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Abstract

I develop three new types of vector autoregressions that use supervised

machine learning models to estimate coefficients in place of ordinary least

squares. I use these models to estimate the effects of monetary policy on the

real economy. Overall, I find that the machine learning vector autoregressions

produce impulse responses that are well behaved and similar to their ordinary

least squares counterparts. In practice, the machine learning vector autore-

gressions produce more conservative estimates than the traditional ordinary

least squares vector autoregressions. Additionally, I establish a simulation

scheme to compare the relative efficiency of impulse responses generated from

machine learning and ordinary least squares vector autoregressions. To cal-

culate confidence intervals, I use a bias corrected bootstrapping method from

Politis and Romano (1994) called the stationary bootstrap. In future work, I

intend to compare these impulse responses using simulated data from Killian

and Kim (2011).
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Chapter 1

Introduction

1.1 Background

Vector autoregressions (VARs) have been used by economists over the

past 36 years to analyze multivariate time-series data. VARs provide a con-

venient framework for policy analysis, forecasting, structural inference, and

data description (Stock and Watson, 2001). In practice, this class of models

is most commonly used in empirical macroeconomics. These models provide

a framework to answer a variety of questions. Examples include, what is the

effect of a 2% increase in the federal funds interest rate on unemployment in

6 months? or Is there a persistent effect on GDP growth from increases in

technology?

Since VARs were introduced in the 1980s, an emerging class of esti-

mators has been developed in the computer science and statistics literature

called supervised machine learning (ML) models. Recently, this class of mod-
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1.1. BACKGROUND 1. Introduction

els has seen more use in the economics literature. These models can be highly

flexible and are designed for prediction rather than for causal inference. In

this thesis, I develop three VAR models, which use ML models to estimate

coefficients, and apply these models to a monetary policy question. VARs

have traditionally been estimated using ordinary least squares (OLS) also

known as linear regression.

Using machine learning models to calculate VARs is attractive because

the results may be more accurate than traditional linear econometric meth-

ods if the data generating process (DGP) is nonlinear. Furthermore, machine

learning models can be highly flexible and the machine learning literature has

developed model selection tools; which aim to minimize out of sample pre-

diction error. However, one concern about these models is that many are

biased, and this is because they were designed to maximize predictive accu-

racy rather than for causal inference.1 A fundamental property of statistical

estimators is that the total error can be decomposed into the error from bias

and the error from variance. In the ML community this is called the bias-

variance trade off.2 Each of the ML models I use has some bias, but it also

has lower variance compared to OLS. OLS is at the far end of this trade off,

in that it is has no bias but high variance. This trade off gets to the heart

of the differences between the ML models I consider and OLS. Where the

‘perfect’ estimator lies on this spectrum of bias and variance depends on the

goals of the analysis.

Even though these ML models are biased it could be the case that they

1In fact, little is known about the asymptotic properties of many machine learning
models.

2See Galit (2010) for more.
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1.1. BACKGROUND 1. Introduction

may be more efficient compared to OLS. In a world with an infinite amount

of data and a linear DGP, OLS would do a better job at estimating structural

parameters compared to the ML models because OLS is unbiased. However,

VARs are often applied to small data sets. In macroeconomics small data

sets are typical because reliable data only goes back roughly 50 years. This

means that the ML models may be able to get closer to the true parameter

estimates compared to OLS because the sample is finite. ML models have

a comparative advantage over OLS in out of sample prediction. Therefore,

there could be scenarios in which the ML models would outperform OLS.

The difficult part becomes constructing a scenario where this can be shown

to happen and then to argue that this scenario is applicable to data.

To demonstrate how the different ML VARs work in practice, I esti-

mate how quantitative easing affects the unemployment rate. To do this, I

reestimate the results of Shea et al., (2017) using ML VARs. The model used

in Shea et al., (2017) is a five variable OLS VAR estimated with 45 years

of monthly data. This is a common example of how VARs have been used

in the past to estimate macroeconomic dynamics. Many papers in this area

which employ VARs use similar types and quantities of data. This gives me

confidence that the results presented in chapter (4) represent how VARs have

been used in the past.

The most common way to interpret the results from a VAR is by looking

at its corresponding impulse responses (IRs). As I will show in chapter (2),

VARs are systems of linear equations and this makes interpretation difficult.

To simplify the interpretation, people in the applied literature have use IRs

as a way to characterize an estimated model’s dynamics. Intuitively an IR is

3



1.2. MOTIVATION 1. Introduction

just a marginal effect projected over time. We can think of them as describing

what happens to one variable over time from an impulse to another variable.3

In chapter (2) I will describe how IRs are calculated, but for intuition they are

mostly dependent on regression coefficients. Confidence intervals for the IR

point estimates are most commonly calculated using an asymptotic formula

derived from the VAR. Confidence intervals allow for easy interpretation of

the results. The IR point estimates are statistically different from zero if it is

either the case that the lower confidence estimate is above zero or the upper

confidence estimate in below zero.

In chapter (3) I will compare how the ML VARs defined in the previous

section perform relative to the OLS VAR by looking at the associated IRs. I

use simulations to determine the relative performance of the IR estimators.

1.2 Motivation

The motivation for this thesis comes from the intersection of my in-

terests in time-series econometrics and machine learning. After taking Big

Data and Economics with Professor Nathan Tefft, I became interested in ML

models and their use in economics. Towards the end of the Big Data class

I remembered the VAR models I learned about the previous semester and

wondered if it would be possible to incorporate ML models into the structure

of a VAR. This is how I came to my research topic.

I have decided to focus my attention on IRs because I have experience

using them and I do not know of any ways to construct IRs which do not use

3There are IRs with impulses from the response variable, but these are usually less
interesting.
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1.3. RELEVANT LITERATURE 1. Introduction

OLS. Furthermore, ML models are becoming more widely used in economics,

and I want to integrate some of these methods into time-series analysis. So

far, ML models have mostly been used in microeconomics.4 However, the

machine learning community has developed a wide range of models which

have been designed to tackle a variety of tasks.

There has been some economic literature that uses ML models to es-

timate causal treatment effects and this is relevant for my purposes because

IRs are an inferential statistic.5 In Athey and Imbens (2015) the authors

propose ways in which ML models could be used to estimate average causal

treatment effects. They assume a binary treatment group, maybe from a

randomized control trial, and show that ML models can accurately estimate

causal treatment effects. This paper was useful to me while I was developing

my thesis topic because it was an example of how to use ML models for

causal inference.

1.3 Relevant Literature

In working on this thesis I came across papers not only from the eco-

nomics literature but from the computer science and statistics literature as

well. In a forthcoming coming article in the International Journal of Fore-

casting Nicholson et al. (2015) lay out an optimization scheme using the

LASSO model to estimate a VAR.6 VAR models are heavily parameterized

4Examples include Athey and Imbens (2015), Bajari et al. (2015), Chernozhukov et al.
(2015), and Belloni et al., (2011).

5Inferential in this context refers to a statistic which does not measure model perfor-
mance. Performance statistics include RSS and MSE.

6LASSO was introduced in Tibshirani (1996).
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1.3. RELEVANT LITERATURE 1. Introduction

compared to other time-series models. For macroeconomic modeling, this

usually means that researchers quickly run into degrees of freedom constraints

when adding in endogenous variables. The authors address this problem by

introducing a method to calculate VARs using the LASSO. They do this to

be able to include more endogenous variables into the model. Their model is

able to do this because the LASSO performs variable selection at the same

time as estimating coefficients. In practice, the LASSO makes the VAR co-

efficient matrices sparse.7 This property of the LASSO is able to reduce the

dimensionality of the data and allow for more endogenous variables to be

used.

Nicholson et al. (2015) does not address IRs using the LASSO VAR.

Nicholson et al. seem to mostly be concerned with prediction accuracy rather

than causal inference. They use U.S. macroeconomic data to illustrate how

their models are able to forecast future macroeconomic conditions. They

find that their models are better than the traditional OLS VAR models. It

is peculiar that the authors only compare these models using a metric for

predictive performance. VARs were designed for causal inference and not

for prediction. What makes VARs useful for causal inference is that they

have a structure. This also makes them poor for prediction because the

world is most likely not as linear as the models assume. The authors do

not fairly compare the OLS VARs and LASSO VARs because in a game

of pure prediction the ML models should win every time. What seems to

really matter is the efficiency of the models in estimating some inferential

statistic.8 This criticism comes from my previous experience with VARs. I

7i.e. many entries are zero.
8Perhaps an IR.
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1.3. RELEVANT LITERATURE 1. Introduction

have only had exposure to VARs in the context of causal inference and not

for prediction/forecasting.

The authors published an R package called ‘BigVAR’ that implements

the LASSO VAR model. I would have considered using this package if I had

known about it at the beginning of this project because it could have sped

up the programming process.

Related to Nicholoson et al. (2015) a PhD dissertation in Statistics,

Basu (2014), looked at the theoretical properties of using the LASSO for

high dimensional VARs. Basu establishes the consistency of the LASSO

VAR under high-dimensional scaling. This piece of the dissertation is not

directly applicable to my thesis, but it is great to see that people are think-

ing about the asymptotic properties of these kinds of models. To supplement

his theoretical results, Basu conducts many simulations and overall they con-

firm his theory. Basu applies his models to “reconstruction of gene regulatory

network from time course gene expression data.” I enjoyed this application

because I was not aware that VARs were being used in biological gene mod-

eling until seeing this application.

