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B4-1
BEDROCK GEOLOGY OF MT. WASHINGTON, PRESIDENTIAL RANGE, NH
By

J. Dykstra Eusden, Brigit Anderson, Carlos Castro, Patrick Gardner, Chris Guiterman,
Stephanie Higgins, Kelley Kugel, Adam Reid, Charles Rodda, and Caitlin Tamposi
All Department of Geology, Bates College, Lewiston, Maine 04240
Email: deusden@bates.edu

INTRODUCTION AND PREVIOUS WORK

This field guide outlines the bedrock geology of the Presidential Range, New Hampshire and describes
some of the significant and readily accessible outcrops along the Auto Road of Mt. Washington. Nearly all aspects
of the bedrock geology in the Presidential Range are explored. The Paleozoic stratigraphy, deformation,
metamorphism, and plutonism is presented first, followed by the history of Mesozoic fractures and basalt dikes, and
then finally the Cenozoic exhumation story as told by apatite fission track ages. During the fieldtrip we will see bits
of all of these things at each stop. All of the Bates Geology students listed as co-authors for this field guide played
an integral part in this work. Each did a full field season of fieldwork followed by a two-semester thesis project on
some aspect of the bedrock history. Eusden is extremely grateful to all of them for their friendship and hard work.

The decades-long bedrock mapping campaign culminated in our finished bedrock geologic map (Figure 1) and
report (Eusden, 2010). Other publications by our group include Eusden et al. (1996, 2000) and Roden-Tice et al.
(2012). Eusden et al. (1996) has maps of several structural fabrics but the bedrock map does not include the lower
wooded elevations. Roden-Tice et al. (2012) focuses on the apatite fission track exhumation history of the
Presidential Range. In 2013 we published a layperson's book, "The Geology of New Hampshire's White Mountains",
which covers many aspects of the geologic history in the Presidential Range (Eusden et al., 2013)

There has been excellent NEIGC fieldtrip representation for the Presidential Range over the past 21 years! An
NEIGC field trip similar but not identical to this was first run by Eusden et al. (1996b). Eusden et al. (2006) led
another NEIGC trip focusing on the geology from the Bronson Hill Anticlinorium east into the Central Maine
Terrane south of U.S. Rte. 2 in Randolph, NH. The most recent NEIGC trip was led by Eusden et al. (2009) and
covered aspects of the Ordovician to Carboniferous bedrock geology and apatite fission track cooling history of the
West Branch of the Peabody River in Pinkham Notch and again the Randolph, NH valley. Added to this list are the
four excellent NEIGC fieldtrips led by Tim Allen on the stratigraphy, structure, and migmatites of the Pinkham
Notch and adjacent Carter-Moriah Range (Allen, 1996, 1996b, 2017 and 2017b (this volume)) and a pioneering trip
led by Hatch and Wall (1986) who first proposed the Silurian age assignment for much of the geology and made the
initial correlation to the Rangeley stratigraphy in Maine.

The Presidential Range bedrock geology was first mapped in any detail by the Billings in the late 1930’s and
early 1940’s. Their efforts culminated in several papers and the 1979 Geology of the Mount Washington Quadrangle
report published by the New Hampshire Department of Resources and Economic Development (Billings et al.,
1979). Hatch and Moench (1984) made many important contributions to the region, most notably the extension and
correlation of the Rangeley, Maine, stratigraphy across the border into New Hampshire, through the Presidential
Range, and beyond to the south. The New Hampshire bedrock geologic map (Lyons et al., 1997) updated these
previous efforts and more or less retained the contacts shown by the Billings’ and the stratigraphic assignments of
Hatch and Moench (1984). Tim Allen did his Ph.D. in Pinkham Notch and the difficult terrain of the Carter-Moriah
region mapping the stratigraphy, structures, and migmatization (Allen 1996, 1996b, 2017, and 2017b; Allen et al.,
2001). Wes Groome and his University of Maine at Orono colleagues made many important contributions towards
our understanding of the strain history during porphyroblast growth in the Littleton Formation as well as the
development and strain patterns of the migmatites in the Rangeley Formation (Groome et al., 2006 and Groome and
Johnson, 2006). Gary Solar and students have also made meaningful contributions to our understanding of the
migmatites, melts, diatexites, and deformation in the Pinkham Notch area (Fletch and Solar, 2014; Wisor and Solar,
2014).
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PALEOZOIC STRATIGRAPHY, DEFORMATION, METAMORPHISM AND INTRUSIONS

Overview

Here is a brief synopsis of the Paleozoic stratigraphy, deformation, metamorphism and geochronology in the
Presidential Range. The stratigraphy (no fossils found yet!) is an on strike extension of the Rangeley, Maine
sequence consisting of Silurian and Devonian turbidites and includes 7 members of the Early Silurian Rangeley
Formation, the Middle to Late Silurian Perry Mtn., Smalls Falls, and Madrid Formations, and 11 members of the
Early Devonian Littleton Formation.

