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Timing of the Acadian Orogeny in Northern New Hampshire

J. Dykstra Eusden, Jr., Chris A. Guzofski,1 Alexander C. Robinson,2

and Robert D. Tucker3

Department of Geology, Bates College, Lewiston, Maine 04240, U.S.A.
(e-mail: deusden@bates.edu)

A B S T R A C T

New U-Pb geochronology constrains the timing of the Acadian orogeny in the Central Maine Terrane of northern
New Hampshire. Sixteen fractions of one to six grains each of zircon or monazite have been analyzed from six samples:
(1) an early syntectonic diorite that records the onset of the Acadian; (2) a schist, a migmatite, and two granites that
together record the peak of the Acadian; and (3) a postkinematic pluton that records the end of the Acadian. Zircon
from the syntectonic Wamsutta Diorite gives a 207Pb/206Pb age of circa 408 Ma, the time at which the boundary
between the deforming orogenic wedge and the foreland basin was in the vicinity of the Presidential Range. This age
agrees well with the Emsian position of the northwest migrating Acadian orogenic front and records the beginning
of the Acadian in this part of the Central Maine Terrane. We propose a possible Acadian tectonic model that incor-
porates the geochronologic, structural, and stratigraphic data. Monazite from the schist, migmatite, Bigelow Lawn
Granite, and Slide Peak Granite gives 207Pb/206U ages, suggesting the peak of Acadian metamorphism and intrusion
of two-mica granites occurred at circa 402–405 Ma, the main pulse of Acadian orogenesis. Previously reported monazite
ages from schists that likely record the peak metamorphism in the Central Maine Terrane of New Hampshire and
western Maine range from circa 406–384 Ma, with younger ages in southeastern New Hampshire and progressively
older ages to the west, north, and northeast. Acadian orogenesis in the Presidential Range had ended by circa 355
Ma, the 207Pb/235U age of monazite from the Peabody River Granite. From 408 to perhaps at least 394 Ma, Acadian
orogenesis in the Presidential Range was typical of the tectonic style, dominated by synkinematic metamorphism,
seen in central and southern New Hampshire, Massachusetts, and Connecticut. From no earlier than 394 Ma to as
late as 355 Ma, the orogenesis was typical of the style in parts of Maine dominated by postkinematic metamorphism.

Introduction

The Acadian orogeny is one of the best known tec-
tonic events in the Northern Appalachians. It pri-
marily affected the rocks of central and eastern
New England and portions of the Canadian Mari-
time provinces. The details of the stratigraphy,
structure, metamorphism, and plutonism have
been studied by legions of researchers. However,
the tectonics of the Acadian have always been con-
troversial due to a lack of key lithotectonic assem-
blies such as ophiolites and blueschists.

In the past 10–15 yr, high-precision geochronol-

Manuscript received May 12, 1999; accepted November 2,
1999.

1 Department of Geosciences, Pennsylvania State University,
University Park, Pennsylvania 16802, U.S.A.

2 U.S. Geological Survey, Woods Hole, Massachusetts 02543,
U.S.A.

3 Department of Earth and Planetary Sciences, Washington
University, St. Louis, Missouri 63130, U.S.A.

ogy has allowed researchers of the Acadian to more
precisely pinpoint the timing of orogenesis and
move toward better, but necessarily more complex,
tectonic reconstructions. In addition, detailed
structural analyses of the complexly deformed
rocks, at scales of 1 : 5000 or larger, have revealed
complex variations in the sequences and transi-
tions of Acadian deformation throughout the oro-
gen. Though our understanding of Acadian tecton-
ism in portions of the orogen is better, much still
remains to be discovered.

In this article we present new U-Pb geochronol-
ogy that constrains the timing of the Acadian Orog-
eny in the Presidential Range of northern New
Hampshire. The Presidential Range, which in-
cludes Mount Washington (the highest peak in the
northeastern United States), lies in the heart of the
Acadian orogen and within a significant transition
zone where the style of Acadian orogenesis changes
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220 J . D . E U S D E N , J R . , E T A L .

Figure 1. Location map showing the study area, Central Maine Terrane, Bronson Hill Anticlinorium, Norumbega
Fault Zone, and the Emsian position of the Acadian deformation front from Bradley et al. (1998). Numbers with alpha
superscripts (e.g., 404c) are the oldest U-Pb monazite ages in millions of years from Silurian and Devonian schists
and migmatites. Key for sources of ages shown by superscript: a, Solar et al. (1998); b, Smith and Barreiro (1990); c,
this article; the rest, without superscripts are from Eusden and Barreiro (1988). Pluton ages taken from Lyons et al.
(1997) and Bradley et al. (1998).

dramatically. From the Presidential Range south
through the rest of New Hampshire, Massachu-
setts, and Connecticut, the Acadian style is dom-
inated by syntectonic metamorphism and pluton-
ism, whereas to the north in Maine, postkinematic
metamorphism and plutonism dominate. These
variations are fortunately now exposed because the
Acadian orogen in New England is tilted with shal-
lower, upper-crustal rocks exposed to the northeast
and deeper, middle-crustal rocks exposed to the
southwest.

Most important, the new U-Pb data presented
here allow us to assign an absolute age to several
phases of deformation and metamorphism previ-
ously only relatively known in the Presidential

Range. This geochronology is related to our long-
term mapping project to redefine the stratigraphy,
structure, and metamorphism in the Acadian tran-
sition zone. Furthermore, these ages relate well to
several recent geochronologic studies from New
Hampshire and Maine, enabling us to evaluate (1)
the onset of orogenesis as the Acadian deformation
front moves through; (2) the diachroneity of timing
of peak metamorphism; and (3) the duration of the
entire Acadian.

