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Abstract. The ASSISTments project from Worcester Polytech-
nic Institute provides a free web-based intelligent tutoring sys-
tem including two levels of differentiation, that are manually pro-
grammed by teachers and researchers. Problems assigned through
ASSISTments can be programmed in trees, where the sequence of
problems adapts to the student’s performance on each question.
Within each problem, if a student enters an incorrect response
the ASSISTments system provides scaffolded feedback to target
the student’s misconception. This thesis begins to develop an ed-
ucational data mining algorithm to automate this differentiation.
First, an adaption of Alsahaf’s mixed k-means clustering algorithm
is proposed to handle a mix of categorical and numeric data. Sec-
ond, the algorithm is implemented in MATLAB and its perfor-
mance is compared to Alsahaf’s results on benchmark data sets.
Finally, the MATLAB implementation is applied to ASSISTments
data sets from 2009 and 2012 to develop a predictive model.
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Introduction

Intelligent tutoring systems provide instruction that is differenti-
ated to individual student needs. Computer adaptive learning systems,
a subset of intelligent tutoring systems, differentiate for individual stu-
dents by frequently adapting to a student’s behavior. While other
intelligent tutoring systems may rely on tracking, defining students by
demographic labels (e.g. socioeconomic status, ethnicity, IEP or special
education designation), computer adaptive learning has the potential
for more equitable instruction. One of the motivations for the work in
this thesis is to help realize that potential.

Intelligent tutoring systems also have the potential to provide a
large number of students with additional support structures and more
equitable access to content. Standards based education (SBE) requires
frequent and specific intervention and allows for multiple methods for
demonstrating proficiency. As a support to the teacher and student, in-
telligent learning systems can provide struggling students with contin-
uously differentiated skills practice. Additionally, proficiency on stan-
dards is assessed while the student is simultaneously learning. This
eases the burden on teachers and schools of reassessing failing students
both by minimizing time spent grading and generating alternative as-
sessments.

Finally, many intelligent learning systems are web-based, and can
be accessed by netbooks, smartphones, tablets and chromebooks in
addition to traditional desktops and laptops. With 1-1 technology ini-
tiatives, these intelligent learning systems can be accessed by students
without additional hardware or software costs to the school districts.

ASSISTments, a web-based intelligent tutoring system from Worces-
ter Polytechnic Institute (WPI), funded by the National Science Foun-
dation, is a free resource for districts, educators and researchers. Al-
though ASSISTments has adaptive differentiation, it requires manual
entry by the user. Commercial systems have automated this differen-
tiation of problem sets. The addition of computer adaptive features to
the ASSISTments platform would increase its value to educators and
researchers and decrease the labor cost of implementing ASSISTments

xiii



xiv INTRODUCTION

in local districts. Computer adaptive features would be most useful
in either the design of differentiated and adaptive sequences of prob-
lems towards proficiency on a skill or in diagnosing misconceptions and
appropriate interventions in students’ responses.

ASSISTments has collected data from thousands of students over
the last decade, focused on secondary mathematics in Maine and Mas-
sachusetts. 1 ASSISTments currently allows teachers to assign lin-
ear sequences of problems, or a sequence of problems determined by
the student’s performance (correct/incorrect) on the previous problem.
Creating these problem sets is a time-intensive task for the teacher,
and does not take advantage of years of student data. ASSISTments
provides scaffolding, an additional layer of differentiation within each
problem. When a student enters an incorrect response, the system diag-
noses the student’s error, and asks additional questions that break the
problem into smaller pieces around that student’s error. If the student
has sufficient background knowledge/instruction, this approach should
identify the student’s misconceptions and correct them with additional
questions within the students zone of proximal development.

In order to automate either the problem sequence or problem scaf-
folding, students or their responses need to be clustered, so that re-
gression models can be made on the smaller partitions, for more pre-
cise predictions. Clustering uses unsupervised machine learning, where
the k-means algorithm efficiently partitions data that is structured in
m−dimensional spheres. Points near a cluster center (mean) can be
predicted to behave as the cluster center or based on the deviation
from the cluster center.