In Hsu et al. (2008) the authors developed a subset selection method for

VARs using LASSO. Importantly, they did not consider IRs in their anal-

yses and instead focus on using VARs for forecasting. Using simulations,

they compared the LASSO to Akaike’s information criterion (AIC) and the

Bayesian information criterion (BIC). They find that LASSO performed bet-

ter than either the BIC or AIC. For my purposes, this is an encouraging

finding because variable selection is an important step in estimating a VAR.

The LASSO VAR may be able to better approximate the DGP compared to

7



1.3. RELEVANT LITERATURE 1. Introduction

an OLS VAR.

The LASSO is one of the ML models I use in chapter (2) and the other

two are called the Elastic Net and Ridge regression.910 The Elastic Net is

a generalized version of the LASSO and Ridge regression. It thus captures

features from both models. These models are similar to OLS in that they

minimize the residual sum of squares, but unlike OLS they include a con-

straint on the magnitude of the sum of the coefficients. I am most interested

in using the LASSO model because it also performs variable selection at the

same time as estimating coefficients.

While there is no literature that uses machine learning models to cal-

culate IRs, there has been work done to calculate IRs without the need for

a VAR. Jordà (2005) puts forth a method to compute IRs, using local pro-

jections, that does not rely on estimating the DGP. There has been much

criticism over the assumptions required to calculate IRs from a VAR, and

therefore an alternative method with fewer assumptions would be prefer-

able. Jordà proves that his method is robust to misspecification of the DGP,

and can accommodate nonlinear specifications that would be difficult to im-

plement in a multivariate setting. Theoretically, Jordà’s local projections

method could be preferable to VAR IRs because it does not compound mis-

specification errors.

Even though the local projections method is a consistent estimator of

IRs, this does not mean that it is more efficient than a VAR. Meier (2005),

uses Monte Carlo simulations to test the efficiency of local projections com-

pared to VAR in estimating IRs. On the whole, he finds that local pro-

9Elastic Net was first developed in Hastie and Zou (2005).
10Ridge regression was first developed in Hoerl and Kennard (1970).
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1.3. RELEVANT LITERATURE 1. Introduction

jections do not perform better than standard VAR methods. Meier uses a

New Keynesian Dynamic Stochastic General Equilibrium (DSGE) model for

his DGP. He finds some evidence that local projections have more bias and

greater variance compared to OLS VARs.

Another paper, by Kilian and Kim (2011), uses Monte Carlo simulations

to compare local projections to VAR methods and finds mixed results. To

compare relative performance, Killian and Kim look at the IR confidence

intervals and not the point estimates. They are concerned with how well the

estimators are able to cover the true IR. An IR confidence interval covers the

true IR if the true IR lies within the upper and lower bounds at each time

horizon. The authors compare the estimators using average coverage rates

and average confidence interval length. Kilian and Kim use these two metrics

because the ideal IR captures the true IR and has low variation. Visually,

low variation corresponds to tight IR confidence intervals. Using only one

of these metrics would lead to meaningless results because either the model

with the highest or lowest variation would prevail depending on the metric.

To compare local projection IRs to VAR IRs the authors need to assume

a DGP. This makes it difficult to compare the models because a model’s per-

formance could change depending on which DGP the authors have assumed.

In their paper, Kilian and Kim use a four variable VAR(12) for their DGP. I

will discuss in more detail how this DGP works in chapter (3) where I present

my simulations.

9



Chapter 2

Machine Learning VARs

In this chapter, I describe how I create the ML VARs that will be used

in the coming chapters. To show how I create these models, I will describe

how the machine learning models work and the structural VAR theory. The

machine learning models that I use address the classical linear regression

problem described in section (2.1). This is the most substantial chapter of

my thesis and an example of the Python code that I created can be viewed

in figure (7.6) of the appendix.

2.1 Linear Regression

Consider the following linear regression problem. Given an outcome or

dependent variable y , T observations, and n explanatory variables
{
x1, x2, . . . , xn

}
we can approximate the true value of y by taking linear combinations of the

explanatory variables. The question becomes, how should we select coeffi-

cients and an intercept?

10



2.1. LINEAR REGRESSION 2. Machine Learning VARs

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂nxn (2.1)

To answer this question, ordinary least squares (OLS) was developed

which selects values of βi ∈ R to minimize the residual sum of squares (RSS).

Note that the equation (2.2) uses T to indicate the sample size and not n.

There is a notational conflict between the time-series and ML literature, so

this is why T appears in the upper limit of the summation. The equation

for RSS calculates total squared deviations from the true value of y for every

observation in the sample.

RSS =
T∑
i=1

(
yi − ŷi

)2

=
T∑
i=1

(
yi − β0 −

n∑
j=1

βjxj

)2

(2.2)

Minimizing RSS is an intuitive approach because we want to fit a line

that goes through as many observations as possible.1 The coefficients that

OLS produces can be viewed as marginal effects. In applied work, economists

will often interpret these coefficients as causal effects. For example, x2 is

associated with/causes a β2 unit change in the dependent variable y. This

framework can be used to answer a wide variety of questions.

From a theoretical perspective, OLS has the great property of being un-

biased if we assume away omitted variable bias. However, this unbiasedness

comes at the cost of increased variance. I choose to bring up OLS because

it is how VAR models are estimated and it will help in understanding the

machine learning models that follow. The machine learning models that I

describe in section (2.2) provide an alternative way to choose coefficients for

1This is true in the case of one independent variable and for more independent variables
we quickly lose geometric interpretation.

11



2.2. MACHINE LEARNING MODELS 2. Machine Learning VARs

equation (2.1). The most significant difference between the machine learning

models and OLS is that the former are biased. However, VARs are most

commonly used on small time-series data sets. This means that the ma-

chine learning models could be more efficient than OLS. In other words, the

machine learning models may be able to get closer to the true values when

compared to OLS in small samples. If the DGP is equation (2.1), then OLS

will outperform the machine learning models, but it is highly unlikely that

this is the case. This gives me hope that the machine learning models may

be more efficient than OLS in small samples.

2.2 Machine Learning Models

I use three distinct supervised ML models to create three VAR models.2

I will refer to these models as ML VARs. One of the models that I employ is

called the Least Absolute Shrinkage and Selection Operator (LASSO). This

model solves the following optimization problem described in equation (2.3).

β̂ LASSO
λ = Min

{
RSS

}
s.t.

n∑
j=1

|βj| ≤ λ 3 (2.3)

Notice that (2.3) is identical to OLS except that the LASSO constrains how

large the βs can be. This constraint is designed to maximize out of sample

predictive accuracy. Before selecting the coefficients, each variable is normal-

ized by dividing by its standard deviation. After estimation, the regression

2Supervised in this context means that the dependent variable is specified within the
model. Other types of machine learning include unsupervised and semi-supervised learn-
ing.

3Hastie et al. (2013)

12



2.2. MACHINE LEARNING MODELS 2. Machine Learning VARs

coefficients are scaled back up. This is done to account for the fact that vari-

ables can be measured differently. The other piece of the LASSO determines

how to choose λ.

The LASSO chooses λ by searching across a range of potential values

and then stops by using a convergence threshold.4 The LASSO is fitted

using a variety of λs and the optimal choice is one that minimizes the k-fold

cross-validated MSE. A common algorithm for how the LASSO decides to

increase or decrease the size of λ is called Gradient Descent. From my own

experience, the LASSO often selects small values for λ.

An interesting property of the LASSO is that it will automatically force

some of the coefficients to be exactly zero. This means that the LASSO is able

to perform variable selection at the same time as calculating coefficients. This

is partially why the LASSO has been very popular in the applied literature

because it is able to perform both of these tasks at the same time. The

LASSO is computationally inexpensive compared to other ML models.

The other two machine learning models that I use are very similar to the

LASSO. The Ridge regression/model is identical to the LASSO except that it

squares the βs instead of taking the absolute value.5 The Ridge regression’s

optimization problem is described in equation (2.4). Unlike LASSO, Ridge

regression does not perform variable selection because it will not necessarily

constrain some of the coefficients to be exactly zero. In practice, the Ridge

regression gives coefficient estimates that are similar to that of OLS.

4I use the default setting of 0.0001 as my convergence threshold.
5The Ridge regression/model I use comes from Hoerl and Kennard (1970)
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2.2. MACHINE LEARNING MODELS 2. Machine Learning VARs

β̂ ridge
λ = Min

{
RSS

}
s.t.

n∑
j=1

(βj)
2 ≤ λ 6 (2.4)

The last machine learning model that I use is called the Elastic Net from

Hastie and Zou (2005). This model combines the coefficient penalties of the

LASSO and Ridge regressions into a single optimization problem (2.5). The

Elastic Net is able to perform variable selection because it is comprised of the

LASSO regression. In practice, Elastic Net yields similar results compared

to the LASSO.

β̂ elastic net
λ = Min

{
RSS

}
s.t.