Geological Setting

The Presidential Range is located on the western
flank of the Central Maine Terrane (CMT; fig. 1).
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The Silurian and Devonian cover rocks of the CMT
correlate with both the Central Maine Basin of
Bradley et al. (1998) and the Merrimack Belt of Rob-
inson et al. (1998). The Silurian and Devonian cover
rocks of the CMT stretch from Connecticut to New
Brunswick and are bounded to the southeast by
composite Avalonian rocks along the Maine, New
Hampshire, and Massachusetts coasts and to the
northwest by the Bronson Hill, Boundary Moun-
tains, and Lobster Mountain anticlinoria (Lyons et
al. 1997; Bradley et al. 1998; Robinson et al. 1998).
Within the CMT of New Hampshire, the major
structural features, from west to east, are the Bron-
son Hill anticlinorium, the Kearsarge–Central
Maine synclinorium, the Central New Hampshire
anticlinorium, and the Lebanon antiformal syncli-
norium (Eusden and Lyons 1993; Lyons et al. 1997).

The CMT contains Silurian metasedimentary
cover rocks that are interpreted as an eastward
thickening sequence of deepwater turbidites de-
posited in either a passive margin basin (Moench
and Pankiwskyj 1988; Robinson et al. 1998) or a
forearc basin associated with a northwest dipping
subduction complex (Hanson and Bradley 1989;
Eusden et al. 1996a; Bradley et al. 1998). The Si-
lurian rocks in contact with and adjacent to the
Bronson Hill and Boundary Mountains anticlinoria
are thin, nearshore conglomerates and calcareous
turbidites of the Clough, Fitch, and portions of the
Rangeley Formations. These thicken to the south-
east into deeper-water turbidites of the Rangeley,
Perry Mountain, Smalls Falls, and Madrid Forma-
tions (Hatch et al. 1983; Moench and Pankiwskyj
1988; Hanson and Bradley 1989, 1993). Conform-
ably overlying these rocks are Devonian deepwater
turbidites of the Littleton, Carrabassett, and Se-
boomook Formations. Paleocurrent directions in
the Carrabassett show overall northerly flow (Han-
son and Bradley 1993). These formations were de-
posited in a foreland basin setting associated with
either a southeast dipping subduction system that
overrode the Silurian northwest dipping subduc-
tion system (Bradley et al. 1998) or simply the same
northwest-dipping Silurian subduction system that
persisted into the Devonian (Eusden et al. 1996a).

The Central Maine Terrane has experienced in-
tense ductile deformation, high-grade metamor-
phism, and a protracted period of pre-, syn-, and
postkinematic granitic plutonism. In general, the
deformation in the northeast part of the CMT
(Maine and New Brunswick) is dominated by up-
right structures and lower-grade postkinematic
contact metamorphisms associated with synkine-
matic, but largely postkinematic plutons (Moench
and Pankiwskyj 1988; Guidotti 1989; Osberg et al.

1989). In the southwest (portions of western Maine,
New Hampshire, Massachusetts, and Connecticut)
structures are generally recumbent, multiply de-
formed, and accompanied by synkinematic higher-
grade metamorphisms and associated intrusion of
predominately synkinematic granitic plutons (Eus-
den and Lyons 1993; Lyons et al. 1997; Robinson
et al. 1998). The transition between these different
styles of the Acadian tectonism occurs in a zone
only 75–100 km long, as measured along the strike
of the CMT, and represents a transition from shal-
lower crustal levels to deeper crustal levels through
the now exposed orogen (Carmichael 1978; Osberg
et al. 1989). Recent modeling of granite ascent in
convergent orogenic belts by Solar et al. (1998) and
Solar and Brown (1999) suggests that the synchro-
nous nature of deformation, metamorphism, and
plutonism may also be present in the high-T, low-
P metamorphism of western Maine. Bradley et al.
(1998) have also shown that many 408–404-Ma plu-
tons in Maine are syntectonic. However, many
workers have demonstrated the static nature of the
bulk of metamorphism in this same region (e.g.,
Holdaway et al. 1982; DeYoreo et al. 1989; Guidotti
1989). The fact that there is controversy over the
nature of orogenesis in western Maine may reflect
the complex effects one would expect to find
within and adjacent to the Acadian transition zone
and may also be related to the scale of observation
and methods of research employed by these
researchers.

Previous Geochronology in the CMT

Using U-Pb ages of plutons, conodont and paly-
nomorph ages of deformed strata, and tectonic anal-
ysis of depositional basins, Bradley et al. (1998)
have documented a migration of the Acadian de-
formation front and the adjacent foreland basin to
its west that began near the Maine coast during the
Late Silurian and swept northwestward across cen-
tral and western Maine and New Hampshire during
the Early Devonian. Bradley et al. (1998) placed the
Acadian deformation front in the vicinity of the
Presidential Range during the Early Emsian
(406–407 Ma). Solar et al. (1998) used U-Pb zircon
and monazite ages from plutons and schlieric gran-
ite within migmatites in western Maine, approxi-
mately 100 km northeast of the Presidential Range,
to constrain the granite crystallization to 408–404
Ma. A study of the metamorphism in the Rumford
7.5� quadrangle of western Maine, about 50 km
northeast of the Presidential Range, using U-Pb
monazite ages from schists, revealed two groups of
ages (Smith and Barreiro 1990), most likely related
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to the M2 and M3 pulses of high-grade metamor-
phism recognized by Guidotti (1989). The initial
pulse lasted from ∼405 to 398 Ma, and the second
pulse lasted from ∼370 to 365 Ma. A study of peak
metamorphism in a broad region of central New
Hampshire, about 100 km southwest of the Presi-
dential Range, using monazite ages from schists,
migmatites, and two-mica granite sheets, revealed
a period of protracted high-grade metamorphism(s)
lasting from ∼384 to 402 Ma (Eusden and Barreiro
1988).

