have higher self-concept and 

lower anxiety, which leads to the development of higher math ability (Pinxten et al., 

2014). 

Research also suggests that teachers can improve students’ math enjoyment by 

allowing them to solve problems in ways that make sense to them, instead of requiring 

students to use specific and prescribed strategies or algorithms to solve problems 

(Buschman, 2003). As Buschman (2003) explained, “when children are given the 

opportunity to solve problems ‘their way,’ they take great pride and pleasure in 

developing their own strategies, instead of simply practicing strategies that adults have 

shown them” (p. 540). Letting students solve problems in a variety of ways allows them 
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the satisfaction of completing a challenging but engaging task, which has been found to 

lead to greater enjoyment of problem solving (Buschman, 2003). Additionally, allowing 

students this flexibility helps them turn their fear of mistakes into an appreciation of 

mistakes. Buschman (2003) found that “young children want to learn from their mistakes, 

and their enjoyment of problem solving increases when children know that mistakes will 

be used as stepping stones to new learning” (p. 540). When mistakes no longer represent 

a failure to repeat a specific strategy, they can be used as a tool to improve and deepen 

understanding. As students learn to value mistakes and use their own strategies to solve 

problems, their math affect and self-concept improve, leading to higher achievement and 

proficiency. 

As noted, math anxiety, affect, and self-concept can powerfully 

influence  elementary students’ math abilities. Math anxiety has been found to impede 

student achievement, while self-concept and affect lead to higher performance and 

proficiency. When working to improve performance in below grade-level students, math 

beliefs must be considered and addressed. More research needs to be done to measure the 

impact of CGI on students’ math beliefs, and determine if CGI is an effective way to 

raise student achievement by improving math anxiety, affect, and self-concept. My 

research will attempt to address this question in order to better understand the effect of 

CGI on low-attaining students’ math performance.    

Conclusion 

        This chapter has focused on several themes that inform the research question, 

What is the effect of Cognitively Guided Instruction practices on the math beliefs and 

abilities of below grade-level second grade students? It has explored the themes of 
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Cognitively Guided Instruction (CGI), conceptual understanding, math abilities, and math 

beliefs in order to better understand the effect of CGI on students’ math experience. The 

body of literature suggests that, by focusing on how children think mathematically and 

encouraging them to use this thinking to invent and share strategies for solving complex 

problems, teachers can use CGI to build strong conceptual understanding in even low-

attaining students. Though students struggle to develop proficient math ability in 

elementary school for a variety of reasons, the literature indicates that CGI, when used in 

combination with other specific skill-building interventions and scaffolding practices, can 

be used to effectively improve math ability in students who are below grade-level. 

Additionally, the research suggests that, while math anxiety and low math self-concept 

can impede students’ performance, there are ways in which educators can work with 

students to limit the experience of these negative emotions and improve students’ 

enjoyment of math, leading to higher achievement. These strategies should be integrated 

with CGI and other skill-building and scaffolding practices to maximize students’ math 

experiences. However, more research is needed to identify exactly how CGI should be 

used in combination with other instructional practices to positively affect students’ math 

beliefs and abilities. The next chapter will provide an overview of this study’s 

methodology, which will address this need by further examining the ways in which CGI 

affects math ability in below grade-level students and the ways in which it alters their 

beliefs and feelings about math. 
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CHAPTER 3 

Methods 

Research Question 

 What is the effect of Cognitively Guided Instruction practices on the math beliefs 

and abilities of below grade-level second grade students? 

Overview 

In order to know how teachers can continue to meet the needs of elementary 

students who are performing below grade-level in mathematics, this study examines the 

effect a Cognitively Guided Instruction (CGI)-based intervention model has on these 

students’ math abilities. Additionally, since research has shown that students’ math 

beliefs, including their self-concept (self-confidence), math affect (the degree to which 

they enjoy math) and math anxiety, can powerfully affect their math proficiency, this 

study will also examine the effect that CGI-based instructional practices have on these 

measures (Jameson 2014; Pinxten, Marsh, DeFraine, Van Den Noortgate, & Van 

Damme, 2014; Ramirez, Chang, Maloney, Levine, & Beilock, 2016; Young, Wu, & 

Menon 2012). By understanding how CGI-based practices affect students’ math beliefs 

and abilities, as well as any limitations with this instructional approach, this research will 
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allow educators to best support elementary students who are below grade-level in math 

and encourage their development as early as possible. 

In Chapter 2, I described the importance of building strong conceptual 

understanding in elementary mathematics students, and explored how CGI research and 

developmental frameworks been used to develop this understanding. I also examined 

components of math proficiency and the challenges that students who are below grade-

level often face, as well as the importance of math beliefs, including self-concept, affect, 

and anxiety. This chapter explains the methods used in this research to examine the effect 

of CGI-based practices on below grade-level students’ math beliefs and abilities. It 

describes the setting in which this study took place, the participants, and the methodology 

and measures that I used to answer the question: What is the effect of Cognitively Guided 

Instruction practices on the math beliefs and abilities of below grade-level second grade 

students? 

Research Paradigm and Method 

This study used a mixed methods paradigm. According to Creswell (2014), mixed 

methods research “involves the collection of both qualitative (open-ended) and 

quantitative (closed-ended) data in response to research questions or hypotheses” (p. 

217). As Creswell explained, mixed methods designs are chosen because of their 

“strength of drawing on both qualitative and quantitative research and minimizing the 

limitations of both approaches” (p. 218). Though the mixed methods paradigm is 

relatively new, it has been extensively used in the field of education and allowed for a 

more thorough examination of the ways in which CGI-based practices affects students’ 

math beliefs and proficiency than a strictly quantitative or qualitative study would have. 
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Many researchers have examined the effect of constructivist approaches to 

teaching math on elementary students’ math abilities (Carpenter, Fennema, Franke, Levi, 

& Empson, 1999; Franke & Kazemi, 2001; Hankes, 1996; Moscardini, 2010) and the 

development of math beliefs and their effect on math proficiency (Ayodele, 2011; 

Jameson, 2014; NCTM, 2013; Pinxten, Marsh, De Fraine, Van Den Noortgate, & Van 

Damme, 2014; Ramirez, Chang, Maloney, Levine, & Beilock, 2016; Wigfield & Meece, 

1988). However, few studies have looked at the ways in which CGI-based instructional 

practices impact both students’ beliefs and their abilities. In order to best understand this 

effect, a mixed methods approach was needed. Researchers have used quantitative 

measures to examine the ways in which constructivist instructional approaches, including 

CGI, affect the development of elementary students’ math proficiency (Fyfe, DeCaro, & 

Rittle-Johnson, 2014; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Moscardini, 

2010). Additionally, studies have used quantitative data to study the importance of 

various math beliefs on students’ math proficiency (Ayodele, 2011; Pinxten, Marsh, De 

Fraine, Van Den Noortgate, & Van Damme, 2014; Ramirez, Chang, Maloney, Levine, & 

Beilock, 2016; Wigfield & Meece, 1988). Researchers have also powerfully used 

qualitative data to more deeply understand how CGI practices affect the development of 

students’ conceptual understanding and leads to greater math proficiency (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999; Carpenter, Franke, & Levi, 2003; Franke et al., 

2009; Moscardini, 2010). This study combined these quantitative and qualitative analyses 

to provide a more complete picture of the impact of CGI-based practices on below grade-

level elementary students’ mathematical development. 
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This study collected quantitative data through the use of pre- and post-

assessments of content proficiency and surveys about students’ math self-concept, math 

anxiety, and math affect. Additionally, it collected qualitative data through the collection 

of student work samples, field notes, and other public class artifacts (including public 

sharing notes and communally created explanations of work). Qualitative data was also 

gathered through the use of audio recordings of conversations with select participants at 

various points throughout the study.  

In order to best support students who are below grade-level in math, teachers must 

develop their proficiency of grade-level content while also building enjoyment and 

engagement and limiting feelings of anxiety (Jameson 2014; Pinxten, Marsh, DeFraine, 

Van Den Noortgate, & Van Damme, 2014; Ramirez, Chang, Maloney, Levine, & 

Beilock, 2016; Young, Wu, & Menon 2012). This mixed methods design allowed me to 

measure students’ proficiency as they engaged in CGI-inspired intervention model while 

also understanding the ways in which this instruction impacted their math beliefs in order 

to better understand how teachers can best support elementary students who struggle to 

perform at grade-level in math.  

Setting 

 This study took place at an urban public school in the Northeast region of the 

United States. The school serves 445 students from Kindergarten through 6th grade. 

During the 2016-2017 school year, 98% of students were African American or 

Latino/a, and 2% were Caucasian. 81% of students were eligible for Free- and Reduced-

Price Lunch, and 6% of students were learning English as a second language and 

identified as having limited English proficiency. At the beginning of the school year, 
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32% of second graders scored below grade-level in math proficiency according to the 

nationally normed NWEA Measures of Academic Progress (MAP) math assessment. In 

the most recent school year, 62% of third and fourth grade students scored in the 

“proficient” or “above proficient” category in mathematics on the state test.  

Participants 

 Participants in this study were identified because their scores on the NWEA MAP 

mathematics assessment indicate that they were performing significantly below grade-

level in math at the end of first grade. Based on the school’s grouping procedures, in 

which students are grouped for math instruction based on their ability levels in order to 

provide low-performing students with interventions as soon as possible, the ten lowest-

performing (based on NWEA MAP mathematics assessment scores) of these second 

grade students were invited to participate] in this study. These ten students and their 

families were informed of the study and invited to participate at the beginning of the year. 

Parents and legal guardians of these students were informed of the purpose, methodology, 

and potential risks of the study according to Hamline University’s Human Subject 

Committee regulations, and were given the option to consent to participation with or 

without audio recording of their students’ conversations during instruction. Parents and 

guardians who agreed to allow their student to participate returned a signed consent form 

and were assured that they could ask their student to be removed from the study at any 

time. Of the ten students who were eligible to participate, eight consented to take part in 

the study with permission to take audio recordings of conversations, nine consented to 

take part without audio recording, and eight participated through completion. 
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 Of the students who participated in the study, 6 entered second grade scoring 

more than one year below grade-level. The remaining 2 participants scored more than 

two years below grade-level. Because of the school’s procedures for grouping students, 

none of the participants in this study were students with identified learning disabilities, 

and no participants were identified as having limited English proficiency. 

Procedures 

 Grouping. Participants in this study formed a homogenous ability-based group 

for math instruction, based on the school’s procedures for grouping students for math 

instruction. The decision to use homogenous ability groups and work with these ten 

students in the same group was based solely on the school’s policy, not on 

recommendations from CGI research. Grouping students this way allowed for instruction 

and pacing that targeted their specific needs. Additionally, since many students were 

significantly below grade-level at the beginning of the school year, these groupings 

allowed students to work with the specific skills that they needed in order to reach grade-

level proficiency.  