(
φ

n∑
j=1

(βj)
2 + α

n∑
j=1

|βj|

)
≤ λ 7 ;φ+ α = 1

(2.5)

These machine learning models can at first seem complicated, but in

reality each is just a variant of OLS. The basic idea of these models is that we

shrink the magnitude of the coefficients, from their OLS values, just enough

to maximize simulated out of sample predictive accuracy. I use the word

simulated here to indicate that the out of sample prediction is not truly out of

sample since these models rely on a single data set. Since the coefficients are

necessarily smaller, this implies that the marginal effect of any independent

variable on the dependent variable is smaller than the same effect estimated

using OLS. I show examples of this in chapter (4) by comparing IRs generated

from ML VARs and OLS VARs.

6Hastie et al. (2013)
7The values of φ and α are taken exogenously and need to be specified outside of the

model. For my computations, I weigh the coefficient penalties equally or φ = α = 1
2 .
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2.3. VALIDATION 2. Machine Learning VARs

To implement these models, I have used tools developed by the com-

puter science community. I use the programming language Python version

3.6 and the package called ‘Scikit-Learn‘ by Pedregosa et al. (2011) to run

the three ML models.

2.3 Validation

To understand how the ML models choose this λ, I will introduce

the validation set approach and k-fold cross-validation. The validation set

approach is a resampling method that simulates out of sample predictive

performance. The idea is that we can hold out a subset of the sample to see

how well the model can predict into the held out sample. This procedure

involves partitioning the sample into two disjoint sets which in the literature

are called the test and train sets. Training the model in this context means

calculating optimal coefficients. Next, we create predicted values of the de-

pendent variable y, call these estimates ŷ, using the testing set. To determine

how well a candidate model performs, we compare how much the true values

y differ from the estimates of ŷ. The most common way to calculate this dif-

ference is called mean squared error (MSE).8 Lower values of MSE indicate

that the model has done a better job at predicting the variable of interest y.

MSE =
1

T

T∑
i=1

(yi − ŷi)2 (2.6)

In selecting between different models, we should select the model with

the lowest corresponding MSE if we want to maximize predictive accuracy.

8Hastie et al. (2013)
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2.3. VALIDATION 2. Machine Learning VARs

However, the validation set approach is not an ideal way to measure pre-

diction performance because it involves randomly partitioning the data set

into two disjoint sets. This means that the MSE will usually have significant

variation each time we run the algorithm. This happens because the model

is typically only trained on half of the data and larger samples usually lead

to more accurate predictions. It could also be the case that the testing half

of the data could be randomly difficult to estimate.

To account for this variation and stabilize the MSE estimates the ML

literature has developed a similar resampling method called k-fold cross-

validation. This method involves partitioning the data set into k disjoint sets

of equal size. We then train the model on the (k-1) folds and then predict

into the kth fold. We then repeat this procedure k times. This allows us to get

predicted values for each observation in our data set. Finally we calculate

the MSEs for each fold and then take an average to get a cross-validated

MSE. We want the MSE values for each model to have low variation because

we will use this metric to choose among a host of candidate models. We

want to be sure we are picking the best model and MSE estimates with low

variation will increase our confidence. The cross-validated MSE calculation

is represented below in equation (2.7).

CVk =
1

k

k∑
i=1

(MSE)i (2.7)

A major advantage of this method over the validation set approach is

that we are able to get estimates for the whole data set. Using the validation

set approach there will always be a subset of observations left out, typically

30% or 50%. Another advantage of k-fold cross-validation is that its MSE
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2.4. VARS 2. Machine Learning VARs

estimates have less variation. This is because the overall MSE is averaged

across each of the k folds. For the machine learning models described below, I

use k = 10. This is computationally inexpensive compared to other methods

and is popular in the applied literature.

K-fold cross-validation is similar to information criterion used in econo-

metrics and statistics. These information criterion are typically used for

variable selection and k-fold cross-validation is a more general version of an

information criteria. Forward, backward, and mixed stagewise variable se-

lection are popular tools in applied machine learning. Popular information

criterion include, AIC and the BIC mentioned earlier. With this background

information, I can describe how I have implemented these models into the

VAR structure.

2.4 VARs

Conceptually, a VAR is just a system of linear equations. These equa-

tions predict a column vector of dependent variables using linear combina-

tions of the lagged independent variables. In this context, a lagged variable

is a variable that is one or more periods behind the current variable’s value.

Intuitively, a VAR describes how today’s variables of interest, perhaps GDP

or unemployment, depend on other variables as well as their own past values.

In my procedure I do not include any exogenous variables, but this can

be done. I have chosen to do this because I am most interested in comparing

the OLS IRs to the ML IRs and not accounting for omitted variable bias.

Since I test these IRs using simulation, adding in more variables into the

model would only serve to improve the legitimacy of the theoretical model.
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The simulations will serve to determine relative performance and not absolute

performance.

In the following notation, a VAR(p) process contains n endogenous

variables and p lags. Intuitively, we can interpret (2.8) as how this period’s

endogenous variables Xt depend on linear combinations of previous period’s

endogenous variables Xt−T , an intercept term Υ, and an error term εt.
9

We assume εt to be normally distributed with mean zero and to have vari-

ance/covariance Ω.

It is important to note here that the coefficient matrices φi have di-

mension of nxn and this will be important when we convert this VAR(p)

process into an AR(1) process. Equation (2.8) allows us to determine all of

the parameters that we can empirically estimate. 10

Xt =


x1t

x2t
...

xnt

 ; Υ =


υ1

υ2
...

υn

 ;Xt = Υ +

p∑
i=1

φiXt−i + εt ; εt ∼ iidN (0,Ω) (2.8)

After we get the empirical estimates from equation (2.8) we can recover

the parameters from the structural model. By structural model, I mean the

data generating process which we assume to be a VAR(p). This means that

we can in principal correctly specify the model. Equation (2.9) describes the

structural VAR(p) model. In order to identify all of the parameters in (2.9)

9The notation I use is a combination of Lütkepohl (2005), Cochrane (2005), and Hamil-
ton (1994).

10We also assume that error terms are not serially correlated , E(εtε
′
t−T ) = 0 for T 6=0.
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we need to make assumptions about some of the parameters. This happens

because we have more structural parameters to estimate than parameters we

can estimate (Cochrane, 2005).

θXt = α +

p∑
i=1

ψiXt−i + et (2.9)

To make (2.9) look like the empirical model (2.8) we can left multiply by

θ−1. This leaves us with (2.10).

Xt = θ−1α +

p∑
i=1

θ−1ψiXt−i + θ−1et (2.10)

Now we can just match up the theoretical matrices with the empirical matri-

ces see equation (2.11). Once we do this we have fully estimated the VAR(p).

θ−1α = Υ ; θ−1ψi = φi ; θ−1et = εt (2.11)

Taking the estimated VAR(p) we can calculate IRs. There are a few

different ways to calculate IRs and I have chosen to use the method from

Sims (1980). It can be shown that any time-series can be represented as an

arbitrary linear combination of IRs and we need a way of determining which

combinations to analyze. Sims (1980) gives a convenient way to do this. His

method involves orthogonalizing Ω which forces the endogenous variables to

be uncorrelated. This method is popular in the literature because it removes

the contemporaneous effects and exogenous shocks from other variables. This

means that the shocks are orthogonal. This assumption is consistent with

the many theoretical macroeconomic models. To do this, we impose that

the off diagonals of the variance-covariance matrix Ω are zero. This leaves Ω
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with the variances of the endogenous variables on the main diagonal.

To make the computations easier I have chosen to simplify (2.8) into

an AR(1) process. I do this by putting the coefficient matrices next to one

another (column binding) and this results in a new coefficient matrix F . In in

(2.12) is the identity matrix of dimension nxn. This results in a new AR(1)

process ξt = Fξt−1 + Vt (Hamilton, 1994). This is useful because it will force

F to be square (same number of rows as columns) and this will allow us to

preform certain matrix operations later. The notation used in (2.12) is called

space-state notation in the literature (Hamilton, 1994).

F =



φ1 φ2 · · · φp−1 φp

In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0


; ξt =


xt

xt−1
...

xt−p+1

 ; Vt =


εt

0
...

0

 ; E(VtV
′
s ) =


Ω 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 0


(2.12)

After estimating the system above we can calculate IRs. There are a

few different ways to do this and I have chosen the structural approach.11

The following approach is structural because we use economic theory to figure

out the contemporaneous links between the variables in the system (Stock

and Watson, 2001). To make these temporal assumptions I use the method

from Sims (1980). Other popular methods include Bernanke (1986) and

11There are two other types of VARs; recursive and reduced form. I have chosen the
structural approach because I have the most experience with it compared to the other
approaches.
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Blanchard and Quah (1989). In principal, there are an infinite number of

ways to make these identifying assumptions because all we need to do is

fix the temporal relationships of some of the variables. In applied work,

the identification scheme will often depend on the results of the associated

theoretical literature. I choose to use the method from Sims (1980) because

it is the most popular way to make identifying assumption and it is easier to

implement than other methods.

To implement the method from Sims (1980) we take the Cholesky de-

composition of the variance covariance matrix to specify the contemporane-

ous effects of the variables. This decomposition produces a matrix Q such

that QQ′ = Ω. For this decomposition to work, we need Ω to be positive-

definite and we are guaranteed this since Ω = Ω′ and Ω’s eigenvalues will

always be positive since its main diagonal contains strictly positive values.