Geology of the Presidential Range

Using as a foundation the excellent work of pre-
vious geologists who have mapped the rocks in the
Presidential Range (Billings 1941; Billings et al.
1946, 1979; Hatch and Moench 1984; Hatch and
Wall 1986) and collaborating with those who are
actively working there (Allen 1992, 1996; Wing
1996), we are in the midst of a mapping project to
redefine the geology in the range. Figure 2 shows
the geologic map we have compiled to date, as well
as the sample locations for this article.

We have subdivided the Devonian Littleton For-
mation into 16 members, recognized both the Si-
lurian Madrid and Smalls Falls Formations, sub-
divided the Rangeley Formation into nine
members, and recognized an episode of sedimen-
tary disruption in the Rangeley, which we interpret
as a migmatized olistostromal mélange (Eusden et
al. 1996a). The rationale for treating the Rangeley
migmatite as a stratigraphic unit is described in
Eusden et al. (1996a).

The sequence of deformation is interpreted to
comprise five events, D1–D5. The D1 event is char-
acterized by east-verging isoclinal nappes, which
are macroscopic at high elevations and mesoscopic
at low elevations, while D2 is characterized by the
Clay klippe and Greenough Spring thrust (see Eus-
den et al. 1996a). The D3 folds result in anomalous
easterly dips of bedding (S0) and D1 foliation (S1),
macroscopic refolding of the D2 thrusts, and defi-
nition of the great Chandler Ridge Dome. Folds of
D4 are the most common structural features in the
Presidential Range and vary in scale from mesos-
copic at high elevations to mesoscopic and micro-
scopic at lower elevations. Event D5 is principally
a crenulation restricted to the Pinkham Notch re-
gion. The many vertical and lateral variations in
structural style that the phases of deformation ex-
hibit further reflect the complex nature of the de-
formation that occurred in the Acadian crustal
transition (Eusden et al. 1996a).

Many pulses of metamorphism have been rec-

ognized in the Presidential Range. The following
summary is based on Eusden et al. (1996b), Wing
(1996), Wall (1988), and Allen (1996). The first, M1,
is characterized by aligned andalusite, much of
which is now preserved as pseudomorphs and oc-
curred during D1 nappe-stage folding, and M2 is
characterized by sillimanite zone metamorphism
in the Littleton schists and migmatization in the
Rangeley gneisses and occurred during the later
part of D1 nappe-stage folding. The migmatites,
which are all characterized by sillimanite zone
metamorphism with potassium feldspar-absent
melting, occur in two types of sharp contacts with
the surrounding schists. The first type is repre-
sented by the Greenough Spring thrust fault, a dis-
continuity that offsets the stratigraphy and early
folds and also coincides exactly with the sharp
metamorphic transition between schists outside of
the klippe and migmatites within. The second type
of migmatite contact, observed sporadically
throughout the Presidential Range, is one in which
the pelitic schists and quartzites, calc-silicate gran-
ofels, and rusty schists of the Littleton, Madrid, and
Smalls Falls Formations, respectively, are in con-
formable stratigraphic contact with the migmatites
of the Rangeley Formation. There is no strati-
graphic or structural discontinuity recognized at
this metamorphic transition, which is again sharp,
occurring directly at the contact with the Rangeley.

The later events, M3 and M4, are contact-meta-
morphic events, both reaching staurolite grade.
Event M3 occurred prior to D4 folding, based on
the observation that granites related to this phase
of metamorphism are folded by F4 folds. The M4
metamorphism occurred after D4 deformation and
is related to the latest stage of posttectonic-granite
intrusion and D5 crenulation, while M5 is a ret-
rograde metamorphism producing scattered occur-
rences of chlorite and/or sericite alteration in the
schists and gneisses.

