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INTRODUCTION 

 

The purpose of this field trip includes the following: 1) describe the motivation and methods being used for a 

NSF-funded project to understand deglaciation of the mountains in northern New England and adjacent areas, 2) 

review past glacial history studies in the Presidential Range, 3) examine field sampling sites and initial results from 

Mt. Washington, one of the key mountainous areas in our study, and 4) discuss implications for global sea-level 

change during the last deglaciation in New England. 

  

The late Pleistocene ice sheets were important agents of land surface and climate change during the Ice Ages of 

the last 2.8 million years. Research over the past several decades has generated ever more precise reconstructions of 

ice sheet extent histories based on organic 
14

C (e.g., Dyke, 2004), cosmogenic nuclides (e.g., Balco et al., 2002; 

Carlson et al., 2007; Rinterknecht et al., 2006), and varve dating (e.g., Ridge et al., 2012). In contrast, the thickness 

evolution of the ice sheets has been far more difficult to constrain, largely because the ice sheets generally covered 

flat regions. In the rare instances where ice sheets covered mountainous areas such as northern New England, the lag 

time was highly variable between deglaciation and the deposition of organic matter for 
14

C dating at higher 

elevations (Davis and Davis, 1980). While a robust relationship between ice sheet area and volume exists for 

glaciers in equilibrium (Paterson, 1994), this need not be the case for a deglaciating ice sheet due to, for instance, 

changes in basal temperature and subglacial meltwater, ice streaming, ice-ocean interactions, interruption of ice flow 

in regions of complex topography, and elevation-temperature and precipitation feedbacks (Fyke et al., 2014). 

 

Accurate ice sheet thickness reconstructions are important for several reasons. (1) Ice sheet orography is a 

critical boundary condition for modeling paleoclimate during the last deglaciation (e.g., Liu et al., 2009). For 

instance, the height of ice sheets has a direct effect on surface temperature through lapse rate cooling, but also has 

downstream effects related to atmospheric planetary waves that control heat flow and storm tracks, and the strength 

of Atlantic Meridional Overturning Circulation (AMOC) (Ullman et al., 2014). (2) Ice sheet thickness must be 

known in order to quantify ice volume changes, and thus the contribution of individual ice sheets to global sea-level 

rise and the attendant freshwater forcing to the ocean (Carlson and Clark, 2012). (3) The timing and rate of ice sheet 

thinning sheds light on how ice sheets responded to the overall global warming and abrupt climate changes of the 

last deglaciation (Gregoire et al., 2012). (4) Ice thickness reconstructions can help validate numerical ice sheet 

models, which are important for understanding the processes of deglaciation as well as improving projections of ice 

sheet responses to future global warming (Stokes et al., 2015).  

 

The Greenland ice core record reveals abrupt Northern Hemisphere warming and cooling events during the last 

deglaciation (Clark et al., 1999; Andersen et al., 2004) that have been linked to variations in the strength of the 

AMOC and its associated northward heat transport (Clark et al., 1996; McManus et al., 2004). Heinrich Stadial 1, a 

cooling event between ~19 and 14.6 ka, is thought to have occurred due to freshwater forcing from the Northern 

Hemisphere ice sheets weakening the AMOC. Recovery of the AMOC at ~14.6 ka then produced an abrupt 
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warming into the Bølling-Allerød interstadial (Liu et al., 2009). Meltwater Pulse 1a (MWP-1A), a sea-level rise 

event of 14-18 m in 350 years (Deschamps et al., 2012; Carlson et al., 2012), occurred synchronously with the 

Bølling interstadial. However, it is unclear from which ice sheet MWP-1A was sourced (Liu et al., 2015), though 

two scenarios have been proposed. The first is the ‘Northern scenario’ where melting Northern Hemisphere ice 

sheets caused MWP-1A, leading to a weakening of the AMOC and Older Dryas cooling after the Bølling warming 

(Fairbanks, 1989; Manabe and Stouffer, 1995; Peltier, 2005; Peltier and Fairbanks, 2006). The second is the 

‘Southern scenario’, which suggests the melting of the Antarctic Ice Sheet caused MWP-1A, triggering a 

reactivation of the AMOC and the Bølling warming (Clark et al., 1996; Weaver et al., 2003; Bassett et al., 2005). 

 

Modern studies of the Greenland Ice Sheet are reporting increasingly negative surface mass balance trends 

(Veliconga et al., 2014; McMillan et al., 2016), possibly due to accelerated thinning from surface water drainage to 

the bed (Zwally, 2002). Contributions from the Greenland Ice Sheet to global mean sea level rise is larger than 

Antarctica and has increased from 0.09 mm yr
-1

 over 1992-2002 to 0.59 mm yr
-1

 over 2002-2011 (Vaughan et al., 

2013), and has more recently reached 0.74 ± 0.14 mm yr
-1

 (McMillan et al., 2016). Paleo-constraints on inland ice 

sheets can provide valuable information about ice sheet thinning dynamics during periods of abrupt climate change, 

which can be used to improve models predicting future ice sheet decay (Hansen et al., 2015; Shakun et al., 2015; 

Winkelmann et al., 2015).  

 

THE PROBLEM AND OUR APPROACH 

 

Sea-level reconstructions reveal global ice volume variations through time, but provide little information on 

how that volume was partitioned among ice sheets (Clark et al., 2009). Although geophysical models attempt to 

invert isostatic rebound patterns into ice sheet thickness reconstructions, they exhibit considerable disagreement 

(Clark and Tarasov, 2014; Peltier et al., 2015). Similarly, numerical models attempt to simulate past ice sheet 

evolution in response to climate change (e.g., Abe-Ouchi et al., 2013; Gregoire et al., 2012), but they are subject to a 

wide variety of uncertainties such as the climate forcing and ice-sheet dynamics (Stokes et al., 2015). All such 

models ultimately require ground-truthing – but stronger geologic constraints are needed to advance this data-model 

dialogue, as highlighted by a recent community-wide workshop (Whitehouse and Tarasov, 2014). 

 

A potential, albeit geographically-limited, solution to the problem of reconstructing ice sheet thickness through 

time is cosmogenic exposure dating along vertical transects, also known as ice sheet “dipsticks.” This technique 

measures the build-up of cosmogenic nuclides in a series of glacial boulders and/or outcrops down a mountainside to 

determine when each was exposed to cosmic radiation as the ice sheet surface lowered during deglaciation (see 

commentary by Bierman, 2007). Glacial dipsticks have been instrumental in constraining the thinning history of ice 

sheets in Scandinavia (Brook et al., 1996; Goehring et al., 2008), Antarctica (Stone et al., 2003; Ackert et al., 2007; 

Mackintosh et al., 2007, 2011; Johnson et al., 2014), and Greenland (Corbett et al., 2011; Nelson et al., 2014). 

 

Strikingly, other than our own recent study at Acadia National Park in Maine (Koester et al., 2017), no major 

glacial dipsticks have been measured for the Laurentide Ice Sheet (LIS), which was the largest body of ice at the 

Last Glacial Maximum (LGM), accounting for ~65-90 of the 130 m LGM sea level lowstand (Clark and Mix, 2002). 