The deformation has seven phases with D, pre-metamorphic normal faults, D, east vergent, isoclinal nappes, D,
thrust faulting, D3;-D4-Ds folding, and doming of the Oliverian (only D, and D4 are seen nearly everywhere in the
Presidentials).

The igneous activity consists of the early, syn-kinematic 408 Ma Wamsutta diorite suite, the intermediate, circa
390-400 Ma, Wildcat granite suite, and the youngest suite of Carboniferous (circa 360-350 Ma) two mica granites
(e.g. Peabody River stock, Bretton Woods, and Bickford granites).

The metamorphism started with the growth of large andalusite grains that define the L, lineation. Sillimanite
metamorphism (synchronous with the end of D) overprinted this and culminated in areas of stromatic migmatite
almost exclusively restricted to the Rangeley Formation. The field gradient is in the sillimanite zone (sill+bio+gar+/-
staur+quartz+musc) and lastly retrograde metamorphism(s) occurred characterized by chlorite and coarse muscovite
replacements. Monazite from Littleton and Rangeley formation schists and migmatites, and the syn-metamorphic
Bigelow Lawn and Slide Peak Granite gives *’Pb/**U ages of circa 397-405 Ma, suggesting the peak of Acadian
metamorphism and intrusion of early two-mica granites occurred then.

Stratigraphy

One of the hallmarks of the stratigraphy of the Presidential Range is the incredible control on topping given by
graded bedding that has been reversed in grain size by metamorphism. A quick glance at the bedrock map (Eusden,
2010) shows hundreds of both upright and inverted graded bed strike and dip symbols across the Range (Figure 1).
This afforded us excellent control on stratigraphic order and even more so on structural position of Dy nappe folds
(discussed below).

One interesting aspect of the Central Maine Rangeley sequence exposed in the Presidential Range is the
discontinuous nature of the Perry Mountain Formation due to non-deposition. In most sections, we see instead a
stratigraphy, without breaks, from the Rangeley, Smalls Falls, and Madrid up to the Littleton Formations. Age
constraints on the stratigraphy are all by correlation to distant fossiliferous sections.

Bradley and O'Sullivan (2016) recently published a detrital zircon age spectrum for a sample of Littleton
Formation from a quartzite at the 4,000 ft. elevation level on the Auto Road. This was part of a regional detrital
zircon age study of the Central Maine Belt in New Hampshire and Maine. The detrital zircon data show a Ganderian
signature with peaks at 923, 576, 524 and 494, and 388 Ma, with a lesser peak at 1176 Ma (Bradley and O'Sullivan,
2016).

The Littleton Formation in the Great Gulf of the Presidential Range is cross cut by the 408.4 +/- 1.9 Ma
Wamsutta diorite pluton (Eusden et al., 2000) part of the syn-tectonic Piscatquis Volcanic Arc (Bradley et al., 2000;
Bradley and Tucker, 2002). Given this, the youngest detrital zircon age peak in the Littleton formation should be
older than 408 Ma and that is why Bradley and O'Sullivan (2016) attributed the 388-Ma detrital zircon peak to a
metamorphic over-print. However, given that peak's error of +/- 11 Ma and that we know from Bradley et al. (2000)
and Bradley and Tucker (2002) that Littleton sedimentation was syn-collisional and syn-intrusion with the
Piscataquis Volcanic arc, it is possible that deposition continued to as young as circa 400 Ma. and the detrital zircon
data is representative of a maximum depositional age, not a metamorphic overprint. Regardless, a somewhat
younger than accepted age of Middle to Early Devonian age for the Littleton Formation seems a reasonable
conclusion given this new information.

It is interesting to note that three formations from the type Rangeley section in Maine sampled for detrital zircon
analysis by Bradley and O'Sullivan (2016) gave maximum youngest age peaks much younger than the traditionally
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accepted stratigraphic ages. For example, Part A of the Rangeley Formation may be mid-Silurian rather than Early
Silurian, the Perry Mountain Formation may be Early Devonian rather than mid-Silurian, and the Smalls Falls
Formation may be Early Devonian rather than Late Silurian (Bradley and O'Sullivan, 2016). This trend toward
younger than expected ages warrants a flurry of new mapping linked with detrital zircon geochronology.

D; Deformation

In terms of Paleozoic ductile structures, regional D and D, folding and localized D5 folding are highlighted on this
trip. The D, folds are characterized by macroscopic east-facing nappes that are well characterized above treeline but
less so in the wooded lower elevation regions. The topping direction of graded bedding has revealed a systematic
geometry of broad upright limb regions, transitioning into narrow but mappable hinge zones, and in turn into broad
inverted limb regions. This pattern coupled with the 1.5 kilometer of vertical relief and abundant rock exposure
makes these early nappes some of the best-controlled fold structures in the Appalachians and as such potentially
useful in reconstructing plate tectonic geometries. We interpret these east-facing folds to also have been east vergent
as no evidence exists to suggest they have been backfolded. One of the problems this introduces is how east vergent
early Acadian nappes fit neatly with the overall westward migrating Acadian orogenic front model of Bradley et al.
(2000) and Bradley and Tucker (2002). Our favored tectonic model suggests that these D1 nappes verged east over a
west, but shallow dipping Acadian subduction zone, probably on Ganderian continental crust in a retroarc setting.
The east vergence can be explained as the west migrating orogenic front stalled upon contact with the Silurian
"tectonic hinge" (Hatch and Moench, 1984) and Bronson Hill anticlinorium that likely acted as a buttress prohibiting
any westward vergence of structures.