The earliest plutonism in the Presidential Range
is characterized by one rare dioritic stock, the
Wamsutta Diorite (Guzofski 1997). This pluton has
a weak S1 foliation but also cuts across the S1 fabric
in the metasedimentary rocks. We interpret these
observations to mean that the Wamsutta Diorite
intruded during the waning stages of F1 nappe-stage
folding. The diorite thus represents the earliest syn-
kinematic intrusion in the range and is probably in
part synchronous with M1. Two other small diorite
intrusions were mapped on the Nineteenmile
Brook in the Carter Dome 7.5� quadrangle, 0.5 km
east of Route 16 (fig. 2; Billings and Fowler-Billings
1975). A widespread scattering of sills, veins, and
small plutons of two-mica granite intruded sub-
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Figure 2. Simplified geologic map of the Presidential Range, New Hampshire, showing sample locations (at tip of
arrows) and 7.5� quadrangles.
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sequently. The M2 and M3 metamorphisms were
associated with the intrusion of these granites.
These granites are deformed by F4 folds. These
small plutons are normally not foliated but may
have a weak foliation near the contact with the
metasedimentary rocks and/or migmatites. They
cut across F1 folds, thereby postdating D1. Allen
(1992, 1996) mapped the largest of these granites
near the Wildcat Ski Area immediately adjacent to
the Presidential Range. The Wildcat granite occurs
in two phases: a medium-grained, two-mica granite
and a coarser-grained, biotite-rich granitoid with
calc-silicate pods. The second phase of granite is
interpreted as having formed from partial melting
of the Rangeley Formation (Allen 1992, 1996). Late-
stage posttectonic granites are restricted to the Pea-
body River Stock previously identified by Allen
(1992, 1996), Wall (1988), and Billings and Fowler-
Billings (1975). This granite probably caused M4
contact metamorphism and possibly D5 crenula-
tions, which are restricted to the areas surrounding
its contact. The youngest intrusions are volcanic
vent agglomerates and diabase dikes, part of the
Jurassic-Cretaceous White Mountain Magma Se-
ries, found in small numbers throughout the study
area (Allen 1992, 1996; Billings and Fowler-Billings
1975).

U-Pb Analytical Methods

U-Pb analyses were performed in the geochronol-
ogy lab at Washington University, St. Louis. Six
samples of 25–50 kg were taken from outcrops of
two different metamorphic and four igneous rocks
in the Presidential Range. Monazite and zircon
were extracted using standard crushing, Rogers ta-
ble, sieving, heavy liquids, and magnetic separation
techniques. Monazites and zircons were then hand-
picked under a binocular microscope based on grain
size, shape, clarity, and color. Analyses were per-
formed on two to six fractions of one to six crystals
each. All analyses were air abraded (Krogh 1982)
and then cleaned in warm 4N HNO3, water, and
distilled acetone to remove common Pb compo-
nents. Samples were then dissolved in TFE Teflon
bombs, spiked with 205Pb/235U tracer, and digested
in 48% HF and 7N HNO3. Following conversion to
chloride form, U and Pb were extracted using ion
exchange techniques (Krogh 1973). Isotope ratio
measurements of Pb and U were made using a VG
Sector-54 automated thermal ionization mass spec-
trometer with seven collectors and a Daly-type
detector.

Errors for the 238U/206Pb, 235U/207Pb, and 207Pb/206Pb
ages were estimated using the method of Ludwig

(1980) and all age uncertainties are quoted at the
95% confidence level. Cited ages for zircon and
monazite are the mean 207Pb/206Pb and 207Pb/235U
ages, respectively, of concordant or slightly discor-
dant analyses weighted according to the inverse
variance of each analysis (Ludwig 1992). The
quoted age error is the standard error of the average
value calculated using the assigned error for each
analysis. The reliability of the cited ages may be
evaluated by the mean square of the weighted de-
viates (MSWD), which in all cases is !1.5, indicat-
ing that the assigned errors may be somewhat over-
estimated. Concordia diagrams are shown in figure
3 and U-Pb isotope-dilution analyses are reported
in table 1. The time scale of Tucker et al. (1998)
was used in the discussion.

Results

U-Pb ages for each sample are given below. For de-
tailed sample descriptions and locations, the reader
is referred to Robinson (1997).

Wamsutta Diorite. The Wamsutta Diorite is a
weakly foliated, medium-grained, quartz diorite
sampled from an outcrop along the Peabody River
at Wamsutta Falls, 2.8 km N 08� E of Mount Wash-
ington (fig. 2). Six analyses of different zircon frac-
tions were performed (table 1). Analyses 1, 3, and
4 are clear, colorless zircon needles; analysis 2 is a
clear, colorless zircon tip; and analyses 5 and 6 are
clear, colorless, rounded zircon prisms. Analyses
1–3 plot on concordia, and analysis 4 plots slightly
below concordia (fig. 3A). These four analyses yield
an upper intercept age (using the 206Pb/238U : 207Pb/
235U ratios and the concordia plot) of 408.4 � 1.9
Ma, with the lower intercept forced through the
present. The weighted mean of the 207Pb/206Pb ages
of these four analyses gives an age of 408.2 � 2.0
Ma. Both of these ages agree within error. Analyses
5 and 6 are normally discordant, plotting well be-
low concordia, with upper discordia intercepts of

Ma and Ma (fig. 3A).1207 � 6 1487 � 6
Bigelow Lawn Granite. The Bigelow Lawn Gran-

ite (Peters 1992) is a well-foliated, fine-grained,
light gray to white, two-mica granite and was sam-
pled from Bigelow Lawn 1.2 km S 80� W of the
summit of Mount Washington (fig. 2). Two mon-
azite fractions of two grains each were analyzed
(table 1). Both monazite fractions consisted of clear,
yellow, rounded grains. Analysis 1 yielded a 207Pb/
235U age of Ma and plots on concordia402.5 � 0.5
(fig. 3B). Analysis 2 yielded a 207Pb/235U age of

Ma and also plots on concordia.424.9 � 0.8
Slide Peak Granite. The Slide Peak Granite (John-

son 1993) is a well-foliated to nonfoliated, medium-
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Figure 3. U-Pb concordia diagrams. See table 1 for data. A, Zircon analyses from the Wamsutta Diorite. B, Monazite
analyses from metamorphic rocks and early two-mica granite plutons. C, Monazite analyses from the Peabody River
Granite.