 Within this group of nine students, five participants were randomly selected at the 

beginning of the study to serve as specific case studies to provide additional qualitative 

data about the development of strategy use and conceptual understanding. These five 

students, whose parents or legal guardians all consented to the use of audio recordings of 

their work in addition to general participation in the study, had additional work samples 

collected throughout the study, and their interactions with the researcher during work 

time were audio-recorded three times each over the course of the study. 
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 Instruction. Students in this study received four weeks of CGI-based math 

instruction as their primary mathematical instruction, in direct alignment to the 

instruction that their peers in different instructional groups received. However, because 

these students made up the lowest-performing group of students in the grade, the number 

range and pacing of instruction was often adjusted relative to that of their peers to meet 

their needs. The four-week unit of instruction used in this study focused on working with 

word problems that required addition and subtraction to solve and included a variety of 

problem types (see Appendix A for a calendar of instructional tasks). This sequence was 

chosen because it is a foundational unit of study about addition and subtraction that 

reviews and introduces key concepts and skills around place value, Base 10, adding, and 

subtracting, which must be developed in order for students who are below grade-level to 

meet grade-level standards. 

 Instructional framework. Students participated in 45 minutes of math 

instruction each day on Mondays through Thursdays. The 4-week timeframe was chosen 

because that is the length of the first unit of 2nd grade, which is a foundational unit of 

study about addition and subtraction that reviews and introduces key concepts and skills 

around place value, Base 10, adding, and subtracting.  

 Daily instruction followed the same format each day and included a warm-up, 

work time, and public sharing. Each day started with a 15-minute warm-up, in which 

students practiced with tens frames, identified how much they needed to “get to 10” from 

different numbers, and broke numbers down to add numbers by getting to 10. After the 

warm-up, the remaining 30 minutes of instruction were spent solving and sharing. Each 

day, students solved rich story problems presented in a familiar context. Students began 
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by reading the problem together and discussing it in context to make sure they understood 

the action or context of the problem before solving. Reading the story together and 

discussing it in context also allowed students to access the academic language of the 

problem and build their visualization skills. After discussing the problem, students were 

given 15 minutes of work time to solve the problem using whatever strategy they wanted. 

Students were always given access to a variety of manipulatives (Unfix Cubes, counters, 

Base 10 blocks, and plentiful scratch paper) and were allowed to select and use 

whichever they chose with no teacher intervention. At the beginning of the study, 

participants were given the choice of two number pairs and asked to select a pair to solve 

in the story. For the first several days, the researcher guided participants in this choice to 

make sure that they were selecting a number range that was in their zone of proximal 

development. As the study progressed, more number pairs were given and students were 

allowed to self-select the pair that challenged them while still allowing them to solve the 

problem. While students worked, the teacher circulated and took field notes, recorded 

conversations as scheduled, and used open-ended questioning to both understand and 

cognitively guide students’ thinking and solving (see Appendix B for the template used to 

record field notes and the open-ended questions used when checking in with students 

during work time). For the first three days of the study, participants worked 

independently to establish routines and procedures. For the remainder of the study, they 

were allowed to work collaboratively and talk through the problem with students near 

them. However, all participants were required to record their solution strategy and answer 

on their own paper, even if they worked collaboratively. At the end of work time, the 

lesson culminated with 15 minutes of public sharing. Students were selected to share 
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based on their solution and strategy choice and were given the chance to explain their 

thinking to their peers. Sharers were instructed to walk the group through the strategy 

they used and, if they used any manipulatives, were asked to show in numbers what they 

did with manipulatives. While students shared, the teacher recorded their work publically 

for all members of the group to see and reference later. After instruction was completed 

and students were released to their next class, the researcher returned to her field notes to 

record statements from public sharing and to expand on any particularly relevant 

statements or observations from the lesson. 

Data Tools 

In order to measure changes in students’ math beliefs and abilities from the 

beginning to the end of the study, and in order to examine shifts in participants’ 

conceptual understanding and strategy use, a series of measurement tools and instruments 

were used to collect data during the course of the study. 

Math abilities assessment. Students completed a pretest, which included a series 

of tasks conducted in a one-on-one interview designed to assess a variety of skills and 

understandings, to measure their math abilities before the study began (see Appendix C 

for specific tasks and assessment forms). They completed an identical posttest again after 

the conclusion of the four-week unit in order to measure the impact of CGI-based 

practices on their math abilities. The pre- and posttests were completed individually and 

privately per the directions for each task and assessed several components of students’ 

math abilities. The pre- and posttest assessed students’ proficiency in a variety of grade-

level skills upon which the unit of instruction focused. Additionally, because number 

sense, visual-spatial skills, and number concepts have been found to contribute to low-
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performing students’ difficulties with math, these skills were assessed as well (Kamii & 

Rummelsburg, 2008; van Garderen, 2006; Wilson & Swanson 2001).  

Fluency. The first component assessed on the pre- and posttest was fluency. 

Students’ addition fact fluency was assessed using an abbreviated version of Kamii’s 

Basic Fact Assessment, which methodically asks students to solve an ordered sequence of 

addition facts, beginning with doubles before moving into adding one, two, three, four, 

and finally five to an initial number quantity (Kamii, 1985). Students were given six facts 

to solve orally and their responses were recorded on the assessment sheet. In addition to 

recording students’ answers, the researcher noted whether students answered in two 

seconds or fewer, which indicates automaticity. If students did not respond with 

automaticity, the researcher noted the time that it took them to respond and any strategy 

that they used to solve. If students used their fingers, the researcher noted if they used 

their fingers to direct model both quantities or if they used them to count on (and if so, 

which quantity they began with).  

Subitizing. Subitizing has been found to be a foundational mathematical skill that 

contributes to the development of other important skills and abilities (Clements, 1999). 

Participants’ ability to subitize, or immediately recognize and identify the number of 

objects shown, was measured on the pre- and posttest with a series of six cards. Students 

were shown three five-wise tens frames and three non-standard dice subitizing cards. 

Their ability to immediately (within two seconds) identify the number of dots shown on 

each card without counting was recorded, along with their response when asked how 

many dots they saw.  
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Number sense. Students’ number sense was measured with a number comparison 

task. Students were shown a series of five pairs of cards and asked to identify which of 

the two numbers was greater. The researcher recorded their response on the assessment 

sheet and noted any additional comments or solution strategies. 

Base 10. Students’ ability to work within the Base 10 system was assessed with a 

“Get to 10” task. In this task, students were shown a series of cards with numbers on 

them and were asked either “how many to get to ten?” or “how many to get to the next 

ten.” Students were shown four number cards that had ten as the following decade, and 

three number cards that required them to work with higher decades. Students’ responses 

were recorded on the assessment sheet, as well as the time it took them to respond and 

any strategies or calculation methods that they used to produce an answer. 

Story problem strategy use. Students’ abilities to accurately solve word problems 

involving addition and subtraction, as well as their strategy use, number range, and 

comfort with different problem types were assessed using a variation of Brickwedde’s 

(2005) Early Base Ten Assessment. The researcher read each problem aloud to 

participants, as indicated on the assessment sheet, and recorded the students’ answer and 

the solution strategy that they used. The researcher also adjusted the number range of the 

problem, if needed, in response to the student’s performance. The researcher noted 

whether the student was able to accurately solve the problem and at what stage of base 

ten development the child was at for each problem. After completing the Early Base Ten 

Assessment, the researcher completed the Individual Student Profile for each participant 

to identify participants’ choice of strategy use for each problem type. 
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 Math beliefs inventory. In addition to math proficiency, students’ math beliefs 

were measured before and after they participated in a CGI-inspired intervention model. 

Before the study began, students completed a math beliefs inventory, which measured 

their math self-concept, math affect, and math anxiety (see Appendix D). The questions 

on this inventory were based on Ayodele’s (2011) questionnaire on self-concept of 

mathematics and adjusted for use with elementary students. Students completed the 

inventory privately and in writing, and were informed before beginning the survey that 

their responses would be kept confidential and were being collected so the researcher 

could know how to best help them enjoy math instruction. Students completed the same 

inventory again after the four-week instructional period had concluded, with their 

responses again recorded privately in writing.   

 Teacher observation and record-keeping tools. Throughout the study, the 

researcher collected data on the development of students’ solution strategies and on 

changes in students’ conceptual understanding of key concepts. Field notes, work 

samples, and audio recordings were collected throughout the course of the study to 

provide data on these developments. Though field notes, work samples, and audio 

recordings were collected using students’ names, any identifying information was 

removed for research purposes, and a pseudonym was used when discussing individual 

participants in the research. 

 Field notes. During every instructional block, the researcher recorded field notes 

about participants’ solution strategies, answers to open-ended questions, explanations, 

performance during warm-ups, and other general notes that offered information about 

their conceptual understanding and development of strategy use (see Appendix B for the 
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template used for recording field notes). In addition to recording observations and notes 

during instruction, the researcher also recorded more thorough notations after the lesson 

concluded, expanding on important statements by students or noted shifts in conceptual 

understanding or strategy use. Field notes were recorded for all participants on every day 

of the study, and were used both to collect data and to determine what problem type and 

number range the group was ready for in upcoming instruction.  

 Work samples and other artifacts. In addition to the field notes collected, work 

samples and other public artifacts were gathered throughout the course of the study to 

collect more data on students’ strategy use and development of conceptual understanding. 

Work samples from all participants were collected three times during the survey: during 

the first week, at the end of the second week, and during the fourth week. Additionally, 

individual work samples from the five participants who were randomly selected as case 

studies were collected every day. Other public artifacts, including communally created 

documents from public sharing (which included students’ demonstrations of their 

solution strategies as well as written statements from their explanations) were collected 

when the artifact recorded the emergence of a new solution strategy or evidenced a shift 

in conceptual understanding among participants. These work samples and artifacts were 

collected to provide qualitative data on changes in students’ use of solution strategies and 

conceptual understandings of key ideas and concepts throughout the course of the study. 

 Audio recordings. To supplement the collection of work samples and public 

artifacts, conversations with the five students who were selected as case studies were 

audio recorded and subsequently transcribed three times each during the study. These 

five students were recorded during their interactions with the researcher during work 
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time, as they responded to open-ended questions and explained their strategy use and 

understanding of the problem. Transcripts of these audio recordings were used to provide 

qualitative data on the development of participants’ conceptual understanding of key 

ideas and concepts over the course of the study. 

Data Analysis 

 Results of students’ performance on the pre-and posttests and their responses on 

the math abilities inventory before and after the study took place will be quantitatively 

analyzed to initially examine the effect of CGI practices on students’ math beliefs and 

abilities. These instruments will be used to determine whether participants’ performance 

on grade-level content and levels of math anxiety and enjoyment change after 

participating in four weeks of CGI-based instruction. Students’ proficiency before and 

after their experience engaging in the CGI-inspired intervention model, as measured by 

their performance on the pre- and posttests, will be compared to analyze whether CGI-

based practices effectively improve proficiency in students who are below grade-level. 

Students’ responses on the math beliefs inventory before and after the four-week unit will 

be compared to analyze whether students’ math beliefs, enjoyment, and anxiety change 

after participating in CGI-based instruction. 

 In addition to the quantitative analyses described above, qualitative analyses will 

be performed on the field notes, work samples, and transcripts of audio recordings 

collected throughout the four-week unit. These work samples, notes, and transcripts will 

be analyzed to track changes in students’ solution strategy use throughout the course of 

the study, as well as shifts in their conceptual understanding of key concepts. 

Specifically, these artifacts will be used to determine how students’ solution strategies 
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changed during the unit (both individually for each participant selected as a case study 

and for the group as a whole) and if students’ ability to utilize solution strategies to 

accurately solve story problems improved throughout the unit. The qualitative analysis of 

these artifacts will focus on answering the following research sub-questions: 

 1. Does the intervention model based on CGI practices improve students’ ability 

 to invent or incorporate new solution strategies that they can apply with 

 understanding to new problems? 