To find spherical groupings, k-means clustering needs a well-defined
distance between data points. The data from ASSISTments, as well as
many other systems, has a mix of categorical and numeric data. The
squared Euclidean distance cannot be directly applied to categorical
data. Ahmad et al. propose a measure of distance between categorical
variables, and a weighted measure of distance between data points with
numeric and categorical attributes [1]. Alsahaf implemented Ahmad’s
algorithm into MATLAB, tailored to a specific set of data [2].

In this thesis, we generalize Alsahaf’s mixed k-means algorithm.
Our algorithm accepts dense matrices as an input. The results of our
algorithm agree with those reached by Ahmad on benchmark data sets.

1A recent study by WPI, SRI and the University of Maine note both significant
gains in the performance of grade seven students in a randomized control trial
including 44 schools in Maine.



Outline

Chapter 1 discusses the numeric k-means clustering algorithm. This
algorithm is built-in to MATLAB, and is a very efficient algorithm for
clustering numeric data sets. However, this algorithm is restricted to
numeric data, and does not have a meaningful measure of distance for
categorical data.

Chapter 2 discusses the mixed k-means clustering algorithm, that
adapts the numeric k-means algorithm to be able to handle categorical
data. This includes a definition of ‘significance’ to weight the distance
of each attribute, and a definition of distance between categorical val-
ues.

Chapter 3 discusses three tools for error analysis when using these
clustering algorithms: silhouette values, performance ratios, and visu-
alizations. Silhouette values measure the average distance of a data
point and its’ closest cluster center, relative to the second closest clus-
ter center. Performance ratios are used with benchmark sets, where
the classification of data is known but hidden to the clustering al-
gorithm. The performance ratio is the percent of data points that
are assigned to the appropriate cluster or class. A two-dimensional
and three-dimensional visualization are proposed, but the properties
of these visualizations have not been fully explored.

Chapter 4 discusses the MATLAB implementation of the mixed
k-means algorithm.

Chapter 5 discusses the results of the MATLAB implementation on
five UC Irvine benchmark data sets.

Chapter 6 discusses the limitations of the application of the MAT-
LAB implementation of the mixed k-means clustering algorithm to the
ASSISTments data set.

Finally, Chapters 7 and 8 integrate the information from previous
chapters with conclusions, questions for future research and a reflection
on the product and process of this thesis.

xv





CHAPTER 1

Numeric K-means Clustering

Numeric k-means clustering is an algorithm for partitioning N data
points with M attributes into K clusters. To achieve this cluster-
ing, the algorithm assumes that the data is naturally grouped into
M -dimensional spheres, determined by a measure of distance. In this
paper, the squared Euclidean distance is used to measure distance be-
tween data points and define the spherical groupings.

Numeric k-means clustering is limited by its assumption of the nat-
ural M -dimensional spherical structure of data, and the inability to
handle categorical attributes.

1. Numeric K-means Clustering Procedure

Given K, the number of clusters, the numeric k-means clustering
algorithm randomly assigns each data point to a cluster. For each
cluster, the cluster center is a vector of length m. Each entry in the
vector is defined as the average value of the corresponding attribute,
across all data points in the cluster.

Data points are then assigned to the closest cluster center. Let
xn be the nth data point, and let cck be the center of the kth cluster.
The squared Euclidian distance d(xn, k) between xn and cck is given
by Equation 1.1, where xnm is the mth component of xn and cckm is
the mth component of cck.

(1.1) d(xn, k) =
M∑
m=1

(xnm − cckm)2

The data point is then assigned to the cluster that minimizes the Eu-
clidean distance, d(xn, k).

d(xn, k)min = min{d(xn, 1), d(xn, 2), . . . , d(xn, K)}
Using the revised cluster assignments, each new cluster center is

defined as the average value of the each attribute, across all data points
in the new cluster. The process of cluster assignment and cluster center
definition is iterated until no data points are reassigned to a new cluster
center.