to fine-grained, light gray to white, two-mica gran-
ite with lenses of well-foliated schist or gneiss
(Johnson 1993) and was sampled from outcrop along
the Glen Boulder Trail above the Gulf of Slides, 0.3
km N 60� W of Slide Peak (fig. 2). Two monazite
fractions of one grain each were analyzed. Both
monazite fractions consisted of a single clear, yel-
low, rounded grain. Analysis 1 yielded a 207Pb/235U
age of Ma, and analysis 2 yielded a404.9 � 0.5

207Pb/235U age of Ma (table 1). Analysis403.3 � 0.6
1 is reversely discordant, and analysis 2 plots on
concordia. These two ages do not agree within error
from the 207Pb/235U ratios. However, the two anal-
yses do overlap on the concordia plot, which is de-
rived from both the 207Pb/235U ratio and the 206Pb/
238U ratio (fig. 3B).

Littleton Schist. The sample from the Littleton
Formation is a unit of well-bedded schist and
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Table 1. U-Pb Isotope Dilution Analyses

Sample
analyses

Concentrations Atomic ratios Ages (Ma)
Discordance

(%)# mina U, ppm Pb (rad), ppm Th, ppm 206Pbb/238U 207Pbb/235U 207Pbb/206Pbb 208Pbb/206Pbb Th/U 206b/238 207b/235b 207b/206b

Wamsutta
Diorite:

1 1 z 593.07 37.57 137.16 .06522 .49361 .05489 .0747 .231 407.28 407.36 407.82 .14
2 1 z 355.21 22.67 83.94 .06554 .49607 .05490 .0760 .236 409.20 409.04 408.09 �.28
3 1 z 495.98 30.82 85.87 .06508 .49280 .05492 .0558 .173 406.42 406.81 409.05 .66
4 1 z 764.89 46.17 92.76 .06418 .48588 .05490 .0391 .121 401.03 402.10 408.25 1.82
5 1 z 285.93 59.81 113.94 .20013 2.46064 .08918 .1258 .398 1176.00 1260.60 1407.90 18.01
6 1 z 225.56 34.67 83.31 .14954 1.56580 .07594 .1191 .369 898.36 956.77 1093.58 19.12

Bigelow Lawn
Granite:

1 2 m 4119.54 849.60 34,055.64 .06453 .48652 .05468 2.6393 8.267 403.14 402.54 399.07 �1.05
2 2 m 1101.98 237.12 8861.85 .0681 .51957 .05533 2.597 8.042 424.71 424.86 425.70 .24

Slide Peak
Granite:

3 1 m 5524.34 878.92 30,854.19 .06494 .48995 .05472 1.7795 5.585 405.60 404.87 400.74 �1.25
4 1 m 5022.66 888.51 33,125.87 .06463 .48757 .05471 2.1106 6.595 403.72 403.25 400.58 �.81

Littleton Schist:
5 1 m 5096.43 788.94 27,321.06 .06440 .48603 .05474 1.7264 5.361 402.30 402.2 401.65 �.17
6 1 m 4343.93 897.07 36,895.70 .06311 .47442 .05452 2.7276 8.494 394.51 394.24 392.61 �.50

Rangeley
Migmatite:

7 1 m 5527.05 753.91 23,745.70 .06486 .48994 .05478 1.6793 4.296 405.31 404.87 403.32 �.47
8 2 m 7533.06 1023.05 32,398.85 .06489 .48933 .05469 1.3680 4.301 405.28 404.45 399.75 �1.43

Peabody River
Stock Granite:

1 1 m 751.98 335.78 18,859.87 .05658 .41778 .05355 8.0542 25.080 354.79 354.46 352.34 �.71
2 1 m 804.00 393.97 22,155.86 .05674 .41960 .05364 8.9121 27.557 355.76 355.77 355.80 �.01

a of grains in analyzed fraction; analyzed; ; .# = number min = mineral z = zircon m = monazite
b Radiogenic lead corrected from common lead using the isotopic ratios 204 : 206 : 207 : : 17.753 : 15.572 : 37.580 (Stacey and Kramers 1975).208 = 1
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quartzite with 1–1.5 m couplets containing about
30% quartzite. The schist sampled comes from a
roadcut on the Mount Washington Auto Road near
the summit of Mount Washington (fig. 2; same lo-
cality as Stop 1 in Eusden et al. 1996b). Two mon-
azite fractions of one grain each were analyzed.
Each fraction consisted of one yellow, rounded
monazite. Analysis 1 yielded a 207Pb/235U age of

Ma, and analysis 2 yielded a 207Pb/235U402.2 � 2.1
age of (table 1). Both analyses plot on394.2 � 0.6
concordia (fig. 3B).

Rangeley Migmatite. The Rangeley migmatite
was sampled from a roadcut along the east side of
U.S. Route 16, 2.2 km north of the base of the
Mount Washington Auto Road (fig. 2). The rock
consists of well-foliated quartz-muscovite-biotite-
sillimanite-garnet migmatitic gneiss (Wall 1988).
Two monazite fractions were analyzed. Fraction 1
consisted of one yellow, rounded grain. Fraction 2
consisted of two yellow, rounded grains. Analysis
1 yielded a 207Pb/235U age of Ma, and404.9 � 0.4
analysis 2 yielded a 207Pb/235U age of 404.5 � 0.7
Ma (table 1). Both analyses plot on concordia with
overlap (fig. 3B).