The main diagonal of Ω contains the variances of the endogenous variables

and these are necessarily non-negative. To put this into space-state notation,

I take the inverse of the Cholesky decomposition of Ω and then put that ma-

trix into the larger Q matrix. I form the Q matrix in this way to be able to

take its inverse later.

Θ =
{
Cholesky Decomposition(Ω)

}−1
; Q =


Θ 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 0

 (2.13)

An interesting consequence of this matrix decomposition is that the
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ordering of the variables matters since we are restricting contemporaneous

effects. This can be seen in (2.14) because the example matrix has zeros on

its upper diagonal. To determine how to order the variables, people usually

appeal to economic theory to choose an ordering. Reestimating results using

alternative orderings is a popular robustness check.


1 0 0

2 4 0

3 5 6

 (2.14)

To calculate IRs, we can move an exogenous shock (2.15) through the

system. This shows how the system will respond to a positive one standard

deviation impulse to the first variable x. Also, notice that all other shocks

are set to zero. The applied literature frequently uses an impulse of one

standard deviation, but this choice is arbitrary.

e0 = [SD(x) 0 · · · 0]
′

(2.15)

To calculate the 0th point estimate, also called the initial impact, we left

multiply e0 by Q′. For future point estimate, we just take the previous

period’s estimate and left multiply by F . This method of calculating IRs

has been a major source of criticism of the VAR method because any miss-

specification of F will become compounded into future periods. This happens

because we keep taking powers of F , so a small misspecification in the first

period could lead to larger errors in future periods. See (2.16) below. This is

part of the motivation behind Jordà’s local projection method, because his

method does not compound misspecification errors.
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IRk = {Q′eo, QFQ′e0, QF 2Q′e0, QF
3Q′e0, · · · , QF kQ′e0} (2.16)

So far, the econometric theory that I have described is what has been

used for OLS VARs for the past thirty odd years. The ML VARs and subse-

quent IRs are identical to the OLS VARs except for the F coefficient matrix.

To get F people usually used the closed form solution F = (X ′X)−1X ′Y .12

To estimate F using ML models, I estimate a regression for each row of F . I

do this n times to get the coefficients and then I stack each row on top each

other. I have to build the coefficient matrix in this manner because all of

the machine learning models I consider are designed for a single dependent

variable instead of a vector. In future chapters, when I refer to a ML model

for example, Ridge I am referring to the Ridge VAR model.

This process took a substantial amount of time to code because I have

to estimate the coefficients and then place them into F in a particular order.

I have put an example of code I created in the appendix figure (7.6).

The other important component of IRs that I have not mentioned yet

is the confidence intervals around each IR point estimate. In OLS IRs, confi-

dence intervals can be calculated using a closed form asymptotic calculation.

However, I am not able to do this for the ML IRs because the economet-

ric/statistical theory would be difficult to derive for each model. As an

alternative approach, I calculate confidence intervals using the bootstrap re-

sampling method explained in the next section.

12There are numerical ways to solve for F like Gradient Descent, but these methods are
not as popular as the closed form solution.
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2.5. BOOTSTRAPPING 2. Machine Learning VARs

2.5 Bootstrapping

I have chosen to calculate confidence intervals for the ML IRs using a

version of the bootstrap instead of using an asymptotic method. Computing

asymptotic confidence intervals for the machine learning models would be

very difficult because I am unaware of any literature that addresses the con-

sistency of these models for a VAR DGP. Additionally, the bootstrap method

is relatively easy to implement.

The bootstrap from Efron (1980) is a data resampling method that

can be used to calculate the variation of a particular statistic. This method

involves taking random sub-samples of the data, calculating a statistic, and

then calculating the variation of the statistic of interest. The idea is that we

can treat the sample as the population and then take samples of the sample.

This requires that we have have a representative sample of the population

to begin with. Traditionally, the bootstrap has used random sampling for

IID (independent and identically distributed) data. However, since the data

that I use are time-series data they are not IID and I should not use the

traditional bootstrap. I considered using the IID bootstrap method after

correcting for nonstationarity, but even strong stationarity does not imply

that the data are IID.

Luckily, the statistics literature has developed bootstrapping methods

for time-series data. I use the the stationary bootstrap from Politis and Ro-

mano (1994). This is a block bootstrapping method that uses block lengths

of geometrically distributed lengths. A block, in the temporal sense, is a con-

secutive set of observations that is used to calculate the statistic of interest.

For example, a block of length 8 could be a monthly measure of CPI from
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(7/1/2016) to (3/1/2017).

The statistics I calculate are the point estimates that comprise an IR.

The stationary bootstrap uses block sizes which are distributed geometrically.

The mean block size is taken exogenously in this method. The block size is

chosen randomly and then a subset of observations which will make up the

block is chosen randomly. The statistic of interest is then calculated using this

block. This method will give consistent estimates of the ML IR confidence

intervals and will account for serial correlation. To implement this method,

I use the Python package ‘Arch 4.0’.

I got the idea to use a block bootstrapping method from Killian and

Kim (2011). Killian and Kim use a block bootstrapping method from Killian

(1998), but their approach is very similar to mine. They use an average block

size of 8 for their bootstrapping method. I use an average block size of 12,

but I have tried 8 and it does not make a meaningful difference. I chose to

use 12 because the data that I use in chapter (4) are monthly and one year

blocks seemed like a sensible choice. Killian and Kim use 1,000 replications

and I have done the same.

Ideally, I would have preferred to select the average block size in a more

rigorous way, but I was not able to find software to do this. There have been

papers such as Hall et al. (1995), Lahiri (2003), and Politis and White (2004)

that address how to choose an optimal block size. In the future, it would be

great if these statistical methods were coded into a user friendly package. As

of this thesis, I am not aware of a Python program that implements any of

these block size selection methods.

The machine learning models that I use are biased and to account
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for this I do a bias correction within the confidence intervals. The Python

package ‘Arch 4.0’ has a variety of ways to calculate confidence intervals and

I use the bias corrected version. This bias correction will increase the size

of the confidence intervals and this will account for the bias of underlying

estimator. The bias correction is as follows. Let B be the total number of

resamples, I use 1000, and θ be the true statistic of interest. θ̂(.) is the average

of the bootstrap estimates, shown in equation (2.17).

θ̂(.) =

B∑
b=1

θ̂b

B
(2.17)

The bias of the θ̂ is E[θ̂]−θ. We then replace, E[θ̂] with θ̂(.) and θ with θ̂. This

means we can express the bias of the bootstrap estimate asBiasbs[θ̂] = θ̂(.)−θ̂.

Combining these pieces, the bias corrected estimate is (2.18).

θ̂bs = 2θ̂ − θ̂(.) (2.18)

I use this bias correction for every IR in the following chapters. This partic-

ular bias correction comes from Efron (1987).
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Chapter 3

Simulations

3.1 Set Up

In this chapter, I describe a simulation scheme that could be used to

compare the ML and OLS IRs. Simulations have been used in the past as a

way to compare IR estimators. However, since IRs are inferential statistics

their true values need to be known to determine relative performance. In

the beginning of this project, I wanted to use an alternative performance

metric, such as cross-validated MSE, to compare the IR estimators. One

of the benefits of using a metric like cross-validate MSE is that it does not

require a theoretical model. In the future, it would be interesting to see if

there is a way to compare inferential statistic estimators only using realized

data instead of using simulated data from a theoretical model.1

I was able to find two similar papers, Killian and Kim (2011) and

Meier (2005), that compare IR estimators using simulations. In both papers,

1I am skeptical that such a procedure exists, but this would be worth thinking about.
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the authors compare local projections to VAR models. They compare these

competing models using simulations because they need to know the true IR

values. To generate these true IR values the authors specify a DGP. For my

simulations, I use a DGP from Killian and Kim (2011).

In their paper, Killian and Kim compare Jordà’s local projections to

OLS VAR models. They want to see if the local projections method for cal-

culating IRs is closer to the DGP’s IRs compared to the OLS VAR’s IRs.

Local projections have been thought to be better than OLS VARs because

they require fewer assumptions, but this does not necessarily imply that their

corresponding IRs are better than the OLS VAR’s IRs. To compare the mod-

els, Killian and Kim use average coverage rate and average confidence interval

length. The average coverage rate is how often the true IR point estimate

lies within the estimated confidence interval. The average confidence interval

length is just the average difference between the upper and lower confidence

interval estimates. They need to use both metrics because otherwise the

model with the highest or lowest variance would win depending on the met-

ric. For example, using average confidence interval length the model with

the lowest variance would seem like the best because it would have tight con-

fidence intervals. Conversely, using average coverage rate the model with the

highest variance would win because it would have wide confidence intervals

and always capture the true IR. The optimal IR, has a high coverage rate

and tight confidence intervals. This is why Killian and Kim use both metrics

and I follow their approach.

The authors test two types of confidence intervals asymptotic and boot-

strap. They ran three rounds of comparisons using three different DGPs:
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VAR(1), VAR(12), and VARMA(1,1). Overall, they found that the local

projection intervals are less accurate than the VAR intervals. They found

this result is robust to the VARMA(1,1) specification and different sample

sizes.

While Killian and Kim do use three different DGPS, they take the

VAR(12) DGP the most seriously. The other two DGPs, VAR(1) and VARM-

A(1,1), only contain 1 lag and they admit this is not realistic. We would ex-

pect a ‘good’ model to have many lags because large exogenous shocks can

have long lasting effects. They use these two DGPs, and associated simula-

tions, mainly as robustness checks. For this reason, I use their VAR(12) DGP.