1



2 1. NUMERIC K-MEANS CLUSTERING

2. Results of Numeric K-means Clustering

The total distance between data points and their assigned cluster
center converges to a local optimum. In order to discuss the con-
vergence, D(r) is defined below to be the total distance after the rth

iteration.
For each of the K clusters each iteration minimizes the distance

between the data points within the cluster and the cluster center, as
defined in 1.1. Let D(r) be the sum of the squared Euclidean distances
between each data point, and its assigned (closest) cluster center after
the rth iteration, where cckm(r) is the closest center arrived at in the
rth iteration. 1

D(r) =
N∑
n=1

(
K

min
k=1

(
M∑
m=1

(xnm − cckm(r))2)) =
N∑
n=1

d(xn, k)min

2.1. Convergence. An intuitive explanation of the convergence
follows, however it is not a proof. 2 This example assumes that only one
data point is reassigned on each iteration. This becomes significantly
more complex when many data points are simultaneously reassigned
(the cluster centers are not recalculated until all data points have been
reassigned).

After the rth iteration, if any data point xn can be reassigned to a
closer cluster. In most cases, the reassignment of a single data point
will decrease the total distance. If the data point (xn) is not an outlier,
there should be little change to the the locations of the cluster centers.

Let oldC1 be the old position of the old cluster center, as a row
vector. Let oldC2 be the old position of the new cluster center. Let
newC1 be the new position of the old cluster center. Let newC2 be the
new position of the new cluster center. Let n1 and n2 be the number
of data points in the old and new clusters (excluding xn). However, if
a data point xn is an outlier, it could shift the new cluster center away
from all other data points in the cluster. If the inequality below is true,
then it is possible for D(r) < D(r + 1).

(xn−oldC2)2−(xn−oldC1)2 ≤ n1(oldC1−newC1)2+n2(oldC2−newC2)2

1This can also be expressed with an indicator function [12].
2The complete proof of convergence is beyond the scope of this thesis, but is

discussed by Bottou [5] with a proof in Bottou’s dissertation at the Universite de
Paris [4]. This source is written in French, and it was not clear where the proof of
convergence was included. A number of other articles note the convergence of the
numeric k-means algorithm without citation or proof.
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When there are many data points in each cluster, we assume that
the expression above will be false. This assumption is reasonable when
the data set is normalized and outliers are removed. Then the total
distance decreases with each iteration, and is bounded by 0. So, there
exists an infimum that is greater or equal to 0 that bounds the sequence
D(r), and D(r) is a monotonic sequence. Then, D(r) must converge
to the infimum.

2.2. Local Optima. As shown in [12], the numeric k-means pro-
cedure guarantees a local minimum of the total distance, D(R). How-
ever, according to Rogers, the numeric k-means procedure does not
guarantee a global minimum of the total distance. 3

A function is convex if, for any two points on the graph of the
function, the line segment connecting those points lies above or on
the graph. In a convex function any local minimum is also a global
minimum [15].

A non-convex function is a function where there exists two points
on the graph of the function such that the line segment connecting
those points lies below the graph. A local minimum of a non-convex
function is not necessarily a global minimum.

The presence of a local or global optimum may be dependent on
the random seed of the initial cluster assignments [12]. Since not ev-
ery clustering is an optimal clustering, we run multiple trials of the
clustering algorithm, each with a different random seed for the initial
assignment of data points to clusters. 4 For some benchmark data sets,
there are small deviations in the performance ratio between trials (see
section 2). To assess the performance of benchmark data sets, we aver-
age the performance ratio over hundreds of trials, rather than selecting
the best of the local optima.

In application, the clustering results are used from the trial with the
minimum average silhouette value. The silhouette value is a measure
of the goodness of fit of a model for a particular data point. In both
numeric and mixed k-means clustering, the distance between a data
point and each of the cluster centers can be calculated. The silhouette
value compares the distance to the two cluster centers with the least
distance, as the ratio of their difference divided by their maximum. The

3The problem of local optima in the k-means algorithm is known, but has not
been extensively studied [17]. According to Trivedi et al., these local minima are
due to the k-means algorithm optimizing a non-convex distance function [16].

4Initial assignment of data points can be improved in the numeric k-means
algorithm [6] to avoid local optima, but this does not make significant gains from
random assignment [17].
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mean of all silhouette values in a data set is a measure of the goodness
of fit across the data set. The silhouette value is formally defined in
Chapter 3 Section 1.



