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Abstract

Permafrost thaw has a potentially large impact on the global climate system through re-

lease of carbon gas that has been stored as organic carbon for up to 400,000 years. System

feedbacks between permafrost carbon content, microbial decomposition rates, ground

temperature, and greenhouse gas radiative forcing make the permfrost system suscepti-

ble to rate induced tipping. Individual components of the permafrost system are exam-

ined to contribute to understanding of the timing and behavior of system tipping.

A Permafrost Bomb model is created to evaluate the long term decomposition ground

temperature feedback behavior. Results showed several system tippings with decreasing

successive amplitude under a constant atmospheric temperature forcing. This resem-

bles the global temperature behavior of the PETM hyperthermals, supporting evidence

of permafrost thaw influence on paleoclimate events. Six years of ground temperature

data from a Kapp Linné borehole was analyzed for the thermal diffusivity through time

and depth. Increasing atmospheric temperature is associated with greater thermal diffu-

sivity and more effects from latent heat transfer, which were observed far below the active

layer. Considering the results directly from this study and previously published research,

a more complete model for permafrost is proposed. This model considers ground and
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atmospheric conditions for temperature and carbon content.

Overall, these findings are applicable in permafrost and climate modeling for the pur-

pose of understanding how the permafrost system may change and impact the global

climate on both the geologic time scale and human lifespan.
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Chapter 1

Introduction

1.1 Background of Permafrost

1.1.1 Permafrost Location and Extent

Permafrost is a region land, in which a portion of the subsurface remains frozen for two

consecutive years (Schuur et al., 2008). It is composed of mineral soil, organic soil, rock,

or ice (Schuur et al., 2008). Permafrost exists at high latitudes and elevations (Schaefer

et al., 2014). In the Southern Hemisphere, it is limited to sub-antarctic islands, small re-

gions of Antarctica, and few mountainous areas (Schaefer et al., 2014). In the Northern

Hemisphere, 24 % of exposed land is characterized as permafrost (Schaefer et al., 2014).

In addition to Arctic and boreal land regions, this includes areas of the continental shelf

in the Arctic Ocean and high elevation subtropical regions (Schuur et al., 2008). Fig. 1.1

presents the spatial distribution of permafrost in the Northern Hemisphere. Based on the

percentage of permafrost in the landscape, zones of permafrost are described as contin-

1



CHAPTER 1. INTRODUCTION 2

uous (90% - 100%), discontinuous (50% - 90%), sporadic (10%-50%), or isolated patches

(0%-10%) (Vaks et al., 2013).

Figure 1.1: Northern Hemisphere spatial distribution of permafrost where, tan represents per-
mafrost free areas and shades of purple represent regions of isolated, sporadic, discontinuous,
or continuous permafrost cover. Figure from Schuur et al. 2008.

1.1.2 Formation

Permafrost forms when there is new soil material exposed in regions where the climate

is cold enough to allow for perennially frozen subsurface material (Shur and Jorgenson,

2007). In continuous regions, formation is climate driven while, in discontinuous regions,

it is dependent on climate as well as the local landscape and ecosystems (Shur and Jor-

genson, 2007). Landscape processes that may result in new regions of permafrost are

floodplain and drained-lake basin development (Shur and Jorgenson, 2007). In already
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existing permafrost regions, syngenetic permafrost growth occurs when the local climate

and landscape is unchanging due to regular sedimentation and peat formation (Schuur

et al., 2008). Poor soil water drainage results in peat formation while, aeolian and alluvial

processes result in sedimentation (Schuur et al., 2008). Both processes increase the eleva-

tion of the upper permafrost boundary and, therefore, permafrost depth (Schuur et al.,

2008).

The high majority of permafrost present today formed during the glacial periods of

the Pleistocene (Schuur et al., 2008). Higher latitude permafrost, in continuous regions,

has been frozen for 400,000 years or longer (Vaks et al., 2013). Mid-latitude discontinu-

ous permafrost regions formed during the last glacial/interglacial cycle of the Pleistocene

(Schuur et al., 2008). At the last glacial maximum (LGM), approximately 20,000 years ago,

permafrost coverage peaked, existing in regions of the continental United States, northern

Kazakhstan, and Europe (Schuur et al., 2008). Rapid thaw, starting at the southernmost

regions, occurred following the LGM such that, by the Holocene Climate Optimum, 5000

to 9000 year ago, the continental United States, western Siberia, northern Kazakhstan,

and Europe, were permafrost free (Schuur et al., 2008). Permafrost thaw has continued as

average global temperature has increased since the LGM (Schuur et al., 2008). New per-

mafrost has formed n regions that are now sporadic or discontinuous permafrost during

relatively cold periods of the Mid to Late Holocene (Schuur et al., 2008).
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1.1.3 Temperature Profile

The temperature profile of permafrost with depth is dictated by geothermal heat and

surface temperature (Osterkamp and Burn, 2003). Geothermal heat originates at Earth’s

core and results in an increase in temperature with ground depth (Osterkamp and Burn,

2003). The rate at which the temperature increases, the geothermal gradient, is dependent

on local bedrock thermal conductivity (Osterkamp and Burn, 2003). Geothermal heat and

local rock type therefore determine the depth extent of permafrost, the lower boundary

being defined as the depth at which the temperature is above 0oC (Osterkamp and Burn,

2003).

The upper ground temperature is influenced from by seasonal surface temperatures

(Osterkamp and Burn, 2003). Seasonal variation causes large annual temperature fluctu-

ation in the upper region of permafrost, resulting in a distinct winter and summer per-

mafrost profile (Osterkamp and Burn, 2003). In the Northern Hemisphere winter, the

surface temperature is less than 0oC. Ground temperature increases rapidly from the sur-

face with depth until it aligns with the expected temperature based on the geothermal

gradient. It then continues to increase with depth by the geothermal gradient. In the

summer, the surface temperature is above 0oC. Ground temperature decreases rapidly

with depth until it aligns with the geothermal gradient, at which point it will increase

with depth by the geothermal gradient.

The topmost portion of the ground, due to surface temperature, thaws in the summer

and freezes in the winter (Osterkamp and Burn, 2003). This region is the active layer,

defined as the greatest depth that is above 0oC at any point in the year (Osterkamp and
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Burn, 2003). The upper boundary of the permafrost is at the base of the active layer

(Osterkamp and Burn, 2003). The region between the active layer and stable permafrost

is particularly ice-rich and is defined as the transition zone (Osterkamp and Burn, 2003).

Fig. 1.2 graphically represents the general permafrost temperature profile with depth.

Figure 1.2: Permafrost depth temperature profile annotated with the summer profile (maxi-
mum temperature), winter profile (minimum temperature), active layer, permafrost bounds,
and geothermal gradient. Figure from Osterkamp and Burn, 2003.

While seasonal atmospheric temperature changes hardly influence permafrost tem-

perature at great depth, long term atmospheric trends do impact permafrost temperature

at depth. Fig. 1.3 presents the annual average temperature at a borehole on Ellesmere

Island from 1978 to 2014 at 24.4m deep. The temperature has increased from about -

15.5oC to -13oC since 1978, with a greater rate of increase after 2000. Fig. 1.4 shows the
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monthly average temperature from a borehole in Igloolik, Nunavut from 2008 to 2011 at

15m depth. Even in these three years, an increase in temperature is observed. The fact

that these great depths are reflecting the atmospheric temperature change over a rela-

tively short time period shows one example of how the permafrost temperature profile

will be affected by warming of the global climate.

Figure 1.3: Permafrost annual ground temperature data from the Ellesmere Alert 5 borehole at
24.4m depth from 1978 to 2014. Data is from the GTNP.

The temperature at any specific depth in the permafrost is impacted by the temper-

atures at higher and lower depths via heat conductivity (Frob, 2011). Heat conductivity

is dependent on material characteristics, thermal conductivity and specific heat capacity

(Frob, 2011). Both of these properties vary based on the ground lithologic composition,

water content, ice content, and air content (Woo, 2012). As temperature is a controlling

factor of water and ice content, it ultimately influences the thermal conductivity and heat
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Figure 1.4: Permafrost monthly ground temperature data from the Igloolik borehole at 15m
depth from 2008 to 2011. Data is from the GTNP.

capacity of permafrost (Woo, 2012). This means that these thermal properties vary with

location and time.

1.1.4 Carbon Storage

The organic and mineral soil in permafrost acts as a carbon reservoir in the global car-

bon cycle (Schuur et al., 2008). Peat, organic rich soil is 20% to 60% carbon and mineral

soil is 0% to 20% carbon (Schuur et al., 2008). The carbon originates from plant photo-

synthesis and growth, resulting in highest carbon density in permafrost in the shallow

most depths (Schuur et al., 2008). Methods of syngenetic permafrost growth and cry-

oturbation encourage movement of the organic carbon from the uppermost permafrost to
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lower depths, where it is more likely to remain frozen and undecomposed (Schuur et al.,

2008). Syngenetic permafrost growth increases the amount of material above the previ-

ously deposited organics, burying the organics into the permafrost (Schuur et al., 2008).

Cryoturbation is the mixing of deposited soils due to repeated freezing and thawing of

the ground (Schuur et al., 2008). This mixing moves organics from the uppermost ground

layer to permafrost depths (Schuur et al., 2008).