The pseudoandalusite porphyroblasts in the schists of the Presidential Range are very well developed and
formed during syn-D; metamorphism. The andalusites are typically 1 to 2 cm in diameter and between 6 and 20 cm
long. The andalusite was variably replaced by sillimanite during the peak of metamorphism, when conditions
reached the upper sillimanite zone. Further pseudomorphing of this assemblage is characterized by coarse muscovite
+/- staurolite during a retrograde event most likely caused by the intrusion of one or more late tectonic granitoids.
Late stage chlorite alteration is also occasionally present. When replacement by muscovite is complete, it is
common to see relict chiastolite crosses now completely composed of muscovite. Inclusion trails and
microstructures have been obliterated by the retrograde metamorphism (Groome and Johnson, 2006), making the
meso-scale of observation the best to use when quantifying strain patterns of this lineation fabric.

The porphyroblasts of the L, lineation lie mostly within the S; schistosity plane that in places exhibit reverse S;
cleavage refraction with adjacent quartzites (Eusden et al. 1996, 1996b). Groome et al.’s (2006) study of the reverse
refraction relationship showed that the stiffening effects of the andalusite porphyroblasts may have rendered the
pelite more viscous than the adjacent psammites during foliation development. When aligned, porphyroblasts are
also parallel to F; hinge lines. The hinge-parallel nature of the pseudoandalusite L lineations has been extremely
helpful in determining the geometries of F| nappe-scale folds. F, folds are non-cylindrical, as seen by fold
geometries progressively changing across kilometer-scale hinge zone regions. F; folds with gently plunging hinge
lines and moderately inclined axial surfaces change to folds with steeply plunging hinge lines and moderately
inclined axial surfaces and finally to reclined folds. Overall, the F; geometries are probably best classified as
sheath-like structures (Alsop & Carreras, 2007).

An interesting aspect of this lineation is its variable degree of alignment (Figure 2). Outcrops where the
andalusites are not aligned are often within meters of those with a strongly developed L, lineation. In other places,
the transition from non-aligned to aligned andalusite occurs gradually over hundreds of meters (Eusden et al., 1996).
We assume that lineation’s current orientation reflects strain conditions at the time of its development and alignment
during D, - that is, we believe that the andalusite porphyroblasts were variably aligned during D1 deformation and
that alignment has not been changed by D, or by any other subsequent phase of deformation. This is consistent with
the general appearance of the schist-quartzite couplets that have well-preserved primary structures and no exposed
mylonitic fabrics. Groome et al. (2006) also concluded that the porphyroblasts of the L, lineation had not been
rotated after D;.
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We've studied the variable development of the L, lineation throughout the Presidential Range (Guiterman and
Eusden, 2004; Rodda and Eusden, 2005; Higgins and Eusden, 2008). In doing so we developed a quantitative metric
(mean angular separation or "®" method) to measure the degree of lineation development. The mean angular
separation method calculates the average acute angle between measured trends and plunges of a group of linear
features and was developed by Bates senior thesis student Stephanie Higgins (2008). In this method, values of © lie
between 0° at perfectly aligned sites, and <90° at randomly aligned sites. Values for mean angular separation ranged
from a minimum of 9° near Mt. Washington, the most highly aligned site, to a maximum of 53° near Mt. Madison,
the site with the lowest porphyroblast alignment. There was no statistical difference between andalusite lineation
development or ® on the upright limbs, inverted limbs, or the hinge zone regions of the D1 folds. There was a slight
but not statistically significant increase in lineation development in the inverted limbs. This conforms to
expectations, with slightly more alignment on inverted limbs that may have experienced greater shear strain.
Regardless, structural position appears to not be the primary control on lineation development, or, if it was to a
certain degree (e.g. on inverted limbs) that was greatly overprinted by another force.