CHAPTER 2

Mixed K-means Clustering

Similar to the numeric k-means clustering discussed in Chapter 1,
the mixed k-means clustering is an algorithm that partitions N data
points with M attributes into K clusters. This algorithm also assumes
that the data is naturally grouped into M -dimensional spheres. Mixed
k-means clustering improves upon the numeric k-means algorithm, by
handling both categorical and numeric attributes.

The challenge of mixed k-means clustering is to define a meaningful
distance between values of categorical attributes. For many categorical
attributes, a well-ordered ranking of values is not obvious. For example,
the attribute “animal type” that has a set of 5 possible values {dog,
cat, horse, snake, mouse} does not have an obvious ranking. In the
case of mathematics education, skills for mathematical practices and
procedures can be defined in a directed graph of prerequisites [10].
However, this directed graph of skills cannot simply be projected into
one dimension for a meaningful measure of ranking or distance 1.

Consider an attribute “vehicle type” that has a set of 4 possible
values: sedan, truck, van, or SUV. A ranking of similarity could be
determined as follows:

(1) sedan
(2) SUV
(3) van
(4) truck

What is the distance from a sedan to an SUV relative to the distance
from a sedan to a truck? Even with a well-ordered ranking, there is
not always an obvious measure of distance between variables.

As the number of values in categorical attributes increases, the
problem of meaningful distance can become more complex. In the ex-
ample of vehicle types, the distance between a crossover and a minivan
might differ greatly among different manufacturers. Additionally, their
ranking among other vehicles may differ. A Chevrolet Suburban (SUV)

1While a distance can be calculated using a directed graph, this is a projection
into one dimension that is not necessarily well-ordered. Without a well-ordered
ranking, it is difficult to define meaningful cluster center (mean) values.

5



6 2. MIXED K-MEANS CLUSTERING

may be closer to a truck than some vans, while the Honda CRV (SUV)
approaches a large sedan. Even if these distances are defined in a one-
dimensional system, relative distance between attributes needs to be
well defined as well.

The mixed k-means clustering algorithm approaches distance be-
tween values of categorical attributes using probabilities to define a
measure of distance [1]. In this approach, the distance between cat-
egorical values is determined by the proportion of equivalent values
within the same cluster and a weight of significance for each attribute.

1. Mixed K-means Procedure

The data is encoded as a matrix with N rows (data points) and M
columns (attributes). The user defines each of the attributes as either
numeric or categorical.

(1) Each numeric attribute is normalized, as a column vector, scal-
ing the output between 0 and 1.

(2) A copy of each numeric attribute is discretized, as described
in Section 2.1.

(3) From the discretized numeric attributes and the categorical
attributes, a significance weight is assigned to each attribute,
as described in Section 2.2.

(4) Similar to the numeric k-means clustering algorithm, each data
point is randomly assigned to one of k clusters.

(5) The center or mean of each cluster can then be calculated, as
described in Section 2.3.

(6) The distance to each cluster center can then be calculated for
each data point, as described in Section 2.4.

(7) Each data point is then reassigned to the closest cluster center.
(8) If at least one data point has changed cluster assignments,

this process is repeated, starting at the calculation of centers
of each cluster. When cluster assignments are constant be-
tween two iterations (or within a predetermined tolerance),
the algorithm stops.

2. Calculations for the Mixed K-means Procedure

In this section, we discuss the formal calculations for each step in
the mixed k-means procedure. In the next section, we walk through an
example data set to make this procedure more concrete.

2.1. Discretization of the data. A continuous numeric attribute
may have as many as N unique values. In Section 2.2, the value of
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significance is based on the co-occurrence of unique values of two at-
tributes, within a subset of the data points. As the number of unique
values of an attribute approaches the number of data points, there is
an increasing number of cases where a unique value of one attribute
maps to exactly one unique value of another attribute. When there are
marginal differences between the unique values in a subset of a numeric
attribute, (e.g. duration of 18.00, 18.01, and 17.98 seconds), the value
of significance is less meaningful.

