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The field trips of this Reunion updated The Friends on glacial, geomorphological, 
geochronological, and paleoenvironmental research within and below the alpine zone of Mt. 
Washington and the northern Presidential Range.  These field trips were the first return of The 
Friends to this area since the 33rd

 

 Reunion in 1970.  Those trips were led by Dick Goldthwait, 
Brian Fowler, Don Bailey, and Tom Goldthwait. 

 
IMPORTANT 

Portions of these field trips cover tree-less alpine terrain with often very cold, windy, and wet 
conditions that can be unsafe if you are not properly equipped with sturdy water-resistant 
footwear, a hat with ear protection, warm gloves or mittens, extra sweater or fleece, warm 
jacket, and wind/water-proof outer shell and pants.  Wind-driven rain, sleet, snow, and sub-
freezing temperatures are frequent on Mt. Washington in all seasons of the year. 
 

 
Guidebook 

To reduce the cost of this Reunion (like Reunions of old in tough economic times), a formal 
guidebook was not published.  Instead, background information, trip logs, and hand-outs were 
combined into this stand-alone document. 

 

 
Cover Photograph 

The Great Gulf cirque with post-glacial colluvium deposits on its floor, looking north from the crest of its headwall 
on Mt. Washington,across the Federally-designated Great Wilderness toward the northern Presidential Range, with 
Mounts Jefferson, Adams, and Madisonfrom left to right.  The Great Gulf and subsidiary “feeder cirques” (left side 

and to the north: Sphinx and Jefferson Ravines and Madison Gulf) comprise the largest cirque complex on the 
Presidential Range.  Photograph, B. K. Fowler. 
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Copies of Davis, 1999 and Thompson, et al., 1999 are available free of charge on-line at 
http://www.erudit.org/revue/gpq/2006/v60/n3/index.html.  Copies of Eusden, 2010 and Fowler, 2011 
are available on-line at (www.durandpress.com).   
 
Proceeds from the sale of the last two items go to Funds established to support expenses of student 
research at Bates College (Eusden) and volunteer mappingfor the NH Geological Survey’s USGS 
STATEMAP Program (Fowler).  This volunteer activity partially replaces the recently cut State of NH 
match for this program in the region, and helps keep the NH Geological Survey viable until Legislative 
match-budgeting improves.  Thank you in advance for your support of these worthy causes! 
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THE FIELD TRIPS 

 

 
The Great Gulf Cirque and Its Possible Late- to Post-Glacial Features 

This pre-meeting field trip requires hiking over very rugged terrain and some strenuous climbing 
to visit the headwall of the Great Gulf, by far the region’s largest cirque, and then a newly-
identified feature created by what is proposed by Fowler (2011)to have been a reactivated late- to 
post-glacial cirque ice mass within the Great Gulf.  Participants must be properly equipped and 
in excellent physical condition.  Trip groups are limited to 10 persons because the field trip 
traverses the Great Gulf Wilderness.  The Great Gulf headwall portion of this trip should be 
attempted only if weather conditions on Mt. Washington permit. 
 
 

 

 
Mt. Washington and the Alpine Zone of the Presidential Range 

This field trip reviews the results of field work in this area during the past 40 years.  The 
following subjects are included:  
 

• the possibility that the last ice sheet was not as thick in the region as its predecessors;  
• the reason that the summits of the Presidential Range above 5,200 ft. appear as 

“rockpiles” and not bedrock promontories; 
• the presence and age implications of enigmatic deposits of reworked till and/or 

diamict on Mt. Washington; and, 
• the relative age of surficial features in the alpine zone.  Also included was a tour of 

the world-famous Mt. Washington Observatory and its Summit Museum.    
 

 
 

 
Upper Peabody River Valley and Its Late- to Post-Glacial Features 

This field trip examines new features identified in Pinkham Notch possibly associated with 
newly-proposed late- to post-glacial ice activity in the Great Gulf cirque (Fowler, 2011).  These 
features include a possible terminal moraine and an ancestral glacial lake dammed by that 
moraine.  The results of ongoing clast provenance studies and detailed mapping on these features 
are presented. 
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BACKGROUND INFORMATION 

 
INTRODUCTION 

Field trips for this reunion review and update the late- and postglacial surficial geology of the alpine zone 
of Mt. Washington and the northern Presidential Range in New Hampshire.  Much has been learned and some ideas 
rethought in this field area since the 1960’s, but controversies persist because of the area’s rugged terrain, dense 
vegetation, and frequently unfavorable weather conditions.  Our understanding of the Late Wisconsinan and its late- 
to postglacial periods are very much a work in progress, and we clearly “stand on the shoulders” of those who came 
before.  A spirit of cooperative collaboration prevails here today that has increased the rate at which new ideas are 
proposed and tested.  Portions of the background that follow draw upon the comprehensive history of regional 
glaciation studies by W. B. Thompson (1999) and summaries of studies in the cirques by Davis (1999) and Davis, et 
al. (2003). 
 

FIELD INVESTIGATIONS 
19th

 
 CENTURY TO THE PRESENT 

 
The alpine zone and glacial cirques on Mt. Washington and the northern Presidential Range have been the 

subject of inquiry and controversy for the past 170 years.  Edward Hitchcock (1841) was first to publish findings 
from field work.  At the time, the theory of glaciation had been recently proposed by Louis Agassiz (1837), but had 
not yet gained acceptance.  Hitchcock believed that Mt. Washington (6,288 feet) had protruded about 1,000 feet 
above the surface of an arctic sea that inundated the region during “the ice age”.  He proposed that ice-bergs along 
its shores at about 5,200 feet created widespread patterns of distinct “ice embossment” on adjacent bedrock surfaces 
(later understood to be glacial striations).  As supporting evidence, he cited a lack of these distinct markings above 
5,200 feet and the mountain’s bouldery summit cone that would have been cleared of such boulders had it been 
inundated.  During his work, he observed similar but heavily deteriorated markings near the summit, and speculated 
they had been created during an earlier and deeper inundation.  Hitchcock was among the last to refer to this arctic 
sea as the source of such markings and other effects. 