Decompositional processes in soil release the organic carbon stored as carbon diox-

ide and methane (Walz et al., 2017). Microbial decomposition is dependent, namely, on

carbon availability, temperature, and oxygen availability (Hollesen et al., 2015). In per-

mafrost regions, the temperature is often too low for significant decomposition of the

stored organic carbon to take place (Walz et al., 2017). Under somewhat warmer temper-

atures, permafrost is often saturated with water due to ice melt or precipitation, limiting

oxygen availability for decomposition (Schuur et al., 2008). Due to the lack of organic

decomposition as peat formation and sedimentation continue over time, the organic car-

bon stored in permafrost accumulates (Schuur et al., 2008). It is estimated that 1700Gt

of organic carbon is stored in Northern Hemisphere permafrost (Vaks et al., 2013). Over

60% of this organic carbon is within the upper 3m of global permafrost (Koven et al.,

2009). Increase in permafrost temperature generally encourages microbial decomposition

and therefore leads to the release of organic carbon in permafrost, as carbon dioxide and

methane gas, into the atmosphere (Christensen et al., 2004).
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1.2 Role of Permafrost in the Global Climate

1.2.1 Carbon Cycle and Global Climate

There is a positive feedback between atmospheric temperature and greenhouse gas con-

centration. Greenhouse gases in the Earths atmosphere absorb radiation emitted from the

Earth, trapping heat within the atmosphere and increasing the temperature (Hansen et al.,

1981). Greater temperatures encourage greenhouse gas concentrations through increased

evaporation rates and variety of processes specific to individual greenhouse gasses. Car-

bon dioxide, a prevalent greenhouse gas, has several feedback with atmospheric temper-

ature through the carbon cycle (Hogg, 2008). This relationship is reflected in records of

atmospheric temperature and carbon dioxide concentration, as the two variables covary

through Earths major climate cycle (Hogg, 2008). Fig. 1.5 graphically shows the global

temperature and carbon dioxide values interpreted from Antarctic ice cores for the last

400,000 years. The major components on the geologic time scale of the global tempera-

ture and carbon dioxide feedback are silicate weathering, ocean out-gassing, vegetation,

and the greenhouse gas radiative effect (Hogg, 2008).

In the past 140 years, there has been significant anthropogenic influence on atmo-

spheric greenhouse gas concentrations due to the burning of fossil fuels (Schaefer et al.,

2014). Fig. 1.6 graphically shows the measured values of atmospheric carbon dioxide

and global temperature since 1958. The increasing trend of atmospheric carbon diox-

ide concentration and temperature on this time scale is reflective of the anthropogenic

input of carbon into the atmosphere from the pre-industrial average of 280ppm to the

current value of 400ppm and its effect on the global temperature (NOAA, 2018). The
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Figure 1.5: Graph of global atmospheric temperature anomaly (oC), blue, and carbon dioxide
concentration (ppm), orange, from about 800,000 years ago to present. Data constructed from
EPICA Dome, Antarctica.

estimated permafrost reservoir organic carbon storage, 1700Gt, is almost twice as much

as that currently in the atmosphere (Schaefer et al., 2014). Therefore, input to the atmo-

sphere from the permafrost system, which is temperature sensitive, could significantly

impact the Earth’s immediate climate (Schaefer et al., 2014).

1.2.2 Permafrost Thaw and Paleoclimate

There is evidence that permafrost thaw has occurred at various points throughout Earth’s

history in coincidence with global climate warming anomalies. Speleothem growth his-

tory in Siberian caves reflect permafrost thaw extent over the past 500,000 years (Vaks

et al., 2013). Regions of permafrost currently characterized as discontinuous and sporadic

experienced thaw during each of six interglacial periods in the last 500,000 years, includ-

ing the present (Vaks et al., 2013). Regions currently continuous permafrost, at 60oN, only

have recorded thaw during MIS 11, about 400,000 years ago (Vaks et al., 2013). MIS 11,
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Figure 1.6:Measured atmospheric carbon dioxide and global temperature from 1958 to present.
Temperature is presented yearly as a 5 yr average and carbon dioxide is given monthly. Data
from NOAA, 2017.

therefore, represents the most significant permafrost thaw event in the past 500,000 years,

which aligns with other Quaternary climate proxies (Vaks et al., 2013). The MIS 11 inter-

glacial corresponds with a local temperature 4oC to 5oC warming than today, and a global

average 1.5oC higher than present (Vaks et al., 2013).

It is hypothesized that, not only did permafrost thaw in the Quaternary interglacials,

but also that the resulting carbon gas release from organic carbon decomposition may

have contributed to both the timing and extent of the interglacials (Zech, 2012). Previ-

ously, it has been determined that the difference between atmospheric carbon dioxide

concentration during glacials, 180-200 ppm, and interglacials, 250-300 ppm, was due to

ocean carbon storage and outgassing (Zech, 2012). However, considering all possible

ocean carbon storage changes, ocean processes alone do not account for the range of

carbon dioxide in the atmosphere from glacials to interglacials (Zech, 2012). Addition-

ally, this determination assumed that no terrestrial carbon storage would increase during
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glacials (Zech, 2012).

The Tumara permafrost profile sequence has organic rich layers attributed to glacial

periods and organic poor layers attributed to interglacial periods (Zech, 2012). This shows

that permafrost acts as a greater net carbon storage during glacials, when slow carbon se-

questration is possible, than interglacials, when carbon is released through decomposition

processes (Zech, 2012). The carbon storage and release from permafrost likely accounts

for a portion of the glacial to interglacial atmospheric carbon dioxide difference, impact-

ing the global climate extent Quaternary glacial cycles (Zech, 2012).

On a larger timescale, permafrost thaw has been proposed as the cause of the series of

extreme warming events, hyperthermals, between 55 and 52.5 million years ago (DeConto

et al., 2012). These events followed the Palaeocene-Eocene Thermal Maximum (PETM), in

which global mean temperature increased by about 5oC over only a few thousand years

(DeConto et al., 2012). At that time, orbital forcings of high eccentricity and obliquity

were driving long-term global warming, with intensified effects on high latitudes (De-

Conto et al., 2012). It is therefore likely that the cause of the hyperthermals was related

to global temperature and sensitive to polar climates, such as permafrost (DeConto et al.,

2012). Permafrost regions may have reached a climatic threshold at the PETM which in-

duced rapid thaw and out-gassing of carbon (DeConto et al., 2012). Increase in silicate

weathering rates and gradual restock of the permafrost carbon allowed for climate recov-

ery after the PETM and hyperthermals until orbital forcings, again, triggered permafrost

system tipping and climate hyperthermal (DeConto et al., 2012). Permafrost systematic

thaw and re-establishment align with the observed decrease in intensity of successive

hyperthermals, as the permafrost would not recover all of the original carbon stored be-
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tween hyperthermals (DeConto et al., 2012). This scenario represents the potentially large

impact that the permafrost system can have on the global climate.

1.2.3 System Feedbacks

The permafrost system is composed of multiple feedback relationships that dictate sys-

tem reaction to condition changes (Hollesen et al., 2015). The major feedback processes

are microbial decomposition rates, greenhouse gas radiative forcing, and internal heat

production (Hollesen et al., 2015). Microbial decomposition converts organic carbon to

carbon gas, namely carbon dioxide or methane, which is released into the atmosphere

(Treat et al., 2014). Decomposition rate within permafrost is dependent on the ground

temperature and organic carbon content (Schuur et al., 2008). This process has a negative

feedback between decomposition rates and carbon content, as the continuation of decom-

position will deplete the permafrost carbon storage and therefore decrease decomposition

rate (Hollesen et al., 2015). Internal heat production refers to microbial decomposition

processes which release heat and increase the surrounding ground temperature (Holle-

sen et al., 2015). Decomposition rate increases with temperature, until some maximum

productivity level, and then decreases with temperature (Pietikainen et al., 2004). The

internal heat production decomposition rate relationship most readily acts as a positive

feedback due to the currently low permafrost temperatures but, could act as a negative

feedback after some maximum productivity temperature.

Carbon gas released to the atmosphere through microbial decomposition acts as a

greenhouse gas, increasing the atmospheric temperature through greenhouse gas radia-
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tive forcing (Crichton et al., 2014). Increase in atmospheric temperature corresponds to

an increase in permafrost ground temperature, which impacts the decomposition rates

(Hollesen et al., 2015). Again, this feedback could either be positive or negative, depend-

ing on the initial temperature of the system. Fig. 1.7 is a schematic diagram of the feed-

back relationships within the permafrost system. Fig. 1.7 notes both internal heat pro-

duction and greenhouse gas radiative forcing as positive feedbacks with decomposition

rates because, current permafrost temperatures are lower than the bacterial maximum

decomposition rate (Treat et al., 2014).

Figure 1.7: Simplified diagram depicting the feedbacks in the permafrost system. Arrows ac-
companied with positive or negative signs represent the e�ect of one variable on another. Pos-
itive or negative symbols inside of a feedback loop represent the system feedback e�ect as a
whole.
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1.2.4 System Tipping

The presence of positive feedback cycles within the permafrost system causes there to be

great sensitivity to condition changes (Hoyer-Leitzel et al., 2017). Such sensitivity results

in the possibility of system tipping, when small changes in external conditions result in

large change in system conditions or behavior (Hoyer-Leitzel et al., 2017). Typically, tip-

ping is considered to be threshold induced, in which the system will tip when a system

variable is above a specific value (Wieczorek et al., 2010). Systems with internal positive

feedbacks, however, may be better represented with a rate-induced tipping mechanism,

in which the rate of which conditions change, rather than their instantaneous value, dic-

tates system tipping (Hoyer-Leitzel et al., 2017). As positive and negative feedbacks are

the basis of many systems in the global climate, rate-induced tipping approach of rep-

resentation and understanding is applicable within many aspects of the Earth’s climate

system (Hoyer-Leitzel et al., 2017). This concept is additionally reflective of ecosystem

adaptability to small condition changes through time (Shur and Jorgenson, 2007).

Wieczorek et al., 2010 applied the concept of rate-induced tipping to a peatland fire

scenario in the Compost Bomb Instability model, which considered the positive feedback

between peatland decomposition and ground temperature (Wieczorek et al., 2010). The

model evaluates the effect of a constant rate of atmospheric temperature change, inde-

pendent of the other variables, on the peatland ground temperature and carbon content,

which are coupled (Wieczorek et al., 2010). The Compost Bomb Instability model predicts

a threshold rate of atmospheric temperature increase (Wieczorek et al., 2010). Below this

rate, the peatland ground temperature remains relatively stable but, above, the ground
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temperature rapidly increases, signifying system tipping (Wieczorek et al., 2010).