There is a statistically significant correlation however between the proportion of quartzite at any outcrop and the
degree of porphyroblast alignment at that site. In short, the more quartzite that surrounded a schist bed, the less
aligned its porphyroblasts were. The data also show a clear connection between bed thickness and porphyroblast
alignment: thicker beds yielded poorer alignment. We also examined the alignment variability on a larger scale than
outcrop by studying the overall lineation development in these Littleton formation units: Edmond’s Col Member
(Dlec); Mt. Jefferson Member (DImj); Mt. Madison Member (DImm); and the Israel Ridge Path Member (Dlirp).
There is a perfect positive correlation between percentage quartzite in the four bedrock members and porphyroblast
non-alignment (high angles of ®) in that member. Dlec (10% quartzite) shows the strongest alignment, with Dlirp
(50% quartzite) showing the poorest alignment (Figure 2). Thus, the macroscale rheological variations of the
different Littleton Formation stratigraphic members also reveal clear control of the lineation’s development. The
positive correlation between the development of this mineral lineation and the sedimentary features defined by the
turbidite bedding in the Littleton Formation continues to argue for linking detailed mapping with any structural
analysis.

D4 Deformation

D, deformation is the most common and abundant phase of folding seen in the Presidential Range. F4 folds are
characterized as mesoscopic, moderately inclined to overturned, generally gently but often moderately plunging,
asymmetric F, folds. The F,4 folds have no, or only a weakly developed, axial planar S, cleavage. F, folding is not
uniformly distributed throughout the study area. All areas show some F, folding, but in places it is distinctly more
pervasive than in others. Mesoscale folds have double amplitudes ranging from 10 cm up to several meters and
wavelengths from 10 cm to 10 meters. Interim angles classify all mesoscale folds as open. Axial surfaces generally
strike N and dip moderately to steeply W. Hinge lines trend N or S with shallow plunges. The typical shape of an F,4
fold consists of long, moderately dipping west limbs and short, steeply dipping east limbs. In some instances, the
east limbs are overturned. This asymmetry gives a west over east sense of rotation, which we interpret to be related
to east tectonic vergence of these folds. Pegmatite and aplite veins, dikes and sills seen throughout the alpine zone
are folded by F,. This deformation was syn-metamorphic but occurred after the peak of metamorphism in the region,
likely around 380-365 Ma or in the late Acadian to Neoacadian timeframe.

Shortening calculations of well-exposed D, fold trains in the Presidential Range of New Hampshire were done
at the mesoscale to quantify the strain and to evaluate the strain partitioning (Figure 3). Transects along Osgood
Ridge on Mt. Madison, Chandler Ridge on Mt. Washington, and Caps Ridge on Mt. Jefferson, all containing well-
exposed Dy nappes refolded by D, fold trains were examined (Kugel and Eusden, 2004; Rodda and Eusden 2005;
Reid and Eusden, 2005; Tamposi and Eusden, 2008). Shortening was calculated using the equation e = (If-lo/ lo) *
100, where If = the hinge to hinge straight length of the fold train and lo = the length of the folded layer.

For Chandler Ridge, meso-scale fold train shortening varied systematically over a macro-scale D4 Dome,
ranging from 1.1% on the flank to 47.8% on the apex with a mean value of 14.2%. Osgood Ridge showed mesoscale
shortening ranging from 5.9% and 32.3% on the limbs and crests respectively of macro-scale D, anticlinal synforms
and synformal anticlines with a mean value of 16.4%. Caps Ridge mesoscale shortening ranged from 4% to 34%
with a mean value of 12.4%. Collectively, these results suggest that mesoscale D, shortening is on average about
14% across the Presidential Range and this strain is preferentially partitioned on the crests and troughs of
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macroscopic folds by parasitic mesoscale folding. The total D4 shortening (micro+macro+meso) is approximately
30%. Depending on the duration of the D, event (10 my - 1 my), shortening or convergence rates would range from
.lcm/yr to .01 cm/yr during the Late Acadian and Neoacadian orogenies.

D5 Deformation and Doming

Uplift and doming of the Ordovician Oliverian Jefferson Dome was restricted to the Randolph valley region of the
Presidential Range. A region of east-southeast dips occurs in a two-mile wide zone immediately southeast of the
contact between the dome and cover rocks. Beyond this zone the regional west dip prevails. We are unsure of the
timing relationship between this doming and other late Acadian folding events (e.g. D4 folding) but suspect that
doming developed prior to the intrusion of the several Late Carboniferous plutons in the region. Regardless, it is
likely Neoacadian and deforms all other fabrics in the rock except, of course, brittle structures created during
Mesozoic rifting.

Ds folding is a Neoacadian event, restricted to the Pinkham Notch area, and manifest as microscale crenulations
and macroscopic folds that trend E-W and plunge quite shallow. Ds is probably related to the Early Carboniferous
intrusion of the 355 Ma. Peabody River Stock granite because D5 folds are found in proximity to the contact and die
out away from it.

MESOZOIC FRACTURES AND BASALTS

Mesozoic extensional structures were mapped in Great Gulf, Tuckerman Ravine, and Huntington Ravine in
the Presidential Range, NH, to determine their relative ages, distribution, and paleostress fields (Castro and Eusden,
2010; Gardner and Eusden, 2010; Kindley and Eusden, 2011; Eusden et al., 2011). Over 3000 joints and 7 major
dikes were measured within the folded Devonian Littleton Formation schist and quartzite and massive migmatites of
the Silurian Rangeley Formation (Figure 4).