A.S. Packard (1867a, 1867b) and G. L. Vose (1868) were next to publish specific observations.  Each 
summarized unpublished striation data by others and added measurements of their own.  They noted that most all 
striations displayed a northwest to southeast orientation and that those whose appearance unequivocally identified 
them as glacial striations occurred below 5,200 feet.   

Meanwhile, Agassiz (1870a, 1870b) had come to the U.S. and visited the White Mountains.  Among many 
things beyond our focus here, he proposed that ice caps existed over higher elevations of the region after the last 
regional glaciation and that alpine glaciers flowed downward from them through the cirques and cirque-like basins 
and into the region’s valleys.  In support, he cited the sharply-defined topography in the cirques he believed was 
created by these alpine glaciers, along with valley features he identified as their terminal moraines.   

C. H. Hitchcock (1876, 1877, 1878) built on this, along with the work of his father.  He refuted the ice cap 
proposal by observing that striations were not oriented in the multi-directional patterns that would arise from ice 
flowing outward from highland sources.  He confirmed their consistent southeasterly orientation and observed that 
none measured to that point in time refuted his father’s conclusion that abrasion was confined to surfaces below 
5,200 feet.  In his work around the summit of Mt. Washington, he observed the “faint” and “obscure” markings his 
father reported and attributed their indefinite appearance to weathering in the harsh alpine climate.  Like his father, 
however, he was unable to determine if they were the result of the most recent or an earlier glaciation.  He did 
conclude that all striations and similar markings showed that at least one ice sheet moving from the northwest had 
flowed over the summits of the Presidential Range, and he supported this conclusion by observing for the first time 
the presence of erratic cobbles (mainly granitics of northwesterly provenance) among the large boulders on the 
summit cones.   



Hitchcock identified these erratics during study of the boulder fields on the peaks.  He observed that their 
high-grade metamorphic lithologies outcropped on adjacent lower slopes, while those of the granitics were typical of 
areas several miles to the northwest.   He also observed that the boulder fields included widely scattered deposits of 
more finely-textured, often clast-rich material  he termed “boulder clay”.  From these combined observations, he 
concluded that moving ice had deposited “immense…angular blocks” onto to the peaks from slopes immediately 
below and that erratics and boulder clay within that ice were subsequently deposited among the blocks.  He then 
proposed that intense frost and weathering activity had reduced the blocks to fields of large, very heavily weathered 
boulders. He did not, however, consider the possible difference in weathering susceptibility among the lithologies. 

J. W. Goldthwait (1913a, 1913b) undertook an expanded study of the entire Presidential Range.  He agreed 
that the summit of Mt. Washington had been buried beneath overriding glacial ice and extended his work to the 
entire range with striation and erosional evidence that ice flow had been deflected around its summit cones.  He re-
examined Hitchcock’s “boulder clay” and observed it was present mainly beneath grassy areas on the peaks and was 
more coarsely textured and loosely consolidated than tills at lower elevation.  He disagreed that immense blocks of 
local lithology were transported onto the summits, noting that the boulders did not display the faceting and abrasive 
markings typical of entrainment in glacial ice.  He suggested instead that harsh climate on the peaks had quarried 
them, moved them short distances, and then severely weathered them in place.  He stated that this evidence, along 
with the lack of fresh glacial markings and erosion features above 5,200 feet, suggested the “great ice sheet” thinly 
overrode the range, and he considered the possibility that the severely deteriorated condition of the boulders might 
include weathering before the last glaciation.  He also observed that granitic erratics were distinctly more common 
on the cones of the northern peaks (closer to their source areas), but he did not address their lightly weathered 
condition compared to the metamorphic boulders or when they might have been deposited. 

This new investigation also included the first detailed reconnaissance of the region’s cirques.  Goldthwait 
found no striations or erosional features from local ice moving along their axes, no moraines on or beyond their 
floors, and evidence that the symmetrical U-shape of several had been modified by erosion of obliquely overriding 
ice.  He also found erratic cobbles on their floors and concluded from their presence that the cirques were “carved” 
before and not after the last continental glaciation, presuming that any late- or postglacial cirque glaciation would 
have completely removed them. 

Thereafter, two workers disputed Goldthwait’s conclusions.  D.W. Johnson (1917, 1933) proposed that lack 
of end moraines was not sufficient to conclude that continental ice postdated cirque glacier activity, citing alpine 
regions elsewhere that had never undergone continental glaciation but whose cirques lacked moraines.  Ernst Antevs 
(1932) agreed with Johnson and proposed that the absence of moraines resulted from the lack of  till deposits on the 
cirque floors, noting that till was rarely observed adjacent to or beneath the extensive deposits of thick talus 
overlying bedrock.  On this basis, he postulated that alpine glaciers may have been diminutive and largely immobile; 
only able to undermine and steepen their cirque walls.  It is noteworthy that neither of these workers addressed the 
presence of erratic clasts among the talus in the cirques. 