The permafrost system is directly analogous to the Compost Bomb Instability model

through the decomposition rate ground temperature feedback and atmospheric tempera-

ture dependence of ground temperature. The permafrost system has the additional feed-

back between the ground and atmospheric conditions through the greenhouse gas radia-

tive forcing. Therefore, the permafrost system may be best represented by a rate-induced

tipping mechanism. Rate-induced tipping of the permafrost system would be rapid per-

mafrost thaw in response to a small increase of atmospheric temperature or carbon con-

tent change rate.

1.3 Purpose of Study

1.3.1 Adapting ”Compost Bomb” Model for Permafrost

The purpose of this study is to explore critical transitions within the permafrost system,

product of the system feedbacks, through numerical models. Firstly, the Compost Bomb

Instability model from Wieczorek et al. 2010 will be directly modified and refined to bet-

ter represent the permafrost system. The model is composed of differential equations

for atmospheric temperature, ground carbon content, and ground temperature, where

ground conditions are considered for a single permafrost layer. This model focuses on

the ground temperature decomposition rate feedback with a year time step, which al-

lows for evaluation of the long term trends and responses of this feedback alone. Model

specifications that differ for the permafrost system from the peatland representation in
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the the Compost Bomb Instability model are ground thermal properties, decomposition

rate, litter deposition rate, and the initial conditions of ground temperature and carbon

content.

1.3.2 Thermal Properties

The temperature profile of permafrost throughout time is largely defined by the thermal

conductivity and specific heat capacity of the permafrost (Osterkamp and Burn, 2003).

It has been previously recognized that these values depend on the permafrost lithology,

water content, and ice content (Woo, 2012). How the thermal conductivity to heat capacity

ratio, dh , varies in a single permafrost location through time, however, has not been

explicitly described. This study analyzes permafrost ground temperature data from two

boreholes to develop a numerical function to describe dh in terms of time, temperature,

and depth. The purpose of a well defined dh function is to increase understanding of

the general permafrost system and, can be applied within permafrost system models to

produce more accurate model representations.

1.3.3 A More Complete Model

Secondly, a numerical model that considers the feedback between the ground and atmo-

spheric conditions in addition to internal heat production will be proposed. This model

will more accurately represent the permafrost system and offer greater information to the

effect of permafrost thaw on the global climate. The use of small time steps allows for

evaluation of permafrost behavior throughout a year and also puts this model in refer-
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ence to the human lifespan. Both the internal heat production and greenhouse gas radia-

tive forcing feedback mechanisms have been considered separately in previous models

but, the coupling of the two systems for a complete view of the system has not been

done. This will require equations of state for atmospheric temperature, atmospheric car-

bon concentration, ground temperature, and ground carbon content. Ground conditions

are considered for multiple finite permafrost layers.

1.3.4 Relevance

Anthropogenic greenhouse gas input has contributed to to rise of atmospheric carbon

dioxide from preindustrial 280 ppm to the current 400 ppm and has led to global tem-

perature rise (IPPC, 2014). Understanding climate systems and their tipping points is

vital to recognizing how local and global environments may change in response. This

information is essential when creating and implementing climate mitigation policies in

response to the anthropogenic influence of the rapidly changing climate (Schaefer et al.,

2014). Current global climate policies do not consider the influence of permafrost thaw

on the climate system (Schaefer et al., 2014). Permafrost, however, could play a major role

in the global climate due to its large carbon storage and potential for rate-induced tip-

ping. The three focuses of this study will offer greater understanding of the permafrost

system in reference to regular heat flow, the long term ground temperature decompo-

sition rate feedback through internal heat production, and the interaction between the

permafrost and global climate systems. In combination, this will allow for more accurate

permafrost model representations in the future and, ultimately, better recognition of the
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effect of current climate change on near future climate conditions through the permafrost

system feedbacks.



Chapter 2

”Permafrost Bomb” Model

2.1 The ”Compost Bomb Instability” Model

2.1.1 Equations of State

The Compost Bomb Instability model, from Wieczorek et al., 2010, is a three dimensional

system of differential equations made to represent the peatland temperature decompo-

sition rate feedback (Wieczorek et al., 2010). Equations of state are given to represent

atmospheric temperature, Ta, ground temperature, T, and ground carbon content, C. Eq.

2.1 gives the equation for ground carbon content where, L is annual litter fall and r(T )

is the rate of microbial decomposition. A temperature dependent function for microbial

decomposition rate is given in Eq. 2.2, where r0 and α are constants. Note that this is an

exponential function. Eq. 2.3 is the rate of ground temperature change in which, µ is the

heat capacity, A is a constant of proportionality, and k is the thermal conductivity. The

20
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rate of atmospheric temperature change, Eq. 2.4, is set to a constant positive value, v.

dC

dt
= L− Cr(T ) (2.1)

r(T ) = r0 exp(αT ) (2.2)

µ
dT

dt
= ACr(T )− k(T − Ta) (2.3)

dTa
dt

= v (2.4)

Hoyer-Leitzel et al., 2017 ran the Compost Bomb Instability model for varying val-

ues of v to observe the rate-induced system tipping. Table 2.1 lists all constants in the

Compost Bomb Instability model used by Hoyer-Leitzel et al., 2017. The initial system

conditions are (50 kg m−2, 8.15oC, 0oC) for (C, T, Ta).

L 1.055 kg m−2 yr−1

α 0.1 ln(2.5) C−1

k 5.049× 106 J yr−1 m−2 C−1

r0 0.01 yr−1

µ 7.8× 106 J m−2 C−1

A 3.9× 107 J kg−1

Table 2.1: Parameters for Compost Bomb Instability Model as used in Hoyer-Leitzel et al., 2017.

2.1.2 Dynamical Behavior

Results from the Compost Bomb Instability model for v values of 0.07oCyr−1, 0.1oCyr−1,

and 0.11oCyr−1 were calculated. Fig. 2.1 and Fig. 2.2 show the results from the Compost



CHAPTER 2. ”PERMAFROST BOMB” MODEL 22

Bomb Instability for ground temperature and ground carbon content, respectively. An

atmospheric temperature change rate of 0.1 oCyr−1 perturbs the system slightly while,

an atmospheric temperature change rate of 0.11 oCyr−1 results in a rapid release of all

ground carbon and increase in ground temperature. This is representative of the rate-

induced tipping of the peatland system.

Figure 2.1: Ground temperature results from the Compost Bomb Instability model for v values
of 0.07, 0.01, and 0.11 oCyr−1

2.2 Adaptation of ”Compost Bomb” for Permafrost

2.2.1 Temperature Dependence of Soil Microbial Decomposition

Wieczorek et al., 2010 proposes an exponential temperature dependence of the decompo-

sition rate function for peatlands, defining r(T ) = 0.01e0.091T kgCkgC−1yr−1. Treat et al.,

2014 and Mikan et al., 2002 both did lab analysis of the decomposition rates of organic
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Figure 2.2: Ground carbon density results from the Compost Bomb Instability model for v val-
ues of 0.07, 0.01, and 0.11 oCyr−1

rich soil from permafrost active layers under a range of temperatures. Both determined

that an exponential decomposition rate function best fit their data. However, Treat et

al., 2014 analyzed sample decomposition at only four temperatures between -5oC and

20oC. Due to the limited number of data points and small range of tested respiration tem-

peratures, the temperature dependence of the decomposition rate, especially at higher

temperatures, is not clear. Mikan et al., 2002 recorded decomposition at fourteen different

temperatures but, still only covered a range from -10oC to 14oC. There were enough data

points to conclude a decomposition function over the tested temperature range but, still,

the decomposition rate at higher temperatures is left unknown.

Pietikainen et al., 2004 performed lab respiration analysis on soils and fungus, not spe-

cific to arctic regions, for a temperature range from 0oC to 40oC. Fig. 2.3, the respiration

results for humus soil from their study, shows that respiration rates exhibit exponential
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temperature dependence at relatively low temperatures but, do not continue this trend

towards higher temperatures (Pietikainen et al., 2004). Rather, there is some maximum

temperature, after which the decomposition rates are impeded by greater temperatures

(Pietikainen et al., 2004). A Gaussian function is representative of this mechanism. Fig. 2.4

shows the results from Pietikainen et al., 2004 of relative bacterial activity in humus soil

over the same temperature range. This fully shows a Gaussian curve, as bacterial activity

decreases significantly at greater temperatures (Pietikainen et al., 2004). While decom-

position rates in permafrost have previously been defined as exponential functions, this

representation is unrealistic based on typical bacterial activity behavior as represented in

Pietikainen et al., 2004. Therefore, a Gaussian function would better represent the tem-

perature dependence of permafrost decomposition rate.

Figure 2.3: Respiration of humus soil for 0oC through 40oC. Peak respiration rate occurs at
about 40oC. Figure from Pietikainen et al., 2004.
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Figure 2.4: Relative bacterial activity in humus soil from 0oC through 40oC. Peak bacterial ac-
tivity occurs at about 25oC. Figure from Pietikainen et al., 2004.

2.2.2 Modeling Soil Microbial Decomposition

To determine a Gaussian function representative of permafrost decomposition, an esti-

mated Gaussian function is compared to the proposed exponential decomposition rate

functions, r(T ), in Wieczorek et al., 2010, Treat et al., 2014, and Mikan et al., 2002. These

functions take the form of Eq. 2.2, with varied values for r0 and α. Eq. 2.5 shows a Gaus-

sian decomposition rate function. This equation has three parameters; Tc, a, and b. Tc is

the maximum decomposition temperature and a and b are constants that determine the

shape of the Gaussian curve. The functions are compared critically only up to 20oC, as

this was the highest temperature supported by a lab measurement.

r(T ) =
a√
2π

exp(
−b
2

(T − Tc)2) (2.5)

Fig. 2.5 and Fig. 2.7 present Gaussian functions that reasonably fit the previously pro-

posed exponential functions within the 0oC to 20oC test window. The estimated Gaussian
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function presented in Fig. 2.8, with a Tc of 40oC, is similar in amplitude and central

temperature to the respiration rates measured in humus soil by Pietikainen et al., 2004,

shown in Fig. 2.3. The estimated Gaussian curve in Fig. 2.6, with a Tc of 70oC, does not

align with any specific measurements beyond the 0oC to 20oC test window but, is infor-

mative to consider as the temperature dependence of permafrost decomposition rates is

very unclear above 20oC. Fig. 2.6 and Fig. 2.8 compare the newly proposed Gaussian de-

composition functions to the previously used exponential decomposition functions over a

temperature range up to 100oC. In the adaptation of the Compost Bomb Instability model

into a Permafrost Bomb model, the estimated Gaussian functions in both Fig. 2.6 and Fig.