This DGP is calibrated to simulate monetary policy shocks and is relevant

for my purposes because in chapter (4) I estimate the effects of monetary

policy shocks. The model that Killian and Kim use comes from Christiano

et al. (1999). The motivation for this model is that the Federal Reserve

chooses interest rates based on previous values of inflation and the output

gap. Additionally, this model assumes no contemporaneous feedback from

policy decision to the output gap, inflation rate, or commodity prices. For

this model, only the monetary policy shock is identified. This means that I

only consider four of the possible 16 IRs. 2

The model is calibrated using monthly data from January 1970 to De-

cember 2007. The data that Killian and Kim use includes a measure of

inflation, interest rates, the output gap, and industrial commodity prices.

Killian and Kim augment the model in Christiano et al. (1999) by including

industrial commodity prices. They do this because some theoretical literature

2For a VAR with n endogenous variables there a n2 possible IRs.
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Table 3.1: Summary Statistics for Realized Data (Killian & Kim, 2015)

Variable Mean Std.Dev. Range

CFNAI .00438 1.008 (-5.29, 2.67)
CPI 120.24 51.28 (37.7, 211.68)

Raw Industrials Index 264.89 72.40 (104.4, 494.82)
Federal Funds rate 6.573 3.41 (.98, 19.1)

has suggested that industrial commodity prices may be a leading indicator

of inflationary pressures. To measure this inflationary indicator they use

the change in the Commodity Research Board’s price index for raw material

adjusted for inflation. For inflation Killian and Kim use the seasonally ad-

justed CPI for all urban consumers. The real output gap is measured using

the Chicago Fed National Activity Index (CFNAI) and the Federal Funds

rate measures interest rates. Summary statistics are reported in table (3.1)

for the calibration data.

Killian and Kim programed their simulations in Matlab whereas my

programs are written in Python. So to use their simulated data, I collected

1,000 trials of their data with each trial having 456 observations into a .csv

file. This results in a data set of 456,000 observations. To get the simulated

data, I ran their Matlab files and saved the data that they use to estimate

the IRs. This allows me to import the data into Python and run my scripts.

Killian and Kim generate their simulated data by running randomly

generated observations through the calibrated VAR(12) model. These ran-

dom observations are normally distributed with variance equal to that of

the realized data from table (3.1). To see more details of their DGP, see

the VAR(12) Matlab file link here from Harvard’s Dataverse repository. In
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calibrating their DGP they test for nonstationarity and make corrections.3

Even though they correct for nonstationarity, the simulated data that they

feed into their models is substantially nonstationary.

yt = α + δt+ φyt−1 + εt (3.1)

To test for nonstationarity, I ran augmented Dickey-Fuller tests to test

for unit roots and linear time trends. Equation (3.1) illustrates the model

that the augmented Dickey-Fuller test estimates.4 This test assumes that

the null hypothesis for φ is one. The null hypothesis for the trend t term is

that δ is zero. The results of these test are summarized in table (3.2). Notice

that the p-values for φ for CPI and Federal Funds rate are much higher than

5%.5 First, I checked to see if using another set of simulated data with 456

observations might change the stationarity results. Surprisingly, I found that

these results held for other simulated data sets. This means that the data

Killian and Kim are feeding into their VAR and local projection models is

significantly nonstationary.

I found this result very surprising because Killian and Kim correct for

nonstationarity in calibrating the VAR(12) DGP. After carefully going over

their Matlab code, I am unsure why this is happening. Something strange

seems to be happening because I would not think that adding in Gaussian

errors to a stationary model would not produce nonstationary data. This

result is a mystery to me and since both VAR and local projection models

require stationary data their results may be inaccurate. For my simulations,

3They take the first difference of CPI and the Federal Funds rate.
4StataCorp (2015)
5This is a popular p-value used throughout economics.
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Table 3.2: Stationarity Results for Simulated VAR(12) Data

Variable P-Value for φ P-Value for δ

CPI 0.2551 0.599
1st Difference of CPI 0.0001 0.521
Raw Industrials Index 0.0047 0.872

CFNAI 0.0216 0.226
Federal Funds rate 0.2220 0.815

1st Difference of Federal Funds rate 0.0017 0.920

I correct their data for nonstationarity by differencing CPI and the Federal

Funds rate.

To run the simulations, I have broken the computations into two parts

and this should increase computational efficiency.6 The first part of the

simulation calculates ML and OLS IRs using the corrected Killian and Kim

data. I do this by taking a single data set containing 456 observations from

the main data set of 456,000 observations. Next, I calculate OLS and ML IRs

using these 456 observations. Lastly, I save the IRs into a multidimensional

array. To do this computationally, I loop through 456,000 observations 1,000

times taking 456 observations each time. In the second part, I calculate

average coverage rates and average confidence interval lengths. I do this by

looping through each of the 1,000 trials.

6I say should here because I have not tried combining these these two pieces into one.
However, loops are computationally expensive and the less that I can do within them the
better.
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3.2 Results

In future work, I intend to work on implementing the simulation scheme

described above. I anticipate that the programming necessary to carry out

this section will be technically difficult. Additionally, these simulations will

require substantial processing power because each ML model is computa-

tionally more expensive than OLS. I intend to use the Bates College High

Performance Computing Cluster (Leavitt) to assist with the computations.

33



Chapter 4

The Effects of Quantitative

Easing

In this chapter, I apply the ML VAR models developed in chapter (2)

to U.S. macroeconomic data. I use this data to analyze how Quantitative

Easing affects the real economy with focus on unemployment. This idea

comes from Shea et al. (2017) and I will reestimate their results using ML

VARs.

Since 2008, the Federal Reserve conducted three rounds of large asset

purchases, know as Quantitative Easing, in response to the Great Recession.

These asset purchases dramatically increased the Federal Reserve’s balance

sheet to $4.5 trillion by December 2016 (Shea et al., 2017). These assets

consisted mostly of mortgage backed securities and long term Treasury Bonds

rather than short term Treasury Bonds. These asset purchases are a form

of unconventional monetary policy. Shea et al. (2017) attempts to estimate

the effects that these asset purchases had on the real economy. Surprisingly,
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they find that these asset purchases led to small, but significant increase in

unemployment and a decrease in inflation (Shea et al., 2017).

The Federal Reserve indicated ways in which Quantitative Easing could

reduce unemployment by stimulating aggregate demand. These include re-

moving risky mortgage backed securities off of private firm’s balance sheets,

reducing long term interest rates, and increasing access to credit markets

(Shea et al., 2017). From these possible explanations, we would expect

Quantitative Easing to decrease unemployment through increases in aggre-

gate demand. The associated theoretical literature finds similar results. The

literature suggests that Quantitative Easing should at worst have limited

effects on unemployment through changes in aggregate demand (Woodford,

2003; Chen et al., 2012; Wen, 2014).

To estimate the effects of Quantitative Easing, Shea et al. use a stan-

dard four variable VAR(4) model to estimate the impact of Quantitative

Easing on important macroeconomic variables.1 Their data consists of the

Federal Reserve’s balance sheet, 10 year Treasury bill rate, (U-3) unemploy-

ment rate, and CPI. They use the Fed’s balance sheet to proxy for quantita-

tive easing.2 These data come from the Federal Reserve Bank of St. Louis’s

Economic Database (FRED) and were measured monthly from January 1,

1970 to October 1, 2015. The Federal Reserve’s balance sheet is constructed

by Gresham Law Database that extracts historical balance sheet data. They

test for non-stationarity using augmented Dickey-Fuller tests and find a sin-

gle unit root for each variable. Thus, they use the first difference of these

1They use AIC to choose a lag length of 4.
2Asset purchases will increase the Fed’s balance sheet and makes this an appropriate

proxy.
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Table 4.1: U.S. Macroeconomic Data Summary Statistics

Variable Mean Std.Dev. Range

CPI 4.19 3.01 (-2 - 14.6)
Unemployment 6.38 1.54 (3.8, 10.8)
Treasury Bill 6.69 2.92 (1.53, 15.32)

Federal Reserve’s balance sheet 10.25 18.43 (-5. 150.9)
Federal Funds rate 5.5 3.9 (0.07, 19.1)

variables. See table (4.1) for summary statistics.

Shea et al. (2017) uses Stata 14 to fit an OLS VAR model to the data

summarized above. The authors choose to order the endogenous variables

as follows: inflation, Fed’s balance sheet, unemployment, federal funds rate,

and Treasury Bill rate. They try using other orderings, but find that they

do not significantly change the IRs. I use this ordering in the ML VARs

as well. To see how the OLS VAR behaves, we can look at its associated

IRs in table (4.2). Each of the IRs converges back to zero within the first

20 periods after the impulse and the confidence intervals are not explosive.

Theoretically, we would not want exogenous shocks to have infinite effects.

We would expect the effect of shocks to eventually converge to zero. This

is a good sign, because it indicates that the system is well behaved and not

obviously nonstationary.

To see how Quantitative Easing affects unemployment, Shea et al. iso-

late one of the IRs from table (4.2). They find that an increase Quantitative

Easing leads to a statistically significant increase in the unemployment rate.