Two dikes were found in Tuckerman Ravine, three in Huntington Ravine (Pinnacle Gully, Diagonal Gully, and
Escape Hatch dikes), and three in Great Gulf (Pipeline Gully, Airplane Gully, and Oblique Gully dikes). All dikes
are 1-3 meters wide, extend for several 100's of meters, show composite dike textures, are often vesicular, are not
significantly influenced by bedding plane anisotropies, and mostly classified as alkaline dolerites. The dikes all
exhibit preferential erosion as compared to the schist country rock. As a result the dikes are found in the base of
topographically prominent, narrow, steep walled gullies in the ravines.

Only common joints and few if any shear or conjugate joints were observed suggesting near surface conditions
(<3 km?) under low lithostatic pressure. Four joint sets were identified and assigned relative ages based on field
relations. From oldest to youngest the sets are: 1) NE striking vertical set; 2) E striking vertical set; 3) NNW striking
vertical set; and 4) sub-horizontal to west dipping sheeted set. Key cross cutting relations were: 1) Pinnacle Gully
where the Pinnacle NE striking dike is cut by the E-W joints; and 2) the south face of Mt Clay where the NNW joint
set terminates in a "T" intersection against open E-W joints.

The oldest and most abundant joints have a NE strike and sub-vertical dip, are most abundant near and sub-
parallel to the principal NE striking dikes in each ravine (the Tuckerman Ravine, Pinnacle, Pipeline, Airplane, and
Oblique Gully dikes), and likely formed during regional NW-SE extension associated with the Late Triassic and
Jurassic rifting of Pangea (Faure et al. 2006). The second oldest joint set has a E-W strike, is sub-parallel with the
Diagonal Gully and Escape Hatch dikes in Huntington Ravine, and interpreted to be part of regional N-S extension
associated with the Middle Cretaceous New England-Quebec province (McHone and Butler, 1984; Faure et al.,
1996a and 1996b). The third youngest fracture set strikes NNW -SSE, has no correlative basalt dikes, and may
correlate to the regional trend of the White Mountain Magma Series (McHone and Butler, 1984). The youngest joint
set has shallow W-NW dipping sheeted joints thought to have formed from Quaternary glacial and Late Cretaceous
tectonic unloading.
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Figure 4. A. Stereonets of joints and dikes in the Presidential Range, arrows show extension direction; Rose

plots of joints in Great Gulf (B), Tuckerman (C) and Huntington Ravine (D). E. Mt Clay joints color coded by
set; steeply dipping sets from oldest to youngest: yellow NE, blue E, and purple N; and green sheeted set.
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CRETACEOUS EXHUMATION

Apatite fission track (AFT) ages in samples collected along the 5000 foot relief (1500 m) exposed at Mt.
Washington in the Presidential Range of New Hampshire have been used to constrain the Cretaceous cooling history
of the area (Roden-Tice et al., 2011; Anderson et al., 2012). Nine AFT ages along the Mt Washington Auto Road
and thirteen AFT ages along the Cog Railroad were collected for samples of the Littleton and Rangeley formations
(Figure 5).

AFT ages range in from ~150 Ma at the highest elevations (~1900 m; ~6000 ft) to ~90 Ma at the base
(~500 m; ~1,500 ft). These values yield an exhumation rate of 0.024 mm/yr between approximately 150 Ma and 80
Ma for both the Cog Railroad and Auto Road transects.

A 2D cross sectional view of the AFT age surfaces (surfaces at 140, 130, 120, 110, 100, and 90 Ma.) shows
that the 140-120 Ma surfaces are tilted easterly between 3.2° and 10° with a mean of 6.8°. The 110-90 Ma surfaces
are sub-horizontal with easterly dips between .5° and 2.9° with a mean of 1.8°. We suggest that the more tilted older
surfaces were exhumed in a syntectonic setting and perhaps tilted by active faults in the area such as the local
Ammonoosuc or Glen Ellis Faults, or perhaps even the distant Norumbega Fault. The sub-horizontal younger
surfaces were exhumed during a period of post-tectonic erosion and were not deformed in any significant manner.
One possibility is erosion due to incipient stream incision of the ancestral Androscoggin, Saco, and Connecticut
River drainages. AFT track length modeling discussed below seems to support this hypothesis.

AFT track lengths along the two transects were nearly identical with longer tracks at the base of the
mountain and shorter tracks at the summit. AFT track modeling suggests that there was rapid cooling (to produce the
longer tracks) through the apatite partial annealing zone of 60° to 90°C at the base of the mountain during the time
period from circa 125-60 Ma. This suggests that rapid exhumation occurred in the valleys of Pinkham and Crawford
Notches during this time. Conversely the slower cooling through the apatite partial annealing zone (producing
shorter tracks) at the summit suggests much slower exhumation for the same time period.