 2. Does the intervention model based on CGI practices improve students’ ability 

 to explain their mathematical reasoning and problem-solving approach? 

 3. Does the intervention model based on CGI practices improve students’ 

 conceptual understanding of the processes carried out when solving story 

 problems involving addition and subtraction? 

 4. How do students’ math beliefs and attitudes impact their achievement? 

Finally, these artifacts will be examined for any trends or challenges that appear, which, 

in combination with the quantitative data collected, will demonstrate the effect of CGI-

based instruction on students who are below grade-level.  

Conclusion  

Through a mixed methods analysis of students’ performance on grade-level tasks, 

responses to questions regarding their beliefs about math, and work samples and other 

artifacts, this study examines the research question: What is the effect of Cognitively 

Guided Instruction practices on the math beliefs and abilities of below grade-level 

second grade students? Students’ math proficiency and measures of math self-concept, 

affect, and anxiety before and after participating in a CGI-based instruction model will be 
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compared in order to better understand how CGI practices affect students who are below 

grade-level. Work samples, public artifacts, and transcripts of recorded conversations 

during work time will also be analyzed to further inform the ways in which CGI-based 

instruction affects students’ solution strategies, conceptual understandings, and attitudes 

about math during the four-week instructional unit. In Chapter Four, I will discuss the 

results of this study, as well as the ways in which students’ thinking and problem-solving 

abilities were affected by their participation in a CGI-inspired intervention model. These 

results will allow elementary teachers to better support below grade-level students by 

examining the strengths of the CGI research base to inform an instructional approach and 

revealing areas in which it can be supplemented to encourage grade-level proficiency in 

all students.  
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CHAPTER 4 

Results 

Introduction 

This study asked, What is the effect of Cognitively Guided Instruction practices on the 

math beliefs and abilities of below grade-level second grade students? In order to answer 

that question, this chapter will discuss and analyze the results of the math abilities 

assessments and math beliefs inventories that were taken at the beginning and end of the 

study. Additionally, data from field notes, work samples and other artifacts, and audio 

recordings of conversations between participants and the researcher that were collected 

over the course of the study will be analyzed. 

This study was carried out over a four-week period in September of 2016. At the 

beginning of the school year, the parents and guardians of the 10 lowest-performing 

mathematics students in second grade were invited to participate in this study. Of those 

10 families informed about the study, 9 parents and guardians consented for their child to 

participate. 1 student received consent to participate but moved away 4 days after data 

collection began and is thus not included in the data analysis. Participants’ scores on the 

NWEA-MAP mathematics assessment from the end of first grade were used to determine 

eligibility for this study and students’ level of math proficiency. Of the 8 participants, 6 
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entered second grade scoring more than one year below grade-level. The remaining 2 

participants scored more than two years below grade-level (see Table 1 for detailed 

scores). These participants received four weeks of Cognitively Guided Instruction-based 

math instruction. This daily instruction included a warm-up, work time in which the 

researcher conferenced with students to guide their learning, and public sharing of 

solution strategies.  

Table 1 
 
NWEA-MAP Mathematics Scores 
Participant NWEA-MAP Mathematics Score* Grade-level performance 
1 160 > 1 year below grade level 
2 158 > 1 year below grade level 
3 156 > 1 year below grade level 
4 139 > 2 years below grade level 
5 151 > 1 year below grade level 
6 138 > 2 years below grade level 
7 150 > 1 year below grade level 
8 161 > 1 year below grade level 
*The beginning of year 2nd grade score is 177. A score of 162 indicates that a student is 
performing at the level of a beginning-of-year 1st grader. Participants who scored 
below 162 were determined to be performing more than one year below grade-level. A 
score of 140 indicates that a student is performing at the level of a beginning-of-year 
kindergartener. Participants who scored below 140 were determined to be performing 
more than two years below grade level.  

 

Before and after the study, participants completed a math abilities assessment and 

math beliefs inventory. These measures were used to assess changes in students’ math 

abilities and beliefs. Additionally, the researcher collected field notes and student work 

samples during the study. Conversations between the researcher and participants were 

audio-recorded three times during the study for each of the five students who were 

selected as case studies. This chapter contains a quantitative analysis of participants’ 

scores on the math abilities assessment and math beliefs inventory, as well as a 
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qualitative analysis of all other data collected. This mixed-methods paradigm will be used 

to answer the following research sub-questions: 

 1. Does the intervention model based on CGI practices improve students’ ability 

 to invent or incorporate new solution strategies that they can apply with 

 understanding to new  problems? 

 2. Does the intervention model based on CGI practices improve students’ ability 

 to explain their mathematical reasoning and problem-solving approach?  

 3. Does the intervention model based on CGI practices improve students’ 

 conceptual understanding of the processes carried out when solving story 

 problems involving addition and subtraction? 

 4. How do students’ math beliefs and attitudes impact their achievement? 

In addition to answering these questions, this chapter will discuss the trends that emerged 

in order to evaluate the effectiveness of CGI-based instruction for students who are below 

grade-level. 

Instructional Timeline 

 In the week before the study began, participants completed a pretest in a one-on-

one interview with the researcher. The pretest included a series of tasks designed to 

measure participants’ math abilities and key understandings (see Appendix C for specific 

tasks and assessment forms). Participants also completed the math beliefs inventory to 

measure their math beliefs and attitudes (see Appendix D). During the study, students 

participated in 45 minutes of math instruction each day on Mondays through Thursdays. 

Each instructional session began with a 15-minute warm-up. Warm-up tasks included 

working with tens frames, “get to ten” tasks, and using tens to add friendly numbers. The 
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remaining 30 minutes of instruction were used for solving and sharing about the day’s 

story problem. Students read the problem together and discussed it in context before 

solving it using any strategy they chose. Students always had access to manipulatives 

(Unfix Cubes, counters, Base 10 blocks, and scratch paper) and were free to use 

whichever they chose. While they worked, the researcher circulated and conferred with 

participants. Each day closed with 15 minutes of public sharing while the researcher 

recorded the sharer’s work for all participants to see. At the conclusion of the study, 

participants completed a posttest (which was identical to the pretest) in order to measure 

changes in their math abilities during the study. They also completed the math beliefs 

inventory at the conclusion of the study to measure any changes in their math beliefs over 

the course of the study. 

Math Abilities Assessment 

 The math abilities assessment measures a variety of math skills and abilities that 

are important for grade-level proficiency. All participants completed the math abilities 

assessment before the study began and again after it was completed in order to measure 

changes in their math abilities from the beginning to the end of the study. The assessment 

was administered privately and individually by the researcher and measured fluency, 

subitizing, number sense, Base 10 understanding, and story problem strategy use. 

Participants’ performance on the pretest was compared to performance on the posttest to 

analyze the impact of the constructivist approach to instruction on these below grade-

level second graders’ key mathematical abilities.  

 Fluency. The fluency portion of the math abilities assessment consisted of 6 math 

facts that students were asked to solve (see Appendix C for assessment forms). In this 
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task, participants were shown one fact card at a time and were asked to solve the fact as 

quickly as they could. The researcher recorded their response and noted how long it took 

them to solve. If the participant solved the fact within 2 seconds, they were determined to 

have recalled it automatically (Kamii & Rummelsburg, 2008). If the participant did not 

solve automatically, the researcher also recorded the way in which they used their fingers 

or other tools to solve.  

 During the study, participants did not participate in explicit fact instruction. All 

fact practice occurred in the context of warm-up activities or daily problem solving. Any 

strategies that emerged were discovered by participants and were only shared publically 

when they were used as part of a solution strategy. 

 The results of the fluency portion of the assessment indicate that participants’ 

accuracy and automaticity improved during the four weeks of the study (see Table 2 for 

individual participants’ scores on the pretests and posttest). All 8 participants increased 

the number of facts that they answered correctly from the pretest to the posttest, and all 

but one participant increased the number of facts that they were able to automatically 

recall. Among all 8 participants, there was an average increase of nearly 1 fact (0.9) 

answered correctly from the pretest to the posttest, indicating that participants improved 

their fluency during the course of the study. Additionally, there was a larger average 

increase of exactly 3 facts recalled automatically from the pretest to the posttest. These 

results show that participants in the constructivist-based teaching model experienced an 

increase in both fact fluency and automaticity during the four weeks of the study. This 

finding is important because it suggests that students who are below grade-level can 

improve these important skills without being explicitly taught addition facts. Though 
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participants in this study were not directly taught strategies for adding and subtracting 

and did not spend class time memorizing facts, they experienced growth in this important 

area, a finding consistent with previous research (Carpenter et al., 2015). 

Table 2 
 
Fluency Scores on Pre- and Posttest 
 
Participant 

 
Pretest Correct 

 
Posttest Correct 

Pretest 
Automatic 

Posttest 
Automatic 

1 5 6 1 5 
2 5 6 0 4 
3 6 6 1 6 
4 4 5 0 4 
5 5 6 4 6 
6 3 5 0 2 
7 4 5 2 2 
8 6 6 3 6 
Average 4.75 5.63 1.38 4.38 
  

In addition to the increase in fluency and automaticity that was found from the 

pretest to the posttest, another important trend emerged regarding participants’ strategies 

for solving facts that were not automatically recalled. On the pretest, 3 participants were 

unable to count on to add when solving a fact that was not automatically recalled. Instead 

of holding one number mentally and representing the other with their fingers, these 3 

participants relied on Direct Modeling and showed both numbers on their fingers before 

counting each finger. This, of course, led to confusion when the sum of the fact exceeded 

ten, and represents a less sophisticated and more inefficient way of adding. On the 

posttest, however, all 3 of these participants were able to count on by holding one number 

in their head and using their fingers to count on by the other. This shift indicates that 

these students were able to adopt more sophisticated and efficient strategies of adding 

over the course of the study. In fact, 2 of these participants were able to solve 3+6 by 
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holding 6, the larger number, mentally and counting on by 3, the smaller number. In 

addition to adopting a yet more sophisticated and efficient way of solving, this finding 

indicates that these participants developed an understanding of the commutative property 

of addition during the study. Thus, these participants in the study showed increases in 

accuracy and sophistication while also exhibiting evidence of an important conceptual 

mathematical understanding.  

 Though the constructivist approach to teaching math that was utilized in this study 

did not involve explicit teaching or practice of addition and subtraction fact fluency, 

participants showed an increase in accuracy and sophistication, a finding consistent with 

previous research (Carpenter et al., 2015). This finding suggests that second grade 

students who are performing below grade-level were able to improve this crucial skill 

without spending time receiving direct instruction. Though it is likely that participants’ 

scores increased over the four weeks of the study in part because they had returned from 

summer vacation, where many students do not practice math, to daily exposure and 

practice, it important to note that these students who are performing significantly below 

grade-level were able to experience this increase in both accuracy and sophistication 

without any explicit fact instruction. This finding supports the notion that, even without 

direct instruction, students who engage in constructivist forms of mathematical 

instruction can indeed improve their basic foundational skills.  

 Subitizing. Subitizing, the skill of automatically recognizing a quantity on sight 

without counting, has been shown to be a foundational skill that contributes to the 

development of other important math skills and abilities (Clements, 1999). Because 

foundational skills like subitizing are so important to moving low-performing 
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mathematics students closer to grade-level, the math abilities assessment measured its 

changes in participants’ subitizing abilities over the course of the four-week study. On 

this portion of the assessment, participants were shown a series of six dot cards for two 

seconds each. After seeing each card, the participant was asked to identify the number of 

dots that they saw. The researcher recorded their responses and noted any strategies that 

the participant used to answer (see Appendix C for assessment forms and recording 

tools).  