Peabody River Stock. The Peabody River Stock
(Billings and Fowler-Billings 1975) is a nonfoliated,
light to medium gray, fine-grained, two-mica gran-
ite and was sampled from a roadcut on the east side
of U.S. Route 16, 7.4 km north of the base of the
Mount Washington Auto Road (fig. 2). Two mon-
azite fractions consisting of one grain each were
analyzed (table 1). Both fractions were yellow,
rounded grains. Analysis 1 yielded a 207Pb/235U age
of Ma. Analysis 2 yielded a 207Pb/235U354.5 � 1.3
age of Ma. Both analyses plot on con-355.0 � 1.0
cordia and overlap each other (fig. 3C).

Discussion

Early Emsian Plutonism: Implications for Sedimen-
tation, Deformation, and Tectonism. The Wamsutta
Diorite is likely a Spaulding-type diorite for which
Lyons and Livingston (1977) have reported Rb-Sr
ages of Ma. This agrees within error with402 � 5
the weighted mean 207Pb/206Pb age of 408.2 � 2.0
Ma (fig. 3A). The Wamsutta is also correlative to
and lies within a belt of Emsian plutons that are
syntectonic with respect to the first phase of local
Acadian deformation (Bradley et al. 1998). This belt
extends northeast-southwest through Maine and
into New Hampshire (see fig.1). Amazingly, the Lit-
tleton Formation, into which the Wamsutta in-
trudes, has essentially the same age of deposition
based on an Emsian U-Pb zircon age of Ma407 � 2
(R. Tucker and D. Rankin, unpub. data cited in

Bradley et al. 1998), from an interstratified tuff col-
lected only 40 km west of the diorite! Therefore,
the boundary between the deforming orogenic
wedge and the depositional site in the foreland ba-
sin must have been between these two sites at
407–408 Ma. These two sites are, of course, much
closer now than then, due to Acadian shortening.
This supports the model of Bradley et al. (1998),
who stated that Littleton deposition is diachronous
across strike in this area, similar to their findings
in Maine. Littleton deposition occurred at approx-
imately 410–409 Ma in the Presidential Range,
408–407 Ma in the Beaver Brook–Gale River area,
and slightly younger still in the type section of Lit-
tleton, New Hampshire. The first wave of Acadian
deformation chased this deposition, also in a west-
erly direction, lagging behind by 1–2 m.yr. or so.

Bradley et al. (1998) suggested that the migrating
deformation front is linked with an A-type sub-
duction zone (one in which continental crust is be-
ing subducted). This evolved from a B-type system
(one in which oceanic crust is being subducted)
with a southeast-dipping subduction zone. The ear-
liest structures are shown as northwest vergent in
their model. However, in the Presidential Range
the earliest structures, F1 nappes, were clearly east-
erly verging. The F4 folds were also east-vergent,
and the regional dip is westerly, implying an overall
top-to-the-east shear for this part of the orogen
(Eusden et al. 1996a). Furthermore, and more fun-
damentally for tectonic reconstructions of the Aca-
dian, this same structural geometry is also found
throughout the CMT in central and eastern New
Hampshire (Eusden and Lyons 1993; Lyons et al.
1997) and southwestern Maine (Eusden et al. 1987).
The distribution of east- and west-verging nappes
in the CMT has been summarized by Eusden et al.
(1996a). Any Acadian tectonic model that only ac-
counts for the west-verging nappes (Bradley et al.
1998) observed in the Connecticut Valley region
(Robinson et al. 1991) and portions of Maine (Os-
berg et al. 1989) is an incomplete model for the
CMT. Thus, the details of the structural geology in
the Presidential Range and throughout much of the
CMT of New Hampshire and Maine do not fit the
Bradley et al. (1998) tectonic model. Yet, the new
geochronology presented here fits beautifully with
the timing of Acadian migration proposed by Brad-
ley et al. (1998).

In keeping with the requirement that an area can
only have one geological history where all evidence
must fit together into a credible model, we suggest
that it has to be possible to have both a northwest-
migrating deformation front and a thrust-nappe
belt that is southeasterly verging at the same time

This content downloaded from 134.181.139.109 on October 31, 2017 11:35:48 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



228 J . D . E U S D E N , J R . , E T A L .

Figure 4. Schematic plate tectonic model oriented ap-
proximately northwest-southeast through the Presiden-
tial Range. A, Pre-Ludlovian B-type subduction with an
older buttress developed in Composite Avalon. B, Lud-
lovian initiation of A-type subduction and Acadian de-
formation, earliest thrust nappes (1) developed along the
present Maine Coast, stacked out of sequence (2) to the
northwest. C, Emsian position of the deformation front
as it advances to the northwest while the thrust nappes
continue to verge to the southeast.

during the Acadian. Figure 4 is an attempt to sche-
matically show such a tectonic model along a cross
section through the Presidential Range. No attempt
has been made to model another line of section,
approximately 100 km along strike, that would ad-
dress the west-vergent nappes recognized in south-
west New Hampshire.