This result is illustrated in figure (4.1). This is an interesting result because

it is contrary to what intuition and theory would predict. Shea et al. (2017)

indicates that there is no formal theoretical work that shows this effect. They
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4. The Effects of Quantitative Easing

Table 4.2: OLS VAR Impulse Response Functions (Shea et al., 2017)

offer the following explanation. Quantitative Easing may have increased in-

flationary expectations and when these expectations were not realized this

gap could have resulted in decreased output. This comes from the New Key-

nesian idea, that a decrease in output could occur if inflation does not attain

its expected value (Woodford, 2003).

In figure (4.1), notice that the lower confidence interval estimates are

above zero. In the paper, Shea et al. test the robustness of this result to

alternative specifications and find that the result holds. For the robustness
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4. The Effects of Quantitative Easing

Figure 4.1: How Unemployment Responds to QE (Shea et al., 2017)

checks, they include a set of exogenous variables to test for serious omitted

variable bias.

Using the ML VAR models from chapter (2) and data summarized in

table (4.1), I reestimate the most important IRs.3 To do this, I run the

stationary version of the data through each ML model and calculate IRs. I

fix the maximum lag length that the ML VARs can consider at 8 lags each

because two of the three ML models perform variable/lag selection.

Figure (4.2) displays the point estimates for how unemployment re-

sponds to Quantitative Easing by model type. The Quantitative Easing

impulse corresponds to a 1SD or 18.43% increase in the Federal Reserve’s

balance sheet. The first thing that jumped out to me from the figure was

that the ML IRs lie strictly below the OLS IR. This is a good sign because

this is theoretically what should be happening. Since each ML model is itself

3These being the impulse to Quantitative Easing.
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4. The Effects of Quantitative Easing

Figure 4.2: Point Estimates of How Unemployment Responds to QE

a constrained version of OLS this implies that the ML coefficients will be

smaller in magnitude than their OLS counterparts. These coefficients are

formed into the Q matrix from (2.14) and multiplied in (2.16) to calculate

IR point estimates. Since, each ML coefficient is no larger than its OLS

counterpart, it follows that the IR point estimates will be smaller in magni-

tude. This is great to see because it indicates that the ML VAR models are

behaving as we would expect them to.

From figure (4.2) we see that the point estimates of the Ridge model

are very similar to the OLS point estimates. This is unsurprising since Ridge

is the most similar of the three ML models to OLS. Ridge is different from

LASSO and Elastic Net in that it only performs coefficient estimation and

not variable selection. The LASSO and Elastic Net point estimates are much

smaller in magnitude. Compared to OLS and Ridge, the LASSO and Elastic

Net point estimates are conservative because they indicate much smaller
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4. The Effects of Quantitative Easing

Figure 4.3: Point Estimates of How Federal Funds Rate Responds to QE

marginal effects. I think this is happening because LASSO and Elastic Net

set some of the coefficients to be exactly zero and this could wipe out any

effect.

Figure (4.3) is identical to figure (4.2) except that it reports how the

federal funds rate responds to Quantitative Easing. The Ridge point esti-

mates are the closest to the OLS point estimates just like in (4.2). The

LASSO and Elastic point estimates are near zero and this indicates a small

marginal effect. The point estimates for how Quantitative Easing responds to

Quantitative Easing are displayed in figure (7.4) of the appendix. The point

estimates for how the Treasury bill rate responds to Quantitative Easing are

displayed in figure (7.5) of the appendix.

I chose to only plot the point estimates for figures (4.2) and (4.3) be-

cause the confidence intervals would overlap, but they are important. In

figure (4.4), I display the four IRs from figure (4.2) with their confidence
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4. The Effects of Quantitative Easing

Figure 4.4: IRs for How Unemployment Responds to QE by ML Type

intervals. I use the bias corrected stationary bootstrap method from chapter

(2) to calculate the confidence intervals. The confidence intervals for Ridge

are larger than the OLS confidence intervals. At first I found this counterin-

tuitive because ML models have lower variance since they are biased. This

means that the confidence intervals should be smaller than their OLS coun-

terparts. However, the bias correction increases the size of the confidence

intervals. The bias correction explains why the confidence intervals for the

ML models could be larger than the OLS confidence intervals. If I did not

do a bias correction, the confidence intervals would be smaller that the OLS

estimates.4 The other three IR point estimate graphs are reported in figures

(7.1), (7.2), and (7.3) of the appendix.

To see how these IRs are generated, we can look at each model’s co-

4I have calculated confidence intervals without a bias correction and the confidence
intervals are smaller than the OLS estimates.
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4. The Effects of Quantitative Easing

efficient matrix. These matricies are displayed in tables (4.3), (4.4), (4.5),

and (4.6). Each matrix represent the first row of the F matrix from equation

(2.12) for each model. From table (4.4) we see that the Ridge estimates are

very close to the OLS estimates in table (4.3) and this is consistent with the

IRs above. Since the IRs are close we would expect the coefficient estimates

to look similar.

Tables (4.5) and (4.6) show the coefficient estimates for the LASSO and

Elastic Net respectively. In chapter (2), I described that LASSO and Elastic

Net will force some of the coefficients to be exactly zero and we can now

see this in action. I have highlighted in blue the coefficients that are exactly

zero. The LASSO has more zero entries compared to Elastic Net and this is

what we would expect because Elastic Net is a generalized version of Ridge

and LASSO.

The coefficient matrices from the LASSO and Elastic Net could be used

to supplement the identifying assumptions from section (2.4). The identify-

ing assumptions specify the temporal relationships between the variables and

these coefficient matrices give empirical estimates of just that. For example,

notice that the first entry in the second row of table (4.5) is zero. This implies

that the Federal Reserve’s balance sheet does not depend on contemporane-

ous effects from inflation. A researcher could use this result as an identifying

restriction rather than relying solely on economic theory. This idea could be

used in future work as an empirical way to make identifying assumptions.
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Table 4.3: OLS Coefficient Matrix

0.320 -0.616 -0.001 0.503 -0.161 -0.028 0.006 -0.072 -0.082 -0.263 -0.001 -0.014 -0.141 -0.269 -0.001 0.131
-0.003 0.028 0.003 -0.044 0.009 0.185 -0.002 0.005 -0.028 0.184 0.002 0.047 0.020 0.153 -0.002 0.025
-1.446 1.051 1.189 0.965 0.996 0.749 -0.281 1.402 0.854 3.086 -0.053 -0.956 -0.857 2.047 0.049 -0.131
0.001 -0.176 -0.001 0.378 0.056 0.064 0.002 -0.283 -0.048 0.098 -0.003 0.091 0.064 -0.001 0.003 -0.058

Table 4.4: Ridge Coefficient Matrix

0.324 -0.406 -0.001 0.419 -0.143 -0.048 0.005 -0.038 -0.067 -0.181 -0.001 -0.023 -0.117 -0.179 -0.001 0.098
-0.003 0.028 0.003 -0.044 0.009 0.184 -0.002 0.005 -0.028 0.183 0.002 0.046 0.020 0.152 -0.002 0.025
-1.326 0.909 1.192 0.863 0.835 0.616 -0.282 1.060 0.693 1.888 -0.053 -0.698 -0.828 1.358 0.052 -0.218
0.009 -0.111 -0.002 0.291 0.038 0.034 0.002 -0.197 -0.035 0.054 -0.003 0.040 0.053 0.001 0.003 -0.033

Table 4.5: LASSO Coefficient Matrix

0.205 -0.281 0 0.321 0 0 0 0 -0.004 0 0 0 0 0 0 0
0 0 0.001 -0.007 0 0.140 0 0 0 0.111 0 0 0 0.093 0 0

-0.349 0 0.935 0 0 0 0 0.250 0.050 1.230 -0.031 0 0 1.549 0 0
0 -0.041 0 0.251 0 0 0 -0.100 0 0 0 0 0 0 0 0

Table 4.6: Elastic Net Coefficient Matrix

0.179 -0.362 0 0.306 -0.024 -0.002 0 0 -0.043 -0.043 0 0 -0.049 -0.066 0 0
0 0.011 0.001 -0.003 0 0.104 0 0 0 0.081 0 0 0 0.072 0 0

-0.608 2.670 0.441 0.126 0 2.402 0.203 1.207 0.640 3.551 0.080 0.440 -0.124 3.913 0.045 -0.168
0 -0.056 0 0.172 0 0 0 -0.063 0 0 0 0 0.001 0 0 0
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4. The Effects of Quantitative Easing

Shea et al. conclude their paper by indicating that the Quantitative

Easing was ineffective at reducing unemployment. From a policy perspective,

this is concerning because these results show that Quantitative Easing is

behaving contrary to what theory and intuition would predict. Shea et al.

do not offer any policy prescriptions and I do not know how this effect,

assuming it is real, could be reduced or eliminated.

Overall, the ML IRs give more conservative estimates compared to the

OLS IRs. By conservative, I mean that the ML IRs show lower marginal

effects relative to OLS. Applying the ML VAR models to this U.S. data does

not add any new insights to the analysis because the ML IRs are very similar

to the OLS IRs. However, these results show that these ML models are well

behaved. This gives me confidence in applying them to other questions and

data sets.
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Chapter 5

Conclusion

Vector Autoregressions (VARs) have been used in economics, finance,

and biology as a popular way to analyze multivariate time-series. However,

this class of models requires many restricting assumptions and there has been

work done to reduce/relax these assumptions. In this thesis, I propose three

new VAR models which relax the ordinary least squares (OLS) assumption.