Antevs (1932) also reported on detailed reconnaissance in the alpine zone.  He provided the first 
descriptions of the periglacial features that exist there (e.g. block and turf-banked terraces, sorted nets, and stone 
stripes), and he replicated striation observations on and around the highest peaks.  He agreed with earlier workers 
that fresh-appearing striations were not to be found above 5,200 feet and confirmed Goldthwait’s assertion that the 
large boulders on the summits were not transported there by overriding ice.  At numerous locations he was able to 
trace blocks upslope to the identically-shaped cavities from whence they had arisen, concluding that harsh 
postglacial conditions in the alpine zone were uniquely responsible for their creation and weathering.  He cited these 
lines of evidence to suggest that eroding ice of the last glaciation reached an elevation of at least 5,000 feet, and he 
agreed that fresh-appearing erratics on the highest peaks, combined with the absence of fresh evidence of glaciation 
above 5,200 feet, showed the entire range was only thinly overriden by the last ice sheet. 

R. P. Goldthwait expanded his father’s study (Goldthwait, 1936, 1939, 1940, 1970a, 1970b).  He confirmed 
evidence of cirque glacier activity only before the last continental glaciation and supplemented it by adding to 
previously reported striation data the orientations of various “groove-like features” and roche mountonees on cirque 
headwalls and floors.  He asserted these could have been formed only by continental glacial ice obliquely overriding 
the pre-existing cirques.  Despite important differences in the nature and elevation of these features, he concluded 
they were all created by the last overriding ice sheet and that those that did not appear as fresh had simply been more 
severely weathered by harsh subarctic conditions.  He suggested the possibility that residual ice masses could have 
persisted after the last ice sheet in the deeper and most favorably oriented cirques but did not present the evidence 
that led to this proposal.   

 



Goldthwait (1970a& Fig. 4) was the first researcher to quantitatively compare the morphometrics of the 
range’s cirques.  This work produced estimates of firn line and bergschrund elevations, along with estimated 
terminus positions for cirque glaciers that would have existed in each cirque to create observed dimensions and 
morphology.  In addition, he expanded Antevs earlier descriptions of periglacial features and conducted simple year-
to-year measurements that definitively established these features were not moving under modern climatic 
conditions. 

W. F. Thompson (1960, 1961 ) used early techniques of photogrammetry to challenge the proposition that 
no postglacial cirque activity had occurred on the Presidential Range or on the Katahdin massif  in Maine.  He 
argued that the sharply defined features in their cirques could only result from active alpine glaciers that post-dated 
continental glaciation and that any moraines in or below them had been obliterated by postglacial mass wasting.  
However, he did not support these assertions with independent field observations.    

D.M. Eskenasy (1978) likewise challenged the lack of postglacial cirque activity.  She completed 
photogrammetric analyses and field work in the King Ravine cirque and proposed that  ice-based activity had 
occurred there on and within what was then proposed by some to be a relict rock glacier developed in postglacial 
time.  She postulated its development involved talus accumulation on, and then incipient movement within, a 
stranded and subsequently wasting block of residual ice.  The study, however, was unable to establish if the feature 
was a rock glacier or if any postglacial ice activity had occurred in the cirque. 

D.C. Bradley (1981) also challenged the lack of postglacial cirque activity by asserting that surficial 
deposits below the mouth of north-facing King Ravine were a composite moraine emplaced by an alpine glacier 
flowing out of the cirque in postglacial time.  He supported this by citing the well-known presence on the feature of 
boulders whose lithologies outcrop on the cirque’s headwall.  This proposal, its supporting evidence, and the extent 
and stratigraphy of the deposits in question were subsequently examined by Fowler (1984) and Waitt and Davis 
(1988).  They independently established that these extraordinary deposits are not a moraine related to a late- or 
postglacial alpine glacier, but instead are a complex of massive debris-flow deposits possibly related to rapidly 
melting ice in the cirque.   

Fowler (1984) supported this conclusion by citing rheological studies showing that entrainment of  “lahar-
like” movements of such large volumes of  bouldery debris over similar slopes and distances requires instantaneous 
generation of very large volumes of water at the initiation site.  Recently, based on the duration and historical 
frequency of extraordinarily heavy-precipitation events in the region, he has suggested (unpublished) that the closely 
episodic generation of such large volumes of water in the cirque was not likely from rainfall events alone.  He 
proposes instead that supplementation of such events with coincident rapid melting of residual ice in the cirque 
offers a mechanism more likely to rapidly generate the volumes of water needed to initiate these large fast-moving 
flows.  However, he notes that definitive determinations about their initiation require the ages of their emplacement 
be established. 

D. J. Thompson (1990, 1999) re-examined what were believed by some to be moraines in the Tuckerman 
Ravine cirque.  He concluded from the depositional fabric of their large bouldery clasts that one of the deposits 
could possibly be a relict rock glacier, but the others were simply talus accumulations beneath steep slopes.  He 
further concluded their presence in the cirque did not support the presence or reactivation of postglacial ice in the 
cirque. 

P. T. Davis (1999/Attached) expanded earlier work on the cirques of the Katahdin massif in Maine (Davis, 
1976, 1989/Attached) by completing a morphometric examination of cirques in the northeastern United States.  This 
work expanded on techniques used earlier by Goldthwait (1970a) and included the cirques in the Presidential Range.  
Davis continued to find no convincing evidence for postglacial activity in the region, generally postulating that 
postglacial regional climate warmed so rapidly that equilibrium-line altitudes  rose above the cirques floors. 