These heterogeneous trends in exhumation between the summit and the lower elevation notches may be due
to late Cretaceous regional magmatic events associated with local asthenospheric upwelling (Matton and Jebrak,
2009) that reactivated zones of crustal weakness and possibly triggered the initiation of the ancestral drainage
systems in the Presidential range. This would lead to rapid incision during the time period 125-60 Ma. in the
notches while the summit eroded much more slowly.

From 60 Ma. to the present the AFT track modeling suggests a uniform exhumation rate across the
topographic relief of the Presidential Range. We conclude that the most likely explanation for the common
exhumation history across >1 km of relief is that the relief was established by the end of the Cretaceous and has
persisted with steady-state topography through the Tertiary to the present (Roden-Tice et al., 2012).

The AFT results are consistent with an earlier relief method study employing “’Ar/*’Ar muscovite cooling
ages (Eusden and Lux, 1994). Geothermal gradients calculated from the results of both studies yield ~ 40 °C/km
suggesting that this gradient persisted throughout Permian and Mesozoic times.
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Figure 5. A. Apatite fission track ages (in Ma) on Mt. Washington. B. Proposed erosion and resulting
topography over time. C. Track length modeling showing rapid exhumation in notches from 125-60 Ma. D.
Exhumation rates calculated using relief method. E. Cross section of AFT surfaces through Mt. Washington.

140-120 surfaces are tilted by faulting and horizontal 110-90 surfaces are post-tectonic.
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DRIVING AND WALKING LOG FOR STOPS

Time, Place, Logistics

Saturday September 30th, 7:30 AM in the gravel parking area on the west side of NH 16 to the immediate south of
the Auto Road entrance (322363.00 m E, 4906302.00 m N). The base of the Auto Road is about 30 miles west of
Bethel, ME and takes about 40 minutes to drive. From Bethel follow Rte. U.S. 2 west to Gorham, NH then take Rte.
NH 16 south to the Auto Road entrance. Due to the fragile nature of the alpine ecosystem, please always walk on
trails or rocks. Warning: Expect extremely cold and unpredictable weather. Be prepared with proper clothing and
good hiking boots for very rocky, uneven terrain, winter—like conditions and extremely high winds. Bring your
lunch and water as there will be absolutely no chance to pick up anything once the trip begins. There are no
bathrooms facilities. Vehicles must be consolidated. The folks at the Mt. Washington Auto Road have kindly agreed
to charge us only $29 per vehicle and waive the passenger fee. Half-ton vans are permitted up the road but with a
maximum passenger and luggage weight of 900 Ibs (that's approximately 6 people, including driver). If you are
planning on driving your vehicle, please carefully check the vehicle restrictions on the Auto Road web site that can
be found here.

Mileage
0.0 Base Station. Drive from the base of the Auto Road to the summit of Mt.Washington

8.0 Lower parking lot (elev. 6,200 ft.) of Mt Washington Summit. Park vehicles and walk to STOPS 1A-B

STOP IA. In blasted outcrop along the NW side of the road just below parking lot, inverted graded bedding of
Huntington Ravine member of Littleton Formation within inverted limb of the Mt. Washington Nappe, small sills of
pegmatite as well. AFT ages in the summit region are between 147 and 151 Ma..

Walk down the road about .1 mile just below the parking lot with some oil tanks on the west side of the road at
about elevation 6,100 ft..

STOP IB. On the east side of (downhill side) the road are blocks and outcrops of schists and thin quartzites of the
Huntington Ravine member of the Littleton Formation with excellent L; pseudoandalusite lineations. Where aligned,
the L orientation is parallel to the F, fold axes throughout t he Presidential Range. Mean angular separation or "®"
values for the andalusite lineation in this region are 15° to 25°, meaning strong alignment.

Return to vehicles and drive down the Auto Road.

8.6 Park vehicles in lot on west side of road which is just above the 6,000 ft elevation post. STOP 2 is a 2 mile
walking loop to several outcrops.

STOP 2A. Walk .1mi. east and slightly uphill to Ball Crag (elev. 6,112 ft.) and examine inverted graded beds of the
Huntington Ravine member of the Littleton Formation with well developed F, folds and poorly developed S, axial
plane cleavage.

Walk back to the parking lot with the vehicles and walk .1mi west to the intersection of the Great Gulf and Gulfside
Trails. Follow the Gulfside Trail WNW paralleling the Cog Railroad, passing the junction of the Westside Trail, to
the Clay Col and junction of the Gulfside and Clay Loop trails, about .9 mi.

STOP 2B. In the Col the geology passes from schists of the Bigelow Lawn member of the Littleton Formation to the
SE to gneisses and abundant pegmatites of the Mt. Clay member of the Rangeley Formation to the NW. The Madrid,
Smalls Falls, and Perry Mountain Formations are cut out here. The contact between the Rangeley and Littleton is not
exposed, but you can get within about 20 meters of it; look for the last outcrop of schist and the first outcrop of
gneiss with calc-silicate lenses. This contact we have interpreted as the D, Greenough Spring Thrust Fault. The NE
striking Airplane gully dike is exposed in the steep gully along the headwall of Great Gulf and blocks of basalt can
be seen in the saddle.

