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Introduction 

 Operating with a finite quantity of beds, medical resources, and physicians, hospitals are 

constantly allocating resources under conditions of scarcity. The American health care system is 

highly overburdened, facing more demand than it can handle. According to a series of reports by 

the Institute of Medicine, ambulances are turned away from American hospitals once every 

minute due to a lack of bed capacity. 1  The same reports find that the growth in demand for 

medical attention is dramatically outpacing the growth in supply, posing significant public health 

risks. Moreover, misallocation of resources and operational inefficiencies are a substantial driver 

of the United States’ strikingly high healthcare costs.2  

A specific instance of such inefficient resource allocation relates to the use of hospital 

beds. Patients get admitted to the hospital at random points in time for varying medical 

conditions. Accurately forecasting the duration with which a specific patient will stay in a 

hospital, also known as a patient’s length of stay (LOS), can assist hospital decision makers in 

optimizing their workflow and allocating their resources efficiently. Short of having a good 

prediction of when a patient will leave the hospital and make room for new patients being 

admitted, the hospital will leave the patient’s bed underutilized in the time immediately 

following discharge and delay the admission of a sick patient who needs the bed. Moreover, 

having a good estimate of future patient censuses in the various parts of the hospital could help 

facilitate staffing decisions. Finally, in case of bed shortages, methods of determining how much 

more hospital time a particular patient needs could help the hospital identify those patients best 

                                                             
1 Berger, Eric. “Breaking Point: Report Calls for Congressional Rescue of Hospital Emergency Departments.” 

Annals of Emergency Medicine 
2 Bentley, Tanya G.K., et al. “Waste in the US Healthcare System: A Conceptual Framework.” The Milbank 
Quarterly 
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suited for discharge and to schedule nurse workflow accordingly. Thus, accurately forecasting 

the lengths of stay of patients has the potential to improve quality of care by moving patients into 

beds faster, guaranteeing sufficient staff and discharging the right patients while simultaneously 

decreasing costs by avoiding underutilized beds and idle staff.  

Anecdotally, a significant bottleneck to patient discharge is the availability of 

transportation home from the hospital. For a large portion of the patients typically served by 

Central Maine Medical Center, it cannot be reliably assumed that patients will be able to arrange 

a ride home on short notice. One potential application of prediction modelling would be to help 

patients and social workers schedule transportation several days in advance. 

How does one approach the task of predicting patient length of stay? The analysis of 

duration data goes by different names across disciplines. But, whether one is an engineer looking 

to calculate time until a component fails or a biologist predicting time until the death of an 

organism, the methods are fundamentally the same. I refer to the estimation of the time until an 

event of interest as survival analysis. In this context, the event of interest is the patient being 

discharged from the hospital.  

Broadly speaking, approaches towards survival analysis can be classified as either 

classical econometric approaches or machine learning methods. In this thesis, I demonstrate the 

superiority of machine learning methods over the classical econometric approach. I go on to 

compare the performance of machine learning to an approximation of current forecasting 

practice at Central Maine Medical Center. My evaluation of the strengths and weaknesses of the 

machine learning model inform a brief discussion of potential real-world applications.  
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Methods 

My study of patient length of stay uses a machine learning strategy called survival 

random forests. I use the survival random forest because of limitations in the classical 

econometric approach to survival analysis. I study a set of individuals admitted to the hospital 

from 27 February 2015 to 24 July 2017 from arrival to discharge. By relying on complete 

cohorts of admitted patients, I avoid selection biases. The risk of selection bias is elaborated on 

later in this section. I first describe classical survival modeling, its limitations, and the motivation 

to turn towards machine learning methods. I then describe the data available and the survival 

random forest model. 

A commonly used classical econometric approach to survival analysis is the Cox 

proportional hazards model. In the Cox model, a baseline hazard rate is determined solely by the 

effect of time.3 The hazard rate is the rate at which spells are completed at time t, given that they 

have already lasted at least until t. This baseline hazard rate is expressed as 𝜆0(𝑡). Heterogeneity 

in the sample is then accounted for by a vector of covariates x (e.g. dummy variable for 

admission on a weekend) and a vector of parameters expressed as 𝛽. The hazard function is 

expressed as: 

𝜆(𝑡) = 𝜆0(𝑡) exp(𝑥′𝛽) 

 Each individual’s characteristics shifts the baseline hazard rate, while the effect of time 

elapsed remains constant. A restrictive feature that emerges due to the separation of time and 

covariates is that each individual’s hazard function is expected to be parallel to the hazard 

                                                             
3 Kennedy, Peter. “Limited Dependent Variables.” A Guide to Econometrics, 4th ed., The MIT Press, 1998, pp. 259–

261. 
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function of each of the other individuals. (Hence the name proportional hazards) Such 

proportionality is a fundamental assumption of the Cox model. As I demonstrate in Appendix A 

this assumption cannot be supported in my data.  