2.8 will be used as r(T ), rather than an exponential function.

Figure 2.5: Comparison of r(T ) functions from 0oC to 20oC, the highest temperature with func-
tion supporting lab measurement. Gaussian parameters are Tc = 70oC, a = 11, and b = 0.003.
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Figure 2.6: Comparison of r(T ) functions from 0oC to 100oC. Gaussian parameters are Tc =
70oC, a = 11, and b = 0.003.

Figure 2.7: Comparison of r(T ) functions from 0oC to 20oC, the highest temperature with func-
tion supporting lab measurement. Gaussian parameters are Tc = 40oC, a = 7, and b = 0.012.

2.2.3 Initial Conditions

Initial conditions used in Wieczorek et al., 2010 Compost Bomb Stability model for peat-

lands are (50 kgm−2, 8.15oC, 0oC) for (C, T, Ta). These conditions are different for a per-
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Figure 2.8: Comparison of r(T ) functions from 0oC to 100oC. Gaussian parameters are Tc =
40oC, a = 7, and b = 0.012.

mafrost specific Permafrost Bomb model. Ground temperature data for a borehole in

Kapp Linné, Svalbard, Norway shows that the annual average atmospheric temperature

and ground temperature at that location has been -3oC for six years (Christiansen, 2016).

As many other permafrost regions exist in a similar climate, this will be used as the initial

condition for both atmospheric and ground temperature in the Permafrost Bomb model.

Ground carbon content will be considered for organic rich permafrost, such as those sam-

pled in Treat et al., 2014. The average soil carbon content sampled from both the active

layer and upper permafrost from locations spread across Alaska in Treat et al., 2014 was

58kgm−2, and will therefore be used as the initial condition for ground carbon in the Per-

mafrost Bomb model.
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2.2.4 Dynamical Behavior

The Permafrost Bomb model was run with the same specifications as the Compost Bomb

Instability model in Hoyer-Leitzel et al., 2017 except, with the decomposition function

given in Eq. 2.5 with Gaussian parameters described in Fig. 2.6 and Fig. 2.8 and updated

initial conditions. Figures 2.9, 2.10, and 2.11 show the results from a Gaussian decom-

position function with a Tc of 70oC for a v of 0.0 oCyr−1, 0.02 oCyr−1, and 0.06 oCyr−1,

respectively. Figures 2.12, 2.13, and 2.14 show the results from a Gaussian decomposition

function with a Tc of 40oC for a v of 0.01 oCyr−1, 0.02 oCyr−1, and 0.06 oCyr−1, respectively.

Both Gaussian parameters for the Permafrost Bomb result in a series of permafrost sys-

tem tipping in the 350 year time span. Each consecutive tipping increases in frequency

and decreases in magnitude. When the ground temperature spikes, the ground carbon

depletes to 0 kgm2, at which point the ground temperature decreases to the atmospheric

temperatue value. The carbon content then increases until the next tipping event. The tip-

ping in the system with a Tc of 70oC is more drastic, with maximum ground temperature

reaching 120oC compared to 60oC in the system with a Tc of 40oC. Additionally, tipping

of the 70oC Tc system occurs at a lower rate of atmospheric temperature change. In fact,

the 70oC Tc system exhibits tipping even when v is set to 0oCyr−1. Lastly, the recovery

from peak temperatures to atmospheric temperature is more rapid in the 70oC Tc system

than the 40oC Tc system.

Permafrost Bomb results, from both Tc of 70oC and a Tc of 40oC, differ greatly from

the Compost Bomb Instability results in Fig. 2.1 and Fig. 2.2. Firstly, the Compost Bomb

Instability model for peatlands has only one major tipping point over the 350 year time
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scale while, the Permafrost Bomb model shows a series of tipping points in the permafrost

system. Secondly, the tipping of the Compost Bomb Instability occurs at a much higher

rate of atmospheric temperature change than that of the Permafrost Bomb. For the Com-

post Bomb, the threshold rate is 0.11oCyr−1 while in the 40oC Tc Permafrost Bomb, the

threshold rate is 0.02oCyr−1. Additionally, the tipping of the Compost Bomb Instability is

more drastic than either Permafrost Bomb experiments, the ground temperature reaching

160oC. Lastly, the shape of the tipping point between the Compost Bomb Instabity model

is very sharp, as opposed to that in the 40oC Tc Permafrost Bomb model, where the peaks

flatten after the maximum temperature is reached and before the temperature decreases.

The 70oC Tc Permafrost Bomb model has peaks that are sharper than those of the 40oC Tc

Permafrost Bomb model but, not as sharp as in the Compost Bomb Instability model.

2.3 Discussion

2.3.1 Negative Feedback from Microbial Decomposition

A Gaussian representation of the decomposition rates within permafrost leads to the both

positive and negative feedback relationship between decomposition rate and ground tem-

perature through internal heat production. The series of system tipping events from

the Permafrost Bomb model is reflective of the greater increase of decomposition rate

with temperature at low temperatures compared to the exponential used in the Compost

Bomb Instability model (Fig. 2.5 and Fig. 2.7). The change in temperature peak shape

very sharp in the Compost Bomb Instability model to flattening out in the 40oC Tc Per-
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mafrost Bomb model is a result of the negative feedback between decomposition rate and

ground temperature at high temperatures, introduced in the Permafrost Bomb. When

the ground temperature returns to the atmospheric temperature, the permafrost carbon

reservoir restocks until the next tipping. As the atmospheric temperature increases, less

carbon storage is required to set off a tipping scenario, exhibited by the increase in fre-

quency of system tipping through time. Increase in tipping frequency allows less time

for the carbon stock to grow, causing the amplitude of system tipping to decrease with

successive tipping events. Eventually, the carbon decomposes at an equal or greater rate

than it is stored due to high atmospheric temperature, meaning that the carbon content

stays at 0 kgm−2 and there are no more tipping events observed.

The Permafrost Bomb model with a Tc of 40oC seems more realistic than that with a Tc

of 70oC. This is based on the fact that the 70oC Tc model showed system tipping when v

was 0oCyr−1, meaning that atmospheric temperature would consistently be at -3oC. Based

on observation of the majority of permafrost maintaining carbon storage since the LGM,

while average temperature values having stayed below 0oC, the 70oC Tc model can not be

accurate (Schuur et al., 2008). Decomposition does occur when the ground temperature

is under 0oC but, this decomposition rate is very low compared to that occurring during

system tipping (Mikan et al., 2002). In addition to not resulting in system tipping below

a v value of 0.02oCyr−1, the Gaussian Tc and decomposition rate maximum for the 40oC

Tc model was based on data from Pietikainen et al., 2004. Therefore, a Gaussian function

representation of permafrost decomposition rates, given in Eq. 2.5, with parameters simi-

lar to a Tc of 40oC, a of 7, and b of 0.012 would be representative of the permafrost system

in the Permafrost Bomb model.
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2.3.2 Shortcomings

While the decomposition rate function for the Permafrost Bomb model has been better

constrained, there remain shortcomings of the model. The Gaussian function with a Tc

of 40oC, a of 7, and b of 0.012 for parameters, is more realistic than the previously pro-

posed exponential decomposition rate functions and the function tested with a Tc of 70oC

but, it is still only an estimate. Decomposition rate lab analysis should be done on specif-

ically permafrost soils for temperatures ranging up to 60oC, at least, to fully constrain

the decomposition rate dependence on ground temperature. An additional fault of the

Permafrost Bomb model is that the thermal properties used were the same as those in the

Compost Bomb Instability model. Thermal conductivity, k, and heat capacity, µ, however,

differ between permafrost and peatlands (Jansson and Karlberg, 2001).

The annual contribution of carbon to the ground reservoir from litter fall was not

changed from the Compost Bomb Instability model for peatlands to the Permafrost Bomb

model. To continue with this simplified model for permafrost, this litter fall amount

should be refined to a permafrost specific value. To make a more accurate model for

permafrost, the litter fall should be a temperature dependent function (DeConto et al.,

2012). This is because, as atmospheric temperature increases, plant activity also increases

so, more organic carbon will be deposited into the ground (DeConto et al., 2012). This

feedback was not represented in either the Compost Bomb Instability or Permafrost Bomb

model.
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2.3.3 Paleocene-Eocene Thermal Maximum

The negative feedback between ground temperature and decomposition rates at higher

temperatures may offer support to the Paleocene-Eocene Thermal Maximum (PETM) hy-

perthermals permafrost hypothesis, presented in DeConto et al., 2012. DeConto et al.,

2012 hypothesized that permafrost thaw amplified effects of solar amplification through

positive system feedbacks, resulting in the hyperthermals (DeConto et al., 2012). The hy-

perthermal events were a series of six rapid peaks in atmospheric temperature and car-

bon content over the course of about two million years following the PETM (Laurentano

et al., 2015). Each successive hyperthermal event decreased in amplitude (DeConto et al.,

2012). Without considering other climate system feedbacks in the Permafrost Bomb, the

same pattern of rapid tipping, followed by rapid recovery, and decreasing amplitude of

successive tipping events was observed.

The rapid recovery from each hyperthermal has been explained with the negative

feedback between atmospheric temperature and silicate weathering rates and also veg-

etation draw down (DeConto et al., 2012). The switch to a negative feedback between

decomposition rates and ground temperature at high temperatures further supports the

practicality of permafrost system tipping and recover involvement in the post PETM hy-

perthermals. While the time scale of tipping events observed from the Permafrost Bomb

and the hyperthermal events varies greatly, this can be explained by the fact that the

Permafrost Bomb model was not modeling the precise atmospheric temperature forcing

occurring after the PETM. The Permafrost Bomb was simulating a constant increase in

atmospheric temperature, while after the PETM, the atmospheric temperature tempera-
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tures were being driven by orbital climate forcings so, the temperature not consistently

increasing or decreasing during the time span of the hyperthermals (DeConto et al., 2012).