There are only two regions where substantial topographic relief (>1000 m) was uncovered by LIS retreat during the 

last deglaciation – the mountains of New England and southern Quebec (Fig. 1), and much more remote parts of the 

eastern Canadian Arctic, including Baffin Island and northern Labrador. Samples from either of these regions could 

directly constrain the thinning history of the large, but now vanished LIS, although, for reasons related to ice sheet 

basal thermal conditions  in the Canadian Arctic (Marsella et al., 2000; Corbett et al., 2016; Margreth et al. 2016), 

the mountains of New England are much more likely to provide accurate deglacial ages. 
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Figure 1.  The locations of 12 ice-sheet mountain dipsticks (red dots) to constrain the thinning history of the 

southeastern LIS. As of July 2017, we have sampled along vertical transects from all sites except for the Catskills 

and Mt. Kearsarge. The smaller map shows the LIS outline at the LGM (yellow), and highlights the study region 

(white box). Note that this region contains the only large mountains underlying interior portions of the LIS, and thus 

provides a unique opportunity to reconstruct the vertical collapse of the ice sheet. 

 

GLOBAL CLIMATE AND SEA LEVEL DURING THE LAST DEGLACIATION 

 

The last deglaciation provides an outstanding opportunity to understand the complex interplay between ice 

sheets, ocean circulation, and climate. We provide below a summary of the last deglaciation to highlight the 

relevance of these questions and to flag uncertainties that our proposed research could help address.  

 

The Oldest Dryas (19-14.6 ka) 

 

The last deglaciation commenced with an abrupt 5-10 m sea-level rise over a few centuries at ~19 ka (Carlson 

and Clark, 2012), which has been associated with initial pullback of Northern Hemisphere ice sheets due to summer 

insolation forcing (Fig. 2a) (Clark et al., 2009), although emerging marine data suggest that the Antarctic Ice Sheet 

also began retreating at this time for unknown reasons (Weber et al., 2011, 2014). The resulting freshwater forcing 

to the North Atlantic may have weakened the AMOC causing a bipolar seesaw climate response with hyper-cold 

conditions centered around the North Atlantic and warming in the Southern Hemisphere (Fig. 2b,c) (He et al., 2013). 

Cold stadial conditions in the Northern Hemisphere and a sluggish AMOC persisted for the next four millennia of 

the Oldest Dryas interval (McManus et al., 2004; Shakun et al., 2012), but the Northern Hemisphere ice sheets 

continued retreating and the LIS underwent a major iceberg discharge episode during Heinrich event 1 at ~16 ka 

(Hemming, 2004). Significant ice loss during the cold Oldest Dryas may seem somewhat surprising. A possible 

explanation is that the Oldest Dryas was characterized by extreme seasonality, with cooling predominantly during 

winter as the weakened AMOC promoted sea-ice expansion while summers continued warming due to rising 

insolation and atmospheric CO2 (Denton et al., 2005). Coral-based estimates of global sea-level rise during the 

Oldest Dryas range widely from 8 to 21 m, and the contribution of individual ice sheets is especially uncertain  

(Carlson and Clark, 2012). Of particular interest, sea-level rise seems to have outpaced LIS area retreat (Fig. 2a). 

Marshall et al. (2002) highlight a similar disparity, noting that, “the isostatic record demands substantial ice 

thinning subsequent to LGM, at a time (14-20 ka) when there is no strong signal of ice sheet retreat (Dyke and 

Prest, 1987). Model results suggest that this is possible via the increasing role of fast basal flow in this period, as 
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more of the Laurentide ice sheet becomes warm-based and basal melt water accumulates at the bed. This essentially 

argues for a transition from thicker, largely cold-based ice sheets at the LGM to a thin and mobile, more West 

Antarctic Ice Sheet-like ice sheet through the deglaciation.” As a review on deglacial sea level by Carlson and Clark 

(2012) recently concluded though, “the volume contributions of individual ice sheets to sea level change between 

19.5 ka and 14.6 ka, which are required to specify freshwater fluxes and their entry points to the ocean, need to be 

better determined.” Determination of the volume contribution for the southeastern part of the LIS is a major goal of 

this project. 

 

     
 

Figure 2.  Deglacial ice melt, climate, and ocean circulation. (a) Global sea level (green) (Lambeck et al., 2014) LIS 

areal extent (blue) (Dyke, 2004), and northward LIS retreat in central New England based on varves (red) (Ridge et 

al., 2012). (b) Greenland δ
18

O, a proxy for temperature (NGRIP members, 2004). (c) Protactinium/thorium ratios in 

a North Atlantic sediment core, a proxy for AMOC strength (McManus et al., 2004). Note the differences between 

LIS extent and global sea level, the increased rate of LIS retreat in New England coincident with MWP-1A, and the 

general associations between changes in ice-sheet retreat/sea-level rise, ocean circulation strength, and temperature.  

 

Meltwater Pulse 1a and Bølling warming (14.6-14.3 ka) 

 

An abrupt warming of the Northern Hemisphere occurred at the onset of the Bølling interstadial at 14.6 ka as 

the AMOC resumed (Liu et al., 2009), and coincided with the largest jump in deglacial sea level –MWP-1A (Fig. 2). 

This 14-18-m sea-level rise occurred in no more than 350 years, implying rates of sea-level rise in excess of 40 

mm/yr (Deschamps et al., 2012), or more than an order of magnitude faster than sea-level rise today (3 mm/yr; 

(Church and White, 2011). While MWP-1A was first assumed to have originated exclusively from the LIS 

(Fairbanks, 1989; Peltier, 1994), given its large size, sea-level fingerprinting and Southern Ocean marine evidence 

suggest a significant though uncertain Antarctic contribution (Weaver et al., 2003; Deschamps et al., 2012; Weber et 

al., 2014). Planktonic δ
18

O runoff records from the Gulf of Mexico (Wickert et al., 2013), the Arctic (Carlson, 

2009), and the Labrador Sea (Obbink et al., 2010) detect only minor contributions from various sectors of the LIS to 

MWP-1A. Furthermore, LIS areal retreat was no greater during MWP-1A than before or after the event (Fig. 2a). 

Therefore, any major LIS sea-level contributions could only have come from rapid ice sheet thinning. Just to provide 

a sense of scale, if MWP-1A were sourced evenly from across the entire LIS, it would lower the ice sheet surface by 
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~600 m, a thinning easily detectable using the dipstick method we are currently employing. Sourcing MWP-1A 

from only a part of the ice sheet would obviously increase this surface lowering estimate further. Gregoire et al. 

(2012) simulate a 9-m sea-level rise in 500 years in a numerical ice sheet model as the LIS and Cordilleran Ice Sheet 

separated due to saddle collapse and suggest that this process may account for MWP-1A, though 
14

C ages suggest 

that these ice sheets actually separated well before MWP-1A (Clague and James, 2002; Dyke, 2004). The Eurasian 

Ice Sheet complex was much smaller than the LIS, and therefore a less likely candidate to explain MWP-1A. 