 As Table 3 shows, the pretest revealed that all eight participants had great 

difficulty subitizing. At the beginning of the study, only two participants were able to 

accurately recognize the number of dots on any of the six cards, and of those two 

participants, only one actually subtilized (the other was able to quickly count, pointing 

her finger at each dot before the two seconds expired and the card was taken away). The 

remaining six participants immediately attempted to count the number of dots on each 

card in a similar manner on the pretest, though they were unable to count quickly and 

accurately enough to correctly identify the number on each card. Notably, these six 

participants were not even able to recognize the tens frame with three dots, nor were they 

able to accurately count those dots within the two seconds that they were given too 

examine the card. These results indicate that participants had great difficulty subitizing at 

the beginning of the study, a finding that was not surprising given their below grade-level 

proficiency. 
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Table 3 
 
Subitizing Scores on Pre- and Posttest 
 
Participant 

 
Pretest Correct 

 
Posttest Correct 

Pretest 
Automatic 

Posttest 
Automatic 

1 3 6 3 5 
2 0 3 0 3 
3 0 2 0 2 
4 0 1 0 1 
5 0 4 0 3 
6 0 0 0 0 
7 0 2 0 2 
8 1 3 0 3 
Average 0.50 2.63 0.38 2.38 
 

 Participants showed some slight improvement in subitizing over the course of the 

study, though most participants still struggled to subitize numbers larger than five and 

only one participant was able to accurately subitize all cards on the posttest (see Table 3 

for detailed results on the pretest and posttest). The posttest showed an average growth of 

about 2 cards accurately identified and 2 cards automatically recognized, suggesting that 

improvement in accuracy was due to students being able to subitize automatically, not 

being able to count more quickly or efficiently. However, participants were by no means 

performed well on the subitizing task after completion of the study. Only one participant 

was able to accurately identify all 6 cards on the posttest, while exactly half of the 

participants were able to accurately identify fewer than three cards (including one 

participant who was not able to identify any). It is possible that, being such a discrete and 

specific task, subitizing is a skill that must be taught more directly. Though students 

worked with tens frames in the warm ups to their daily instruction, they always had an 

opportunity to count and were not forced to subitize. Given participants’ low 

performance on this task after four weeks of instruction, these results might suggest that a 
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constructivist approach to teaching math to students who are significantly below grade-

level should include some direct practice of this important skill. 

 Number sense. Participants’ number sense was measured by assessing their 

ability to compare two numbers. In this task, participants were shown a series of five 

cards, each of which were labeled with two numbers. Participants were asked to identify 

either which number was less or which number was greater. The researcher recorded their 

response, which was used to indicate the participant’s ability to recognize and compare 

the value of numbers. 

 On the pretest, participants accurately compared 3.25 of the 5 number cards (see 

Appendix C for assessment forms). They showed very slight improvement on the 

posttest, where the average score was 4 out of 5 cards compared correctly (see Table 4 

for each participant’s individual scores). However, only three of the eight participants 

were able to accurately answer all 5 comparisons on the posttest, indicating that most 

participants still lacked some number sense at the conclusion of the study.  

Table 4 
 
Number Sense Scores on Pre- and Posttest  
Participant Pretest Correct Posttest Correct 
1 4 5 
2 3 5 
3 4 4 
4 2 2 
5 2 4 
6 3 4 
7 3 3 
8 5 5 
Average 3.25 4.00 
 

Interestingly, the most commonly missed comparison both before and after the 

study was the comparison of 400 and 40. Six participants missed this comparison on the 
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pretest and four missed it on the posttest. Of these ten total errors, eight times participants 

responded that that the two numbers were the same. This belief that 400 and 40 are the 

same number suggests that participants’ number sense and place value understanding are 

still underdeveloped, as they did not recognize that adding a zero changed the value of 

the number. However, the comparison between 10 and 1, which is similar in that the only 

difference between the two numbers is a zero, was only missed twice on the pretest and 

once on the posttest. This discrepancy might suggest that students are comfortable 

enough with place value in single- and double-digit numbers to recognize that adding a 

zero changes the number but that their place value understanding does not yet extend to 

the hundreds. If so, this comfort could have grown out of the constructivist approach to 

math that encouraged students to utilize place value when solving problems. Or, it could 

be explained by students’ familiarity and recognition of the both ten and one as numbers, 

which might lead them to be able to more accurately compare them than two larger 

numbers that are less familiar, like 40 and 400. Since participants in this study did not 

work with numbers into the hundreds, this task would need to be assessed later to fully 

determine the effectiveness of this model on improving students’ number sense.  

 Base ten understanding—landmarks to 10. Participants’ Base 10 understanding 

was assessed using a “get to ten” task. In this task, students were shown a series of seven 

cards, each with a number printed on it. After being shown the card, the student was 

asked how much it would take to get to the next ten. The researcher recorded their 

response, and noted whether they knew automatically or had to calculate their answer.  

 Overall, participants were highly accurate on this task both before and after the 

study. On the pretest, participants correctly answered 5.88 out of 7 questions. The 
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average rose to 6.63 on the posttest, showing slight improvement on an already high-

scoring task (see Table 5 for more detailed results). However, an important trend 

emerged regarding participants’ automaticity when getting to the next ten. Before the 

study began, only three participants were able to answer any questions without 

calculating in some way, and the average number of questions answered automatically 

was only 0.5. Notes recorded during the pretest explain that most students used their 

fingers to determine how much was needed to get to the next ten. On the posttest, though, 

the average number of questions answered automatically rose to 3.75. Further, all 

participants were able to answer at least one question automatically on the posttest, with 

one participant recognizing six of the seven cards automatically and two participants 

recognizing five of the seven automatically. Thus, there was a noticeable increase in 

participants’ level of automaticity from the beginning of the study to the end. This 

increase shows that participants’ Base 10 understanding increased over the course of the 

study, as the ability to immediately recognize how much is needed to get to a new ten 

evidences much stronger Base 10 understanding than the earlier reliance on counting that 

participants exhibited on the pretest. This finding suggests that the constructivist 

intervention and its focus on conceptual understanding and strategy use contributed to 

increases in participants’ Base 10 understanding and automaticity, an extremely 

important component of math proficiency (Carpenter et al., 1993).  

 Not surprisingly, nearly all of the participants who made significant 

improvements in fact automaticity also showed considerable improvement in Base 10 

automaticity. For example, Participant 1 answered 4 more facts fluently on the posttest 

than on the pretest, and also automatically identified 4 more “get to ten” cards on the 
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posttest than on the pretest. Participant 3 answered 5 more facts fluently on the posttest 

than on the pretest, and automatically identified 4 more “get to ten” cards at the end of 

the study than at the beginning. This correlation makes sense because of the connection 

between fluency and the ability to recognize and utilize sums of ten. Additionally, there 

was a moderate connection between participants’ improvement in fluency and Base 10 

recognition and their ability to subitize. Though participants struggled with subitizing in 

general, those who showed greater subitizing ability on the posttest also showed 

considerable improvement in fluency and Base 10 recognition. Future research should 

examine the relationship between fluency and Base 10 recognition and subitizing in order 

to better understand how to help low-achieving students improve these important skills.  

Table 5 
 
Base 10 Scores on Pre- and Posttest 
 
Participant 

 
Pretest Correct 

 
Posttest Correct 

Pretest 
Automatic 

Posttest 
Automatic 

1 7 7 1 5 
2 6 7 0 4 
3 6 7 0 4 
4 4 5 0 2 
5 7 7 0 3 
6 3 6 0 1 
7 7 7 1 6 
8 7 7 2 5 
Average 5.88 6.63 0.50 3.75 
 

 Base ten understanding—reconfiguring & decomposition of number. 

Participants’ strategy selection was measured using Brickwedde’s (2005) Early Base Ten 

Assessment (see Appendix C). In this task, the researcher read a series of four story 

problems aloud to the participant. Participants were asked to solve a Join, Result 

Unknown problem, a Separate, Result Unknown problem, a Join, Change Unknown 
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problem, and a Compare, Difference Unknown problem. Participants were given blank 

paper and a pencil as well as Unifix cubes and were allowed to solve however they chose. 

As they solved, the researcher recorded their solution strategy and answer and adjusted 

the numbers if students were not able to access the problem. For each problem type, the 

evolution of participants’ strategy choice and accuracy was examined to determine the 

impact that the intervention model had on students’ math abilities (see Table 6 for results 

broken down by problem type). 

Table 6 
 
Strategy Use on Pre- and Posttest 
Problem 
Type 

Correct 
Pretest 

Correct 
Posttest 

DM* 
Pretest 

DM* 
Postets 

CS* 
Pretest 

CS* 
Posttest 

FS* 
Pretest 

FS* 
Posttest 

JRU 7 7 8 3 0 5 0 0 
SRU 7 8 8 5 0 2 0 1 
JCU 7 8 8 2 0 4 0 2 
CDU 5 7 8 6 0 1 0 1 
*DM= Direct Modeling  
  CS=Counting Strategy 
  FS=Flexible Strategy  
 

 The first question on this portion of the assessment was a Join, Result Unknown 

problem. On the pretest, 7 participants were able to accurately solve this problem (the 

remaining participant made a counting error though his representation matched the 

problem and could have led to an accurate solution). On the posttest, the same 7 

participants solved the problem accurately. Additionally, 2 participants on the pretest 

were unable to access the prescribed numbers and worked with adjusted numbers, and 1 

participant worked with adjusted numbers on the posttest. Though there was no change in 

participants’ level of accuracy from the beginning of the study to the end, a notable trend 

emerged regarding strategy use. On the pretest, all 8 participants used Direct Modeling to 
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solve the problem, building both numbers with cubes and then counting them all. On the 

posttest, 5 participants used a counting strategy instead of Direct Modeling, and 2 of the 

participants who used Direct Modeling counted on from the larger number instead of 

counting all of the cubes. This shift in strategy use indicates that nearly all of the 

participants adopted more efficient and sophisticated solution strategies for addition over 

the course of the study. 

 Next, participants solved a Separate, Result Unknown problem. On the pretest, 7 

participants accurately solved, while all 8 participants were able to solve accurately on 

the posttest. 1 participant needed adjusted numbers on the pretest and all participants used 

the prescribed numbers on the posttest. Like the Join, Result Unknown problem, all 8 

participants relied on Direct Modeling to solve before the study began. On the posttest, 5 

participants used Direct Modeling, 2 used a counting strategy, and 1 used a flexible 

strategy (relying on place value to solve). Importantly, only 1 participant showed Base 10 

understanding in their Direct Modeling on the pretest by using sticks of ten to represent 

and solve rather than building the number as a collection of ones, while 4 of the 5 Direct 

Modelers showed Base 10 understanding on the posttest. So, while participants relied 

more on Direct Modeling subtracting than they did to add, their strategy increased almost 

uniformly in both sophistication and efficiency over the course of the study.  

 The third question on this portion of the assessment was a Join, Change Unknown 

problem. Seven participants were able to accurately solve this problem on the pretest, and 

all 8 participants solved accurately on the posttest. One participant used adjusted numbers 

on the pretest and all participants used the prescribed numbers on the posttest. 7 

participants used Direct Modeling to solve on the pretest, though there was more variety 
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in strategy use at the end of the study. On the posttest, only 2 participants used Direct 

Modeling, while 4 counted on and 2 used a flexible strategy, indicating another shift 

towards more sophisticated strategy use over the course of the study.   