2.3.4 Conclusion

The Permafrost Bomb adaption from the Wieczorek et al., 2010 Compost Bomb Instabil-

ity model for peatlands considers a Gaussian function for microbial decomposition rates

within the ground rather than an exponential function, as in the Compost Bomb Insta-

bility. The result is a series of system tipping points which quickly recover to the base-

line ground temperature and have decreasing successive amplitude and chage in peak

shape. This pattern resembles that of the post PETM hyperthermals, supporting previ-

ous hypothesis of permafrost system impact on the behavior of the hyperthermals. The

Permafrost Bomb model was therefore informative to the long term patterns of the per-

mafrost system resulting from the decomposition rate ground temperature feedback.

The Permafrost Bomb model could be improved with respiration lab measurements

at of carbon rich permafrost soil at higher temperatures to refine the estimated Gaussian

decomposition function, r(T ) = 7√
2π
e

−0.012
2

(T−40)2 kgCkgC−1yr−1. Additional data analysis

and measurements can be made to determine the thermal properties, thermal conduc-

tivity and heat capacity, and temperature dependent litter fall function representative of

permafrost. The focus of the Permafrost Bomb model was on the relation between ground

temperature and decomposition rate but, ultimately, a complete permafrost system model

would include the feedback between the permafrost system and atmospheric climate con-

ditions.
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(a) Ground temperature results for v = 0.0oCyr−1.

(b) Ground carbon density results for v = 0.0oCyr−1.

Figure 2.9: Permafrost Bomb results for ground temperature and carbon density for v =
0.0oCyr−1, when Gaussian parameters are Tc = 70oC, a = 11, and b = 0.003.
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(a) Ground temperature results for v = 0.02oCyr−1.

(b) Ground carbon density results for v = 0.02oCyr−1.

Figure 2.10: Permafrost Bomb results for ground temperature and carbon density for v =
0.02oCyr−1, when Gaussian parameters are Tc = 70oC, a = 11, and b = 0.003.
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(a) Ground temperature results for v = 0.06oCyr−1.

(b) Ground carbon density results for v = 0.06oCyr−1.

Figure 2.11: Permafrost Bomb results for ground temperature and carbon density for v =
0.06oCyr−1, when Gaussian parameters are Tc = 70oC, a = 11, and b = 0.003.
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(a) Ground temperature results for v = 0.01oCyr−1.

(b) Ground carbon density results for v = 0.01oCyr−1.

Figure 2.12: Permafrost Bomb results for ground temperature and carbon density for v =
0.01oCyr−1, when Gaussian parameters are Tc = 40oC, a = 7, and b = 0.012.
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(a) Ground temperature results for v = 0.02oCyr−1.

(b) Ground carbon density results for v = 0.02oCyr−1.

Figure 2.13: Permafrost Bomb results for ground temperature and carbon density for v =
0.02oCyr−1, when Gaussian parameters are Tc = 40oC, a = 7, and b = 0.012.
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(a) Ground temperature results for v = 0.06oCyr−1.

(b) Ground carbon density results for v = 0.06oCyr−1.

Figure 2.14: Permafrost Bomb results for ground temperature and carbon density for v =
0.06oCyr−1, when Gaussian parameters are Tc = 40oC, a = 7, and b = 0.012.



Chapter 3

Thermal Properties of Permafrost

3.1 Background and Methods

3.1.1 Thermal Diffusivity in Permafrost Column

The temperature profile of permafrost is largely dictated by its thermal properties; ther-

mal conductivity and specific heat capacity (Osterkamp and Burn, 2003). Thermal con-

ductivity defines a materials ability to conduct heat and specific heat capacity is the heat

required to change a materials temperature by one degree kelvin (Frob, 2011). The ther-

mal conductivity to heat capacity ratio is termed thermal diffusivity and measures the

rate of heat transfer through a material (Frob, 2011). Eq. 3.1 defines thermal diffusivity in

terms of thermal conductivity, k, and specific heat capacity, cp (Frob, 2011). The heat trans-

fer equation, Eq. 3.2, describes how permafrost temperature at a specific depth changes

in response to the heat difference between surrounding depths (Frob, 2011).

dh =
k

Cp
(3.1)

41
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∂T

∂t
= dh

∂2

∂z2
T (z, t) (3.2)

Both thermal conductivity and specific heat capacity are recognized to be dependent

on permafrost composition (Jansson and Karlberg, 2001). In addition to the general per-

mafrost geology and lithology, the precise permafrost composition includes water con-

tent, ice content, and air content (Roth and Boike, 2001). Due to local landscape and

temperature variation, the latter three components change through time and, as a result,

so do the permafrost thermal properties (Jansson and Karlberg, 2001). While a variety of

measurements have been made to define these thermal properties, how they may change

through time and depth in permafrost has not been explicitly described.

The specific heat capacity can be calculated by summing the heat capacity contribu-

tions from each mass component but, the complexity of the changing permafrost compo-

sition raises difficulty with this calculation (Jansson and Karlberg, 2001). Thermal con-

ductivity is even more variable, sensitive to vegetation cover, water movement, and other

parameters challenging to quantify (Frob, 2011). Therefore, thermal diffusivity is an ac-

cessible and informative measure of the permafrost thermal properties, as it considers

the change in k and cp in one term. The purpose of this experiment is to determine how

thermal diffusivity varies through time and depth at a Kapp Linné, Svalbard borehole by

analyzing ground temperature data.

3.1.2 Estimation of Thermal Diffusivity from Temperature Profile

Borehole data and information for Kapp Linné 1 was retrieved from the Global Terrestrial

Network for Permafrost database. The entire borehole is through bedrock and, collected
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temperature readings every 6 hrs from September 2008 through April 2015 (Christiansen,

2016). The temperature points are taken at precise finite depths so, the permafrost will

be treated as a series of finite ground layers in analysis. A Monte Carlo based method

of thermal diffusivity, dh, calculation is used. Temperature values for a given layer of

permafrost are modeled using an estimated dh and temperature data from the bounding

layers in the heat transfer equation. The heat transfer equation for a finite ith layer of

permafrost is given in Eq. 3.3 (Recktenwald, 2011).

∂T

∂t
= dh

Ti+1 − 2Ti + Ti−1
2∆z2

(3.3)

The modeled and collected temperature data for the ith layer is compared over a 30

day time-frame and the root mean square error is calculated. Fig. 3.1 shows an example

of the modeled temperature for a permafrost layer compared to the true data for the ith

layer and bounding layers. A 30 day test window was chosen to include enough data

points for informative root mean square error comparison but, a small enough such that

thermal diffusivity will not change significantly within the test period. This process is

repeated for the same 30 day window for a range of dh estimations. Fig. 3.2 compares the

estimated dh used to the corresponding root mean square error for a single permafrost

depth and time window. The dh value that results in the lowest error is recorded as the

accurate value for that layer at that time step. An example of the root mean square error

minimum is clearly seen in Fig. 3.2. This procedure was replicated for the same layer of

permafrost over the entire time series of available temperature data, giving the dh values

through time. 30 day window start days were separated by 15 days.
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Figure 3.1: Graph of temperature data for three consecutive permafrost depths as well as the
modeled temperature data for the middle layer. Example where, estimated dh is 5.0×10−7

m2 s−1, the modeled layer is permafrost depth 0.5m, and the window start day is day 800.

Figure 3.2: Graph of root mean square error against estimated dh for permafrost depth 0.5m
and a 30 day time window starting on day 800.
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3.1.3 Method Limitations

Error in the thermal diffusivity values determined with this method do exist. Firstly,

the rate of temperature change equations, Eq. 3.3, only consider the flux of heat from

surrounding permafrost layers. In permafrost, there is also heat flux from the latent heat

of water phase transitions and heat produced by microbial decomposition (Jansson and

Karlberg, 2001). Therefore, the results are representative of the apparent dh rather than

the true dh. The Kapp Linné borehole is completely bedrock so, impact from microbial

decomposition is nonexistent. Latent heat, however, definitely contributes to the Kapp

Linné borehole profile. This is important to consider in the evaluation of results as, drastic

change in apparent dh may be representative of change in latent heat contribution rather

than a change in the material thermal properties. Secondly, there is uncertainty in the

thermal diffusivity values due to the fact that the range of dh values analyzed is finite.

The difference between tested dh is 2.0×10−7 m2 s−1. This will result in the discretization

of results, where many calculated dh values may flat line at the same value. Lastly, the test

window for determination of most accurate dh value means that the dh values reported

for a given window start day are representative of the best fit over the following 30 days,

not the specific dh on that day.

3.2 Kapp Linné 1 dh Results

Temperature data from Kapp Linné 1 was analyzed for thermal diffusivity values for

depths 0.25m, 0.5m, 1m, 1.5m, 2.5m, 3m, 5m, and 10m. Fig. 3.3 shows the ground tem-

perature data for these 8 layers from September 2008 through April 2015. Table 3.1 sum-
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marizes the thermal diffusivity results by maximum and minimum value for each depth.

In addition to the calculation of thermal diffusivity through time and depth, the thawed

depth of the borehole was calculated. This was done by declaring the maximum depth,

from the surface, that was greater or equal to 0oC to be thawed. The thawed depth was

calculated at every time interval of the Kapp Linné 1 data set. The maximum thaw depth

for a given year is typically around 2.5m and defines the base of the active layer.

Depth (m) dh min (m2 s−1) dh max (m2 s−1)

0.25 1.16 ×10−8 1.10 ×10−6

0.5 2.04 ×10−7 1.16 ×10−5

1.0 4.63 ×10−7 6.26 ×10−5

1.5 1.16 ×10−7 3.47 ×10−5

2.5 2.37 ×10−7 1.11 ×10−4

3.0 2.37 ×10−7 1.11 ×10−4

5.0 1.44 ×10−7 2.16 ×10−6

10.0 2.28 ×10−6 1.0 ×10−3

Table 3.1: Maximum and Minimum dh Values Calculated for Each Depth.