Davis and Davis (1980) also investigated the possibility of postglacial ice activity in cirques by obtaining 
minimum radiocarbon ages for their deglaciation.  These attempts were frustrated  by the limited number of tarns or 
peat bogs available for sampling.  This led them to focus instead on the cosmogenic radionuclides 10Be and  26Al in 
samples from quartz veins in boulders and bedrock surfaces (Bierman, et al., 2000; Davis, et al., 2003/Attached).  
Samples from Tuckerman Ravine, along with cirques on the Katahdin massif and its nearby Basin Ponds Moraine, 
yielded results consistent with Late Wisconsinan deglaciation chronologies obtained elsewhere with radiocarbon, 
but one taken near the summit of Mt. Washington indicated a surprisingly old age (~ 124,000 yr BP), as did one 
from the summit of Mt. Katahdin (~22,000 years).  These dates seem consistent with two possible scenarios: 1) the 
last ice sheet was thinner than generally supposed, possibly leaving parts of the region’s summits exposed as 
nunataks through the last glaciation, or more likely 2) summits were overridden by continental ice too thin and/or 
frozen at its base to erode pre-existing regolith, but still able to transport and later deposit ablation debris onto these 
higher slopes.   



Meanwhile, recent work in the wider region by W. B. Thompson (Thompson, 1998;Thompson, et al. 1999; 
Thompson, in prep) identified moraines deposited by late-glacial readvance or standstill of the Laurentide Ice Sheet 
less than 10 miles northwest of the Presidential Range.  These deposits form part of a moraine belt extending across 
the northern White Mountain region.  Minimum-limiting radiocarbon dates from northern New Hampshire 
suggested to Thompson that the moraine belt may have formed during the Older Dryas Cold Interval, about 14,000 
calendar years ago.  This age proposal was subsequently confirmed by the Glacial Lake Hitchcock varve chronology 
in the upper Connecticut River valley (Ridge, et al., 1999, 2004).   

B. K. Fowler (2011) completed compilation of the surficial geology of the U.S.G.S. Mt. Washington 7.5-
minute quadrangle, which includes the northern Presidential Range and all its cirques.  The mapping  confirmed the 
lack of systematic moraines and  ice-contact deposits in the area and clarified the process by which the late-glacial 
ice sheet thinned over higher areas and separated around them.  The work showed that during this meltwater-rich 
process, loose bouldery to cobbly ablation till collapsed onto bedrock slopes.  It was then winnowed on steepest 
slopes, sorted on intermediate slopes, and redeposited on lowest slopes as various gradational diamict facies.  These 
diamicts range from bouldery openwork on highest slopes to clast-dominant and finally matrix-dominant units 
downward into surrounding valleys where they overlie and  inter-finger with ablation till.  No basal-ice deposits 
were observed in the quadrangle, and with one important exception (see below), mapping found no evidence of 
postglacial cirque activity. 

The mapping did suggest that the terms “drift” and “till” as used by earlier workers to describe deposits in 
the cirques did not carry today’s more specific definitions.  Since deposits there consist almost exclusively of talus 
or openwork boulder to cobble-dominant diamicts lying directly on bedrock (Antevs, 1932; Fowler, 2011), it seems 
that earlier usage referred to any deposit assumed to have been emplaced by continental glacial ice.  The mapping 
also re-examined previously cited evidence that morphologic asymmetry in certain cirques resulted from overriding 
glacial erosion oblique to their axes (e.g. Great Gulf: Goldthwait, 1913; Goldthwait, 1970a).  Detailed bedrock 
mapping of the region (Eusden, 2010) was unavailable to earlier workers, but its present application shows much of 
the observed asymmetry results from local rock structure and not erosion by an overriding ice sheet. 
 The mapping reaffirmed the sharp difference in surficial geology above and below 5,200 ft.  It found 
abundant fresh markings from recently overriding ice below this elevation, but only uncertain or vestigial markings 
above.  It also found that heavily weathered regolith is only present above the boundary.  Earliest workers proposed 
this sharp divide resulted from a lack of glaciation or from thin glaciation above 5,200 feet, while later workers 
proposed  it resulted from harsh local climate.  This latter proposal is debated (Fowler, 2011) because it fails to 
answer two questions: 1) how can two such sharply different climatic environments coexist across such a short 
distance, and  2) how can the decomposition-susceptible granitic erratics be less weathered than the very-resistant 
but heavily weathered metamorphic boulders of local origin if both were exposed to identical weathering conditions 
for the same period of time (the erratics should be more seriously degraded, not less as observed)?  This apparent 
paradox disappears if the erratics were introduced into the boulder fields more recently and the boulders exposed to 
harsh conditions for a longer time, perhaps including a period before the start of the last glaciation (Goldthwait, 
1913a; Fowler, 2011).   

These observations and the results of exposure dating  (Beirman, et al., 2000; Davis, et. al, 2003/Attached) 
support proposals that this sharp boundary and the condition of the erratics are the result of only thin, cold-based ice 
covering these higher slopes during the last glaciation.  The following scenario may pertain (Fowler, 2011).  As the 
last ice sheet approached and local climate substantially cooled, the openwork spaces between components of a pre-
existing bouldery regolith were infilled with frozen precipitation and consolidated on the flanks of the peaks, 
creating a solid substrate over which the thin, cold-based ice could move but not erode.  As the ice sheet later 
downwasted, fresh erratic cobbles and clast-rich diamict carried within it (“boulder clay” of earlier workers) settled 
into the regolith.  Thus, weathering of the metamorphic boulders postdates both the Illinoian and Late Wisconsinan 
glaciations, while deterioration of the erratics postdates only the Late Wisconsinan.  This scenario is similar to one 
recently confirmed by extensive and robust 10Be and 26

Elsewhere in the quadrangle, the recent mapping  identified residual till deposits 3 miles northwest of the 
Presidential Range that appear correlative with the earlier described late-Laurentide moraine system.  Fowler (2011) 
proposes that near-glacial conditions created by this active ice in the immediate region may have permitted 
equilibrium-line altitudes to descend to those of the cirque floors for a period of time sufficient to reactivate residual 
ice in the most favorably sized and oriented locations.  His mapping suggests two possible local responses to such 
conditions.  