 The final question on this task was a Compare, Difference Unknown problem. 

This was the only problem on the Early Base Ten Assessment that participants largely 

struggled with before the study began. On the pretest, 6 participants were unable to 

access the problem with its prescribed numbers and worked within an adjusted range. 

Even with those numbers adjusted, only 5 participants accurately solved the problem on 

the pretest. On the posttest, 1 participant needed adjusted numbers, and 7 participants 

accurately solved. Though more participants had access to the problem and accurately 

solved on the posttest than on the pretest, most participants still relied on Direct 

Modeling to solve this problem at the conclusion of the study (see Table 6 for complete 

dispersal of strategy use). It is likely that, since this problem was harder for students to 

access and understand, they relied a less sophisticated solution strategy than they used to 

subtract in the Separate, Result Unknown problem.  

 The results of the Early Base Ten Assessment show that, while participants’ 

ability to accurately solve these four problem types was high on both the pre- and 

posttest, participants did improve their ability to use more efficient and sophisticated 

strategies when adding and subtracting. This finding suggests that participants’ daily 

work with story problems and their exposure to different solution strategies during daily 

discourse and sharing led to improvement in this important area over the course of the 

study. The data indicates, then, that students who are below grade-level are able to 
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understand and internalize new and increasingly complex solution strategies when they 

are exposed to them during peer sharing.  

 Summary. Comparing participants’ performance on the math abilities assessment 

before and after they received 4 weeks of a CGI-based intervention suggests that this 

constructivist approach to teaching math had a positive effect on a specific set of 

students’ math abilities. In particular, participants made notable improvements towards 

proficiency in fact fluency and automaticity, Base 10 understanding, and strategy 

sophistication. Of course, a key difference between this constructivist approach and a 

more traditional instructional style is that these skills were not directly or explicitly 

taught during the study. Participants did not spend time memorizing addition or 

subtraction facts, nor did they see the instructor model specific strategies for problem 

solving that they were expected to repeat. Because participants did not receive direct 

instruction but were cognitively guided in their learning over the course of the study, 

these findings suggest that a Cognitively Guided Instruction-based teaching model can 

effectively improve these particular foundational skills in below grade-level students.  

Data from the math abilities assessment also indicates that there were key areas in 

which participants made little improvement or did not near proficiency by the end of the 

study. At the end of the study, participants still largely struggled with the important and 

foundational task of subitizing and scored very low in this area on the posttest. It is 

possible that subitizing is such a specific task that it must be taught directly, with a 

teacher modeling the skill and then offering repeated and isolated practice. In this study, 

participants received no direct subitizing instruction and most made little or no 

improvement in the skill, supporting the idea that subitizing must be taught in a more 
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explicit manner. It is also possible, though, that the constructivist approach provided 

opportunities to guide participants to improve their subitizing abilities that the instructor 

missed. Though participants did not work with tens frames or dice during the study, the 

instructor could have led students to subitize by more actively discouraging them from 

routinely counting cubes. Instead, if participants had ben asked to quickly identify how 

many cubes they saw, perhaps their subitizing skills would have improved more. Thus, it 

is hard to distinguish whether the lack of improvement was due to the model itself or the 

researcher’s implementation of the model. 

Math Beliefs Inventory 

 The math beliefs inventory is a twelve-question survey designed to measure 

students’ math self-concept (students’ beliefs in their own math abilities), affect (the 

extent to which students enjoy math), and anxiety (Ayodele, 2011; see Appendix D). 

Participants completed the survey privately before the study began and again once it was 

over. Students circled one of five faces to indicate their level of agreement with each 

statement (the researcher explained the response that each face represented for each 

question to ensure that there was no confusion). The face that represented complete 

agreement with the statement was given 5 points, the face that represented complete 

disagreement was given 1 point, and points in between decreased in that order. Each 

survey was then scored and participants’ scores for each category were added together. 

Higher scores in each category indicated that the participant had higher levels of the 

particular trait.  

Both before and after the study, students reported very high levels of math self-

concept and affect, as well as low levels of math anxiety (see Table 7 for results). No 
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meaningful changes in student’s math self-concept, affect, or anxiety were evident from 

the pre- to the posttest. However, two interesting trends emerged that were captured in 

the researcher’s field notes throughout the study.  

Table 7 
 
Math Beliefs on Pre- and Posttest 
 
Category 

Points 
Possible 

 
Pretest Average 

 
Posttest Average 

Self-Concept 20 18.0 18.25 
Affect 20 18.05 17.95 
Anxiety 20 2.15 1.90 

 

First, there was a large discrepancy between participants’ reported feelings of 

self-concept and their behavior at the beginning of the study. Though participants’ 

responses to the survey showed extremely high levels of self-concept, low levels of 

confidence and efficacy were actually observed during the first two weeks of the study. 

At the beginning of the study, students exhibited many negative reactions to feedback 

during individual work time. They often responded negatively when the researcher asked 

them guiding questions and seemed to immediately assume that discussion with a teacher 

meant that they had made a mistake. At the beginning of the study, participants also 

relied heavily on teacher affirmation when solving and were often hesitant continue 

working without being told that they were solving the problem correctly. On the third day 

of the study, I recorded in my field notes that 7 of the 8 participants had raised their 

hands in the first two minutes of work time to ask if their representation was correct, a 

behavior that contradicts the self-confidence that participants reported feeling on the 

math beliefs inventory. In response to one of these inquiries, I asked one particular 

participant to explain to me how they were solving. Instead of simply engaging in the 
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discussion, the participant showed her lack of confidence and immediately assumed that 

she had made a mistake. Her response was reflective of many experiences in the first 

week when she grunted and said “Ahh, come on! I can never do it right!” Thus, while 

participants responded with high levels of self-concept on the pretest, their behaviors 

during work time actually indicated that their self-confidence was low and that they 

relied on frequent assurance from the teacher that they were on the right track (and 

became easily frustrated when they did not receive it). As the study progressed, these 

reactions decreased and participants exhibited higher levels of self-confidence. In the 

fourth week of the study, only one student raised his hand in search of teacher approval 

for his solution, and students responded much more neutrally to teacher questioning. 

While no visible increase in participants’ reports of self-concept were observed on the 

math beliefs inventory (though the report of self-concept remained high on the posttest), 

the researchers’ field notes do indicate that participants’ exhibited more self-confidence 

and less reliance on teacher approval as the study progressed.   

A somewhat contradictory trend emerged around participants’ judgment of their 

own capabilities when they had to select the number range that they would use for the 

daily problems. Each day, participants were given a variety of number pairs that they 

could select to use in the problem. This practice was designed to allow all students to 

work with the same problem using a number range that they could access. Higher 

achieving students who needed to be challenged could select larger numbers and lower-

achieving students could select smaller numbers that made the problem accessible to 

them. However, although participants did not exhibit the high levels of self-concept that 

they reported on the survey when engaging in discussion, their confidence was readily 
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apparent as many of these low-performing students selected number ranges far beyond 

their current capacity. This overconfidence was widespread during the first several days 

of the study, as 6 of the 8 participants had to be urged during the first two days of the 

study to start with numbers that were more accessible to them. When asked why they 

chose those numbers, one participant told the researcher that “these numbers are more fun 

cause they’re bigger,” and another explained “I like the harder ones.” These responses 

suggest that participants knew that the numbers they were selecting were larger and thus 

more rigorous, but did not understand that they were selecting numbers that were beyond 

their current range. This finding was unexpected, and perhaps suggests that another factor 

holding these low-performing students back is their inability to accurately select tasks 

that are appropriate for their current level of ability. If students are working on 

developmentally appropriate problem types but are consistently selecting number ranges 

that make problems inaccessible to them, they are likely experiencing a lack of success 

while also not getting the practice that they need with foundational skills. This finding 

answers sub-question 4 by suggesting that, while high levels of math self-concept have 

been shown to positively impact math proficiency (Pinxten et al., 2014), overconfidence 

might actually be detrimental to student performance.  

Observations and Field Notes 

 The quantitative data gathered in the math abilities assessment and the math 

beliefs inventory offers important insight into how the study’s instructional approach 

affected students’ math beliefs and abilities. In order to better understand the specific 

ways in which students’ abilities were affected, field notes, work samples and other 

public artifacts, and conversations between the researcher and participants were also 
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collected and analyzed over the course of the study. Three major trends emerged from 

these documents that will be discussed below. 

 Access. As the study progressed, participants’ access to story problems, or their 

ability to understand the action of the problem and work with the numbers given, steadily 

increased. During the study, field notes and work samples indicate that participants 

became better able to retell the story, answer comprehension questions about the story, 

and represent accurately. At the beginning of the study, many students struggled to 

understand the action of the problem and were unable to represent the problem 

accurately. Participants’ solutions often represented a different action than what was 

present in the problem and frequently led them to select the wrong operation to solve. 

Data from the first two weeks of the study suggests that these errors were caused by 

participants’ inability to even understand or explain the story. A field note from the first 

week read, “[I am] worried about kids even accessing the problem. Today it took 4 tries 

for one of the higher students in the study group to even retell a simple JCU accurately. 

Not a language or memory issue, he was inverting the action. Follow-up comprehension 

[questions] were all over the place.” Sometimes, selecting the wrong operation to solve 

indicates that a child is actually a flexible thinker. For example, if a child attempts to find 

the difference between two numbers by adding or counting up from the smaller number, 

it suggests that they have a strong conceptual understanding of the relationship between 

addition and subtraction and are able to use a flexible strategy to solve. However, 

participants at the beginning of the study were simply recalling the action of the story 

incorrectly. In one instance, a student retold that the actor in the story problem lost 12 

Pokemon cards when in fact the problem stated that the actor got 12 Pokemon cards for 
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his birthday. If this student was not able to accurately describe the story, it is unlikely that 

he was able to accurately represent or solve it. This concern was raised several more 

times during the beginning of the study, and notes stating that access was an issue appear 

11 times in the first two weeks. 

 Transcripts of early conversations between the researcher and participants further 

illustrate this early lack of access. During the first week of the study, participants were 

asked to solve a Join, Result Unknown problem (Mikayla has 7 books in her book baggie. 

Then she gets 8 more books from the library to put in her book baggie. How many books 

are in her book baggie now?) The following conversation between the researcher and a 

participant occurred within the first several minutes of work time. 

Researcher: Let’s think about this problem. What is happening? 

Participant: So, I know Mikayla goes to the library. 

R: What happens at the library? 

P: She gets some books. 

R: How many books does she get from the library? 

P: 7? 

R: Let’s check. Show me where you see that in the problem. 

P: [points to the number 7] 

R: Let’s go back and read the story again. 

[Participant fluently reads story aloud; only mistake is reading “book bag” 

instead of “book baggie” the first time it appears in the story] 

R: So how many books does she get from the library? 

P: 7. 
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R: Right here it says that she gets 8 more books from the library. So how 

many books does she get from the library? 

P: 8.  

In this instance, the participant was able to read the problem fluently, but either did not 

understand the action of the story or could not remember key information for long 

enough to retell it. She also struggled to effectively go back into the story to find the 

important information. This lack of access clearly prevented the student from accurately 

solving and likely has held her back from reaching grade-level proficiency. 