To solve this problem in the calculation of significance, numeric
attributes are discretized by partitioning unique values of a numeric
attribute. The numeric k-means clustering algorithm partitions the
unique values such that the ratio of the distance between the closest
cluster center and the second closest cluster center is minimized. This
decreases the number of unique values of the attribute.

The numeric k-means clustering of one N × 1 attribute vector (all
rows and one column of the matrix) returns a clustering that mini-
mizes the distances between values of that one attribute. This gives
the necessary grouping of data points of similar value for calculating
significance.

Let κ be the number of means for the numeric k-means clustering
only in the discretization of a given attribute. In this implementation,
each attribute uses the value of κ < κmax that minimizes the average
silhouette value, where κmax is a user defined upper bound. In the case
that multiple values of κ < κmax minimize the average silhouette value,
the least of these values is used.

A greater value of κmay create tighter clusters that more accurately
reflect the structure of the data. However, as κ approaches N , the
probability of any value mapping to a subset of the values of another
attribute decreases and the discretized attribute is equivalent to the
original attribute. Thus, this modification is only suitable for κ < κmax,
where κmax << N . Additionally, as the number of unique values in the
discretized data increases, the computational time for the calculation
of significance scales poorly.

With this adaptive value of κ, we have meaningful weights for the
calculation of distance, within a reasonable amount of computational
time. Additionally, the adaptive value of κ does not assume that all
attributes in a data set have similar structure.

Note, in Ahmad et al [1], a constant κ is used for all attributes.
Similarly, in Alsahaf’s implementation [2], a specific κ = 4 is used in the
numeric k-means clustering to discretize each attribute. The use of a
variable κi on benchmark data sets has slightly different performance on
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those data sets, but reasonably approximates the reported performance
of algorithms with constant κ, as described in Chapter 5.

2.2. Significance of Attributes. In the numeric k-means clus-
tering algorithm, each attribute is given equal weight in the calculation
of Euclidean distance. In many situations, some attributes are more
relevant to the underlying structure of a data set than others. For
example, in the Heart Disease benchmark data set in Chapter 5, we
would expect that the attributes chest pain type, sex, exercise induced
angina, and maximum heart rate to be better indicators of absence
or presence of heart disease than the attribute age or other data that
could have been collected on cognitive orientation2 and stress level.
The significance places a weight on each attribute in the calculation of
distance to minimize the effect of confounding variables.

The significance or weight of each attribute is calculated from the
discretized numeric and categorical data. The discretized numeric data
is only used in determining the significance of each variable, and is
not used in the clustering or distance computations. The significance
is a measure of the similarity of attributes, or more specifically, the
correlation of values of partitions of data points between one attribute
and all other attributes. The significance allows normalized variables
to be weighted in the measure of distance, giving some attributes more
impact on the result than others.

Let κi be the value of κ used to discretize numeric attribute Ai (in
the case of a categorical attribute Ai, the number of unique values).
Let ui be a vector of all unique values of the discretized Ai, where uib
is the bth component of ui. Then the set {(uib, uic)|b, c ∈ Z, c < b ≤ κi}
is the set of all unique pairs of unique values of Ai.

Let Pi(Ω/x) be the the conditional probability that a component
having value x in attribute Ai has a value y in attribute Am such that
y ∈ Ω where Ω ⊆ um [1]. Let (um \ Ω) be the set of unique values in
um (of attribute Am) that are not in set Ω.

The distance between attribute values a and b of attribute Ai with
respect to attribute Am is defined as

δim(a, b) = Pi(ω/a) + Pi((um \ ω)/b)− 1.0

where ω ⊆ um such that Pi(ω/a) + Pi((um \ ω)/b) is maximized [1].
The significance wi of the numeric attribute Ai is defined by the

average value of the distance function δ over all pairs of unique values

2In Emergency Medicine, this is often referred to as A&Ox4. The normal,
healthy state of cognitive orientation for a patient is alert and oriented to place,
time, person, and self.
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of attribute Ai with respect to every other attribute [1]. Recall, the set
{(uib, uic)|b, c ∈ Z, c < b ≤ κi} is the set of all unique pairs of unique
values of Ai.

wi =
2

κi(κi − 1)(M − 1)

κi∑
b=1

κi∑
c=b+1

M∑
m=1,m6=i

δim(uib, uic)

Here, we sum the distance function δim(uib, uic) across each other
attribute, and each unique pair of values of attribute Am. To compute
an average, it is multiplied by 1

κi(κi−1)
(the reciprocal of the number

of unique pairs) and by 1
M−1

(the reciprocal of the number of other

attributes). Substituting for δim(uib, uic), we have the following ex-
pression for significance.