An additional shortcoming of the econometric approach is that it is not clear what to 

make of the assumed effect of time. Does a patient who has already been in the hospital a week 

have an increasing probability or decreasing probability of discharge in the next day? In some 

cases, one might assume that the patient is steadily moving towards discharge, but in other cases 

one might take the fact that a patient has been in the hospital for a long time as an indicator that 

the stay will not be over soon.   

 Machine learning offers more flexible models that can handle the effects of interactions 

with time and between the covariates. I provide a background of the components of the machine 

learning model before turning to the final model itself.    

 Early machine learning estimation algorithms were proposed as alternatives to linear 

regression models. 4 These early machine learning estimation models were called “regression 

trees” when the predicted variable was continuous (e.g. length of stay) and “classification trees” 

when the predicted outcome was binary (e.g., readmitted or not). Later machine learning 

algorithms relied on multiples trees and were therefore named “random forest” models. 5 

The survival random forest (SRF) is the primary machine learning method used in this 

study.6 The SRF is an extension of the random forest specifically designed for survival analysis. 

                                                             
4 Breiman, Leo, et al. Classification and Regression Trees. 1984 
5 Breiman, Leo. “Random Forests.” Machine Learning. 2001.  
6 Ishwaran, Hemant, et al. “Random Survival Forests.” The Annals of Applied Statistics. 2008. 
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Understanding the survival random forest necessitates an understanding of survival trees, which 

in turn demands understanding of regression and classification trees. 

In machine learning, trees can be used to visually express the relationship between 

predictors and an outcome variable. For example, the classification tree below considers whether 

or not the predicted length of stay for a patient is greater than 10 days.  

Figure 1: Illustrative Classification Tree 

 

 

 

 

 

 

The algorithm begins by considering each predictor, and elects to make a “split” in the 

data that has the largest effect on the size of the total residual sum of squares (RSS). Each split 

generates two decision “nodes”. At each node, the algorithm considers all of the predictors again 

and uses the predictor that makes the next largest split. This process is continued at each node 

until a stopping rule has been reached. 7 Once the tree is generated, it can be used to make 

predictions for new data. For example, in the classification tree above, if a new patient’s 

diagnosis has a national average length of stay (drgalos) of less than 8 days, the algorithm’s best 

                                                             
7 James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R. 2013. 
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prediction is that the patient will not have a length of stay greater than 10 days. However, if 

drgalos is greater than 8, the algorithm elects to look for more information by considering 

drgglos, the geometric mean of the national length of stay for the patient’s diagnosis. If drgglos 

is less than 11 days, the algorithm considers the number of diagnoses present on admission, and 

so on. Generally, the performance of the tree will be measured by applying it to testing data that 

has previously been randomly separated from the sample.  

 When a tree is modified to handle survival data, it is called a survival tree.8 The general 

structure of the tree is the same as in regression and classification trees, but instead of using 

residual sum of squares as the splitting criterion, the splits seek to maximize the difference in 

survival times at each split. The default approach towards measuring the difference in survival 

times is called the log-rank method. While I do not discuss it in detail here, the log-rank test 

statistic is a way to measure the magnitude of the difference between two survival curves. 9 

 One downside of trees is that a particularly important variable may come to dominate the 

tree. Often, this results when a predictor makes a particularly large split at the top of the tree. 

This issue is known as “path-dependency”, which can lead to a potentially significant portion of 

the total RSS remaining unreduced.10 For example, a pair of variables used for the first two steps 

might in concert lead to a better prediction than a third does alone, but the third might dominate 

either of those two variables when the algorithm considers each sequentially. In response to the 

path-dependency problem, Breiman (2003) developed the random forest. The random forest is an 

aggregation of thousands of generated trees. The key element of the random forest is that, unlike 

                                                             
8 Bou-Hamad, Imad. “A review of survival trees” Statistics Surveys. 2011.   
9 Statistics 331.”Logrank Test”. Class notes. Stanford University School of Medicine. 

https://web.stanford.edu/~lutian/coursepdf/unitweek3.pdf  
10  James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R. 2013. 

https://web.stanford.edu/~lutian/coursepdf/unitweek3.pdf
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the tree generation process, only a random subset of the predictors are considered at each node. 