 This early data shows that, despite introducing problems as actionable stories and 

including familiar contexts that students could relate to, participants initially struggled to 

access story problems. This finding is not surprising given their low levels of math 

proficiency. However, towards the end of the second week of the study, access began to 

improve. Field notes from the beginning of the third week reflect this shift, noting that for 

the first time, all selected participants were able to accurately retell the story on their first 

try. Only 4 notes about story problem access appear in the last two weeks of the study, a 

decrease of more than half from the 11 notes recorded in the first two weeks. 

Additionally, three participants who had initially struggled heavily to access problems 

began to do so with much less difficulty and coaching. In the final week of the study, two 

of these participants were able to access every story problem. This change shows that, as 

the study went on, more participants were able to access problems and solve in ways that 

matched the action of the story. This increase in access is crucial in moving low-

performing students closer to grade-level. 
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 Strategy sophistication. Field notes and work samples collected over the course 

of the study also show consistent movement towards more sophisticated and efficient 

solution strategies. Throughout the study, three common strategy types emerged and 

made up the large majority of solutions utilized. These strategies included Direct 

Modeling with no Base 10 evidence, Counting, and Direct Modeling with Base 10 

evidence (see Figures 1, 2, and 3 for examples). Each week, the researcher recorded 

participants’ solution for one problem in order to capture trends and compare strategy 

choice from week to week. Table 8 shows the frequency of these strategies as the study 

progressed. Consistent with findings from the Early Base Ten Assessment, this data 

shows steady movement each week away from the less sophisticated strategy of Direct 

Modeling with no Base 10 evidence towards the more sophisticated and efficient 

strategies of Direct Modeling with Base 10 evidence and Counting. Looking at individual 

participants’ work samples across the four-week period reveals that this willingness to try 

new strategies happened at the aggregate and individual level. All participants, at some 

point in the study, tried each of these three strategies at least one time. Additionally, even 

though the numbers got larger in the later weeks, participants used more complex 

strategies. Though these work samples show that participants were not always able to 

successfully use new strategies accurately on their first try, the data indicates that they 

were willing to try new strategies after being exposed to them in the public share. This 

finding answers sub-question 1 and supports the idea that, even without direct instruction, 

below grade-level students were able to internalize and utilize new and increasingly 

complex solution strategies after four weeks of CGI-based math instruction.  
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Figure 1. Direct Modeling with no Base 10 evidence. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Counting.  
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Figure 3. Direct Modeling with Base 10 evidence. 

 

Table 8 
 
Frequency of Strategy Use 
 
 

Direct Modeling 
Without Base 10 

Direct Modeling With 
Base 10 

 
Counting 

Week 1 7 1 0 
Week 2 2 4 1 
Week 3 2 2 3 
Week 4 1 4 3 

 

Research sub-question 2 examined whether participants’ abilities to explain their 

mathematical thinking improved during the study. Though students were able to 

incorporate new strategies over the course of the study, there is not sufficient evidence to 

suggest that participants improved their abilities to explain their mathematical reasoning. 

With a few exceptions, much of the individual conferring that took place during the study 

focused on helping participants articulate and explain their mathematical thinking. 
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During the second week of the study, 16 of 33 field notes recorded include a comment 

that the student needed heavy scaffolding to accurately explain how they solved. In 9 of 

these cases, the student solved accurately but could not initially explain how they solved. 

In the remaining 7 cases, the student did not solve accurately and was unable to explain 

their solution. These numbers only decreased slightly throughout the study. 13 of 31 

conferencing notes from Week 3 included similar notes, and 11 of 29 notes in Week 4 

mentioned that students still relied on scaffolding to explain their thinking.  

Transcripts of individual conferences between the researcher and participants 

show that, even though students were able to understand new strategies well enough to 

use them accurately, they struggled to articulate how they applied them in their own 

work. In particular, students often needed support using place value language when 

describing their representations. In one example during the third week of the study, a 

student was able to Direct Model with Base 10 understanding but could not explain why 

she used three sticks of ten and five individual cubes to represent the number 35. When 

prompted, she was able to accurately build other two-digit numbers using tens and ones, 

suggesting that she understood place value well enough to use it but lacked the language 

and deep conceptual understanding to articulate her thinking. Participants’ difficulty 

explaining their mathematical reasoning could be caused by a variety of factors. Firstly, it 

is possible that four weeks was not enough time to develop these skills in students. 

Because participants were significantly below grade-level, it is possible that much of the 

mathematical discourse that they had experienced up to this point was inaccessible to 

them, leading to large deficits in academic language and articulation skills. It is also 

likely that participants’ difficulties articulating their thinking have contributed to their 
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low math achievement up to this point. In hindsight, the study did not include a heavy 

emphasis on developing participants’ academic language, and future work with below 

grade-level math students should include more explicit instruction around academic 

language and explaining one’s thinking. 

Additionally, it is possible that this difficulty actually reveals that students did not 

develop strong enough conceptual understanding to be able to explain their thinking. 

Perhaps they began to develop this understanding, to the extent that they were able to 

incorporate new strategies into their own work, but did not build a deep enough 

conceptual foundation to truly articulate their reasoning. Finally, it is possible that 

students did develop strong conceptual understandings during the study, but that the 

academic language needed to articulate these new understandings takes longer to develop 

than the understandings themselves. Perhaps participants simply need more time to be 

able to explain their thinking than they do to incorporate new conceptual understandings 

into their solution strategies.  

Accuracy. Data from field notes and work samples highlights an overall trend 

towards higher levels of accuracy throughout the course of the study. Work samples from 

all participants were collected on the 3rd, 7th, and 15th day of the study. These work 

samples show steady improvement in participants’ abilities to accurately solve story 

problems, even as the number range increased. On the 3rd day of the study, participants 

solved a Join, Result Unknown problem with a number range within 20. Only 3 

participants were able to accurately solve, while only 4 representations matched the story. 

On the 7th day, participants solved a Part, Part, Whole-Part Unknown problem with a 

number range within 50. 4 participants accurately solved, while 2 made representation 
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errors and 2 made counting errors on accurate representations. Finally, participants 

solved a Part, Part Whole-Whole Unknown problem on the 15th day of the study. 7 

participants solved this problem accurately, while the remaining participant accurately 

represented but made a counting error when solving. 

These findings reinforce data from the Early Base Ten Assessment and indicate 

that participants’ solutions to story problems became increasingly accurate as the study 

progressed. Interestingly, participants’ accuracy improved in two different areas that 

often plague low-performing math students. In addition to improving in counting and 

calculation, these work samples also show that students’ representations were more 

sophisticated and accurate at the end of the study than they were at the beginning. This 

improvement addresses research sub-question 3, which examines whether the 

intervention model based on CGI practices improved students’ conceptual understanding 

of the processes carried out when solving story problems involving addition and 

subtraction. In order to accurately represent and solve using increasingly sophisticated 

strategies, students must conceptually understand the processes of addition and 

subtraction, which suggest that their conceptual understanding improved throughout the 

course of the study.  

This development of conceptual understanding was also evident in conversations 

between the researcher and participants during work time. In one recorded conversation, 

a participant explained why she counted on from the larger number when adding even 

though it was not listed first in the problem. She identified the commutative property of 

addition, saying, “I did that because when you add it doesn’t really matter which one you 

do first. Like I can do this one first or the other one first and I’m still gonna get the right 
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answer because when I add the two addings [addends] the order doesn’t really matter.” 

Another participant explained why he counted up to find the difference between two 

numbers instead of subtracting, saying “You can subtract and it will give the difference, 

but I like to add more so I count instead. I’m still right cause I’m finding their 

difference.” With this explanation, the participant showed his understanding of the 

relationship between addition and subtraction. These conversations show that this 

constructivist approach to teaching math was effectively able to introduce key 

mathematical concepts to these below grade-level students, even without direct 

instruction. Though not all participants verbalized these concepts, the understandings that 

they represent were seen in nearly all participants over the course of the study. 

Conclusion 

 This chapter has examined data from the math abilities assessment, math beliefs 

inventory, and qualitative analyses of field notes, work samples and other artifacts, and 

audio recordings of conversations between participants and the researcher. The data 

presented in this chapter suggests that participants improved in specific math abilities 

over the course of the study, including fluency and automaticity, Base 10 understanding, 

and solution accuracy and sophistication. There is also data to support that the 

intervention led to increases in students’ conceptual understanding of addition and 

subtraction. These findings indicate that a CGI-based intervention can be an effective 

approach for improving below grade-level students’ foundational and grade-level skills 

and understandings. However, other key skills like subitizing and explaining one’s 

mathematical thinking did not meaningfully improve over the course of the study, 

perhaps suggesting that some skills should be more explicitly introduced or addressed in 
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the context of a constructivist approach. Finally, though the data showed a discrepancy 

between participants’ reported and observed math beliefs, there was a shift towards 

higher levels of math affect and self-confidence over the course of the study. In Chapter 

5, I will discuss the implications of these findings, as well as limitations and next steps 

from this study that must be considered as educators work to best support below grade-

level students.  
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CHAPTER 5 

Conclusion 

Introduction 

This study asked, What is the effect of Cognitively Guided Instruction practices 

on the math beliefs and abilities of below grade-level second grade students? In order to 

answer this question, Chapter 4 presented and analyzed the results of the math abilities 

assessments and math beliefs inventories that participants completed at the beginning and 

end of the study. It also examined data from field notes, work samples and other artifacts, 

and audio recordings of conversations between participants and the researcher that were 

collected throughout the study. This chapter will further discuss these findings and their 

importance in elementary mathematics education, as well as their limitations and 

possibilities for future research.  

Findings 

Students who participated in this Cognitively Guided Instruction-based 

intervention made significant improvements in fluency, Base 10 recognition, and Early 

Base 10 understanding. Participants’ accuracy and automaticity on the fluency task 

improved from the pretest to the posttest, indicating that their recall of addition fact 

improved throughout the course of the study. This result is aligned to Carpenter and 
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colleagues’ finding that, despite not emphasizing instruction of number facts as much as 

control classrooms, CGI classrooms do not show lower achievement on number facts 

assessments. In fact, evidence suggests that they show better number recall than control 

classes (Carpenter et al., 2015). Additionally, by learning these number facts through 

problem solving, students are allowed to “build upon an understanding of properties of 

operations and number sense” (Carpenter et al., 2015, p. 5), an opportunity that they 

would not have if they had simply learned the facts through rote memorization and 

practice. Even though participants were significantly below grade-level and have 

struggled with fluency since kindergarten, they made important growth throughout the 

four weeks of the study. 

Additionally, students’ performance on two separate tasks shows that their Base 

10 understanding improved throughout the course of the study. Participants improved 

their accuracy and automaticity on the “get to 10” task and also improved their ability to 

use more efficient and sophisticated solution strategies on the Early Base 10 Assessment 

as the study progressed. This movement from less sophisticated solutions to more 

efficient and sophisticated strategies is in line with previous findings that even low-

achieving students can “invent, transfer, and retain strategies for solving arithmetical 

problems” when they participate in CGI-based instruction (Moscardini, 2010, p. 130).  