In the model, the precollisional geometry in-
volved two subduction zones as originally sug-
gested by Bradley (1983) and also discussed, but
not endorsed, by Robinson et al. (1998). This rep-
resents a compromise of sorts between the model
of Eusden et al. (1996a) and the favored model of
Robinson et al. (1998) and Bradley et al. (1998). The
Pre-Ludlovian geometry is characterized by B-type
subduction along the Laurentian margin (Bradley
et al. 1998) and Ordovician-to-Silurian transpres-
sional orogenesis within Composite Avalon now
exposed along the Maine Coast (Rankin 1994; Stew-
art et al. 1995). To account for the lack of Acadian-
aged arc volcanics in the Bronson Hill Anticlino-
rum—or at least the lack of agreement over
whether the scattered volcanics are arc (Bradley
1983) or rift related (Hon et al. 1992)—the slab dip
angle was possibly too shallow to trigger partial
melting and arc volcanism (so-called buoyant sub-
duction of Cross and Pilger 1982). Sometime in the
Ludlovian (423–419 Ma), southeast-dipping sub-
duction developed along the leading edge of Com-
posite Avalonian; shortly after, this continental
crust made contact with the trench and A-type sub-
duction commenced (Bradley et al. 1998). This sub-
duction system would account for the Coastal Vol-
canics that erupted on Composite Avalon from the
late Llandovery to early Lochkovian. The Acadian
deformation front advances in the direction of the
dip (northwesterly), chasing the Devonian sedi-
mentation of the Littleton Formation. The struc-
tures in the orogenic wedge would verge south-
easterly with younger thrust nappes overlying older
ones propagating toward Bronson Hill.

A present-day tectonic analog to this two-
subduction-zone model is the Molucca Sea in the
Indonesian region, as Bradley (1983) has previously
discussed. A modern analog for just the southeast
subduction along Composite Avalon and the out-
of-sequence thrust-nappe structures is the Austra-
lian-Pacific plate boundary in the South Island of
New Zealand. In North Canterbury, New Zealand,
Barnes (1996) reports a west-verging, but eastward-
younging (i.e., out of sequence), fold-thrust belt
emerging from the sea. The subduction polarity is
known and dips west as the Pacific plate subducts
beneath the Australian plate along the Hikurangi
trench. This geometry is essentially a mirror image

of that proposed in figure 4B for Avalon Composite.
It is also interesting to note that in the New Zea-
land example, while tectonic uplift accompanies
the active fold-thrust belt on land and immediately
offshore, subsidence and deposition occurs just a
bit farther offshore; thus, this analog could also pro-
vide a mechanism for basin subsidence and Little-
ton-Seboomook deposition in the Devonian.

The out-of-sequence thrust-nappe propagation
proposed in figure 4 could have been created by a
tectonic buttress (dashed vertical line within Av-
alon composite in fig. 4B, 4C) that formed in Pre-
Ludlovian times along the Maine coast as the St.
Croix and Ellsworth terranes accreted (Rankin
1994; Stewart et al. 1995). This orogenic belt,
formed just prior to and flanking the southeast mar-
gin of the Acadian Orogeny, may have served as a
barrier precluding southeast migration of the Aca-
dian orogenic front.

This northwest subduction along the Laurentian
margin in figure 4 is consistent with the recent
tectonic interpretations of Karabinos et al. (1998)
for the Bronson Hill Arc in Vermont and New
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Hampshire and van Staal (1994) for the Brunswick
subduction complex in New Brunswick. Developed
principally to illustrate the complexities of Tacon-
ian orogenic effects in the Ordovician, both models
show a west-dipping slab geometry and B-type sub-
duction during the latest Ordovician and earliest
Silurian along the Bronson Hill. If this slab geom-
etry persisted throughout at least some of the Aca-
dian, one would expect east-vergent, syncollisional,
thrust-nappe structures and olistostromal facies
along the Bronson Hill, as Eusden et al. (1996a) have
previously reported for the Presidential Range.
Though it is not within the scope of this article to
explain the west-vergent structures seen 100 km
along strike in the Connecticut Valley region (Rob-
inson et al. 1991), we suggest that the New Zealand
plate boundary can again be used as an analog. Pet-
tinga and Wise (1994) suggest a flower structure
exists due to transfer along the Alpine Fault from
the Puysegur trench with east-dipping subduction
to the Hikurangi trench with west-dipping sub-
duction. In this model, both east- and west-verging
structures exist, separated by approximately only
100 km along strike, close to the geometry of thrust
nappes observed in the CMT of New Hampshire.

Middle Emsian Peak of Metamorphism and Migma-
tization. Figure 3B shows a single concordia plot
with the Rangeley migmatite, Littleton schist,
Slide Peak Granite, and Bigelow Lawn Granite sam-
ples plotted. All the analyses (with the exception
of analyses 2 and 6) fall within a very short period
of time (397–407 Ma, with most of the ages be-
tween 402 and 406 Ma) with substantial amounts
of overlap. This figure graphically depicts the syn-
chronous nature of the metamorphism and mig-
matization recorded in the Rangeley and Littleton
Formations and the igneous events represented by
the Slide Peak and Bigelow Lawn granites. The
weighted average 207Pb/235U age for the samples
with ages between 402 and 405 Ma is 403.9 � 1.1
Ma. This we take to be the best estimate of the
timing of peak metamorphism, which was syn-
chronous with the earliest two-mica granite
plutonism.

One of the Bigelow Lawn Granite fractions gave
an age of Ma, which cannot date the424.9 � 0.8
crystallization of granite, as this age is older than
the metasedimentary rock it intrudes. We offer two
possible explanations for this age: (1) it could be
contamination or (2) a detrital monazite (from the
Bronson Hill Anticlinorium?) that somehow sur-
vived the peak of metamorphism without being en-
tirely reset (unlikely, given the arguments of Smith
and Barreiro [1990] on monazite systematics). One
single-grain monazite fraction from the Littleton

schist gave a concordant age of Ma (fig.394.2 � 0.6
2), a full 10 m.yr. after the peak of metamorphism.
This could be related to one of the other subsequent
metamorphisms (e.g., M3) but that is speculative
based on a single analysis. It does at least suggest
that some high-grade metamorphic monazites were
either being formed or reset 10 m.yr. after the pre-
sumed peak of metamorphism at circa 404 Ma.