Al exposure age datasets on Baffin Island in the eastern 
Canadian arctic (Beirman et al, 1999; Briner et al., 2003, 2006; Davis et al., 2006). 

  



First, the mapping  identified colluvial deposits closely similar to those described below King Ravine 
(Bradley, 1981; Fowler, 1984; Waitt and Davis, 1988) within and below the Castle, Huntington, and Tuckerman 
Ravine cirques (Fowler, 2011).  Clast provenance and stratigraphy shows these deposits were likewise emplaced by 
highly mobile, water-rich debris flows that originated in each cirque.  As indicated earlier, the volume of meltwater 
needed to successively mobilize such extensive flows suggests that significant ice masses may have existed in these 
cirques in late- and/or postglacial times.  
 The next response is suggested by two features within and below the Great Gulf cirque that are newly-
interpreted to have resulted from these conditions (Fowler, 2011).  The first is a group of hillocks strewn with very 
large boulders of rock types outcropping within and along the lower flanks of the cirque.  Its location, hummocky 
topography, and apron of partially-abandoned distributary drainage toward the east from the cirque suggests it may 
be a terminal moraine.  When emplaced, the feature displaced the West Branch of the Peabody River near the mouth 
of the cirque to the north and temporarily dammed the Peabody River at The Glen, creating an ephemeral lake.  This 
lake quickly filled with coarsely-textured sediment and then rapidly drained through a channel eroded along the base 
of its easterly flank.  Once beyond the feature, its flow plunged back into the river's original course at Garnet Pool.  
The second feature is a smaller group of similarly boulder-strewn hillocks at a higher elevation on the cirque floor.  
Its location, topography, and distributary drainage apron suggest it may be a recessional moraine.   
 Both these features are believed to postdate the Laurentide Ice Sheet because their loosely consolidated 
deposits could not have survived its overriding erosion.  It is proposed these features originated when local climatic 
conditions possibly supplemented and reactivated residual ice in the cirque.  The Great Gulf is uniquely suited for 
this because it faces directly north and has by far the largest, deepest, and best melt-protected catchment of the 
region's cirques.  This may have permitted it to preserve a late- or postglacial residual ice mass large enough to, once 
reactivated, create these features while less favorably sized and oriented neighboring cirques could not.   

Much work remains to be done on these features and their genesis. I. T. Dulin (2012, 2012a/Attached) is 
conducting work on the lower feature that includes analysis of clast provenance to determine if it was deposited 
from wasting Laurentide ice in Pinkham Notch or from postglacial ice activity to the west in the cirque.  This study 
also includes the construction of possible glacier profiles based on the cirque’s morphology and dimensions (e.g. 
Ackerly, 1989).  These will assess if an ice mass of a size sufficient to create these possible moraines could have 
existed within the cirque.  Cosmogenic dating of boulders on these features is being investigated by others.  
Meanwhile, alternative interpretations to be considered include the possibility the features were deposited at slightly 
different times from late Laurentide ice during a complex “stagnation-zone” retreat in Pinkham Notch.   
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Mt. Adams (elev. 5,774 ft.) with the Madison Gulf “feeder cirque” below.  View looks west northwest from the lake 

bottom surface at The Glen (elev. ~ 1,565 ft.).  Photograph, B. K. Fowler. 
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PROPOSED GREAT GULF MORAINES 

Late-Glacial Local Climate Change & Possible Effects 
 

Early workers in this region generally believed its local climate warmed very rapidly following the Late 
Wisconsinan glacial maximum (LGM), promoting swift deglaciation of its landscape and quickly raising 
equilibrium line altitudes (ELA) above the floors of its cirques so neither residual ice masses nor incipient cirque 
glaciers could exist. However, the development of systematic climate proxy studies since shows the rate of warming 
between the LGM and the Oldest Dryas Cold Interval was less dramatic than previously assumed, and that only 
thereafter did it dramatically increase in spite of interruption by significant cooling events.  Figure 1 (first but not 
labeled) presents this well-established warming pattern, while Figure 2 presents its detail since the start of the Oldest 
Dryas (Stuiver, et al., 1995).  

This slower rate of warming suggests that glacial to near-glacial climate conditions persisted in this region 
as its highlands slowly emerged above locally downwasting (Goldthwait, 1970a; Fowler, 2011) and more slowly 
diminishing regional ice (Fowler, 2011). This also suggests that regional ELA’s did not rise above the cirque floors 
as early or as completely as previously assumed, likely permitting residual ice masses to linger in favorably 
positioned highland locations.  

This pattern of slower deglaciation and more gradually warming local climate also suggests that the 
Littleton-Bethlehem Moraine, emplaced just 3 to 5 miles northwest of the Presidential Range (Thompson, 1998; 
Thompson, et al., 1999; Fowler, 2011; Thompson, in prep) could represent a stillstand of slowly retreating 
Laurentide ice rather than a readvance over previously deglaciated terrain. If so, reactivation of favorably positioned 
residual ice masses in highland locations like the Great Gulf could have been facilitated by the increased 
precipitation and persistent sub-arctic temperatures sustained by the nearby presence of active Laurentide ice.  
 