In this way, variables that lead to particularly large splits are only sometimes considered. 

Random forests and similar machine learning methods have been used in a variety of attempts to 

forecast patient length of stay. 11,12 Notably, Barnes (2015) uses a random forest to outperform 

physician predictions of patient length of stay.   

 To use a random forest approach in survival analysis, Ishwaran, Kogan, Blackstone and 

Lauer introduced the survival random forest in 2008. Ishwaran et al. outline the following 

algorithm.  

1. Draw B bootstrap samples from the original data. The data not included (on average 37% 

of the data) in each bootstrap is called out-of-bag data.  

2. A survival tree is grown for each bootstrap sample, with a random selection of variables 

considered at each node. At each node, the algorithm chooses the split that maximizes 

survival difference between nodes using the log-rank statistic.  

3. Grow each tree to a default stopping rule. 

4. Calculate the hazard function for each tree, and average the cumulative hazard function 

of all the trees 

5. Calculate the prediction error rate of the combined cumulative hazard function using the 

out-of-bag data.  

The hospital records available for analysis, normally used for insurance reimbursement 

and quality control purposes, are compiled upon patient discharge. So, patients are only 

                                                             
11 Van Walraven, Carl, and Alan J Forster. “The TEND (Tomorrow's Expected Number of Discharges) Model 
Accurately Predicted the Number of Patients Who Were Discharged the Next Day.” Journal of Hospital Medicine. 

2017. 
12 Jones, Spencer S., et al. “Forecasting Daily Patient Volumes in the Emergency Department.” Academic 
Emergency Medicine. 2008.  



Terwiesch 10 

available for analysis once they are discharged from the hospital.13 Left unaddressed, this 

creates a sample selection issue. Early in the dataset, only those patients who have a length of 

stay long enough to stay past the starting date of the study make it into the sample. Similarly, 

the end of the study excludes longer staying patients who do not experience discharge during 

the study period. 

Therefore, near the beginning and end points of all the data available, some patients are 

observed while other patients who arrived on the same day as those observed remain 

unobserved. To rectify this issue, an analysis subsample was selected to ensure that only full 

cohorts (groups of patients arriving on the same day) were considered. Patients discharged 

within the first 150 days of the study (before 27 February 2015) were dropped from the 

sample, a decision that was informed by the longest patient length of stay being 146 days. 

Similarly, at the end of the sample, patients who arrived within the last 150 days of the 

sample (after 24 July 2017) were not considered. 

The primary intended use of the findings of the study are to assist hospital administrators 

in inpatient management. Therefore, only inpatients were included in the analysis. Elective 

patients were not considered. In addition, patients in the maternity ward or under the age of 

18 were not considered. 

Data and estimation 

In the analysis period from 27 February 2015 to 24 July 2017 the Central Maine Medical 

Center admitted 21,230 inpatients that met the criteria outlined in the previous section. This 

                                                             
13 One of the primary advantages of the survival random forest over other approaches is that the algorithm 

automatically considers right-censored observations. However, since full cohorts of discharge data is being used in 
the analysis, there are no observations that have not had any outcome. An additional advantage of the algorithm is 
that competing risks to discharge can also be assessed. However, this is not included in the analysis.   
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corresponds to 103,247 patient days, with a mean length of stay of 4.86 days. Available 

predictors ranged from personal information (e.g. insurance status) to clinical information (e.g. 

primary diagnoses). An overview can be seen in Figure 2.  To keep the creation of the model 

grounded in its potential applications, only information that would be readily available to the 

hospital during the patient’s stay) was used.  