Adding to this puzzle, recent glacioisostatic modeling suggests that Antarctica only contained ~8 m sea-level 

equivalent of additional ice at the LGM (Whitehouse et al., 2012), limiting its potential contribution to MWP-1A, 

and available Antarctic dipsticks indicate only modest thinning (Mackintosh et al., 2007, 2011). An accounting of 

the sources of sea-level rise during this singular event (MWP-1A) is thus far from complete (Fig. 3). 
 

     
 

Figure 3.  Estimates of ice-sheet contributions to MWP-1A. LIS = Laurentide Ice Sheet; CIS = Cordilleran Ice 

Sheet; SIS = Scandinavian Ice Sheet. (from Carlson and Clark, 2012). 

 

The Allerød, Younger Dryas, and Holocene (14.3-6.5 ka) 

 

Sea-level rise returned to pre-MWP-1A rates after 14.3 ka and sea level increased ~7-10 m during the Allerød 

period over the next millennium (Fig. 2a) (Edwards et al., 1993; Bard et al., 1996; Peltier and Fairbanks, 2006), 

likely dominated by Northern Hemisphere sources (Carlson and Clark, 2012). The abrupt Younger Dryas cold event 

in the Northern Hemisphere commenced 12.9 ka as the AMOC weakened again, perhaps due to southern LIS retreat 

into Canada and routing of freshwater runoff from the Mississippi to the St. Lawrence drainage (Broecker et al., 

1989; Broecker, 2006). LIS retreat and sea-level rise slowed during the Younger Dryas, before again picking up 

pace as the AMOC resumed at the onset of the Holocene at 11.6 ka (Bard et al., 2010) and summer insolation 

reached a maximum. The Eurasian Ice Sheet disappeared by 10 ka (Boulton et al., 2001), and the remaining 

Holocene sea-level rise came from LIS retreat in Canada (Dyke, 2004; Carlson et al., 2007) and the Antarctic Ice 

Sheet.  

 

The central message that emerges from this summary is that while the broad pattern of climate change, ocean 

circulation, and sea-level rise during the last deglaciation are reasonably well constrained, the contributions of 

individual ice sheets to these processes, which is critical to understanding the internal dynamics of the climate 

system, are not. In particular, well-documented ice margin retreat histories are not complemented by similarly strong 

vertical thinning constraints, and thus ice volume uncertainties remain substantial.  
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SOUTHEASTERN LAURENTIDE DEGLACIATION 

 

With the global summary above as context, we detail here the deglaciation of the southeastern LIS, the focus of 

our current research. Central New England has one of the best-constrained ice margin histories in the world (Fig. 4), 

owing to considerable 
14

C dating of lakes and bogs, and in particular, extensive varve sequences, which have been 

tied to the 
14

C timescale and the Greenland ice core record (Ridge et al., 2004, 2012). Furthermore, 
10

Be ages from 

the Connecticut and Champlain Valley lowlands have also been linked to these other chronometers, resulting in a 

precise regional production rate calibration (Balco et al., 2009). This well-dated margin record makes the region 

especially conducive to constraining ice volume changes and understanding ice sheet behavior, if, and only if, the 

thinning history can be well determined. 

 

   
 

Figure 4.  Laurentide Ice Sheet lateral extent through time. Isochrones show the North American Varve Chronology 

of deglaciation (from Fig. 11 in Ridge et al. (2012)). The black dots are moraines dated using 
10

Be and calibrated 

with the northeastern North American production rate. (Martha’s Vineyard and Buzzard’s Bay – Balco et al., 2002; 

Old Saybrook and Ledyard – Balco and Schaefer, 2006; Ashuelot Valley, Perry Mountain and Littleton-Bethlehem – 

Balco et al., 2009; Androscoggin – Bromley et al., 2015; Basin Pond – Davis et al., 2015; Pineo Ridge and Acadia 

National Park – Koester et al., 2017). Inset figure shows the extent of the LIS at 21 ka and 10 ka (Dyke, 2003).  
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Ice Extent 

 

The LGM and subsequent deglaciation chronology throughout the New England area has been well researched 

and includes minimum-limiting radiocarbon ages (e.g. Dyke et al., 2004), glacial varves (Ridge, 2004; Ridge et al., 

2012), and cosmogenic nuclide dating (Balco et al., 2002; Balco and Schaefer, 2006; Bierman et al., 2015; Bromley 

et al., 2015; Davis et al., 2015; Corbett et al., 2017; Koester et al., 2017; Hall et al., 2017; Fig. 4). The LIS reached 

its maximum extent (Fig. 4) before ~25 ka as indicated by recalculated 
10

Be exposure ages on terminal moraines 

from Martha’s Vineyard, MA (27.5 ± 1.6 ka, Balco et al., 2002) and northern New Jersey (25.2 ± 1.3 ka, Corbett et 

al., 2017). After the LIS began pulling back from its terminal moraines, northward retreat was gradual through 

several millennia at ~50 m/year (Ridge et al., 2012), then increased after ~20 ka likely due to increased Northern 

Hemisphere insolation (Clark et al., 2009). There is little indication of Heinrich event 1 at the southern margin, 

except perhaps indirectly, with the modest Chicopee readvance in Massachusetts at 17.3 ka, possibly occurring in 

response to North Atlantic cooling (Ridge et al., 2012). Coastal Maine, mostly below the marine limit, rapidly 

deglaciated 15-16 ka (Davis et al., 2015; Koester et al., 2017; Hall et al., 2017), and the North Charlestown moraines 

were deposited across central New England just prior to the Bølling warming. Thereafter, and synchronous with 

MWP-1A, the rate of retreat increased dramatically to ~300 m/year (Fig. 2a, 4) (Ridge et al., 2012). Except for the 

Littleton-Bethlehem Readvance north of the White Mountains of New Hampshire at 13-14 ka (Balco et al., 2009; 

Ridge et al., 2012) (Fig. 2b), this rapid retreat continued until the LIS margin exited New England into southern 

Quebec during the late Allerød (Fig. 4) (Dyke, 2004). 

 

The North American Varve chronology from the Connecticut River valley provides insight into the retreat of 

the LIS from Massachusetts to Vermont and indicates the retreat rate began between 50 and 100 m/yr (Ridge, 2004; 

Ridge et al., 2012). Thereafter, the retreat rate increased to ~300 m/yr during the Bølling Interstadial and passed Mt. 

Washington around ~14.2 ka (Ridge, 2004; Ridge et al., 2012; Fig. 4). Glacial varves were also thicker during the 

Bølling, implying more intense summer melt. In addition, a model of the LIS at the end of the Oldest Dryas (~15 ka) 

and during the Bølling-Allerød (~14.2 ka) found the surface balance increased during the Bølling (Carlson et al., 

2012), supporting the varve thickness record. As the ice sheet retreated further inland the Pineo Ridge moraine 

complex in coastal Maine was abandoned around the Bølling Interstadial (14.5 ± 0.7 ka; Koester et al., 2017) 

followed by the Littleton-Bethlehem moraine, just north of the Presidential Range in northern New Hampshire (13.8 

± 0.7 ka, n = 4; Balco et al., 2009; Thompson et al., 2017), and the Androscoggin moraine in northeastern New 

Hampshire and western Maine (13.2 ± 0.7 ka, n = 7; Bromley et al., 2015) before retreating further north into 

Canada.  