(2.1)

wi =
2

κi(κi − 1)(M − 1)

κi∑
b=1

κi∑
c=b+1

M∑
m=1,m 6=i

[Pi(ω/uia)+Pi((um\ω)/uib)−1.0]

where ω ⊆ um such that Pi(ω/a) + Pi((um \ ω)/b) is maximized. So,
the significance wi is the average probability that any two unique com-
ponents a, b will have corresponding values in different partitions of the
set of unique values of Am (where Am is partitioned into two comple-
mentary sets that are optimized to maximize that probability), across
all other attributes.

The value wi of significance will not be used in the calculation of
cluster centers, but will be used in the calculation of distance between
the data points and cluster centers.

2.3. Cluster Centers. For numeric attributes, the cluster center
is defined as the mean of the values of the attribute across the data
points in the cluster. For categorical attributes, cluster centers are
defined by the mode of the values of the attribute across the data
points in the cluster.

In the numeric k-means clustering algorithm, since cluster centers
are defined by the mean value of each attribute, the distance between
a data point and its cluster center is easily calculated. For categorical
attributes, the mode is a well defined value. If the value of a data
point is equivalent to the value of the mode of its cluster, the distance
to the center of the cluster is zero. Otherwise the distance is defined
in Section 2.4. In this section, the cluster center is defined to allow for
a meaningful calculation of distance for both categorical and numeric
attributes.
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Let xn be the data point in row n ≤ N . Let φk be the set of data
points, xn such that xn is in the kth cluster. Let cck be the kth cluster
center. Let xnm be the value of xn for attribute Am.

cckm =

{
meanxn∈φk(xnm) Am is a numeric attribute

modexn∈φk(xnm) An is a categorical attribute

For categorical attributes, the probability of each unique value of
the attribute occurring within the cluster is also stored, as defined in
Equation 2.3. This will be used to measure the distance from the center
for categorical values not equal to the cluster center (mode), in Section
2.4.

Recall, um is a list of the unique values of the attribute Am, where
uma is the ath component of um. Let φki be the set of data points in φk
such that the mth component of the data point has the value of umi.

φki = {x ∈ φk|x(m) = u(i)}

Let cdkm be a vector representing the probability of a data point in clus-
ter k having a value corresponding to the entry in cdkm for categorical
attribute Am in the kth cluster, defined as [1]

cdkm(i) =
|φki|
|φk|

.

2.4. Distance to Cluster Center. In the numeric k-means clus-
tering algorithm, a data point is assigned to the cluster center that
minimizes the Euclidean distance. In this section, we define a measure
of distance that includes the new definition of cluster center and the
weight of significance. This definition of distance allows us determine
the new cluster assignments of each data point in each iteration.

Let xn be the nth data point. The distance between xn and the kth

cluster center, for categorical variable Am is defined by the Euclidean
distance (ρm(xn, k)).

(2.2) ρm(xn, k) = (wm(xnm − cckm))

The distance between xn and the kth cluster center, for categorical
variable Am is defined as 0 if the values are equal or as the expression
below if the are not equal.
(2.3)

ρm(xn, k) =

{
(
∑|um|

i=1
cdkm(i)
M−1

[Pm(ω/xnm + Pm((um \ ω)/um(i))− 1.0]), xnm 6= cckm
0, xnm = cckm
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where ω ⊆ um such that Pm(ω/xnm +Pm((ur \ω)/um(i)) is maximized
[1]. This measure of distance is similar to significance, but the domain
is restricted to the cluster rather than the whole data set. So, the total
distance between the point xn and the kth cluster center is

(2.4) d(xn, k) =
M∑
m=1

[ρm(xn, k)]2.

3. Results of Mixed K-means

The mixed k-means clustering will minimize D, the sum of the
distance between each cluster and its cluster center.