Proceed N along and up the Clay Loop Trail for about .1 mi.
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STOP 2C. In the trail and just to the W on the first pitch up from the Col, are outcrops of the Mt. Clay member of
the Rangeley Formation gneisses with abundant quartz segregations (clasts?) and rare, oval, concentrically zoned,
calc-silicate lenses (clasts?). Proceed up the first steep pitch on the Clay Loop Trail another .05 mi., which is
halfway up the first or S summit of Clay. On the E side of the trail are exposed meter-long, bedded clasts of calc-
silicate with bedding truncated by the gneissic matrix. We have interpreted this type of Rangeley to be a
metamorphosed olistostromal mélange. This steep pitch also shows excellent fractures and all four joint sets (NE, E,
N and sheeted) are well exposed. In a few places the N set exhibits "T" with the E and NE sets, demonstrating that
the N joints are the youngest steeply dipping set.

Return to vehicles along Clay Loop and Gulfside Trails, about 1 mi., and drive down the Auto Road.

9.5 Park at the lot on t he NW side of the road at elevation 5,700 ft.; the relatively flat area of the so-called
"Cow Pasture." STOP 3 is a 1 mile walking loop to several outcrops

Walk to the junction of the Nelson Crag and Huntington Ravine Trails and proceed up the Nelson Crag Trail about
.1 mi to about elevation 5,800 ft.; this would be between the 14th and 15th cairns on the Nelson Crag Trail
from the junction. Turn off the trail to the south, paralleling the slope and contours for about .1 mi to prominent
outcrops marked by a small cairn.

STOP 3A. F, hinge zone exposures of the Tuckerman Ravine Syncline with thick bedded quartzites and thin schists
of the Alpine Garden member of the Littleton Formation. Sy, bedding, and S,, axial planar schistosity, are
perpendicular here. Graded beds in the hinge zone suggest northeasterly facing directions for the F; folds.

"Rockwack" downhill, southeast, for about .2 mi to the headwall of Huntington Ravine and the junction of the
Huntington Ravine and Alpine Garden Trails. Please only walk on rocks and keep off the vegetation!

STOP 3B. Pinnacle Gully and Diagonal dikes intruding upright schists and thick micaceous quartzites of the
Huntington Ravine member of the Littleton Formation. The Pinnacle dike belongs to the NE striking earliest
joint/dike set while the Diagonal dike is part of the E striking joint set. E joints cut the Pinnacle dike suggesting it is
younger.

Follow the Alpine Garden trail .2 mi northeast to junction with the Nelson Crag Trail.

STOP 3C. Exposed is an outcrop of a F, warping fold about 15 meters southeast of the big cairn at the junction.
This fold happens to be along the crest of the most significant macroscopic F4 structure, the Chandler Ridge Dome.
The F,4 folds exhibit maximum shortening of 47.8% on the crest of the Dome and D, folds are the most
geometrically diverse in this region.

Follow the Nelson Crag trail about .1 mi. uphill to the unnamed crag at elevation 5,735'.

STOP 3D. On the north and northeast flanks of this crag are upright beds of the Cow Pasture member of the
Littleton Formation. Sy and S; are now parallel here as the F, hinge zone of the Tuckerman Ravine syncline is
slightly above us.

Proceed .1 mi. to the junction with the Huntington Ravine Trail and then back to the parking lot with the vehicles.
Drive down the Auto Road.

10.7 Park in the vicinity of Cragway Spring (elev. 4,800 ft.) in the small parking lots above and just at the
hairpin turn. STOP 4 is a 1.5 mile walking loop to several locations.

Hike down the Nelson Crag Trail .6 km to treeline at approximately 4,300 ft. elev.

STOP 4 A. Outcrops of the Great Gulf member of the Littleton Formation. Exposed here are schists with 10 cm
thick quartzite interbeds. Bedding, Sy, and schistosity, S, are not parallel indicating that we are in the F; hinge zone
of the Horn Nappe. S;schistosity is refracted through the inverted bedding defined by the quartzites. Fresh, pink
andalusite and andalusite rimmed by fibrolitic sillimanite is common. There is a nice float block with a complete F,
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fold exposed. There are good glacial striations on a quartz vein outcrop that also shows some unusual staurolite-
bearing pegmatites.

Proceed back up the Nelson Crag Trail about .2 mi through the first patch of scrub spruce and into the next higher
treeless area. Head off the trail to the south about .05 mi to the prominent outcrops.

STOP 4B. Exposed here are the predominately massive schists of the Cow Pasture member of the Littleton. L,
lineations are folded by abundant F, folds with circa 11% macroscopic shortening which define the topography here.
Bedding and S; schistosity are again parallel as we are now above the Horn Nappe F1 hinge zone.