 

Ice Thickness 

 

In contrast to the dozens of 
10

Be ages, hundreds of organic 
14

C ages, and thousands of varve counts constraining 

ice retreat at lower elevations in New England, the ice thickness history is largely uncertain. Existing 
14

C ages at 

higher elevations are scant, they come almost exclusively from lake and bog basal sediments and are thus only 

minimum-limiting ages, and they are very noisy, spanning several millennia and showing no coherent trends with 

elevation (Table 1). It is thus not possible to say whether ice sheet thinning occurred predominantly during the cold 

Oldest Dryas or the warm Bølling/MWP-1A interval or the still-warm but slower-sea-level-rise Allerød interval. It is 

similarly an open question whether ice sheet drawdown was very rapid (centuries) or much more gradual 

(millennia). 

 

Two recent studies from our team present initial cosmogenic ages on a small set of samples from Katahdin, ME, 

and Mt. Washington, NH, and raise intriguing questions in these regards. Samples from the Katahdin highlands have 

statistically indistinguishable deglaciation ages (n=6, 15.3±2.1 ka, 1σ) from boulders on the Basins Pond moraine 

halfway up the mountain (n=5, 16.1±1.2 ka, 1σ), as well as a lone boulder in the nearby lowlands (14.5±0.8 ka, 1σ) 

(Davis et al., 2015) (Fig. 5). These ages thus imply rapid ice surface lowering at ~16-15 ka, though more gradual 
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thinning cannot be excluded due to the small sample number and age scatter, which may reflect measurement 

imprecision as AMS was done in the 1990s. In addition, 
10

Be and 
26

Al nuclide concentrations in several summit 

bedrock samples from both mountains are 2-10 times higher than would be expected due to ~15 kyr of postglacial 

exposure (and confirmed in corresponding in situ 
14

C ages) (Fig. 5), suggesting that the summits were covered by 

non-erosive, cold-based ice at the LGM (Bierman et al., 2015). Also important, nuclides inherited from prior periods 

of exposure are found only in summit samples, while lower on the mountains and throughout the rest of New 

England, such inheritance is rare in boulders and bedrock. The lack of nuclides inherited from prior periods of 

exposure indicates that in New England ice was largely erosive (warm-based) and that the cosmogenic clock was 

reset during or after the LGM, as our initial project results at Acadia National Park in Maine demonstrate (Koester et 

al., 2017), although the relief there is only about 300 meters, substantially less than many other mountains in our 

study. 

 

Site Material Elev (m) 
14

C age cal yr BP Reference 

Moosilauke 

    

  

Deer Lake bog bulk conv. 1325 13,000±400 14,195-16,820 Spear (1989) 

Mirror Lake bulk/macros conv. 213 13,800±560 15,720-17,415 Davis and Davis (1980) 

Franconia Notch 

    

  

Lonesome Lake bulk conv. 831 10,535±495 11,065-13,355 Spear et al. (1994) 

Profile Lake wood conv. 593 10,660±40 12,772-12,885 Rogers (2003) 

Mt. Washington 

    

  

Lakes of Clouds bulk conv. 1538 11,530±165 13,200-13,500 Spear (1989) 

Lost Pond bulk conv. 625 12,870±370 14,700-16,000 Spear et al. (1994) 

 

Table 1.  Low versus high-elevation 
14

C ages from the White Mountains, NH. Note that the age pairs tend to be 

fairly similar, suggesting that ice-sheet drawdown may have been rapid. On the other hand, these ages are only 

minimum-limiting, and the close correspondence in ages may reflect the timing of revegetation and the first 

occurrence of datable organic material. Indeed, this complication may explain why higher-elevation ages tend to be 

younger than lower-elevation ages, opposite the pattern expected from top-down deglaciation.  

 

 

  

  

Figure 5.  
10

Be ages from the Katahdin, ME, and Mt. 

Washington, NH, areas. Panel on top shows zoom-in 

of panel on bottom. Ages are from Balco et al. 

(2009), Davis et al. (2015), Bromley et al. (2015), 

and Bierman et al. (2015), and were determined using 

the CRONUS calculator using the northeast North 

America production rate (Balco et al., 2009). A few 

bedrock samples from the summits have older 

exposure ages than expected, indicating nuclides 

inherited from prior periods of exposure. The data are 

too sparse and do not include boulder ages higher on 

the mountains to provide robust constraints on 

thinning, but they highlight the potential of such 

work. 
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NORTHERN NEW ENGLAND SUMMITS 

 

The Presidential Range is located in the White Mountains of New Hampshire and consists of 13 peaks ranging 

from 1,235 m (Mt. Jackson) to 1,917 m (Mt. Washington). The large cirque basins throughout the Presidential 

Range (i.e. Huntington Ravine, Tuckerman Ravine, and the Great Gulf on Mt. Washington) have been a topic of 

debate since they were first studied by J.W. Goldthwait (1913, 1916). J.W. Goldthwait concluded that the cirques 

were carved by alpine glaciers before the most recent continental glaciation and cited evidence that included till on 

the cirque floors from northern provenances, absence of end moraines on cirque floors, and asymmetric cirque 

cross-valley profiles. Despite the strong evidence, Antevs (1932) and Johnson (1917, 1933) opposed J.W. 

Goldthwait’s conclusions about the sequence of cirque and ice sheet glaciation. R.P. Goldthwait (1970) later 

provided evidence from pebble lithologies in till on the uplands and in the north-facing cirques and concluded that 

the till in the Presidential Range was deposited by continental ice, supporting the idea that the cirques were carved 

before continental glaciation. Further, unlike Wagner (1970) in northern Vermont, Waitt and Davis (1988) and 

Davis (1999) found no evidence of cirque glaciation following continental ice overriding all mountainous areas of 

northern New England. However, Fowler et al. (2012) suggest that deposits at the mouth and along the sidewalls of 

the Great Gulf may provide evidence for alpine (or continental ice) in that cirque post-dating continental ice 

overriding the Presidential Range.  

 

Of particular interest to our current work are the relatively level high-elevation areas known as “lawns” (ex. 

Bigelow Lawn, the Alpine Garden, and Monticello Lawn), which together make up a topographic feature called the 

Presidential Upland (Fig. 6) that represents an old Tertiary erosion surface formed during a prolonged lull in tectonic 

uplift (Goldthwait, 1940), whereas Thompson (1960a, 1960b, 1961) believed that the features were the result of 

freeze-thaw processes during the Quaternary. Eusden and Fowler (2013) sided with R.P. Goldthwait. 

 

    
 

Figure 6.  View looking north at Mt. Washington’s summit cone from rôche moutonnée near the junction of the 

Camel Trail and Davis Path on the Bigelow Lawn, part of the old Tertiary erosion surface known as the Presidential 

Upland. Note the patterned ground with stone polygons in the foreground. 