The synchroneity at 404 Ma of peak metamor-
phism in schists and migmatization linked with
crystallization of granites in the Presidential Range
strongly supports the migmatite evolution model
of Allen (1992, 1996) developed for exposures at the
base of the range in Pinkham Notch. Allen’s model
calls for localized migmatization to be produced by
an anatectic partial melting process driven by in-
filtration of magmatic fluids. Large localized mig-
matite zones and metamorphic “hot spots” are in-
terpreted as the conduits through which magma
passed as it migrated from sources deeper in the
crust to be emplaced as plutons at higher crustal
levels (Allen 1992, 1996). Allen suggests that these
conduits are also structurally controlled; thus, the
metamorphism, migmatization, and associated
plutonism were synkinematic. The model of gran-
ite ascent and synkinematic regional metamor-
phism in west-central Maine by Solar et al. (1998)
and Solar and Brown (1999) is also likely applicable
to the Presidential Range.

A compilation of the oldest monazite ages from
throughout Maine and New Hampshire is shown
in figure 1. Most of these ages fall between circa
384–408 Ma (Eusden and Barreiro 1988; Smith and
Barreiro 1990; Solar et al. 1998) with a later pulse
at circa 370–363 Ma in the Rumford, Maine, area
(Smith and Barreiro 1990). The data set, though
meager and representing a mixture of different
techniques (e.g., single-grain analysis, bulk analy-
sis), does show a general pattern of younger ages
(!385 Ma) in southeastern New Hampshire that get
progressively older (400–405 Ma) to the west, north,
and northeast (fig. 1). The pattern is likely the re-
sult of the complex interactions of a polyphase Aca-
dian orogeny and the post-Acadian history of cool-
ing, tilting, and exhumation.

Early Carboniferous Postkinematic Plutonism and
Contact Metamorphism. The Peabody River Stock
granite yields a weighted mean 207Pb/235U age of

Ma (fig. 3C). This age is interpreted to355.4 � 1.6
be not only the crystallization age of the pluton but
also the age of M4 contact metamorphism (Wall
1988; Eusden et al. 1996a) and D5 crenulation (Gu-
zofski 1997) around the pluton. Pending future
work, this age may also effectively be the younger
limit of Paleozoic orogenesis in the Presidential
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Range. This is the only age that might be related
to the Neo-Acadian (circa 360 Ma) metamorphic
overprint (Robinson et al. 1998) seen in southern
New Hampshire and central Massachusetts. This
zone is sandwiched between the Massabesic Gneiss
Complex and the Pelham Dome in Massachusetts
and dies out to the north somewhere in southern
New Hampshire.

Middle Devonian to Early Carboniferous granites
of this age are common throughout the CMT of
New Hampshire and Maine. Many two-mica and
biotite granitoids are concentrated in the migma-
tite belt of central New Hampshire (Lyons et al.
1997), although others are widely scattered
throughout New Hampshire and Maine (Osberg et
al. 1985). They are posttectonic plutons that we
consider post-Acadian. Thermal modeling of
Chamberlain and England (1985) suggests that mag-
matism of this age could be the result of thermal
relaxation following the earlier peak metamorphic
event.

Summary

The new U-Pb ages presented here constrain the
time of several key events in the history of the
Acadian orogeny of northern New Hampshire: (1)
the boundary between the deforming orogenic
wedge and the depositional site in the foreland ba-
sin was in the vicinity of the Presidential Range at
408 Ma; (2) southeast-verging thrust nappes formed
at circa 408 Ma. Plate tectonic models for the Aca-
dian must be modified to account for both a north-
west-migrating deformation front and a south-
easterly verging thrust-nappe belt; (3) peak
metamorphism in schists, migmatization, and in-
trusion of early two-mica granites occurred at circa
404 Ma; (4) metamorphic monazite ages from

northern New Hampshire are similar in age to
those of southwestern New Hampshire and west-
ern Maine (circa 400–405 Ma) and are distinctly
older than metamorphic monazites from south-
eastern New Hampshire (circa 385–390 Ma); and
(5) the younger limit of Paleozoic orogenesis in the
Presidential Range is at 355 Ma, as recorded by the
postkinematic Peabody River Granite. From circa
408 to 404 Ma, and perhaps as late as circa 394 Ma,
the Acadian orogeny in the Presidential Range was
typical of the synkinematic style seen in central
and southern New Hampshire, Massachusetts, and
Connecticut. From no earlier than circa 394 Ma to
as late as circa 355 Ma, the tectonism was typical
of the postkinematic style in parts of Maine. All of
these constraints confirm the presence of a com-
plex system of temporal and spatial variations in
the styles of tectonometamorphism that occurred
within the Acadian transition zone of the Northern
Appalachians. Future work integrating detailed
structural mapping at large scales, high-precision
geochronology to constrain the timing of the oro-
genesis, and studies of the complex metamor-
phisms and intrusions will greatly help in devel-
oping better tectonic models for the Acadian
transition zone exposed in New Hampshire and
Maine.
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