3.2.1 Depth 0.25m

0.25m is the most shallow borehole depth with temperature data. The temperature ranges,

roughly, from -15oC to 10oC within every year. This means that 0.25m is within the active

layer and thaws and refreezes yearly. The dh values calculated range between 1.16×10−8
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Figure 3.3: Ground temperature data from borehole Kapp Linné 1. Data is from the GTNP
database and was originally collected by Hanne Christiansen.

m2 s−1 and 1.0×10−6 m2 s−1. Fig. 3.4 shows the dh values calculated throughout the entire

time series, where the window start day was the starting point of the 30 day dh value

test. The thawed depth at Kapp Linné 1 is also shown in Figure 4. There is clear cor-

relation between dh and thawed depth presented in Fig. 3.4, as the minimum dh values

occur when the thawed depth rapidly increase from 0m or decreases to 0m. This timing

is representative of when the ground is thawing and freezing.

Fig. 3.5 presents the same dh results from 0.25m but, plots the each year of data on the

same x-axis for day of year of window start day. From Fig. 3.4, it can be seen that the

pattern of dh value throughout the year is cyclical, with local minimas, dh of 1.16×10−8

m2 s−1, occurring in the spring and fall. The winter tends to have a lower and less erratic
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dh pattern than the summer. The year with winter dh values closest to the summer dh

trend is 2011.

Figure 3.4: Results of thermal di�usivity analysis at 0.25m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.5: Results of thermal di�usivity analysis at 0.25m depth from individual years.
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3.2.2 Depth 0.5m

The temperature for 0.5m ranges from -13oC to 6oC within every year. It is well within

the active layer. The dh values calculated range between 2.04×10−7 m2 s−1 and 1.16×10−5

m2 s−1. Fig. 3.6 shows the dh values calculated throughout the entire time series superim-

posed with the thawed depth at Kapp Linné 1. The results show very sharp transitions

from minimum to maximum values. Maximum values of dh occur right before the thawed

depth rapidly increases from 0m to 2.5m but, drop back towards the minimum dh value

before the thawed depth reached the yearly maximum. This pattern is observed from

2010 onward but, not in 2009. Calculated thermal diffusivity is always at its lowest dur-

ing the period of thawed permafrost in the summer. Each consecutive year, the fall and

winter dh values increase and become more variable. Fig. 3.7 presents the dh results from

0.5m plotted by year. This shows the consistency in the patterns described; maximum

thermal diffusivity in the spring, minimum in the summer and fall, and low and variable

in the winter.

3.2.3 Depth 1.0m

The temperature for 1m ranges from -10oC to 5oC within every year and is within the ac-

tive layer. The dh values calculated range between 4.63×10−7 m2 s−1 and 6.26×10−5 m2 s−1.

Fig. 3.8 shows the dh values calculated throughout the entire time series superimposed

with the thawed depth at Kapp Linné 1. The results show very sharp transitions from

minimum to maximum values. The period of time when the permafrost had a 0m thaw

depth is when the maximum dh were calculated. Most of the the dh in this time period are
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Figure 3.6: Results of thermal di�usivity analysis at 0.5m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.7: Results of thermal di�usivity analysis at 0.5m depth from individual years.

exactly at the maximum of 6.26×10−5 m2 s−1, which is likely a result of the dh test value

resolution. This period of time has a few low spikes in dh as well. When the permafrost

has the maximum thaw depth, in the summer, the minimum dh values were calculated.
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Fig. 3.9 presents the dh results from 1m plotted by year.

Figure 3.8: Results of thermal di�usivity analysis at 1m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.9: Results of thermal di�usivity analysis at 1m depth from individual years.
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3.2.4 Depth 1.5m

The temperature for 1.5m ranges from -10oC to 3oC within every year and in the active

layer. The dh values calculated range between 1.16×10−7 m2 s−1 and 3.47×10−5 m2 s−1.

Fig. 3.10 shows the dh values calculated throughout the entire time series superimposed

with the thawed depth at Kapp Linné 1. The results show very sharp transitions from

minimum to maximum values. Maximum dh was calculated just when the permafrost

is beginning to thaw. The only year that this pattern was not observed was 2010. Small

peaks are seen both right before and right after the permafrost freezes. Otherwise, the

calculated dh remains low, near minimum value. Fig. 3.11 presents the dh results from

1.5m plotted by year. This clearly shows precisely when the maximum dh values are being

calculated in the different years. In 2011 the dh peak to the maximum value was calculated

in early spring. In 2012, 2013, and 2014 are years in which the peak was calculated in late

spring to early summer. In 2009 and 2013, the peak was calculated in late summer. 2013

is the only year with two large dh peaks calculated.

3.2.5 Depth 2.5m

The temperature for 2.5m ranges from -10oC to 0oC within every year. The active layer

depth throughout the time series is between 2.5m and 3m, meaning that the maximum

temperature does get just above 0oC every year. The dh values calculated range between

2.3×10−7 m2 s−1 and 1.11×10−4 m2 s−1. Fig. 3.12 shows the dh values calculated through-

out the entire time series superimposed with the thawed depth at Kapp Linné 1. The

results show very sharp transitions from minimum to maximum values. Mostly, maxi-
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Figure 3.10: Results of thermal di�usivity analysis at 1.5m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.11: Results of thermal di�usivity analysis at 1.5m depth from individual years.

mum dh was calculated just when the permafrost is most thawed and miniums between

thaw periods. There are a few years where dh peaks occur before the permafrost thaws

as well. Fig. 3.13 presents the dh results from 2.5m plotted by year. Peaks in dh were
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calculated in 2011 in mid-winter, in 2011 and 2014, early spring, in 2012 and 2013, late

spring, in 2012, early summer, and in all years, early fall. Generally, more separate peaks

have been observed as years have progressed. That is, that there was one peak in 2009

and 2010, three in 2011 and 2012, and two in 2013 and 2014.

Figure 3.12: Results of thermal di�usivity analysis at 2.5m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

3.2.6 Depth 3.0m

The temperature for 3m ranges from -6oC to 0oC within every year. The active layer depth

never reached 3m in the time series, meaning that the maximum temperature does is

never above 0oC. The maximum active layer depth over the time series is 2.8m, occurring

in 2014. The dh values calculated range between 2.3×10−7 m2 s−1 and 1.11×10−4 m2 s−1.

Fig. 3.14 shows the dh values calculated throughout the entire time series superimposed

with the thawed depth at Kapp Linné 1. The calculated dh is near the maximum value
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Figure 3.13: Results of thermal di�usivity analysis at 2.5m depth from individual years.

for the majority of the time series. The flat line of repeated 1.11×10−4 m2 s−1 calculated

is signature of the maximum dh tested. Minimum values regularly are measured after

the permafrost has frozen. Fig. 3.15 presents the dh results from 3m plotted by year. Fig.

3.15 confirms two defined drops in the calculated dh value, to the minimum, twice a year.

These occur in early spring and early to mid fall.

3.2.7 Depth 5.0m

The temperature for 5m ranges from -5oC to -1oC within every year. This depth is below

the active layer, remaining frozen year round. The dh values calculated range between

1.44×10−7 m2 s−1 and 2.16×10−6 m2 s−1. Fig. 3.16 shows the dh values calculated through-

out the entire time series superimposed with the thawed depth at Kapp Linné 1. The

calculated dh is around 1.5×10−6 m2 s−1 for the majority of the time series. Thermal diffu-

sivity begins to decrease when the active layer thaws, reaching the minimum value when
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Figure 3.14: Results of thermal di�usivity analysis at 3m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.15: Results of thermal di�usivity analysis at 3m depth from individual years.

the permafrost begins to freeze again. Then, the dh value rapidly peaks to the maximum

value right after the permafrost freezes. Fig. 3.17 presents the dh results from 5m plotted

by year. The described pattern of minimum to maximum occurs in late fall.
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Figure 3.16: Results of thermal di�usivity analysis at 5m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.

Figure 3.17: Results of thermal di�usivity analysis at 5m depth from individual years.

3.2.8 Depth 10.0m

The temperature for 10m ranges from -3oC to -2oC within every year. This depth is well

below the active layer. The dh values calculated range between 2.28×10−7 m2 s−1 and
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1.0×10−3 m2 s−1. Fig. 3.18 shows the dh values calculated throughout the entire time

series superimposed with the thawed depth at Kapp Linné 1. Most of the calculated

dh are either exactly 1.0×10−3 m2 s−1 or exactly 2.28×10−7 m2 s−1, reflective of the dh test

interval resolution. Fig. 3.19 presents the dh results from 10m plotted by year. In 2009, the

dh value maintains the minimum value for the entire year. In 2010, the maximum dh value

occurs when the active layer is thawing and immediately returns to the minimum. In each

consecutive year, the dh value reaches the maximum when the active layer is thawed, mid

summer, but, remains at the maximum for a longer duration of time. 2011 is unique, as it

has two dh peaks, one when the active layer is thawing and one after the active layer has

frozen.

Figure 3.18: Results of thermal di�usivity analysis at 10m depth, in blue. In orange, the thawed
depth of the Kapp Linné 1 borehole through the same time period.
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Figure 3.19: Results of thermal di�usivity analysis at 10m depth from individual years.

3.3 Discussion

3.3.1 Effect of Latent Heat

Latent heat is released during phase transition, such as that between ice and water within

permafrost. Latent heat will have the largest effect on the permafrost temperature, and

therefore calculated dh, when the temperature is 0oC(Romanovsky and Osterkamp, 2000).

Latent heat release will impact heat transfer when there is a combination of both ice and

water but, not when just either component (Osterkamp and Burn, 2003). Typically, water

spatially distributes latent heat and retards the permafrost thermal response, decreasing

dh (Romanovsky and Osterkamp, 2000). At all depths, the change in thermal diffusivity

through time has some alignment on the thawing and freezing of the permafrost active

layer. This means that the significant changes in calculated thermal diffusivity are a re-

sult of latent heat contributing to the layer temperature. The effect, however, is not uni-
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form throughout all depths, as some calculated thermal diffusivity values increase during

freezing or thawing and others decrease during freezing or thawing.