  

There is clear evidence from glacial erratics (Fig. 7), glacially molded surfaces, and the thinness of soils on 

summits that the LIS overrode New England mountains (Tarr, 1900; J.W. Goldthwait, 1916; R.P. Goldthwait, 1940; 

Davis, 1976, 1989; Fowler et al., 2013), as opposed to the mountains being centers of radial outflow of ice during 

the late Wisconsinan (Flint et al., 1942: Flint, 1951). However, the timing of initial LIS advance into New England 
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during the last glaciation is poorly constrained. The glacial stratigraphic record of most of New England includes an 

upper till and a lower till. The upper till is part of a widespread drift sheet in New England and is interpreted to be 

late Wisconsinan based on minimum-limiting radiocarbon ages. The more weathered lower till deposits underlying 

late Wisconsinan (Marine Isotope Stage (MIS) 2) deposits is less common in New England, but occurrences have 

been described from the Boston Harbor drumlins, Massachusetts (Kaye, 1961), Nash Stream, New Hampshire 

(Koteff and Pessl, 1985), and New Sharon, Maine (Caldwell, 1986; Weddle, 1989), but its age remains unknown. 

The lower till’s age was originally assigned to the early Wisconsinan (MIS 4) (Borns and Calkin, 1977; Stone and 

Borns, 1986; Vincent and Prest, 1987), but others have suggested the lower till is more likely Illinoian (MIS 6) or 

older due to radiometric dating and amino acid racemization age estimates on detrital coral from the upper part of 

the Sankaty Head on Nantucket Island, MA (Oldale, 1982; Oldale and Colman, 1992). In addition, ice volume 

estimates from oxygen isotope and sea level records indicate ice was less extensive during the early Wisconsinan 

than the late Wisconsinan, possibly suggesting that the LIS did not extend as far south as New England then (Oldale 

and Colman, 1992; Lambeck et al., 2014).  

 

    
 

Figure 7.  View looking south at Mt. Washington from about 30 m below summit of Mt. Jefferson with two large, 

sub-rounded, granitic erratics in foreground (rucksack and trekking pole for scale). Angular and sub-angular blocks 

are frost-riven from the schist bedrock, common on all of the summit cones of the northern Presidential Range. 

Great Gulf cirque headwall and Mt. Clay on north side and Mt. Monroe to southwest of Mt. Washington. 

 

Deglacial constraints on LIS retreat at higher elevations in New England include minimum-limiting basal 

radiocarbon ages from alpine lakes (Table 1) and a few cosmogenic nuclide exposure ages on Katahdin and Mt. 

Washington. For instance, a basal bulk radiocarbon age from the lower Lakes of the Clouds (1,534 m), just below 

the summit cone of Mt. Washington, dates to 13.35 ± 0.2 cal. ka (Table 1; 11,530 ± 165 
14

C yrs BP; I-10684; Spear, 

1989, Cwynar et al., 2001), although this age probably substantially post-dates deglaciation since the ice margin had 

already retreated to the Canadian border by this time (Ridge et al., 2012). Radiocarbon ages from alpine lakes on 

Katahdin are also several thousand years younger than continental ice retreat, perhaps due to the lag in vegetation 

colonization following deglaciation (Davis and Davis, 1980). Davis et al. (2015) measured surface exposure ages at 

multiple sites from the top to base of Katahdin and concluded that the LIS thinned rapidly between 16  and 15 ka in 

central Maine.  Cosmogenic nuclide exposure ages from the summits of Katahdin and Mt. Washington were 2-10 

times higher than expected indicating that cold-based ice likely covered the summits of New England mountains 

(Bierman et al., 2015).  
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MOTIVATING QUESTIONS 

  

The background given in the previous two sections highlights several long-standing problems related to ice 

sheet deglaciation, sea-level rise, climate, and ocean circulation to which we can contribute greatly through the 

dipstick approach. Our research specifically addresses the following five questions concerning the southeastern LIS.  

 

1) Did the LIS thin during the Oldest Dryas cold interval, or specifically during Heinrich event 1? 

Such thinning might suggest that Oldest Dryas cooling was mostly during winter and related to sea-ice 

expansion (Denton et al., 2005), or that Heinrich 1 dynamical discharge caused significant ice-sheet drawdown over 

the southeastern LIS (Shaw et al., 2006). 

 

2) Did the LIS thin synchronously with MWP-1A and Bølling warming? 

The southern LIS would have presumably been one of the most vulnerable ice masses in the world to ablate 

during the Bølling given its southerly location and likely sensitivity to climate change in the nearby North Atlantic. 

The Midwest ice lobes, however, were thin due to underlying deformable beds (Clark, 1992) and contributed little to 

sea-level rise based on Gulf of Mexico runoff records (Wickert et al., 2013). The North American varve record 

indicates that ice margin retreat there increased dramatically during MWP-1A, perhaps implying a significant 

contribution, though this margin retreat was no faster than during the following thousand years after the sea-level 

event ended (Fig. 2a, 4). There are currently no ice sheet dipsticks anywhere in the world that date pronounced 

thinning to the MWP-1A interval, although scatter in vertical data from Norway permit this possibility (Goehring et 

al., 2008).  

 

3) How fast did the ice surface lower? 

Rapid drawdown might point to active ice dynamics, such as meltwater delivery to the bed and increased 

sliding, and would provide constraints on how fast a vulnerable subpolar ice sheet can collapse in a warming 

climate, perhaps broadly analogous to the southern Greenland Ice Sheet today. Gradual thinning would imply 

weaker climate forcing and/or less dynamic discharge. 

 

4) How did southeastern LIS melt relate to changes in the AMOC? 

In addition to the general correspondence between New England LIS margin retreat and North Atlantic 

temperature evolution (Fig. 2a,b), New England varve thickness records also suggest a direct correlation between 

summer melt of the LIS and Greenland temperature (Ridge et al., 2012). On the other hand, a δ
18

Osw record from the 

nearby Laurentian Fan suggests that southeastern LIS meltwater production was inversely related to North Atlantic 

temperature, being higher during the Oldest Dryas and three cold intervals within the Bølling/Allerød than when the 

North Atlantic was warmer (Obbink et al., 2010). Likewise, mass-balance modeling suggests that the impact of 

Bølling warming on the southeastern LIS may have been offset by an associated increase in precipitation (Carlson et 

al., 2012). These conflicting views highlight the causal uncertainty in how southeastern LIS evolution and North 

Atlantic climate are linked – for instance, to what extent does LIS melt cause North Atlantic cooling through 

freshwater forcing of the AMOC versus North Atlantic warming causes LIS melt?  

 

5) How well do ice sheet models simulate LIS deglaciation? 

Ultimately, one of the central goals of Earth science is to accurately model the Earth system, and this enterprise 

hinges crucially on ground truthing models (Stokes et al., 2015). While several models of ice-sheet retreat exist, 

based on either isostatic inversion techniques or glaciological modeling, the models are still poorly constrained by 

geologic data and exhibit substantial differences, such as estimates of the LIS contribution to MWP-1A (Fig. 3). 