Proposed Terminal & Recessional Moraines 
 

Figure 3 is a portion of Fowler, 2011 showing the Great Gulf cirque complex and the two features below and within 
it newly proposed to be terminal and recessional moraines. For convenience, Unit descriptions shown in the figure 
are presented below (Fowler, 2011).  
 
Qtycm: Till, Late-Stage, Late Wisconsinan - Younger Than Older Dryas (Pleistocene)  
 
Ice-contact, collapse-emplaced, hummocky, heavily dissected morainal complex with down-cirque slopes as steep as 
35o. Composed of tan to light brown, clast and matrix-supported sandy to gravelly, sometimes silty till with 
abundant often very large (25 m3; 800 ft3

 

), angular to subangular boulders. Predominant clast provenance from 
cirque above.  

 
Qdc: Colluvial Diamict, Late-Stage, Late Wisconsinan (Pleistocene > Holocene)  
 
Post glacial, matrix-supported diamict dominated at the surface and variably downward to ~ 6 m (20 ft) by 
subangular to rounded, variably weathered boulders and cobbles that grade further downward to cobbly, often 
chaotic mixtures of till and clayey to silty diamict and poorly sorted gravel. Clast lithologies on surfaces and in 
abandoned distributary drainages show provenance from alpine and subalpine slopes above via episodic colluviation 
initiated by outbursts of meltwater from locally extensive residual ice in cirques and run-off from adjacent slopes 
after the Late Wisconsinan ice sheet had left the region. Unit overlies Qt and bedrock and is up to 30 m (100 ft) 
thick.  
 



Qlsp: Glaciolacustrine Deposits, Glacial Lake Philbrook, Late-Stage, Late Wisconsinan-Older Dryas 
(Pleistocene)  
 
Post glacial, horizontally interbedded sand and sandy-to-silty, fine to occasionally medium gravel deposited in and 
graded to estimated water surface elevations of ancestral Glacial Lake Philbrook at ~ 482 m (1,580 ft) and ~475 m 
(1,560 ft). Heavily dissected by local tributaries of the Peabody River. Up to 46 m (150 ft) thick. Present floodplain 
variably overlain by 0.3 to 1.0 m (1 to 3 ft) of sandy-silty Holocene alluvium and hydric soils.  
 
Qtocm: Till, Late-Stage, Late Wisconsinan – Older Dryas (Pleistocene)  
 
Ice-contact, collapse-emplaced, hummocky, heavily dissected possible morainal complex overlying Qt. Composed 
of tan to light brown, clast and matrix supported, sandy to gravelly, sometimes silty till with abundant, often very 
large (25 m3; 800 ft3

 

) angular to subangular boulders. Predominant clast provenance from cirque above. Proposed to 
be coeval with the Older Dryas Littleton-Bethlehem Moraine System (~ 12,000 14C yr BP or ~ 14,000 Cal yr BP).  

Qc & Qct: Colluvial Debris, Late-Stage, Late Wisconsinan To Recent  
(Pleistocene > Holocene)  
 
Post glacial to recent, randomly distributed, bouldery to cobbly, clast and matrix-based diamicts and talus on (Qc) 
and beneath (Qct) unstable slopes subject to frequent rockfall and debris/winter avalanche.  
 
Qt: Till, Late Wisconsinan (Pleistocene)  
 
Ice-contact, ablation/collapse-emplaced, bouldery to cobbly ground moraine with mixed matrix of tan to dark 
grayish brown, unsorted to poorly-sorted, loose to moderately compact clay, silt, and sand. Generally less than 6 m 
(20 ft) thick but up to 30 m (100 ft) thick beneath local hillocks. Clast lithologies show mixed north and 
northwesterly provenance of 15 to 40 km (10-25 mi). No certain ice basal deposits have been observed.  
 

Proposed Terminal Moraine 
 

This feature consists of a group of hillocks whose distinctive morphology stands out from surrounding 
terrain and whose constituent deposits suggest emplacement after continental glaciation (Fig. 2; Qtocm). Its 
hummocky surfaces are frequently strewn with atypically large unweathered boulders of lithologies that outcrop on 
the lower walls of the cirque, and its location, topography, and apron of mostly-abandoned distributary drainage 
away from the cirque suggests it may be a terminal moraine.  

The feature’s emplacement appears to have displaced the bedrock-based channel of the West Branch of the 
Peabody River to the north, just below the mouth of the cirque. Its emplacement also temporarily dammed the 
Peabody River at The Glen, creating an ephemeral lake (Fig. 2, Qlsp). This lake quickly filled with coarsely-textured 
sediment and then rapidly drained through a channel eroded along the base of the feature’s easterly flank once its 
damming mechanism had been breached. The flow returned to the river’s original channel at Garnet Pool (Fig. 3; 
Fowler, 2011).  

Evidence this feature postdates Late Wisconsinan glaciation and is related to activity in the cirque includes: 
1) its loosely consolidated gravelly deposits could not have survived overriding erosion; 2) the local provenance, 
angularity, and lack of weathering and striations on its larger sized boulders and cobbles suggests only short-term 
entrainment in moving ice; 3) its apron of largely abandoned, easterly directed distributary drainage and coarsely-
textured granular deposits require substantial drainage from above and to the west; and 4) the provenance of stone 
clasts within and outside its boundaries suggests its clasts of more local provenance were superimposed on those of 
regional provenance associated with earlier glaciation. 