 

Figure 2: Prediction data 

Variable name Description  

los Length of stay (outcome) Mean: 4.86, median: 3, 

s.d: 5.8, IQR: 4 

age Patient’s age on admission Mean: 62.4, median: 65, 

s.d: 18.1, IQR: 25 

sex Patient’s sex 49.2% female 

drg_glos Geometric mean of length of 

stay for the patient’s diagnosis 

related group, across a 

national sample 

Mean: 4.1, median: 3.6, 

s.d: 2.2 IQR: 2.0 

 

 

drg_alos Arithmetic mean of length of 

stay for the patient’s diagnosis 

related group, across a 

national sample 

Mean: 5.11, median: 4.4, 

s.d: 2.8, IQR: 2.7 

drg_type Diagnosis related group type 

(surgery vs medical) 

74.7% medical, 25.3% 

surgery 

numberofdxs_poa Number of diagnoses that are 

present on admission 

Mean: 15.7, median: 15, 

s.d: 7.27, IQR: 10 

weekend_admit Dummy variable, whether the 

patient was admitted on a 

weekend 

25.2% admitted on 

weekend 

off_hour_admit Dummy variable, whether the 

patient was admitted between 

11pm and 7am 

17.6% admitted off hours 

uninsured Dummy variable, whether the 

patient has health insurance 

5% uninsured 

elos The elapsed length of stay in 

days (how long the patient has 

already been in the hospital) 

Changes dynamically 
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census Number of patients in the 

hospital   

Mean: 123.4, median: 

108, s.d: 37.9, IQR: 22 

month Month on patient day (changes 

dynamically)  

January: 6.25% 

February: 6.51% 

March: 9.75% 

April: 9.37% 

May: 9.52% 

June: 8.98% 

July: 11.46% 

August: 8.99% 

September: 8.54% 

October: 8.52% 

November: 5.97% 

December: 6.12% 

 

It is worth noting that the sample size of this study is approximately five times larger than 

the samples in prior machine learning survival studies. 14 Figure 3 depicts the distribution of 

length of hospital stays across the cohorts of patients in our sample. The mean length of stay was 

4.86 days, with an interquartile range of 4 days. Hospitals vary in their distributions of length of 

stay. For example, in the hospital studied by Barnes (2015) the mean stay was only 2.16 days, 

with an interquartile range of 1.76.   

 

 

 

 

 

                                                             
14 Barnes, Sean, et al. “Real-Time Prediction of Inpatient Length of Stay for Discharge Prioritization.” Journal of the 
American Medical Informatics Association. 2015.  
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Figure 3: Distribution of Patient LOS at Central Maine Medical Center 

 

The survival random forest model was generated using the randomForestSRC 15 package 

in R. In machine learning, a common practice is to separate the data into “training” and “testing” 

samples. The training sample is used to fit the model, while the testing data is used to assess the 

model’s performance. Patients discharged before 27 February 2017 (approx. 2 years of data) 

were assigned to the training data, while the remaining patients were assigned to the testing data 

(approx. 6 months of data). This corresponds to a roughly 80%-20% split of the data, which is 

common practice in machine learning methods.   

When using the Ishwaran et al. algorithm described above, splitting the sample into a 

training and testing set is not necessarily required, as error can be evaluated on the out of bag 

samples created by the algorithm. However, splitting the data became necessary in this study to 

compare the performance of the survival random forest to other prediction methods.  

                                                             
15 Ishwaran, Hemant, et al. “Random Survival Forests.” The Annals of Applied Statistics. 2008.  
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Due to the aggregation of thousands of survival trees to generate the survival random 

forest, it cannot be visualized as simply as a survival tree. Instead, the relative impact of each 

variable on predictions can be displayed in a variable importance plot. The Breiman-Cutler 

importance measure is the most frequently applied importance measure for random forests, and 

is displayed in Figure 4.16 To calculate the importance of a variable in a tree, the given variable is 

given random values and dropped down the tree. Then, the true values are dropped down the 

tree. The variable importance is the difference in error of the tree with random values and the 

tree with the true values for the variable. A variable’s importance in a random forest is the 

average of the variable’s importance across all of the trees.  

Figure 4 shows that in the model estimated here, deleting drg_glos alone, the national 

geometric mean length of stay among the observed patient’s diagnosis group, or 

numberofdx_poa alone, the number of diagnoses present on admission, would decrease the 

model’s Breiman-Cutleaccuracy by .05 and .02 respectively. Survival prediction error is 

evaluated by measuring the squared difference at each time t between the predicted event 

probability and the true event probability (zero or one). This measure is called the Brier score. 

Brier scores range from 0 to 1, with scores closer to 0 being indicative of a more accurate model. 

A Brier score of .25 corresponds to predicting a 50% probability of an event occurring at each 

time point. 

 

 

 

                                                             
16 Strobl, Carolin, et al. “Conditional Variable Importance for Random Forests.” BMC Bioinformatics. 2008.  
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Figure 4: Variable Importance Plot for SRF 
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In all, this machine learning algorithm uses twelve explanatory variables for its 

predictions. Upon generating the survival random forest, test observations can be inputted into 

the model to generate predicted probabilities of discharge for each patient on each day. In 

addition, hazard functions can be generated for each patient. The quality of these predictions will 

be discussed in the following section.  