These model discrepancies are apparent for the southeastern LIS, with pronounced differences in ice thickness at the 

LGM, the ice-sheet profile, and the timing and rate of thinning through the deglaciation (Fig. 8). Our data provide a 

novel test for these models and serve as a target for future modeling efforts. 
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RESEARCH STRATEGY 

 

Sampling 

 

We constrain the timing and rate of southeastern LIS thinning by measuring cosmogenic nuclide dipsticks on a 

dozen of the highest peaks in New England and southern Quebec (Fig. 1). We target boulders as much as possible, 

given that they are less likely to contain inheritance from prior periods of exposure (Hallet and Putkonen, 1994; 

Putkonen and Swanson, 2003; Putkonen and O’Neal, 2006; Balco, 2011; Heyman et al., 2011); bedrock is only 

sampled when boulders are not available because nuclides created during prior periods of exposure can be preserved 

in bedrock beneath cold-based ice (e.g., Bierman et al., 1999, 2015; Colgan et al., 2002; Briner et al., 2003; 

Goehring et al., 2008). Our goal is production of a 3D-model of deglaciation of the mountains of the northern New 

England area to assess ice volume changes over time.  

 

  
Figure 8. Ice sheet models of deglaciation. Southeastern LIS profiles along 71°W (the longitude of Mt. 

Washington, shown as the black line in the inset map) during various time steps of the last deglaciation (see legend 

for ages) based on the ICE-5G model (Peltier, 2004), a model from the Australian National University (ANU; 

Lambeck et al., 2002), and a dynamical model of the North American ice sheet system (G12; Gregoire et al., 2012). 

The summit location of Mt. Washington is represented by the solid black triangle. Simulated ice thinning during the 

Bølling warm interval (14.5-14.0 ka) is highlighted in pink on each panel. Note the dramatic differences in ice sheet 

thicknesses at 21 ka, ice sheet profiles, and timing and rates of thinning. Our dipsticks are well-positioned to 

distinguish between these, and other, models of deglaciation. 

 

Sample sites (Fig. 1) include the highest points along the Green Mountains of Vermont (Jay, 1177 m; 

Mansfield, 1330m;  Killington, 1289 m); high peaks of New Hampshire’s White Mountains (Washington, 1917 m; 

Lafayette, 1600 m; Kearsarge, 895 m; (we note that Joe Licciardi and one of his graduate students at UNH exposure 

dated the highest mountain in southern New Hampshire, Mt. Monadnock (Hodgdon, 2016)); the highest peaks in 

Maine (Katahdin, 1606 m; recently added Mt. Bigelow, 1247 m; and Cadillac, 466 m, on the coast); western 

(Greylock, 1064 m) and eastern (Wachusett, 611 m) Massachusetts high points; the Catskill Mountains of New York 

(up to 1277 m); and the tallest mountain in southeastern Canada (Jacques-Cartier, 1268 m). These mountains were 

chosen because they: (i) provide the maximum relief available and so were exposed to much of the ice sheet 

thickness, (ii) span 7° of latitude and 9° of longitude, (iii) are composed mostly of quartz-bearing rocks (granite, 

schist, quartzite) ideal for cosmogenic exposure dating, (iv) will be relatively inexpensive to study since they are 

easily accessible and close to our home institutions, and (v) the six northern mountains were all within the LIS 

margin at the time of MWP-1A (Fig. 4). 

 

Nuclides 

 

In situ 
10

Be and 
14

C are primarily formed by cosmic ray spallation of oxygen in quartz-bearing rock and soil 

surfaces where nuclide concentrations build up over time (Gosse and Phillips, 2001). Cosmic ray flux attenuates 

within a few meters of surface, but the highest concentration is at the surface due to neutron attenuation with depth 

(Gosse and Phillips, 2001). In glacierized areas, erosive, warm-based ice typically erodes many meters into the 
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underlying bedrock to remove nuclides from prior periods of exposure. The concentration of cosmogenic nuclides 

can be converted into exposure ages with a production rate to measure when ice retreated and exposed the area. 

However, non-erosive, cold-based ice that is frozen to the bed can leave behind nuclides inherited from previous 

exposure periods leading to older than expected ages (Gosse and Phillips, 2001). On the other hand, post-glacial 

cover by snow or soil can shield the surface from cosmic rays and lead to an artificially young exposure age 

(Schildgen et al., 2005). A regional 
10

Be production rate has been calibrated for northeast North American from 

independently dated moraines within New England reducing our uncertainty on exposure ages (Balco et al., 2009). 

 

Based on our initial cosmogenic exposure ages on bedrock from the summits of Katahdin and Mt. Washington 

(Fig. 5; Bierman et al., 2015; Davis et al., 2015), we should not have been surprised that a few 
10

Be ages from higher 

summits are older than expected considering the existing varve and radiocarbon age control (Fig. 4, Table 1). 

Similarly, existing data sets (Balco et al., 2002; Balco and Schaefer, 2006; Davis et al., 2015) suggest that a few 

boulders carry inherited nuclides. For samples with higher than expected ages, we measure in situ 
14

C (Bierman et 

al., 2015), which removes the confounding variable of inheritance from exposure prior to the LGM (with its short 

half-life, most 
14

C produced during prior interglacials decays away during 20-30 ky of burial by ice (Lifton et al., 

2001).  

 

On the basis of existing paired 
26

Al/
10

Be data for Katahdin and Mt. Washington (e.g., Davis et al., 2015; 

Bierman et al., 2015), which provide statistically similar exposure ages for both nuclides, we believe that measuring 
26

Al in dipstick samples likely does not provide useful additional information about sample history. Although 
26

Al 

measurements can be useful in other situations, measuring 
26

Al is redundant in New England samples because 

during a 100 ky glacial cycle, total exposure is several times longer than burial (~80 ky of exposure, 20 ky of 

burial); therefore, interglacial  exposure quickly raises 
26

Al/
10

Be ratios to production values following each short 

period of burial by ice. As a result, 
26

Al analysis mirrors 
10

Be ages, thus funds are better spent measuring in situ 
14

C 

or more samples for 
10

Be. 

 

Thinning rates 

 

We calculate thinning rates following Johnson et al.’s (2014) approach, who measured Holocene cosmogenic 

dipsticks at Pine Island Glacier, Antarctica. This approach involves fitting error-weighted least-squares regressions 

through the dipstick profiles. Uncertainties are quantified through Monte Carlo simulations, in which the 

cosmogenic ages are allowed to randomly vary within their Gaussian uncertainties and the regression is recalculated 

(Fig. 9). Negative or zero slopes are rejected as physically untenable.  

 

 
Figure 9. Synthetic dipsticks for Mt. Washington, NH, testing sensitivity to deglaciation duration, sampling density, 

and 
10

Be geologic uncertainty typical for cosmogenic datasets. The thin colored lines behind each dipstick show 500 

Monte Carlo-generated regressions in which 
10

Be ages were allowed to randomly vary within their Gaussian 

uncertainties, and dotted lines give 68% confidence interval. 
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A New England area grand synthesis  

 

The data we generate will be incorporated into a comprehensive database detailing all extant chronological data 

from the region – radiocarbon ages (e.g., Dyke, 2004), cosmogenic exposure ages (e.g., Balco et al., 2002; Balco 

and Schaefer, 2006; Balco et al., 2009; Bromley et al., 2015; Davis et al., 2015; Bierman et al., 2015; Koester et al., 

2017; Hall et al., 2017), and varve constraints (Ridge et al., 2012). We envision this reconstruction representing the 

culmination of decades of glacial geologic work in this data-rich region, with ice volume calculations now possible 

using the vertical constraints that our cosmogenic exposure age data will provide. This reconstruction will then be 

compared to offshore marine records, climate records (Fig. 2b), and models (Fig. 8) to understand the nature of 

southeastern LIS deglaciation, and infer its possible causes and consequences. Our reconstruction will allow us to 

estimate New England ice volume losses, which together with a recent reconstruction of the south-central LIS’s 

contribution to deglacial sea-level rise based on ice-sheet models and Gulf of Mexico runoff records (5.5 ± 2.1 m; 

Wickert et al., 2013), will better constrain the sea-level contribution history of the entire southern part of the LIS.  