Alternate proposals that this feature was emplaced by readvance of Laurentide ice in Pinkham Notch are 
not well supported. Both earlier and more recent mapping in the Peabody valley to the north has failed to detect 
evidence of readvance between the feature’s location and the deeply till-buried glaciolacustrine deposits south of 
Gorham (Thompson & Fowler, 1989; Thompson, et al., 1999; Fowler, 1999; Fowler, in prep). In addition, stone 
clast provenance studies on the feature have failed to detect elevated percentages of particular rock types from the 
valley to the north over which readvancing ice would have passed.  

 
 



Similarly, alternate proposals that the feature was deposited from stagnating ice in its immediate vicinity 
are poorly supported. Its loosely consolidated deposits and large unweathered angular boulders and cobbles free of 
evidence of long-term entrainment are distinctly different from the more densely consolidated and heavily 
deteriorated deposits typical of masses of previously active ice. Also, the well-developed easterly directed 
distributary drainage pattern across the feature is not consistent with the more random patterns of drainage typical in 
the vicinity of wasting ice masses (Goldthwait and Mickelson, 1982). Recent mapping in the immediate vicinity 
(Fowler, in prep.) failed to detect such drainage patterns or deposits attributable to masses of wasting ice. 
 

Proposed Recessional Moraine 
 

This feature, locally known as “The Bluff”, consists of a similar but laterally less extensive group of 
hillocks whose isolated morphology higher on the slopes below the cirque is also distinctively different from 
surrounding terrain and whose constituent deposits could not have survived overriding continental glaciation (Fig. 2, 
Qtycm). Its location, unique and isolated topography, rugged surface of large and unweathered boulders, steep distal 
slope, and partially abandoned distributary drainage apron suggest it may be a recessional moraine. All evidence 
cited above for the proposed terminal moraine applies to this feature as well. However, detailed subsurface or clast 
provenance studies have not been conducted due to regulatory restrictions. To date only observations of stream-cut 
sections and surficial hand samples have been made.  
 

Future Work 
 

More work is needed to confidently establish the genesis and late- to post-glacial climatic significance of 
these features. More study of clast provenance is needed on both features to confirm these proposals, and further 
construction of possible glacier profiles based on the cirque’s morphology and dimensions (Ackerly, 1989; Davis, 
1999; Dulin, 2012) will help determine if a cirque ice mass of sufficient size could have existed. The lack of organic 
material in their coarsely-textured deposits requires that cosmogenic dating be conducted to establish the times and 
sequence of their respective emplacement.  

 
Mt. Jefferson (center; elev. 5,712 ft.) and its Six Husbands faceted spurabove the Great Gulf cirque with the 

Jefferson Ravine “feeder cirque” below to its right.  Flat surface across the main cirque floor (immediately left of 
lone pine at photo center) is the crest of the proposed recessional moraine.  View looks west from just south of Great 

Angel Station (elev. ~ 1,620 ft.).  Photograph, B. K. Fowler. 
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F ield T r ip I tiner ar ies 

 
Introduction 

The field trips for this Reunion update glacial, geomorphological, geochronological, and paleo-climate 
investigations within and below the alpine zone of Mt. Washington and the northern Presidential Range.  These field 
trips are the first return of The Friends to this area since the 33rd

 
 Reunion in 1970. 

These field trips cover some tree-less alpine terrain with often very cold, windy, and wet 
conditions that can be unsafe if you are not properly equipped with sturdy water-resistant 
footwear, hat with ear protection, warm gloves or mittens, extra sweater or fleece, warm jacket, 
and wind/water-proof outer shell and pants.  Wind-driven rain, sleet and snow are frequent on Mt. 
Washington in all seasons of the year. 
 

Because of rugged terrain and possibly unfavorable weather conditions, the field trip itineraries for this 
Reunion do not repeat those covered during the 33rd Reunion in 1970.  They visit only locations where new or 
updated information can be reviewed and discussed.  Readers interested in all information covered in this region by 
the earlier field trips should consult the collection of Reunion Guidebooks and related materials on the Friends 
website at:  http://www.geology.um.maine.edu/friends/.  

 
 

 
The Great Gulf Cirque & Its Post-Late Wisconsinan Features 

This field trip covers some very rugged terrain with difficult footing and some strenuous climbing.  
Participants must be properly equipped and in excellent physical condition.  Hiking group size in the Great Gulf 
Wilderness is limited to 10.   
 

Drive to and then hike from ~ 5,900 ft. on the MWAR approximately 1.2 mi. down ~ 300 ft. to the 
headwall crest of the Great Gulf cirque on the northern slope of Mt. Washington to view the results of its multiple 
cirque glaciations.  Then, hike back up ~ 300 ft. to the MWAR (cum. mi.: 2.4) and drive down to its 2-Mile Post at ~ 
2,600 ft.  From there, hike up ~ 100 ft and then down ~ 500 ft. in  ~ 3.0 mi. to the newly-proposed recessional 
moraine in the Great Gulf cirque (Fowler, 2011).  Then retrace this route back to the MWAR (cum. mi.: 8.4; elev. 
gain & loss: 1,600 ft), and drive back to the base of the MWAR and welcoming activities for the Reunion.  Alternate 
access to the proposed recessional moraine will be via the Great Gulf Trail from NH Rte. 16, about 2 mi. north the 
of the Auto Base Lodge.  The round trip hike via this route is a less-rugged 5.6 mi. 

 

 
Mt. Washington & The Alpine Zone of The Presidential Range 

Drive up the MWAR to the flat area known as “Homestretch”, just before the road steepens for its final 
ascent to the Summit of Mt. Washington.  At approximately 7.5 mi., turn right off the MWAR paved surface and 
onto a short dirt road leading to a +/- 50-foot square concrete slab.  Park on or near the slab, and walk from its south 
side toward the trestle of the Mt. Washington Cog Railroad, about 125 ft. from the slab. 
 