Analysis  

In this section, I take three approaches to evaluating the survival random forest’s 

prediction accuracy. First, I replicate the prediction error curves used in Mogensen et al. 17 This 

approach allows for visual comparison of the prediction error between the survival random 

forest, the Cox proportional hazards model and the forecasting method currently employed by 

CMMC. The second approach is to consider the model’s performance in terms of true positive 

and true negative rates. Finally, I evaluate the model in an applied context.   

  In survival analysis, the most important benchmark is the Brier score of a prediction 

model which ignores all predictor variables.18 This null model is generally estimated using the 

Kaplan-Meier statistic. The Kaplan-Meier is a commonly used nonparametric method of survival 

analysis.19  In addition, to provide a comparison of the performance of the models to forecasts 

currently available to CMMC, I generated predicted dates of discharge for each patient using the 

geometric mean length of stay nationally for the patient’s diagnosis related group (DRG). Under 

                                                             
17 Mogensen, Ulla B., et al. “Evaluating Random Forests for Survival Analysis Using Prediction Error Curves.” 
Journal of Statistical Software. 2012.  
18 Goel, Khanna and Kishore. “Understanding survival analysis: Kaplan-Meier estimate”. International Journal of 

Ayurveda Research. 2010.  
19 Kaplan, E L, and Paul Meier. “Nonparametric Estimation from Incomplete Observations.” Journal of the 
American Statistical Association. 2008.  
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this model, the patient’s estimated probability of discharge is zero until their DRG estimated 

discharge date, on which the estimated probability of discharge is one.  

 Approximately 80% of patients were randomly assigned to training data. All models were 

trained on this data. The models generated probability of discharge predictions for the remaining 

patients. The performance of the models relative to true outcomes is visualized in Figure 5.  

 

Figure 5: Prediction Error Curves 

 

 

 

 

 

 

 

 

 As can be seen in the prediction error curves, the survival random forest had the lowest 

prediction error of all models, including the Kaplan-Meier null model reference line. The 

superiority over the Cox model is not surprising, given its previously discussed limitations. The 

survival random forest also clearly outperforms current CMMC forecasting practice in terms of 

overall accuracy. However, it is worth noting that the model exploits the fact that relying solely 
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on the geometric mean of length of stays does not take into account the distribution of length of 

stay.  

 The survival random forest model approaches the task of estimating a patient’s length of 

stay through a far more complex approach than simply taking the national mean length of stay 

for a patient’s diagnosis. Given the significant costs associated with forecasting and changing 

workflows, hospital administrators should consider for which specific applications a machine 

learning approach is worth the increased complexity.  

 To inform such a decision, I calculate the true positive and true negative rates of the 

model and of the drg_glos-only approach. In prediction modelling, as with medical diagnostics, 

errors are generally classified as one of the following two types. True positives  20 occur when the 

model correctly predicts that a patient will be discharged on a certain day. True negatives21 occur 

when the model correctly identifies a patient who does not end up being discharged on that day.  

 All survival analysis models face a tradeoff between their true positive and true negative 

rates. For example, the surest way to a true positive rate of 1 (100%) is to predict that on each 

day, every single patient will be discharged. In practice, a model forecasts the likelihood of 

discharge on each day, and then a user must make a decision as to where the probability cutoff 

should lie for the prediction to be “discharge” or “stay”. This tradeoff can be represented through 

the receiver operating characteristic (“ROC”) curve, which graphs the false positive rate on the 

x-axis and the true positive rate on the y-axis as a function of the selected decision cutoff. If 

equal weight is assigned to the false positive rate and the true positive rate, the optimal cutoff is 

                                                             
20 The true positive rate is commonly referred to as “sensitivity”  
21 The true negative rate is commonly referred to as “specificity”  
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at the maximum of (true positive rate) + (true negative rate) - 1. The accuracy of the model can 

be distilled into one measure by calculating the area under the curve. (“AUC”)  

 

Figure 6: True vs False Positive Rate of SRF 

  

 Survival Random Forest DRG GLOS prediction 

True positive rate .70 .18 

True negative rate .62 .88 

Area Under Curve (AUC) .72 .52 
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 At first glance, the AUC scores suggest that the survival random forest is the superior 

model. However, the true positive and negative rates inform which sort of applications would 

benefit from the use of machine learning forecast. Interestingly, while the survival random forest 

is more apt at making individual discharge predictions, when aggregated together to estimate 

daily total discharges, the DRG GLOS approach comes closer to the true number of daily 

discharges.  