D =
N∑
n=1

K

min
k=1

M∑
m=1

[ρm(xn, k)]2 =
N∑
n=1

d(xn, k)

Dtotal =
N∑
n=1

K

min
k=1

[
M∑

m∈num.

((wm(xnm − cckm))2+

znm

M∑
m∈cat.

(

|um|∑
i=1

cdkm(i)

M − 1

[Pm(ω/xnm) + Pm((um \ ω)/um(i))− 1.0])2]

where ω ⊆ um such that the quantity Pm(ω/xnm+Pm((um\ω)/um(i)) is

maximized and znm is an indicator function such that znm =

{
0, xnm = cckm
1, xnm 6= cckm

.

Since not every clustering is an optimal clustering, we run multiple
trials of the clustering algorithm. For some benchmark data sets, there
are small deviations in the performance ratio between trials (see section
2). In application, the clustering results are used from the trial with
the minimum average silhouette value.
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fuel-type body-style num-of-cylinders highway-mpg
gas convertible 4 27
gas sedan 6 22
gas sedan 6 22
diesel sedan 4 25
diesel sedan 2 50
diesel wagon 4 25

Table 2.1. Original Auto Data

fuel-type body-style num-of-cylinders highway-mpg
gas convertible .5 .1786
gas sedan 1 0
gas sedan 1 0
diesel sedan .5 .1071
diesel sedan 0 1
diesel wagon .5 .1071

Table 2.2. Normalized Auto Data

fuel-type body-style num-of-cylinders highway-mpg
gas convertible 1 1
gas sedan 2 2
gas sedan 2 2
diesel sedan 1 2
diesel sedan 3 2
diesel wagon 1 1

Table 2.3. Discretized Auto Data

4. Walk-through with Example Data

Consider the data in Table 2.1, a selection of the benchmark auto-
motive data table [14]. The sample size of this data table is too small
to make meaningful calculations, but it is used in this section to illus-
trate the process of the mixed k-means procedure. Each data point has
four attributes: two categorical and two numeric.

• Fuel type is a binary categorical variable.
• Body-style has five possible categorical values: hardtop, wagon,

sedan, hatchback, convertible (although only three values ap-
pear in this example).
• The number of cylinders is a discrete numeric variable with

meaningful distance and seven possible values: eight, five,
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four, six, three, twelve, two (although only three values ap-
pear in this sample).
• Highway mileage, in miles per gallon, is a continuous variable.

4.1. Normalize the Numeric Data. First, the numeric data is
normalized3 attribute between 0 and 1.4 This allows us to compare
different sets of numeric data with various ranges.

The ‘number of cylinders’ attribute has three discrete, evenly spaced
values, so the scaled result will have values of {0, 1

2
, 1}. The range of

the highway mileage is 28 miles per gallon, with a minimum value of
22 miles per gallon. Then the normalized entry is the quotient of the
difference of the original value and the minimum value between 22 over
the range of 28.

fuelnorm(i) =
fuel(i)−min(fuel)

max(fuel)−min(fuel)
=
fuel(i)− 22

28

The normalized data is recorded in Table 2.2.

4.2. Discretize the Numeric Data. To discretize the numeric
data, each numeric attribute is run through the numeric k-means clus-
tering algorithm (as a column vector) for an optimal number of clusters
κ, where κ < κmax for some user defined κmax << N . Since our sample
size is very small, we cannot let κmax << N . For illustrative purposes,
we define κ using knowledge of the structure of the data.

The number of cylinders attribute is already discrete, so the value
of κ = 3 gives each unique discrete value its own category. This mini-
mizes the silhouette values from the numeric k-means clustering of the
attribute. The values are then replaced with consecutive integers (the
output of the numeric k-means algorithm).

The highway mileage is less obvious. Although this sample appears
to be discrete, a larger sample would reveal that it is continuous. A
choice of κ for this small sample size is largely arbitrary, since κ cannot
be much less than the number of data points, N . A more realistic choice
of κ = 3, to limit variance relative to the sample size N , would give
a trivial result when finding the significance value in Section 4.3. We
continue with κ = 2 to better illustrate the calculation of significance.
In the resulting discretized data there is a larger probability that a data
point belongs to a given category.