Students’ ability to move between strategies and adopt new and more efficient 

ways of solving during the study suggests that participants developed conceptual 

understanding of addition and subtraction instead of simply memorizing and regurgitating 

procedural understandings. This demonstrated growth in conceptual understanding during 

the CGI-based intervention is consistent with research that suggests that conceptual 
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understanding can be developed through the use of teacher questioning (Franke et al., 

2009) and by letting students develop their own problem solving approaches instead of 

providing explicit instruction (Fyfe et al., 2014). It is also similar to previous studies that 

show that CGI-based instructional models allow students to develop deep conceptual 

understanding, which leads to gains in student achievement (Fyfe et al., 2014; National 

Council of Teachers of Mathematics, 2000; National Research Council, 2001). 

Additionally, this shift in strategy use during the study shows evidence of the flexible 

thinking that CGI-based instruction encourages (Jacobs & Ambrose, 2008). Participants 

were not bound to one particular way of solving, but were able to flexibly incorporate 

new solution strategies into their understanding and use them when it was appropriate. 

This flexibility is an important component of future mathematical success and will be 

foundational to participants’ continued growth. 

Though some skills improved during the CGI-based intervention, participants still 

had difficulty with important skills at the end of the study. Though participants showed 

some modest improvement in number sense, only 3 of the 8 participants were able to 

accurately answer all five of the comparison questions on the posttest. Students struggled 

the most with the comparison between a two-digit number and a three-digit number. 

Because the study only lasted for four weeks and the participants were significantly 

below second grade-level when they entered second grade, they did not do any work with 

three-digit numbers over the course of the study. Research from similar student-centered 

approaches towards learning suggests that interventions focused on building students’ 

number sense are most productive when they include physical manipulation of the 

numbers being assessed (Kamii & Rummelsburg, 2008), so it is likely that participants’ 
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scores would have improved if they had worked with three-digit numbers during the 

intervention.  

Similarly, participants showed little improvement in their ability to subitize. 

Research has shown that subitizing, the ability to automatically recognize a quantity on 

sight without counting by ones, is a foundational skill that contributes to the development 

of other math abilities (Clements, 1999). Since participants were significantly below 

grade-level at the beginning of the study, it is not surprising that they had trouble 

subitizing when the study began. In fact, their difficulty subitizing has probably 

contributed to their low levels of proficiency (Clements, 1999). However, despite seeing 

growth in other important skills during the study, participants improved very little on the 

subitizing task. 

During the subitizing task, many participants attempted to count the number of 

objects on each card. Some were able to count quickly enough to accurately identify the 

quantity shown, while others were not. Although most research has found that subitizing 

precedes counting and is necessary for counting to develop, other researchers have 

argued that subitizing is actually a form of rapid counting, and that it develops as a 

shortcut to counting (Clements, 1999). This data seems to contradict the theory that 

subitizing is a necessary prerequisite for counting, as participants were able to count but 

not automatically recognize quantities. However, participants had very little practice 

subitizing during the study. They practiced identifying number cards during warm-ups, 

but were always given enough time to count the number of objects. It is possible that 

giving them this time built the habit of counting and that they never developed their 

subitizing skills because they simply didn’t have to. Thus, it is possible that subitizing 
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requires more practice and direct instruction, and that participants did not improve 

because they did not have this practice. Clements (1999) supports this idea, saying that 

“conceptual subitizing must be learned and therefore be fostered” in classroom activities 

and instruction (p. 402). It is also possible, though, that participants do actually have the 

ability to subitize but did not demonstrate that ability because they were used to counting 

when they saw number cards and simply responded out of habit. This could support the 

idea that subitizing is a shortcut to counting; perhaps students will later subitize when 

counting becomes too tedious and inefficient. 

It is also possible that there is a link between students’ language capacity and 

ability to subitize. Research has found significant positive correlations between spatial-

visualization measures and a student’s ability to understand, access, and solve word 

problems (van Garderen, 2006). Students who have a hard time visualizing and spatially 

representing problems are limited in their ability to develop the language they need to 

truly understand and access story problems. It is possible that participants struggled to 

subitize because their limited language abilities have prevented them from developing the 

visual-spatial skills that they need in order to subitize. It is also possible that their 

difficulties subitizing are indicative of limited spatial-visualization skills, which 

contributed to their initial difficulty accessing and solving word problems. 

Additionally, research has found that rectangular patterns are easier for children to 

subitize (Clements, 1999). Participants did show improvement on the rectangular tens 

frames but struggled more on linear and “domino” arrangements. This is consistent with 

findings that students as old as college-age struggle more with these complex patterns 

(Clements, 1999). It is also possible, then, that participants did improve their ability to 
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subitize less complex arrangements, but that the assessment did not capture that 

improvement because it did not contain many of the rectangular patterns.  

Finally, it is also possible that the four-week study was simply too short for 

participants to develop sophisticated subitizing strategies. As second graders, these 

students have been engaged in rigorous math instruction for at least two years, and it is 

perhaps unreasonable to assume that an additional four weeks is all they needed to mature 

significantly in this skill. Regardless of why participants showed such little improvement 

on the subitizing task, their difficulty with this important skill is likely holding them back 

from developing further sophisticated problem solving strategies, and their dependence 

on counting by ones will limit their capacity to work efficiently with multi-digit numbers. 

More research is needed to examine why they are struggling and how they can best be 

supported. 

Participants also showed little improvement in their ability to explain their 

reasoning during the study. They struggled to use academic language to describe their 

solution strategies and articulate their thinking as they solved, even after the study 

concluded. Though research suggests that CGI-based interventions help students develop 

the skills to explain their thinking (Carpenter et al., 2015), I should have supported 

students more in their academic language development during the study. During the 

study, I focused more on strategy use and sophistication than on articulating this thinking. 

Looking back, I should have included more explicit instruction about academic language 

development to support students as they explained their thinking.  

It is also possible that academic language develops slower than conceptual 

understanding. Students showed improvements in conceptual understanding during the 
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study, but not in academic language usage. Once students understand something 

themselves, they might simply need more time to develop the language they need to 

articulate their thinking to others. Four weeks is a very short window for significant 

academic language growth to occur. Future research should continue to examine the 

development of academic language in CGI-based interventions, and future interventions 

should include more emphasis on developing these skills in participants. 

Finally, participants reported very high levels of math affect (the extent to which 

they enjoy math) and self-concept (their beliefs in their own math abilities), and low 

levels of math anxiety at both the beginning and end of the study. There was an initial 

discrepancy, though, between participants’ self-reports and observations of their beliefs. 

At the beginning of the study, the researcher observed low levels of self-concept and high 

levels of anxiety. Because research has found that low math self-concept has powerful 

negative effects on achievement (Pinxten et al., 2014), it makes sense that low-

performing students showed lower levels of math self-concept. However, students did not 

recognize their anxiety or low self-concept, which had negative effects on their 

achievement. Despite exhibiting low self-concept, students reported and felt 

overconfident in their abilities. Because anxiety has been found to interfere with 

mathematical reasoning and strategy use and thus have harmful effects on math 

achievement (Wigfield & Meece, 1988; Young, Wu, & Menon, 2012), it would make 

sense that confidence and a lack of anxiety would allow students to experience higher 

achievement. However, their overconfidence led students to misjudge their abilities and 

select tasks that were not beneficial for them. At the beginning of the study, students tried 

to use number ranges that were far too challenging for them, which prevented them from 
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engaging in meaningful practice. While I expected higher levels of confidence to lead to 

greater academic success, it actually caused students to struggle and miss valuable 

opportunities for practice. Future research should continue to examine the impact of 

overconfidence or misjudging ability in low-performing mathematics students.  

Limitations 

 This study has several limitations that should be addressed in future research. The 

first of these limitations are its sample size and length. The study only included 8 

participants and lasted for 4 weeks, which limits the amount of data that was able to be 

collected and minimizes the ability to see the impact of the intervention. 4 weeks is a 

relatively short amount of time to see important improvements, especially with low-

achieving students. A longer study would have better allowed me to investigate the 

impact of the intervention, particularly in the areas of academic language development 

and subitizing skills. 8 students is also a very small sample size, and a larger sample 

would have allowed for discovery of larger trends. Additionally, none of the participants 

were learning English as a second language or had any identified learning disabilities. 

Future research should examine the impact of CGI-based interventions on these particular 

populations. 

 Additionally, this study is limited in its ability to truly draw conclusions about the 

efficacy of a CGI-based approach to math instruction. Because I implemented it, this 

study tested my ability to effectively carry out a CGI-based intervention, and not the 

effectiveness of the approach itself. Many of the primary CGI researchers argue that the 

success of CGI-based programs is heavily reliant on the instructor’s professional 

development and decision-making (Carpenter et al., 2015; Jacobs, Franke, Carpenter, 
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Levi, & Battey, 2007). Because of this, any shortcomings of the intervention are likely 

due to my particular implementation of the model, and are not reflective of the approach 

itself.   

Implications 

 Despite its limitations, the data collected in this study suggests that there is 

significant value in using a CGI-based instructional approach with below grade-level 

students. At the beginning of the study, I wondered if a CGI-based intervention would be 

effective for some of the lowest performing math students. This study shows that, even in 

a relatively short period of time, below grade-level students derived numerous important 

benefits from the intervention. They improved their fluency and Base 10 understanding 

and developed conceptual understanding and flexible thinking skills that will be 

important for their future mathematical growth. 

 These findings also show that particular foundational skills like fluency can be 

improved in low-achieving students without devoting valuable instructional time to their 

teaching. In this intervention, students spent their time engaged in rich problem solving 

exercises and engaging in discourse with each other, instead of doing lower-rigor 

activities like flashcards or fact practice. However, their fluency improved in the short 

four-week window of the study. This finding shows that instructional time can be 

preserved and this important skill can be remediated without sacrificing the grade-level 

content that students need to build the foundation of their mathematical understanding. 

 Finally, the high levels of math affect and self-concept that participants reported 

show that these struggling students have not given up on themselves as mathematicians. 

They still find math to be enjoyable. I had expected that the lowest-performing students 
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would have internalized their difficulties in math and would be frustrated by their lack of 

success. However, this data shows that it is possible for low-achieving students to enjoy 

math and remain confident in their own mathematical abilities, and future research should 

continue to examine ways in which this enjoyment can be fostered and preserved. 

Future Research 

 In order to more fully understand the implications of this research and maximize 

the benefits of a CGI-based instructional approach, future research is needed. 

Specifically, future research should examine more carefully the development of 

subitizing in below grade-level students. This data raised questions about how subitizing 

develops in low-achieving students and its relationship to other foundational skills. 

Research should continue to examine how subitizing can best be supported in below 

grade-level students, as well as the impact that it has on the development of other 

important skills like fluency and strategy sophistication. 

 Future research should also continue to assess the impact of CGI-based 

interventions using a longitudinal model. In order to truly understand the impact that this 

approach has on low-performing students, their progress over longer periods of time must 

be tracked. While this study suggests that there are several short-term benefits of a CGI-

based model, more time is needed to determine whether it can provide the long-term 

support that these students need to become proficient in math.  