A more meaningful comparison for hospital administrators would be an analysis of how 

the model performs in an applied setting. To that end, I have selected an additional, one-month 

testing subset to compare the abilities of the models to predict the daily discharge count relative 

to the true number of discharges. A caveat here is that the selected testing subset could be subject 

to seasonal effects. However, the month variable is intended to pick up the effect of changing 

seasons.  

The results of aggregating the predictions into daily discharge predictions are shown in 

Figure 7. While the survival random forest generates more reliably accurate for specific 

individuals, it does not seem well suited to making predictions of total discharge. The survival 

random forest had a lower mean squared error than the DRG GLOS model, but the mean DRG 

GLOS prediction came much closer to the mean number of true discharges.  
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Figure 7: Aggregated Discharge Predictions 

 SRF predicted 

discharges 

DRG predicted 

discharges 

True discharges 

Mean 27.05 22.47 22.72 

Standard deviation 3.03 4.00 5.38 

Mean error  -4.33 .25 - 

Mean squared error 

(relative to truth) 

49.3 55.81 -  

R-squared .04 .09 - 

 

 

In the 32 days between 15 March 2017 and 15 April 2017, the mean difference between 

the true number and the survival random forest predicted number of discharges was 4.3 days. In 

contrast, using the DRG GLOS prediction method was only -.25. This likely reflects how the 

DRG GLOS model is stronger in true negative rates versus true positive rates. The survival 

random forest overestimates the total number of discharges. Specifically, SRF estimated total 

discharge was greater than true discharge 68.7% of days. The DRG GLOS model only 

overestimated true discharge 46.8% of the time.  

Physicians and hospital administrators often need to make predictions more specific than 

a total number of discharges. Individuals and their families are likely more concerned with their 

own length of stay forecast than an aggregation of all current patients. Moreover, hospital 

administrators are challenged to balance the needs of specific, heterogeneous units within the 

hospital by allocating the right workers with the right skills to each unit. For example, specialist 
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nurses, social workers or physical therapists. The survival random forest provides a more useful 

prediction in this regard.  

Conclusion  

To summarize the findings of this study, the survival random forest is more accurate than 

the Cox proportional hazards model and an approximation of current CMMC practice when 

estimating discharge probabilities for specific patients. For a small subsample of the data, this 

advantage is lost when attempting to predict total number of discharges. This information is 

worth knowing for hospital decision makers considering the implementation of forecasting 

analytics. Specifically, this model is best suited to inform workflows centered on specific 

patients. Hospital administrators seeking forecasts of their total bed occupancy should instead 

use models developed for such a purpose. An avenue for further research could be evaluating the 

accuracy of the model or models like it in more specific contexts, e.g. in specific sub-units of the 

hospital.  

Quantifying the economic impact of improved information technology in hospitals could 

also be the subject of interesting further research. While improvements in operations 

management may not remedy all of the challenges facing the US healthcare system, improved 

utilization could foreseeably help bring healthcare costs down.  
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Appendix 1: Testing proportional hazards assumption 

A common way to test the proportional hazards assumption is to create an additional variable for 

each explanatory variable that measures the interaction of time and the explanatory variable. 22  

For the proportional hazards assumption to be substantiated, the new variables should have 

estimated coefficients insignificantly different from zero. Figure A demonstrates that age, 

female, drg_glos, drg_alos and off_hour_admit all are significantly different from zero to the .05 

level. Therefore, the proportional hazards assumption cannot be justified.  

Figure A: Interaction with time and explanators 

Variable name Coefficient on time 

interaction 

Chi squared P-value 

age  .02626 10.71 .0011 

female .01969 6.19 .0128 

drg_glos .10292 156.80 < .00001 

drg_alos -.04843 35.09 < .00001 

numberofdx_poa .00745 .86 .3538 

weekend_admit -.00775 .96 .3280 

off_hour_admit -.02102 6.99 .0082 

uninsured -.00395 .25 .6189 

 

                                                             
22 Kennedy, Peter. “Limited Dependent Variables.” A Guide to Econometrics, 4th ed., The MIT Press, 1998, pp. 

259–261. 
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