3.3.2 dh Variation with Depth

The calculated thermal diffusivity varies greatly between the Kapp Linné depth and even

at a single depth throughout the year. The smallest dh value range was observed at 0.25m

and 5m, and the highest at 10m. Between depths, the maximum dh varies by a factor of

1000. At a single depth, the range of dh values can vary by a factor of 100 to 1000.

At 0.25m depth, the latent heat effects the thermal diffusivity calculation in the spring,

when ground ice thaws, and in the fall, when groundwater freezes. The thermal diffu-

sivity also seems affected by seasonal ground condition as, the values are greater in the

summer, when there is no ice, than the winter, when there is no water. The only year

that did not have winter dh values less than that of summer was 2011, which is the year

of warm Arctic temperature anomaly due to El Nina, a climate phenomena (Lee, 2012).

These patterns suggest a thermal diffusivity response to surface temperature change. This

response is likely indirect, a result of snow cover, ground water, or vegetation cover dif-

ferences that correspond with temperature change (Frob, 2011).

At 0.5m depth, there calculation thermal diffusivity maximum peaks in the spring,

simultaneous with active layer thaw. This difference observed is likely the effect of latent

heat on the calculation. The pattern of increase in calculated dh due to latent heat of

thawing at 0.5m is opposite to the decrease observed at 0.25m. Atmospheric temperature

change seems to impact the measure dh values at 0.5m. Generally, the global temperature
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was rising from 2009 to 2015 (NOAA, 2017). 2009, the lowest global average temperature

of all years in the data set, has only a very small peak in dh during thaw, despite the fact

the 0.5m is within the active layer. Additionally, the variability and dh values increase in

the winter each consecutive year, as global temperature also has increased.

At a borehole depth of 1.0m, the measured dh values are around the minimum from

mid summer to early fall. This corresponds the duration of time that the active layer is

thawed. Thermal diffusivity peaks occur during freezing and thawing but, also when

the active layer is completely frozen. Latent heat may be impacting the results during

the time of freeze and thaw, but theoretically would not affect the calculations while the

ground in completely frozen (Romanovsky and Osterkamp, 2000). It is therefore unclear

what is influencing the timeing and extent of all calculated dh changes throughout the

time series.

At 1.5m, thermal diffusivity peaks occur right before the active layer thaws and de-

creases in dh every year when the permafrost freezes. This is directly related to the latent

heat. In 2010, the latter process is observed but, not the maximum during thaw. If the

times of freeze and thaw are not considered, the measured thermal diffusivity seems to

be increasing slightly with time. That is, the winter of 2013 to 2014 has higher dh values

than that of 2009 to 2010. This could be the result of a temperature related process, as

average global temperature was rising over this time period.

Peaks in thermal diffusivity calculated at 2.5m depth mostly occur when the thaw

depth reaches 2.5m in the summer due to latent heat release. The number of peaks, gen-

erally, increase as atmospheric temperature has increased. 2011, the Arctic warm anomaly

year, was the first year to have three distinct dh peaks. After that, each year has two or
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three, while the prior years only had one. The additional peaks mostly occur right before

permafrost thaw so, are still associated with latent heat. As all of these peaks are likely

the result of latent heat release, this shows how the pattern of phase changes within the

ground may change with increasing temperature.

Calculated thermal diffusivity at 3m depth has distinct minimums in the early spring,

right before the ground thaws, and early fall, when the ground is freezing. Again, this

draws direct correlation to latent heat effects. While the 3m depth is considered to remain

frozen year round, it is likely that it is impacted by latent heat from depths directly above,

which are within the active layer. Additionally, it is possible that, although the measured

temperature is always below zero, liquid water may percolate to this depth and result is

the presence of phase transitions. Some years have high dh values in the winter while

others have low values. It is not clear what causes this difference.

Even though the 5m borehole depth is well below the active layer, the calculated dh

values still have correspondence with timing of permafrost active layer thaw and, there-

fore, likely latent heat effects. The thermal diffusivity calculated decreases to minimum

values at the point that the active layer is freezing. Most years, this is followed by a peak

in dh slightly higher than the values over the rest of the analysis time span. There is not

correlation between yearly dh patterns and external conditions as to determine the cause

of more extreme minima or maxima.

10m depth has a year round temperature under 0oC, experiences a yearly temperature

variation of only 1oC, and is 7m below the active layer. Still, the calculated dh values cor-

respond with the timing of the active layer condition and general temperature increase.

2009, the coldest year, little change in calculated dh. Maximum dh values, observed from
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2010 onward, are always begin when the active layer thaws. This correlation implies the

presence of latent heat release, but it is not clear how latent heat would cause a difference

in calculated dh as 10m depth is frozen year round. One possibility would be liquid water

percolation through cracks in the bedrock, such as a joint. The length of time that the

dh value remains at the calculated maximum increases with each year, likely a result of

the temperature change. The 10m also differs from the other depths, as the maximum

calculated dh is greater than any other depth analyzed by a factor of 10.

3.3.3 Conclusion

Throughout all results of thermal diffusivity for depths, there is correspondence between

drastic dh change and the permafrost thaw depth, indicating impact of latent heat on the

ground heat transfer. This is surprising at 5m and 10m depth, which do not generally see

phase transitions throughout the year. A possibility for this discrepancy is the percolation

of liquid water from the active layer. This is consistent with the fact that in permafrost,

liquid water and ice can exist in equilibrium at temperatures below OoC (Osterkamp and

Burn, 2003). The effect of latent heat is not consistent between depths. In some cases, it

causes a peak in dh and in others, a trough. Additionally, the amplitude of the latent heat

related shifts is much different between depths. There are shifts in dh by the same ampli-

tude as those associated with latent heat release that do not correspond with timing of a

thawed active layer. This brings question to what physical circumstances in which latent

heat release will affect heat transfer, to what other processes may be affecting thermal

diffusivity values, and how to distinguish the calculated dh changes from true dh changes
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in the permafrost.

Several borehole depths exhibit dh pattern differences over the six years of data, which

may correlate with an increasing atmospheric temperature and permafrost average tem-

perature. Temperature change may lead to a variety of condition changes such as snow

cover, vegetation cover, and ground water amount or flow (Frob, 2011). Additionally,

temperature change may trigger an increase in water percolation or amount of phase

transitions that a depth experiences, inducing latent heat effects.

While the data analyzed is very informative to the effect of active layer freeze and

thaw dynamics on the thermal properties throughout the borehole through latent heat,

it is not telling to what and how other mechanisms may be altering thermal diffusivity.

Latent heat definitely impacted the apparent thermal diffusivity. Based on the observed

patterns that aligned with temperature rather than thawed depth, those that did not align

with any known condition changes, and by the fact that the thermal diffusivity varies so

greatly between depths, there are other components altering thermal diffusivity. Distin-

guishing the effects of latent heat on the dh calculation from actual changes in thermal

diffusivity, explaining the different mechanisms and effects of latent heat, and explaining

the differences observed with depth is still needed. Clarity may be found if the experi-

ment were repeated with better resolution in dh test values, higher frequency of window

start day, and if it were possible to use a smaller test window without losing root mean

square error precision. Using this method to calculate thermal diffusivity the rest of the

Kapp Linné 1 depths and at other boreholes would also increase understanding of the

permafrost thermal properties. Specifically, analysis of a borehole that is in mineral based

sediment rather than bedrock will allow for broader understanding of the permafrost



CHAPTER 3. THERMAL PROPERTIES OF PERMAFROST 65

temperature profile. Creating an analysis that considered latent heat release would allow

for evaluation of solely the thermal diffusivity changes.



Chapter 4

A More Complete Model

4.1 Motivation

A system of coupled ordinary differential equations is proposed to describe the per-

mafrost system in detail through a mathematical model. The ground is treated as a series

of finite ground layers and includes both the active layer and the permafrost. The atmo-

sphere is treated as one cell directly in contact with the ground. The system of equations

describe the changes of state that occur for a 1m2 cross sectional area of the permafrost

- atmosphere box model. Equations of state are given for ground temperature of n lay-

ers, ground carbon content of n layers, atmospheric temperature, atmospheric methane

concentration, and atmospheric carbon dioxide concentration.

This is a general model with the purpose to evaluate the effect of the greenhouse gas

radiative forcing and internal heat production system feedback mechanisms on the per-

mafrost system and global climate. For sake of this analysis, simplifications and assump-

tions are made in the representation of the permafrost and climate system. Specifically,

66
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groundwater flow is not considered. The model is additionally generalized in that it is not

site specific. While the model is therefore not directly representative of a specific physical

location, it offers greater information to understanding the system on a global scale.

4.2 Equations

4.2.1 Ground Temperature

The differential equation for ground temperature is given by Eq. 4.1. The subscript i

denotes the ground layer, T is temperature in kelvin, and cp is the specific heat capacity.

The right hand side of Eq. 4.1 is composed of three components: conductivity, internal

heat production, and latent heat.

cp ∗
dTi
dt

=
[
k
Ti+1 − 2Ti + Ti−1

2∆z2

]
+ AD(Ti, Ci) +Qlatent (4.1)

Conductivity represents the heat transfer between layers due to difference in temperature.

In the conductivity term, k is the thermal conductivity of the ground layer. Thermal con-

ductivity is dependent on the material, unfrozen and frozen water content, temperature,

and depth (Jansson and Karlberg, 2001).

Internal heat production is the heat increase of the ground due to organic decomposi-

tion processes (Hollesen et al., 2015). The main component of the internal heat production

term is the function for decomposition D(Ti, Ci). This is a Gaussian function, dependent

on initial carbon content and temperature of the layer, that gives the mass of carbon de-

composed in an individual layer. The coefficient, A, scales the decomposition function

to give the amount of energy released from the organic carbon decomposition. A is esti-
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mated as 3.9 ∗ 107Jg−1 (Wieczorek et al., 2010).

The latent heat component, qlatent is the heat released during phase transitions within

the permafrost. The impact on the heat transfer equation can be quite significant, shown

in the thermal diffusivity analysis for Kapp Linné 1 to change the apparent thermal dif-

fusivity by a up to a factor of 1000. The respective amounts of water and ice content are

recognized to influence the amount of latent heat release. This may possibly be corre-

sponded to differences in temperature and permafrost active layer thawing.