Conclusions 

 In the United States, large groups of elementary students are performing below 

grade-level in math (Witzel & Riccomini, 2007). This study suggests that CGI-based 

intervention models have important benefits for these below grade-level students. In 
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addition to improving specific skills like fluency and Base 10 understanding, this model 

builds conceptual understanding and flexible thinking, which will be crucial for students’ 

future mathematical success. Instead of explicitly teaching isolated skills and procedural 

understanding, educators must continue to challenge these struggling students and 

provide them with opportunities to solve rigorous problems and be led by their own 

thinking. In doing so, we will build the foundational skills that these students need to be 

successful academically and as mathematical thinkers in the world.  
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APPENDIX A: CALENDAR OF INSTRUCTIONAL TASKS 

Week 1 Join-Result 
Unknown 
(within 20) 
 
Separate-
Change 
Unknown 
(within 20) 

Join-Change 
Unknown 
(within 20) 
 
PPW-Whole 
Unknown 
(within 20) 

Join-Result 
Unknown 
(within 20) 
 
Separate-Result 
Unknown 
(within 20) 

Separate-Result 
Unknown 
(within 20) 
 
Join-Result 
Unknown 
(within 20) 

Week 2 Separate-
Change 
Unknown 
(within 20) 
 
Compare-
Difference 
Unknown 
(within 20) 

Separate-Result 
Unknown 
(within 20) 
 
Compare-
Difference 
Unknown 
(within 20) 

PPW-Whole 
Unknown 
(within 50) 
 
Compare-
Difference 
Unknown 
(within 20) 

PPW-Whole 
Unknown 
(within 50) 
 
Separate-Result 
Unknown 
(within 20) 

Week 3 Compare-
Difference 
Unknown 
(within 20) 
 
Join-Result 
Unknown 
(within 20) 

Measurement 
Division 
(groups of 10) 
 
Compare-
Difference 
Unknown 
(within 20) 

Multiplication 
(groups of 10) 
 
 
 
Join-Change 
Unknown 
(within 20) 

Join-Result 
Unknown 
(within 50) 
 
 
Separate-Result 
Unknown 
(within 50) 

Week 4 Separate-
Result 
Unknown 
(within 50) 
 
 
Join-Result 
Unknown 
(within 50) 

Join-Change 
Unknown 
(within 50) 
 
 
PPW-Whole 
Unknown 
(within 50) 

PPW-Whole 
Unknown 
(within 50) 
 
 
Separate-Result 
Unknown 
(within 50) 

Compare-
Difference 
Unknown 
(within 50) 
 
Measurement 
Division 
(groups of 10) 

 
*Since instructional decisions in a CGI-based intervention model are often based on the 
analysis of students’ thinking in previous days, adaptations may be made and problem 
types may occasionally be addressed in a different order than listed here. 
 
Adapted from:  
 
Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999).   
 Children's mathematics: Cognitively guided instruction. Portsmouth, NH:   
 Heinemann. 
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APPENDIX B: FIELD NOTES TEMPLATE 
 

 
Date: _______________________ 
 
Problem: 
 
 
 
Student Strategy  Solution Notes 
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Open-ended Questions Used to Assess Development of Students’ Mathematical Thinking 
 

1. How are you solving this problem? Why are you solving that way? 

2. Can you tell me what you are doing to solve this problem? Why does that work? 

3. Can you tell me what you did? How do you know you can do that? 

4. How did you know to do that? Why did it work? 

5. Can you tell me how you figured that out?  

6. Tell me more about what you are doing. Why did you choose to do it that way? 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Questions adapted from: 
 
Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999).   
 Children's mathematics: Cognitively guided instruction. Portsmouth, NH:   
 Heinemann. 
Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking mathematically: Integrating  
 arithmetic and algebra in elementary school. Portsmouth, NH: Heineman. 



 114 

APPENDIX C: MATH ABILITIES ASSESSMENT  
 

Name: ________________________    Date: ___________________ 
 
 
Part A. Fact Fluency 
 
Teacher will show students each fact card, in order that they appear in the table. Students 
are asked to answer each addition fact as quickly as they can. Teacher will record 
students’ response, if they solved automatically (within 2 seconds), and how they solved 
if not automatic (counting or direct modeling with fingers). 
 
Fact Response Automatic? Notes 
 

2 + 2 
 

   

 
6 + 6 

 

   

 
5 + 1 

 

   

 
4 + 3 

 

   

 
3 + 6 

 

   

 
6 + 5 

 

   

 
 
 
 
 
Adapted from: 
 
Kamii, C. (1985). Young children reinvent arithmetic: Implications of Piaget’s theory. 
 New York, NY: Teachers College Press. 
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2 
 + 2 . 

6 
 + 6 . 

5 
 + 1 . 

4 
 + 3 . 

3 
 + 6 . 

6 
 + 5 . 
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Part B. Subitizing.  
 
Teacher will shuffle cards and show them to students for 2 seconds. Students are asked to 
name the number of dots they see on the card. Teacher will record students’ answer for 
each card, as well as any notes about their response. 
 
Card Response Automatic? Notes 
 
5—tens frame 
 

   

 
8—tens frame 

 

   

 
3—tens frame 

 

   

 
7—die 

 

   

 
6—die 

 

   

 
9—die 
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Part C. Comparing Numbers. 
 
Teacher will show students cards one at a time. Each card has two numbers printed on it. 
Teacher will ask “Which number is greater?” or “Which number is less?” and record 
students’ response.  
 
  

Numbers Question Response 
 

65/56 
 

 
Which number is less? 

 

 
23/26 

 

 
Which number is greater? 

 

 
400/40 

 

 
Which number is greater? 

 

 
10/1 

 

 
Which number is less? 

 

 
6/16 

 

 
Which number is greater? 
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65 56 
 
 

23 26 
 
 

400 40 
 
 

10 01 
 
 

6 16 
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Part D. Base 10. 
 
Teacher will show student each card, one at a time. The teacher will ask the student how 
much is needed to get to the next ten 
 

Card Response—Auto or Calc? 

8 (get to 10) 
 

 

6 (get to 10) 
 

 

3 (get to 10) 
 

 

1 (get to 10) 
 

 

45 (get to 50) 
 

 

27 (get to 30) 
 

 

38 (get to 40) 
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8 

6 

3 
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1 

45 

27 
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38 
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Part E. Problem Solving (Early Base Ten Assessment).  
 
Teacher will read each of the following story problems aloud to students and record their 
solution strategy and answer on the recording sheet. Students will have access to 
manipulatives (Unifix cubes and Base Ten blocks) and scratch paper to use while solving. 
After completing the assessment, teacher will fill out the Individual Student Profile for 
each student. 
 
 
Join, Result Unknown:  
You have 20 cookies on a plate. I give you three more cookies to put on the plate. How 
many cookies do you have on your plate now?  
 
Separate, Result Unknown: 
There are 17 cookies on the plate. Seven of the cookies get eaten. How many cookies are 
still on the plate?  
 
Join, Change Unknown: 
You have 30 cookies already made for a party with friends. How many more cookies do 
you need to make to have 37 cookies for the party?  
 
Compare, Difference Unknown: 
You have 10 cookies on your plate. I have 14 cookies on my plate. How many more 
cookies do I have than you? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Created by: 
 
Brickwedde, J. (2005). Early base ten assessment: Second edition [Assessment 
 instrument]. Saint Paul, MN; Hamline University. 
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  Early Base Ten Assessment       revised February#2, 2005 
 
Directions: Present the following story problems verbally to the child. Record the answer and solution 
strategy used. The strategy used will expose what stage of base ten development the child is at. The four 
levels typically witnessed are direct modeling, counting on or counting to (calculating levels), flexible 
strategies and abstract number strategies (automatic levels). Below is a chart to create a profile of the child 
based upon the responses to each problem. If a child responds at the automatic abstract number level, there 
are suggested follow up questions presented. If numbers or the context need to be adjusted, the object is to 
use these problem types with number choices that draw attention to the explicit base ten relations that exist 
in composing and decomposing a multidigit number. If the child does not respond to the problem, explicitly 
direct the child to using cubes or pictures to solve the problem. The assessment administrator should follow 
the lead of the child to see how far and to what number range his or her base ten understanding might 
extend before a calculating strategy needs to be utilized. 
Join, Result Unknown 
     You have 20 cookies 
on a plate. I give you 
three more cookies to 
put on the plate. How 
many cookies do you 
have on your plate now?
  

Separate, Result 
Unknown 
     There are 17 cookies 
on the plate. Seven of the 
cookies get eaten. How 
many cookies are still on 
the plate? 
  

Join, Change 
Unknown 
     You have 30 cookies 
already made for a 
party with friends. How 
many more cookies do 
you need to make to 
have 37 cookies for the 
party?  

Compare, Difference 
Unknown 
    You have 10 cookies 
on your plate. I have 14 
cookies on my plate. 
How many more cookies 
do I have than you? 

Objective: To assess if the 
child understands how a 
number is composed in 
terms of its place value 
components. To assess a 
child’s intuitive or explicit 
understanding of 0 + a = a. 

Objective: To assess if the 
child understands how a 
number can be decomposed 
into its place value 
components. To assess a 
child’s intuitive or explicit 
understanding of a – a = 0. 

Objective: Similar to the 
Join Result Unknown 
question but from a 
different structure. 

Objective: To assess if a 
child can compare two 
numbers with the ones 
place fixed and tens place  
is unequal. 

Notes: 
 
 
 
 
 
 
 
 
 
 

Notes: Notes: Notes: 

If the child responds at the 
automatic level, verbally 
ask, “What if you had 60 
cookies and I gave you 8 
more?” “What if you had 
130 and I gave you 4 
more?” “What if it was 105 
cookies and I gave you 20 
more?” 

If the child responds at the 
automatic level, ask “What 
if it were 74 and 4 were 
eaten? 124 and 20 were 
eaten?” 

If the child responds at the 
automatic level, ask 
“What if you had 90 
cookies, how many more 
to have 98 cookies? What 
if 54 cookies, how many 
to have 64 cookies?” 

If the child does not have 
an easy time with solving 
these numbers, try asking 
the problem with 14 and 
24. The teen numbers can 
be harder for some 
children. If at the 
automatic level, ask using 
the numbers 23 & 43 
(spreading the distance by 
greater increments of ten); 
136, 236 
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Individual Student Profile – Early Base Ten Assessment 
 
 

 
  

JRU 
(20, 3) 

 
SRU 
(17,7) 

 
JCU 

(30,37) 

 
CDU 

(14,24) 
 

Adjusted 
numbers? 

Adjusted 
numbers? 

Adjusted 
numbers? 

Adjusted 
numbers? 

Direct 
Modeling 

(Calculating Level) 

    

    

Counting 
Strategies 

(Calculating Level) 

    

    

Flexible, Derived or Abstract 
Strategies 

(Automatic Level) 

    

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Created by: 
 
Brickwedde, J. (2005). Early base ten assessment: Second edition [Assessment 
 instrument]. Saint Paul, MN; Hamline University. 
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APPENDIX D: MATH BELIEFS INVENTORY 
 

1. Math is easy for me 
 
 

 
 

 
2. I can solve any math problem if I put my mind to it 

 
 
 
 
 

3. Solving math problems makes me feel good 
 
 
 
 
 

4. Math makes me feel sad 
 
 
 
 
 

5. I am good at math 
 
 
 
 
 

6. I can get a good grade in math if I try really hard 
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7. I am not smart enough to be good at math 
 
 
 
 
 

8. I know a lot about math right now 
 
 
 
 
 

9. I want to learn more math 
 
 
 
 
 

10. Math makes me feel nervous 
 
 
 
 
 

11. I am scared to make a mistake in math 
 
 
 
 
 

12. I love solving math problems 
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Adapted from: 
 
Ayodele, O. J. (2011). Self-concept and performance in secondary school students in  
 mathematics. Journal of Educational and Developmental Psychology, 1(11),  
 176-183. 
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