Stop 1:  Alpine Zone Test Pit  
 

Proceed back to vehicles and continue up the MWAR to the south side Upper Parking Area, located to the 
left of the prominent wooden staircase.  Assemble at the base of the westerly slope above the Parking Area. 
 
Stop 2:  Upper Diamict:  its development, significance, and likely age.  
 

http://www.geology.um.maine.edu/friends/�


Ascend the wooden staircase and turn left at its top and proceed left around the MWAR Stage Office 
(formerly Camden Cottage; site of the first weather Observatory on Mt. Washington and the location where the 
highest wind ever recorded by Man was observed in 1934 – 231 mph.) to the trail sign for the Crawford Path.  
Follow the Crawford Path downslope about 75 ft. and then fork off of it to the left to the bedrock promontory visible 
ahead, known locally as “Goofer Point”. 
 
Stop 3:  The “5,200-Foot Boundary” and Cosmogenic Dating Results/Prospects   
 

Retrace steps to the trailhead for the Crawford Path and proceed thence to the entrance to the Sherman 
Adams Building.  Once inside, proceed around its curved rotunda to the entrance to the Mount Washington 
Observatory at the northerly end of the building. 
 
Stop 4:  Lunch, “Pit Stops”, Observatory tours, & Summit visits. View vestigial glacial markings and typical 
bedrock on and near the Summit itself.   
 

Proceed back to vehicles and drive down the MWAR to the “Cragway Curve” at roughly the 5 ½-Mile 
mark where the Nelson Crag Trail intersects the roadway (white sign on the right going down).  Park where space is 
available and walk ~ 300 ft. around the right-hand shoulder of the MWAR to the larger of two pull-out areas along 
the easterly shoulder of the MWAR. 
 
Stop 5:  Bedrock Geology of the Presidential Range, The “5,200-Foot Boundary”, and the Great Gulf Moraines 
Overlook  
 

Return to vehicles and proceed further down the MWAR to “The Horn” at roughly the 4 ½-Mile mark and 
park as space is available in the areas on the right side of the roadway. 
 
Stop 6:  Subsidiary Cirques of the Great Gulf System and the northern Presidential Range  
 

Return to vehicles and proceed to the base of the MWAR and Reunion Headquarters. 
 
 

 
Upper Peabody River Valley & Its Post-Late Wisconsinan Features 

Walk to the North Parking Lot at the MWAR Base Lodge and its viewpoint to the west across the site of 
the former lake and into the mouth of the Great Gulf. 
 
Stop 1: Discuss possible terminal moraine & former moraine-dammed lake.  
 

Walk across NH Rte. 16 to the MWAR/Great Glen Trails Maintenance Building (large red metal building) 
on the right about 200 ft. off the roadway where access to the Great Glen Trails cross-country ski system can be 
made. 
 

PLEASE NOTE

 

 that because of frequent trail maintenance activities and unfavorable weather 
conditions, parties interested in foot access must check-in and obtain an up-to-date trail system map at the 
MWAR Base Lodge before setting out.  Figure 4 is provided here so the following trip stops can be located. 

Proceed along a combination of ski trails passing trail Intersections 4, 5, 8, 14,19, 27, 33, 51 and 55 to the 
Great Angel Station at the northwesterly end of, and at highest point on, the trail system (see system map). 
 
Stop 2:  Discuss view into the Great Gulf, its proposed recessional moraine, and the terrain just traversed over the 
surface of the proposed terminal moraine.   
 

Go back to Intersection 55 and proceed along the ski trail to Intersection 56 and the Drifter Pit Site. 
 
Stop 3:  Discuss Drifter Stone Count Site   
 



From Intersection 56, proceed along a combination of ski trails passing Intersections 49, 44, 40, 50, and 54 
toward 38 to the Thumper  2 Site. 
 
Stop 4: Discuss Thumper 2 Stone Count Site 
 

Proceed toward Intersection 38 along a combination of ski trails passing Intersections 38, 40, 33, and 27 to 
the Libby Site. 
 
Stop 5:  Discuss Libby Stone Count  
 

Proceed along the Libby Trail to Intersection 19 to the very large boulder ahead. 
 
Stop 6:  Discuss the Rangeley Boulder & adjacent boulder fields. 
 

From Intersection 19, proceed along a combination of ski trails passing Intersections 14, 8, 5, and 2 and 
then proceed north about 200 yards up the Clementine Wash Trail. 
 
Stop 7: Discuss existing river channel, its history, and recent flooding.  
 

Proceed back to Intersection 2, on to Intersection 1 around the MWAR Maintenance Building to the paved 
surface.  Turn left on the paved roadway and proceed to the intersection of the MWAR and NH Rte. 16.  Turn left 
onto NH Rte. 16 and proceed ~ 1.0 mi. to the 19-Mile Brook Trailhead.  Park as space is available, and walk 
together off the westerly shoulder of NH Rte. 16 down and into Garnet Pool in the Peabody River. 
 
Stop 8:  Discuss Garnet Pool, its erosion features, and role in lake drainage. 
 

Walk back to the 19-Mile Brook Trailhead and proceed on that trail ~ 0.3 mi. to the distal edge of the 
proposed terminal moraine.  
 
Stop 9:  Discuss distal extent of proposed terminal moraine and significance.   
 

Return to the MWAR Base Lodge.  Total mileage on the Great Glen Ski Trail network is approximately 5 
miles.  When walking these stops, various “short-cuts” on crossing trails are possible. 

 
****************************************** 
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