4.2.2 Ground Carbon Content

Eq. 4.2 is the differential equation for ground carbon content. The first term, D(Ti, Ci),

is the decomposition function, also presented Eq. 4.1. As it gives the amount of organic

carbon decomposed, it represents mass of carbon leaving the ground layer as gas. The

second term is the amount of organic carbon is deposited via litter fall, increasing ground

carbon content.

dCi
dt

= −DCH4(Ti, Ci)−DCO2(Ti, Ci) + L(Tatm) (4.2)

The decomposition function, D(Ti, Ci), given in Eq. 4.3, gives the grams of carbon de-

composed from an individual ground layer per day in terms of the initial amount of car-

bon present and the layer temperature. The Gaussian function, Eq. 4.4, is derived by ex-

periment in Pietikainen et al. 2004., in which the decomposition rates for non-permafrost

soils with analogous carbon content to permafrost were observed. The decomposition

rates that result in production of methane and carbon dioxide have different Gaussian

specifications in Eq. 4.4 so, are considered as two separate decomposition components in
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the ground carbon equation of state (Treat et al., 2014).

D(Ti, Ci) = Cir(T ) (4.3)

r(T ) =
a√
2π

exp

(
− b

2
(T − Tc)2

)
(4.4)

Litter fall is dependent on the atmospheric temperature as, vegetation activity in-

creases with temperature and therefore sequesters more carbon into the ground (DeConto

et al., 2012). This temperature dependence accounts for the seasonal variation is litter fall

and also long term changes corresponding with global climate shifts. Litter fall for the ith

layer will vary, as surface vegetation deposits carbon into the upper ground layers only.

Some carbon, however, may be shifted deeper into the permafrost through syngenetic

permafrost growth and cryoturbation (Shur and Jorgenson, 2007).

4.2.3 Atmospheric Carbon Dioxide

Eq. 4.5 describes the change in local atmospheric carbon dioxide concentration through

time.

d[CO2]

dt
= f

[CO2]
anth (t)+f

[CO2]
seasonal(t)+ppmCO2

nlayers∑
i=1

DCO2(Ti, Ci)−bCO2 [CO2]−decayCO2(4.5)

The first term, fanth, is the amount of carbon dioxide that enters the atmosphere due

to anthropogenic activity through time. The second term, fseasonal, represents the global

seasonal variation in atmospheric carbon dioxide content throughout one year. The third

term is the carbon dioxide released into the atmosphere from decomposition of organic

carbon in the ground. This is the summation of the amount of carbon dioxide released via

organic decomposition in every ground layer, given by the decomposition D(T,C). The
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coefficient ppmCO2 scales the decomposition function to give the change in atmospheric

carbon dioxide in parts per million. The bCO2 term represents the carbon dioxide that

leaves the considered cell of atmosphere via diffusion. The last term, decayCO2 , is an

expression to describe how carbon dioxide molecules decay in the atmosphere (Muller

and Muller, 2017). The expression for carbon dioxide remaining in the atmosphere after

time t is CO2(t) = 0.217 + 0.259e
−t

172.9 + 0.338e
−t

18.51 + 0.186e
−t

1.186 (Muller and Muller, 2017).

4.2.4 Atmospheric Methane

Eq. 4.6 describes the change in local atmospheric carbon concentration through time.

d[CH4]

dt
= ppmCH4

nlayers∑
i=1

DCH4(Ti, Ci)− bCH4 [CH4]− decayCH4 (4.6)

The first term is the methane released into the atmosphere from decomposition of or-

ganic carbon in the ground. This is the summation of the amount of methane released

via organic decomposition in every ground layer, given by the decomposition D(T,C).

The coefficient ppmCH4 scales the decomposition function to give the change in atmo-

spheric methane in parts per million. The bCH4 term represents the methane that leaves

the considered cell of atmosphere via diffusion. The last term, decayCH4 , is an expression

to describe how methane molecules decay in the atmosphere (Muller and Muller, 2017).

Atmospheric methane has a half life of 8.6 years (Muller and Muller, 2017).
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4.2.5 Atmospheric Temperature

The equation for atmospheric temperature is given in Eq. 4.7. This is described with two

terms, seasonal and greenhouse gas forcing.

dTatm
dt

= fTseasonal(t) +G(CO2, CH4) (4.7)

The seasonal forcing term, fseasonal, represents the annual variation in surface temper-

ature due to the axial tilt of the Earth. The greenhouse gas forcing term, G(CO2, CH4)),

gives the radiative effect of greenhouse gas heat absorption in the atmosphere (Hogg,

2008). Eq. 4.8 through Eq. 4.10 describe the components to the greenhouse gas forcing

term. Eq. 4.8 gives the complete definition of G(CO2, CH4). It is an additive function of

a baseline atmospheric pre industrial greenhouse gas level, a function of the carbon diox-

ide concentration anomaly to pre industrial concentrations, and a function of the methane

concentration anomaly. Eq. 4.9 and Eq. 4.10 describe the anomaly functions for carbon

dioxide and methane, respectively (Hogg, 2008). Effective radiative forcing coefficients

MCO2 and MCH4 scale the logarithmic anomalies to the corresponding change in energy

that remains in the atmosphere. MCO2 is estimated to be 20.5 Wm−2 (Hogg, 2008). MCH4

is assesed to by 35 times greater than MCO2 on a 20 year time scale (Ramaswamy et al.,

1990).

caG = Ḡ+GCO2(CO2) +GCH4(CH4) (4.8)

GCO2 = MCO2 ln
(
CO2

CO2o

)
(4.9)

GCH4 = MCH4 ln
(
CH4

CH4o

)
(4.10)
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Conclusion

Recent anthropogenic influence on atmospheric greenhouse gas concentrations has led to

an increase in global temperature (IPPC, 2014). Temperature increase is associated with

warmer oceans, lower amount of snow and ice, sea level rise, and, among other impacts,

thawing of the permafrost (IPPC, 2014). Permafrost is storage to about 1700 Gt of or-

ganic carbon which has potential to be released as carbon gas under thawing conditions

(Knoblauch et al., 2018). Carbon dioxide and methane, both released from permafrost mi-

crobial decomposition, are potent greenhouse gases and would promote further increase

in global temperature (Hansen et al., 2005). Permafrost thaw in geologic history has been

linked to the extent of Quaternary interglacial periods and the PETM hyperthermals, con-

firming the large role permafrost plays in the carbon cycle and global climate (Zech, 2012).

Yet, the permafrost influence has not been considered in either large scale predictions of

the near future climate or in global anthropogenic greenhouse gas policy budgets. This

thesis works towards better understanding of the permafrost system through evaluation

of the temperature dependent microbial decomposition, thermal diffusivity analysis, and
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proposal of a more complete permafrost model. The purpose of this is to work towards

building a representative permafrost model that offers information about the near future

permafrost conditions and their correlation with the global climate.

Permafrost decomposition rate function analysis was done through the Permafrost

Bomb model, based off of the pre-existing Compost Bomb Instability model. The purpose

of the Permafrost Bomb model is to increase understanding of, specifically, the long term

decomposition rate ground temperature production feedback behavior. In the Permafrost

Bomb model, the temperature dependent decomposition rate function was defined as a

Gaussian function with maximum respiration rates at 40oC. This was based on published

lab analysis of soil respiration under varying incubation temperatures. The precise pa-

rameters that define the Gaussian are recognized to be an estimate, as lab analysis has

not been done on specifically permafrost soils with incubation temperatures over 20oC,

meaning that the respiration at higher temperatures is not known with precision. The

results from the Permafrost Bomb showed a series of system tipping points of decreasing

amplitude over the 350 year modeling period and changed the temperature tipping peak

shape. This resembles the post-PETM hyperthermal events, in which the global tempera-

ture had 6 rapid and significant peaks over the course of 3 million years (DeConto et al.,

2012). The Permafrost Bomb results are significant as they are reflective of a more accu-

rate decomposition rate function than previously proposed and support the hypothesis

of permafrost involvement in the PETM hyperthermals.

The analysis of the Kapp Linne 1 borehole data for permafrost thermal diffusivity val-

ues was done to understand more about the inner permafrost heat exchange dynamics

through time and depth. Results at all depths reflected the effect of latent heat on the
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thermal diffusivity calculation, even at depths far below the active layer. Patterns were

also observed at individual depths that did not align with timing of latent heat affect.

Additionally, the variation in thermal diffusivity at different depths, and cyclically at one

depth were very inconsistent. This raises question to the other processes within the per-

mafrost and also to whether the effects from latent heat are completely understood. This

experiment offered much information to the effect of latent heat on permafrost. To isolate

changes in thermal diffusivity solely, a new method that considered latent heat would

have to be created.

A more complete model for permafrost was proposed. This model included the in-

teraction between a finite amount of permafrost depths as well as the atmosphere. The

atmospheric consideration largely increases model complexity, as there are components

of decay, diffusion, and that these dynamics differ for carbon dioxide and methane. The

purpose of this model would be to model the permafrost system such that, information

about the permafrost condition throughout the year can be determined and that the infor-

mation obtained is applicable to the human lifespan. Much more research must be done

on all terms mentioned in the proposed system of equations before attempting to build

the model as a whole.

The current change in climate conditions has been compared to that during MIS 11

(Loutre and Berger, 2001). Understanding paleoclimate events, such as MIS 11 and the

PETM, is vital to grasping how the global climate system, including permafrost, gen-

erally behave and are likely to behave in the future. Oppositely, observations that re-

searchers make about the current state of the global climate system gives detail to pro-

cesses recorded in the geologic history. Focus of permafrost research on both the long
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term and short term scale is therefore necessary for system understanding. The three

directions of research taken in this thesis add to the current understanding of the per-

mafrost system and also lead to next possibilities in permafrost research, through focus

on the long term interaction of decomposition rate and ground temperature, current ther-

mal diffusivity patterns, and research compiled for an ideal permafrost model.
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