To do this, I use supervised machine learning (ML) models to estimate co-

efficients in place of OLS. I outline the details of the ML VAR models in

chapter (2).

In macroeconomics, VARs are most commonly used on small data sets

because reliable data is limited. Given this constraint, the ML VARs may

be able to outperform the OLS VARs because the ML VARs could be more

efficient. To test the efficiency of the ML and OLS VARs, I propose a simu-

lation scheme in chapter (3). I hope to use this scheme in future projects. In

future projects it would be interesting to use nonlinear DGPs to see if the ML

VARs are able to capture the nonlinearities. An easy way to do this would
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5. Conclusion

be adding in squared and or moving average terms to a VAR(p) process.

In chapter (4) I use the ML VAR models to estimate how Quantitative

Easing affects the real economy. The ML VARs are well behaved and produce

impulse responses (IRs) that are similar to the OLS VARs that are commonly

used. Overall, the ML VARs estimate more conservative marginal effects

compared to the OLS VARs and this is exactly what we would expect. This

is an important contribution of this thesis. I propose three new VAR models

and demonstrate that they yield sensible estimates. Other contributions of

this work include using the ML VARs to make identifying assumptions and

using the ML VARs to reestimate existing work. The LASSO VAR could be

used as an empirical way to make identifying assumptions rather than relying

soley on economic theory. Future work could be done to see if important OLS

VAR results hold when using the ML VARs.

This thesis has been very rewarding and I have enjoyed the process even

though it has been difficult at times. The proposal I submitted last year,

September 2016, was ambitious and I was not able to complete everything I

hoped I would. However, I am satisfied with the work that I completed and

I look forward to testing the relative efficiencies of the ML and OLS VARs.
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Chapter 7

Appendix
See here for the source code. This links to a Google Drive folder and contains
the all files that are used to create this thesis.

Figure 7.1: IRs for How QE Responds to QE by ML Type

In figure (7.1) the Response axis for Ridge, LASSO, and Elastic is not
to the same scale as the OLS graph. I do this to make the first few point
estimates visible.
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7. Appendix

Figure 7.2: IRs for How FFR Responds to QE by ML Type

Figure 7.3: IRs for How CPI Responds to QE by ML Type
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Figure 7.4: Point Estimates of How QE Responds to QE

Figure 7.5: Point Estimates of How T-Bill Rate Responds to QE
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Figure 7.6: LASSO VAR Code

import numpy

import pandas

"""

Stage 1: Import and Clean Data

"""

#import data

qe_data = pandas.read_csv('/Users/Mike/Desktop/Bates Files/Senior Year/Thesis/QE_Results/QE_Data/qe_data.csv',

low_memory=False)↪→
#remove date variable

date = pandas.DataFrame(qe_data, columns=['date'])

x = qe_data.drop('date', 1)

#create list of exogeneous variable names

exogeneous_var_names = ['money_supply', 'tax_rev', 'federal_debt', 'gov_exp', 'broad_index', 'financial_stress',

'industrial_production']↪→
#remove exogeneous variables

endogeneous = x.drop(exogeneous_var_names, 1)

#create a list of the endogeneous variable names

endogeneous_variable_names = list(endogeneous.columns.values)

#create data without lags to use in variance/covariance calculation below

clean_data_with_out_lags = endogeneous.dropna(how='any')

#set the maximum number of lags that the model can consider for variable selection and estimation

#I have arbitrairly chose twice as many lags as endogeneous variables

max_lags = int(len(endogeneous_variable_names)+1)

lags = (range(max_lags))[1:]

#create lagged values of the endogeneous variables

for p in lags:

for var in endogeneous_variable_names:

endogeneous["L{0}_{1}".format(p , var)] = endogeneous[var].shift(p)

#add back in the exogeneous variables

#prepared_data = endogeneous.add(exogeneous)

#remove missing values created by creating lags

#this might not be what I want, but come back to it later

clean_data = endogeneous.dropna(how='any')

#Define the "VAR IRF" algo as a function that takes in data and outputs an IRF

def Elastic_Net_Imp_QE_Resp_Unemp(clean_data):

#Import Packages

import numpy

import pandas

from sklearn.cross_validation import KFold

from sklearn.grid_search import GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import ElasticNet

from sklearn import linear_model

from sklearn.linear_model import LassoCV

from sklearn.linear_model import ElasticNetCV

"""

Stage 2: Compute Matricies Using LASSO

"""

####Calculate the Y matrix (KxT) or (4x545)

Y = clean_data[endogeneous_variable_names].transpose()

Y.as_matrix()

'''Calculate B using OLS row by row

'''

#define the model

elastic = linear_model.LassoCV(cv=10, n_jobs=-1 , normalize=True)

#fit a regression using all data except current value

fed_funds_elastic = elastic.fit(clean_data.drop(endogeneous_variable_names, 1) , clean_data.fed_funds.as_matrix())

fed_funds_elastic_coeff = fed_funds_elastic.coef_

unemployment_elastic = elastic.fit(clean_data.drop(endogeneous_variable_names, 1) ,

clean_data.unemployment.as_matrix())↪→
unemployment_elastic_coeff = unemployment_elastic.coef_

treasury_bill_elastic = elastic.fit(clean_data.drop(endogeneous_variable_names, 1) ,

clean_data.treasury_bill.as_matrix())↪→
treasury_bill_elastic_coeff = treasury_bill_elastic.coef_

qe_elastic = elastic.fit(clean_data.drop(endogeneous_variable_names, 1),

clean_data.qe.as_matrix())

qe_elastic_coeff = qe_elastic.coef_

B = treasury_bill_elastic_coeff

#append rows of coefficients

B = numpy.vstack([qe_elastic_coeff,B])

B = numpy.vstack([unemployment_elastic_coeff,B])
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Figure 7.7: LASSO VAR Code Continued

B = numpy.vstack([fed_funds_elastic_coeff,B])

B = pandas.DataFrame(B)

#####PUT INTO SPACE STATE NOTATION#####

#create a new coefficient matrix which is (npxnp) or (16x16)

I_4 = numpy.identity(12)

zero_columns = numpy.zeros((12,4))

add_on = numpy.column_stack((I_4,zero_columns))

#append add_on to to B to get B_Space_State

B_Space_State = pandas.DataFrame(numpy.append(B,add_on, axis=0))

#calculate the variance/covariance matrix using numpy

Sigma = pandas.DataFrame(numpy.cov(clean_data_with_out_lags,rowvar=False))

#orthogonalize Sigma by imposing off diagonals are 0

diag_sigma = pandas.DataFrame(numpy.diag(numpy.diag(Sigma)))

#calculate cholesky decomposistion of sigma

chol_of_sigma = pandas.DataFrame(numpy.linalg.cholesky(diag_sigma))

#define the inverse of the cholesky decomposistion of sigma to use below

inverse_chol = numpy.linalg.inv(chol_of_sigma)

####Calculate Space-State version of the Q matrix

zero_columns = numpy.zeros((12,4))

zeros_16x12 = numpy.zeros((16,12))

#append add_on to to Sigma to get Q_Space_State

Q_Space_State = pandas.DataFrame(numpy.append(inverse_chol,zero_columns, axis=0))

Q_Space_State = pandas.DataFrame(numpy.column_stack((Q_Space_State,zeros_16x12)))

#Calculate IRs

#create impulse column vector (TX1)

e_feddunds = pandas.DataFrame(numpy.vstack((1,numpy.zeros(((15),1)))))

#create impulse column vector (TX1) for "qe"

sd_of_qe = clean_data["qe"].std()

e_qe = pandas.DataFrame(numpy.vstack((numpy.vstack((numpy.zeros((2, 1)),sd_of_qe)),numpy.zeros((13,1)))))

e_0 = e_qe

#run shock e_0 through system

Q_e = pandas.DataFrame(numpy.matmul(Q_Space_State,e_0))

#create the point estimates (QBQE_0)

for p in range(1,21):

globals()['point_estimate_{}'.format(p)] = pandas.DataFrame(numpy.matmul(Q_Space_State,

numpy.matmul(numpy.linalg.matrix_power(B_Space_State, p),Q_e)))↪→
#append point estimates into a matrix

impulse_qe_var = pandas.DataFrame(numpy.column_stack((Q_e,point_estimate_1)))

#for p in range(2,20):

# impulse_qe_var = numpy.column_stack((impulse_qe_var,"point_estimate_"+str(p)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_2)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_3)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_4)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_5)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_6)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_7)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_8)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_9)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_10)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_11)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_12)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_13)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_14)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_15)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_16)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_17)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_18)))

impulse_qe_var = pandas.DataFrame(numpy.column_stack((impulse_qe_var,point_estimate_19)))

#pull out the 3rd row to get response of unemployment

imp_qe_response_unemp = pandas.DataFrame(impulse_qe_var.loc[1:1].transpose())

#remove the 0th impact estimate, becuase it has no variation

imp_qe_response_unemp = imp_qe_response_unemp.drop(imp_qe_response_unemp.index[[0]])

#convert back to numpy array

imp_qe_response_unemp = imp_qe_response_unemp.as_matrix()