 

INITIAL RESULTS 

 

Twenty 
10

Be ages from boulders and bedrock along a vertical transect on the east side of Mt. Washington, the 

highest peak in New England (1917 m), constrain the timing and rate of LIS thinning during the last deglaciation 

(Fig. 10). Also, six new in situ 
14

C ages for bedrock and boulders from the upper reaches of the mountain provide 

additional age constraints on deglaciation. With our data, we also seek to better explain the distinctive topography of 

the Presidential Range in New Hampshire, specifically the relatively level landscape at higher elevations versus 

deeply incised mountainsides below. 

 

Our 
10

Be exposure ages range from 12.5 ± 0.6 to 81.6 ± 4.5 ka (Fig. 10), and show a strong ordering with 

elevation; they are similar and agree with the ~14 ka timing of regional deglaciation (except for MW-13 (34.3 ±. 0.6 

ka)) up to ~1,600 m asl, but then curve to increasingly older ages toward the summit, reaching values that are 3-6 

times higher than the regional deglaciation age (Fig.11). These anomalously old ages suggest that there was minimal 

glacial erosion higher on the mountain, consistent with a transition from warm- to cold-based ice at about 5300 ft 

(1,600 m) elevation, which accords with the gradual topography of the Presidential “lawns” above this elevation. 

  

The 
10

Be ages between 1520 and 730 m a.s.l. are indistinguishable from one another at 1σ, and have a mean 

exposure age of 15.1 ± 0.8 ka (n = 7; 1SD). The two 
10

Be exposure ages on boulders from Pinkham Notch at ~670 m 

a.s.l. (13.0 ± 0.4, 12.7 ± 0.2 ka) are substantially younger than the 15.35 ± 0.6 cal 
14

C age (12,870 ± 370 
14

C yrs BP, 

Spear et el., 1994) from near-basal organic sediments in nearby Lost Pond (Table 1), slightly younger than the well-

dated Androscoggin moraine north of the Presidential Range (13.2 ± 0.4 ka; Bromley et al., 2015), and much 

younger than suggested by ice retreat in the Connecticut Valley varve chronology to the west (14.1 ka; Ridge et al., 

2012). Thus, we consider the two exposure ages on boulders downslope from Square Ledge in Pinkham Notch to be 

outliers, perhaps due to the boulders falling into place following deglaciation; therefore, we consider the mean 

Androscoggin moraine exposure age to be a better constraint for the base of our glacial dipstick.  

 

DISCUSSION 

 

Comparison of our exposure dating results from Mt. Washington suggest that continental ice in the area lowered 

rapidly during the Bølling-Allerød, which accords well with an increase in ice margin retreat rates in the 

Connecticut River valley to the west based on the North American varve chronology and with the NGRIP δ18
O ice 

core record from Greenland (Fig. 12). Our Mt. Washington glacial dipstick with its 1100 meters of relief provides a 

better opportunity to assess ice surface lowering than did our 300-meters of elevation range at Acadia National Park 

in Maine (Koester et al., 2017).  
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Although none will have quite as much relief, we are developing several other glacial dipsticks from mountains 

in the New England area, including the Chic Choc Mountains of Quebec (Fig. 1), for comparison with our Mt. 

Washington and Acadia National Park studies.   

 

 
Figure 10. A LiDAR digital elevation model of Mt. Washington showing 

10
Be ages (white circles; black outlined 

boxes) with 1σ internal uncertainties (in ka). Bierman et al. (2015) uncertainty-weighted 
10

Be-
26

Al ages are shown in 

boxes without outlines. Bedrock ages are grey italicized, boulder ages are black, and frost-riven block ages are blue 

italicized. One in situ 
14

C age for a summit frost-riven bedrock sample is shown, but six new in situ 
14

C ages along 

the elevational transect are not. The inset shows the location of Mt. Washington in New Hampshire.  
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Figure 11. 
10

Be ages of frost-riven blocks (blue 

circles), boulders (black circles), and bedrock (grey 

squares) taken from Mt. Washington, with horizontal 

bars showing internal error. The inset diagram shows 

all of the data, including samples with inherited 
10

Be 

nuclides.  

 

   

Figure 12. Paleoclimate records from the Northern 

Hemisphere compared to our 
10

Be ages from Mt. 

Washington. (a) 44° N June insolation curve (Laskar 

et al., 2004), (b) Greenland ice core δ
18

O (NGRIP 

dating group, 2006), a proxy for North Atlantic 

temperature, (c) The NEVC modified from Ridge et 

al., 2012 (d) 
10

Be dipstick ages from Mt. Washington 

with 
14

C summit age (Bierman et al., 2015), and 

Androscoggin moraine (Bromley et al., 2015).  

 

We are also sampling bedrock from 20 additional summits in the White Mountains as a check for 
10

Be 

inheritance to determine the elevational and spatial distribution of non-erosive, cold-based continental ice. Although 
10

Be inheritance is common in polar landscapes (Bierman et al., 1999, 2014, 2016; Davis et al., 1999, 2006, 

Marsella et al., 2000; Briner et al., 2006; Miller et al., 2006; Corbett et al., 2013, 2016; Margreth et al., 2016), our 

study is one of the first to suggest that non-erosive, cold-based ice sheets are a factor to be considered in temperate 

mountainous regions. As suggested in Bierman et al. (2015), variable glacial erosion rates between summits and 

valleys may play a strong role in development and maintenance of northern Appalachian topography through the 

Quaternary.  
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Bierman et al. (2015) also compared exposure ages from the summits of Katahdin and Mt. Washington to a 

global sea-level of ice volume record (Lambeck et al., 2014), as shown here in reduced form (Fig. 13). Our 20 new 
10

Be exposure ages also include several from the summit area of Mt. Washington that require multiple exposure 

periods prior to the LGM. However, recent work suggests that the St. Lawrence Lowland was free of Laurentide ice 

before about 31 ka (Parent and Dubé-Loubert, 2017), which along with the post-glacial incursion of the Champlain 

Sea as early as 14 ka (Lamothe, 1989; Parent and Occhietti, 1989, 1999), leaves less time for decay of in situ 
14

C in 

rock on the Mt. Washington summit areas created prior to overrunning by continental ice. Perhaps a local 

Appalachian ice sheet or ice cap covered the mountainous areas of northern New England during parts of the late 

Wisconsinan, an idea invoked long ago by Flint (1951). However, the moraine record in the lowlands adjacent to the 

Presidential Range to the north and the North American varve record from glacial Lake Hitchcock to the west 

suggest continental ice recession toward the north during deglaciation (Thompson et al., 1999, 2017; Ridge; 2004; 

Ridge et al., 2012; Bromley et al., 2015). 