Proceed back up the Nelson Crag Trail about .1mi through another patch of scrub spruce and to the higher treeless
area that includes the Auto Road at Cragway Spring. Head off the trail to the south about .05 mi.

STOP 4C. Exposed are schists and thin quartzites of the Huntington Ravine member. Well developed F4 structures
fold thin aplite sills here. These small granitic apophyses are the earliest phase of granitic intrusion and are pre-F, in
age. Some of the larger granite plutons of this generation impart local staurolite grade metamorphism to the schists.
Mean angular separation or "@" values for the andalusite lineation in this region are highly variable over short
distances and range between 22° (well aligned) to 48° (poorly aligned)

Return to the vehicles examine the road cuts and outcrops on the "inside" of the hairpin turn.

STOP 4D. Exposed are schists and thin quartzites of the Huntington Ravine member. Upright graded beds are
common. Pseudoandalusite is replaced by fibrolitic sillimanite in the core with coarse-grained muscovite and
staurolite in the rim. A great place to see this texture is a Im diameter lichen-free zone of bed rock marked by a
small patch of concrete (4 cm diam) with a small metal pin (1 cm diam) embedded in it. F, folds are everywhere and
as with all locations in STOP 4 are consistently oriented.

Return to vehicles and drive down the Auto Road.

11.7 Park in the lot at elevation 4,200 ft. just below the junction with the Winter Cutoff Road. STOP 5 is a short
walking loop of about Imile.

Walk back up the Auto Road to the Winter Cutoff road and proceed up that about .1 mi to elev. 4,400 ft.

STOP 5A. Outcrops of thick schists and 10-20 cm thick quartzites of the Great Gulf member of the Littleton. These
outcrops show the exact hinge location for the Horn Nappe as bedding and schistosity are perpendicular. S;is again
refracted through the quartzites. Mean angular separation or "®" values for the andalusite lineation in this region are

around 45° meaning poorly aligned. We think this is due to the thick quartzites of the Great Gulf member.

Walk about .2 mi up the ridge between the Winter Cutoff and Auto road to about elevation 4,450 and then
bushwhack down to the Auto Road. Walk down the road about .1 mi.

STOP 5B. Nice exposure of a rare Fymesoscopic fold hinge in the outcrops on the west side of the road. The fold
exhibits reverse refraction where the steeper angle is in the schist, made more viscous by the growth of andalusite
(Groom and Johnson, 2006; Groome et al., 2006). AFT ages range from 137 to 123 Ma in this vicinity.

STOP 5C. Garnet-bearing granite sill exposed in a road outcrop. We've tried to get zircon and monazite out of this
for an age date but no luck. An age determination would nail down the timing of F, folding and associated contact
metamorphism in the Range.

Return to vehicles and drive down the Auto Road.

11.9 Park in the lot on the east side of the road just above the 4,000 ft. elevation post.

Walk down the road about .2 mi. to just below the 4-mile post.
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STOP 6. Examine the large outcrop of thick quartzites of the Oakes Gulf member of the Littleton. There is one
enormous bed, 5 meters in thickness, which is wonderfully graded and inverted. Bedding and schistosity are not
parallel, meaning we are still within an F; hinge zone. This outcrop was where Bradley and O'Sullivan reported a
388 Ma youngest zircon peak age, attributing that to a metamorphic age.

Return to vehicles and drive down the Auto Road
13.8 Park in the lot where the Madison Gulf Trail crosses the road.
Walk .5 miles up the trail to the junction with the Lowe's Bald Spot cutoff and hike up the trail to the top.

STOP 7. Lowe's Baldspot. Beginning from the trail junction and continuing to the top you will see the schists with
thinly beds of quartzite or just massive schist outcrops of the Bigelow Lawn Member of the Littleton Formation.
One of its characteristics is the presence of garnet +/- quartz coticule. Structurally there are two sets of crenulations
one N-S trending and the other E-W trending. These are D4and Ds folds respectively. Ds spatially surrounds the
Peabody River two mica granite intrusion which has been dated to be 355 Ma.

Return to vehicles and drive down the Auto Road .
14.3 Park in tight parking lot along the road.

Walk across the road to the south side and bushwhack .1 miles down a little drainage to outcrops of Silurian Smalls
Falls Formation.

STOP 8. The Smalls Formation well bedded, rusty schists are exposed in the stream bed. Above this outcrop is
found the Abandoned Bridge member of the Littleton Formation with no intervening Madrid Formation. We
interpret this stratigraphic gap to have been caused by a pre-metamorphic fault and have named it the Pinkham
Notch Fault. AFT ages range from 99 to 101 Ma in this vicinity. Proceed back to the road and examine the outcrops
of Triassic (?) vent breccia. Besides the basalt dikes we saw earlier this is the only other mappable Mesozoic unit in
the Presidential Range. A separate section of this unit can be seen at Crystal cascade on the Tuckerman Ravine trail.

Return to vehicles and proceed down the bottom of the Auto Road
16 Parking lot that we started from.
End of Trip
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