#put into Pandas Series

#imp_qe_response_unemp = pandas.Series(imp_qe_response_unemp[:,0])

imp_qe_response_unemp = imp_qe_response_unemp[:,0]

indexing_numbers = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ]

final_output = pandas.Series(imp_qe_response_unemp, index=indexing_numbers)

return final_output

#calculate point estimates using the whole data set

point_estimates = Elastic_Net_Imp_QE_Resp_Unemp(clean_data)

point_estimates = point_estimates.to_frame()

#rename the column as Point_Estimates
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Figure 7.8: LASSO VAR Code Continued

point_estimates = point_estimates.rename(columns = {0 : 'Point_Estimates'})

#Define the Stationary Bootstrap using the Cleaned Data

from arch.bootstrap import StationaryBootstrap

bs_block = StationaryBootstrap(12, clean_data)

#compute confidence intervals using bias-correction at 95%

confidence_interval_1 = bs_block.conf_int(Elastic_Net_Imp_QE_Resp_Unemp, 1000, method='bc', size=.95, tail='two',

sampling='nonparametric')↪→
confidence_interval_2 = pandas.DataFrame(confidence_interval_1, index=['Lower','Upper'])

confidence_interval_3 = confidence_interval_2.transpose()

#combine the point estimates and the confidence intervals

#REMEMBER THAT 0 PERIOD IS EXACTLY 0 WITH NO VARIANCE!! WE HAD TO REMOVE IT TO BOOTSTRAP

#ADD THE 0th ESTIMATE BACK IN

final_ir = pandas.concat([point_estimates.reset_index(drop=True), confidence_interval_3], axis=1)

#display final_ir

print(final_ir)

#copy final_ir to clipboard, to paste into excel file

final_ir.to_clipboard(excel=True)
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Figure 7.9: Simulation Loop

import numpy

import pandas

#tell Python where to look for custom functions

import sys

sys.path.append('C:/Users/mvarner/Desktop/Bates_Files_(2-8-2017)/Senior

Year/Thesis/Simulations/Simulation_Scripts/ML_Scripts/')↪→
#tell Python where to find the Arch package

sys.path.append('C:/ProgramData/Anaconda3/Lib/site-packages/')

#import the OLS IR script

from OLS_Imp_FFR import OLS_Imp_FFR

#import the ML IR scripts

from Elastic_Resp_FFR import Elastic_Resp_FFR

from Elastic_Resp_Raw import Elastic_Resp_Raw

from Elastic_Resp_CPI import Elastic_Resp_CPI

from Elastic_Resp_CFNAI import Elastic_Resp_CFNAI

from LASSO_Resp_FFR import LASSO_Resp_FFR

from LASSO_Resp_Raw import LASSO_Resp_Raw

from LASSO_Resp_CPI import LASSO_Resp_CPI

from LASSO_Resp_CFNAI import LASSO_Resp_CFNAI

from Ridge_Resp_FFR import Ridge_Resp_FFR

from Ridge_Resp_Raw import Ridge_Resp_Raw

from Ridge_Resp_CPI import Ridge_Resp_CPI

from Ridge_Resp_CFNAI import Ridge_Resp_CFNAI

#Import the confidence interval function

from Confidence_Interval import CI

"""

Stage 1: Import and Clean Data

"""

#create column names

endogeneous_variable_names = ['cfnai', 'cpi', 'raw', 'ffr']

#import data

all_data = pandas.read_csv('C:/Users/mvarner/Desktop/Bates_Files_(2-8-2017)/Senior

Year/Thesis/Simulations/Simulation_Data/kk_code/All_Simulation_Data_1000_Runs', names =

endogeneous_variable_names, low_memory=False)

↪→
↪→

#this function will run until the ml_model actually works

def Find_Error(ml_model):

while True:

try:

ml_model = CI(ml_model, clean_data)

print('it worked')

return ml_model

except ValueError:

print('errored_out')

'''Stage 2: Loop Through all of the data

'''

for i in range(0,100):

#subset the larger data set

first_row = int(i*455)

last_row = int((i+1)*455)

endogeneous = all_data.loc[first_row:last_row]

#create lags and clean the data,

clean_data = endogeneous

#difference CPI and FFR to make stationary: they each have 1 unit root

endogeneous.cpi.diff()

endogeneous.ffr.diff()

endogeneous.dropna

#choose max lags to be 12. this is because the DGP is a VAR(12)

max_lags = int(12)

lags = (range(max_lags+1))[1:]

#create lagged values of the endogeneous variables

for p in lags:

for var in endogeneous_variable_names:

endogeneous["L{0}_{1}".format(p , var)] = endogeneous[var].shift(p)

#remove missing values created by creating lags

clean_data = endogeneous.dropna(how='any')

#create data without lags to use in variance/covariance calculation below

clean_data_with_out_lags = clean_data[endogeneous_variable_names]

'''Elastic IR Calculations

'''

#create the confidence intervals

elastic_ffr = Find_Error(Elastic_Resp_FFR)

elastic_raw = Find_Error(Elastic_Resp_Raw)

elastic_cpi = Find_Error(Elastic_Resp_CPI)

elastic_cfnai = Find_Error(Elastic_Resp_CFNAI)

#add back in the 0th estimate which is zero, so confidence intervals are exactly zero
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Figure 7.10: Simulation Loop Continued

zeros = numpy.zeros((2,1))

elastic_raw = numpy.concatenate((zeros, elastic_raw), axis=1)

elastic_cpi = numpy.concatenate((zeros, elastic_cpi), axis=1)

elastic_cfnai = numpy.concatenate((zeros, elastic_cfnai), axis=1)

#create results matrix for elastic net (2x24x4)

elastic_results = elastic_ffr[:,:, numpy.newaxis]

elastic_results = numpy.dstack((elastic_results,elastic_raw))

elastic_results = numpy.dstack((elastic_results,elastic_cpi))

elastic_results = numpy.dstack((elastic_results,elastic_cfnai))

'''LASSO IR Calculations

'''

lasso_ffr = Find_Error(LASSO_Resp_FFR)

lasso_raw = Find_Error(LASSO_Resp_Raw)

lasso_cpi = Find_Error(LASSO_Resp_CPI)

lasso_cfnai = Find_Error(LASSO_Resp_CFNAI)

zeros = numpy.zeros((2,1))

lasso_raw = numpy.concatenate((zeros, lasso_raw), axis=1)

lasso_cpi = numpy.concatenate((zeros, lasso_cpi), axis=1)

lasso_cfnai = numpy.concatenate((zeros, lasso_cfnai), axis=1)

lasso_results = lasso_ffr[:,:, numpy.newaxis]

lasso_results = numpy.dstack((lasso_results,lasso_raw))

lasso_results = numpy.dstack((lasso_results,lasso_cpi))

lasso_results = numpy.dstack((lasso_results,lasso_cfnai))

'''Ridge IR Calculations

'''

ridge_ffr = Find_Error(Ridge_Resp_FFR)

ridge_raw = Find_Error(Ridge_Resp_Raw)

ridge_cpi = Find_Error(Ridge_Resp_CPI)

ridge_cfnai = Find_Error(Ridge_Resp_CFNAI)

zeros = numpy.zeros((2,1))

ridge_raw = numpy.concatenate((zeros, ridge_raw), axis=1)

ridge_cpi = numpy.concatenate((zeros, ridge_cpi), axis=1)

ridge_cfnai = numpy.concatenate((zeros, ridge_cfnai), axis=1)

ridge_results = ridge_ffr[:,:, numpy.newaxis]

ridge_results = numpy.dstack((ridge_results,ridge_raw))

ridge_results = numpy.dstack((ridge_results,ridge_cpi))

ridge_results = numpy.dstack((ridge_results,ridge_cfnai))

'''OLS IR Calculations

'''

ols_results = OLS_Imp_FFR(clean_data)

'''Put results into Matricies

'''

#create all results matrix using 1st iteration of the loop

if i==0:

all_elastic_results = elastic_results[:,:,:, numpy.newaxis]

all_lasso_results = lasso_results[:,:,:, numpy.newaxis]

all_ridge_results = ridge_results[:,:,:, numpy.newaxis]

all_ols_results = ols_results[:,:,:, numpy.newaxis]

#add in the new results after 1st interation of the loop

if i!=0:

all_elastic_results = numpy.concatenate((all_elastic_results,elastic_results[:,:,:,numpy.newaxis]),axis=3)

all_lasso_results = numpy.concatenate((all_lasso_results,lasso_results[:,:,:,numpy.newaxis]),axis=3)

all_ridge_results = numpy.concatenate((all_ridge_results,ridge_results[:,:,:,numpy.newaxis]),axis=3)

all_ols_results = numpy.concatenate((all_ols_results,ols_results[:,:,:,numpy.newaxis]),axis=3)

#change the working directory

os.chdir('C:/Users/mvarner/Desktop/Bates_Files_(2-8-2017)/Senior

Year/Thesis/Simulations/Simulation_Scripts/Output_Matricies/')↪→
#save the output files

numpy.save('elastic_results.npy', all_elastic_results)

numpy.save('lasso_results.npy', all_lasso_results)

numpy.save('ridge_results.npy', all_ridge_results)

numpy.save('ols_results.npy', all_ols_results)
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