 

    

 

Figure 13. Schematic history of exposure samples from Mt. Washington reported in Bierman et al. (2015). Benthic 
18

O record proxy for global ice volume (Lambeck et al., 2014). Dark bars are uncertainty-weighted average (
10

Be, 
26

Al) exposure ages. Twenty new 
10

Be exposure ages reported in this chapter show a similar distribution (see Fig. 

11). White arrow: one in-situ 
14

C exposure age; six others are being analyzed. Gray shaded area represents five half-

lives of 
14

C (~29 k.y.) required to decay 
14

C created prior to overrunning by Laurentide Ice Sheet. Regional deglacial 

age (16–14 ka) is shown by dotted line. LGM: Last Glacial Maximum. 
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ROAD AND TRAIL LOGS 

  

Time, Place, Logistics  

 

START TIME AND LOCATION:  Trip begins on Sunday, October 1
st
, 7:30 AM, in the gravel parking area on the 

west side of NH Rte 16 to the immediate south of the Auto Road entrance (322363.00 m E, 4906302.00 m N). The 

base of the Auto Road is about 30 miles west of Bethel, Maine, and takes about 40 minutes to drive. From Bethel 

follow U.S. Rte 2 west to Gorham, NH, and then take NH Rte 16 south to the Auto Road entrance. 
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DESCRIPTION:  This field trip will include a drive up Mount Washington’s Auto Road to the summit for 

examination of sample sites for cosmogenic nuclide exposure dating that are part of a NSF-funded research project 

to construct glacial dipsticks for the deglaciation history of northeastern United States and surrounding areas. 

Depending on the weather, those interested are invited to hike down the mountain about 7 km (about 4.5 miles) and 

1200 vertical meters (about 4000 vertical feet) via the Nelson Crag Trail to visit additional sampling sites to those on 

the summit and along the Auto Road. The Nelson Crag Trail is steep and difficult, especially if wet, so those 

wishing to participate in this part of the field trip must be prepared for adversity. There also will be an opportunity 

for a guided tour of Mount Washington Observatory on the summit, where hot lunches and drinks also may be 

purchased. We will drive as a caravan to the summit, making two or three stops on the way up to observe sampling 

sites and the alpine landscape, including the Great Gulf cirque and the northern peaks of the Presidential Range. For 

those not hiking down, the field trip will end by 2 pm, allowing additional time for the drive home. For those hiking 

down, the field trip should end by about 5 pm.  

Warning:  Due to the fragile nature of the alpine ecosystem, please always walk on trails or rocks. Expect the 

possibility of extremely cold and unpredictable weather. Be prepared with proper clothing and good hiking boots for 

very rocky, uneven terrain, winter–like conditions, and perhaps extremely high winds. There are no bathroom 

facilities for those electing to hike down the Nelson Crag Trail. Vehicles must be consolidated. 

 

Road Mileage 

 

0.0 Begin at Mount Washington Auto Road gate, opposite NH Rte 16 from Glen House. 

 

4.1 STOP 1.  Park in small lot on the east side of the road just above the switchback and 4000 ft elevation post, 

and carefully walk across road for views of the Great Gulf cirque; the northern Presidential peaks, right to 

left, Madison, Adams, Jefferson; and the hanging cirques Madison, Gulf, Jefferson Ravine, and Sphinx 

Basin. Cosmogenic exposure age samples were not collected here.  

   

5.3 STOP 2.  Park in the vicinity of Cragway Spring at about 4800 ft elevation on the outside of the right 

hairpin turn and just above on the west side of the road. Be really careful crossing the road here! Both 

bedrock and boulders were collected near here for cosmogenic exposure dating. The bedrock exhibits 

beautiful glacial polish quartz veins and blebs, but unfortunately our one bedrock sample for exposure 

dating consisted of mostly feldspar rather than quartz. Those hiking down the Nelson Crag Trail in the 

afternoon will have the opportunity to examine boulders sampled downslope to the east from here.  

 

6.5 STOP 3.  Park in the large lot on the northwest side of the road at about 5700 ft elevation in an area known 

as the “Cow Pasture.” This elevation lies above the “lawns” in the Presidential Range, which are believed 

to be part of a pre-Quaternary surface known as the Presidential Upland, formed during prolonged periods 

of fluvial erosion beginning about 60 million years ago. The landscape above this elevation, including the 

cone of Mt. Washington (known at “The Rock Pile”), was not eroded by streams during the Tertiary or ice 

sheets during the Quaternary to the same degree as the Presidential Upland. A short 0.1-mile walk east to 

the junction of the Nelson Crag and Huntington Ravine Trails will allow examination of some large frost-

riven blocks that were sampled for cosmogenic exposure dating.   

 

8.0 STOP 4.  Park in the lower summit parking lot at about 6200 ft elevation. A short walk up wood steps 

brings one to the summit complex, including the Mount Washington State Park building, which provides 

rest rooms, a cafeteria, and an optional tour of the Mount Washington Observatory, which has maintained 

continuous weather records on the summit since 1932. The summit sign at 6288 ft (1917 m) elevation 

marks the most prominent peak east of the Mississippi River. A few meters northwest from the summit 
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sign, just north of the Tip Top House (a historic hotel, now museum, built in 1853 and the oldest surviving 

building on the summit), lie several frost-riven blocks of bedrock that we sampled for surface exposure 

dating. A short 0.1-mile walk southwest from the summit sign to “Goofer Point,” where several bedrock 

samples were collected for surface exposure dating, provides a fine view of Lakes of the Clouds, the 

adjacent A.M.C. hut with the same name, and Mt. Monroe behind, with its striking stoss-lee glacial 

erosional topography (gentle side to N20W, steep side facing S20E).  

 

 For those not hiking down the Nelson Crag Trail, the summit marks the end of trip. Please drive down the 

Auto Road carefully!   

    

Trail Mileage for hike down Nelson Crag Trail 

 

0.0 Trail log from the lower summit parking lot for hike down Nelson Crag Trail.  

  

1.0 STOP 1.  Examine boulders sampled for exposure age along the Nelson Crag Trail where it lies about 0.1 

mile east of the 6.5-mile mark at the “Cow Pasture” on the Auto Road, same area as Stop 3 on the drive up.   

 

1.8 STOP 2.  Examine boulders sampled for exposure age along Nelson Crag Trail near the bump known as 

Nelson Crag.  

 

2.9 STOP 3.  Examine boulders and bedrock sampled for exposure age along Nelson Crag Trail just below 

Cragway turn on Auto Road, same area as Stop 2 on the drive up.  

 

4.6 STOP 4.  Continue down Nelson Crag Trail to intersection with Old Jackson Road (trail) near 2-mile mark 

on Auto Road and Lowe’s Bald Spot. Unfortunately, we were not able to collect exposure age samples near 

here, but collected samples from similar elevations from Square Ledge and the Glen Boulder Trail in 

Pinkham Notch.  

 

6.5 STOP 5.  Follow Old Jackson Road south to A.M.C. Pinkham Notch Camp where vehicle shuttles will 

return hikers to the base of the Auto Road, about 3 miles north on NH Rte. 16. 

  

 End of trip; thank you 
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