3While this process is not normalizing in the traditional sense, we use this
language to be consistent with other current publications on the algorithm.

4The minimum value is mapped to 0, the maximum to 1, and all other values
are mapped to a proportional distance from 0
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4.3. Calculate the Significance of Each Attribute. The sig-
nificance will place a weight on each of the four attributes, correspond-
ing to the probability of co-occurrence between subsets of unique val-
ues. The significance is calculated pairwise between attributes, and
then pairwise between unique values within each attribute. The signif-
icance will be calculated using the discretized data in Table 2.3.

Consider the attribute ‘number of cylinders’. There are three unique
values of this attribute, and 3 unique pairs:(1, 2), (1, 3), (2, 3). The vec-
tor of unique values of the attribute is defined as uncyl = [1, 2, 3].

To calculate the significance of the number of cylinders, we use the
formula from Equation 2.1.

wncyl =
2

κncyl(κncyl − 1)(M − 1)

κncyl∑
b=1

κncyl∑
c>b

M∑
m=1,m 6=ncyl

[Pi(ω/uia) + Pi((um \ ω)/uib)− 1.0]

Recall, κncyl = 3 and M = 4.

wncyl =
1

9

3∑
b=1

3∑
c>b

M∑
m=1,m 6=ncyl

[Pi(ω/uia) + Pi((um \ ω)/uib)− 1.0]

In the context of the unique pairs of discrete values from uncyl, the

terms
∑3

b=1

∑3
c>b describe the sum of across all unique pairs of uncyl

M∑
m=1,m 6=ncyl

[Pi(ω/uia) + Pi((um \ ω)/uib)− 1.0]

Recall these unique pairs are (1, 2), (1, 3), (2, 3). Then, the significance
of the attribute ‘number of cylinders’ can be expressed more explicitly,
replacing uia and uib with the appropriate values of uncyl as in 2.5.

wncyl =
1

9
· (

M∑
m=1,m 6=ncyl

[Pncyl(ω/1) + Pncyl((um \ ω)/2)− 1.0]

+
M∑

m=1,m 6=ncyl

[Pncyl(ω/1) + Pncyl((um \ ω)/3)− 1.0]

+
M∑

m=1,m 6=ncyl

[Pncyl(ω/2) + Pncyl((um \ ω)/3)− 1.0])

(2.5)
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Consider the first term of 2.5.

(2.6)
M∑

m=1,m 6=ncyl

[Pncyl(ω/1) + Pncyl((um \ ω)/2)− 1.0]

This can be expanded to explicitly write the comparison of each
attribute in equation 2.7.

[Pncyl(ωfuel/1) + Pncyl((ufuel \ ωfuel)/2)− 1.0]

+[Pncyl(ωbody/1) + Pncyl((ubody \ ωbody)/2)− 1.0]

+[Pncyl(ωmpg/1) + Pncyl((umpg \ ωmpg)/2)− 1.0]

(2.7)

The expression for significance is now in a workable state. We now
evaluate these using the discretized data in Table 2.3. Consider the
first term of 2.7, as listed in 2.8.

(2.8) [Pncyl(ωfuel/1) + Pncyl((ufuel \ ωfuel)/2)− 1.0]

The first term of 2.8 is Pncyl(ωfuel/1) which describes the prob-
ability that an component with one cylinder has a value that is an
component of ωfuel, where ωfuel is a subset of the unique components
of the discretized fuel-type attribute. Now, by the definition in Sec-
tion 2.1, ωfuel is the subset of the unique components of the discretized
fuel-type attribute that maximizes the quantity in 2.9.

(2.9) Pncyl(ωfuel/1) + Pncyl((ufuel \ ωfuel)/2)

Considering Table 2.3, we find the following values of ω and (ufuel \
ωfuel).

ωfuel = {diesel}
(ufuel \ ωfuel) = {gas}

Then the two probabilities can be stated explicitly.

(2.10) Pncyl(ωfuel/1) =
count(ncyl = 1&fuel = diesel)

count(ncyl = 1)
=

2

3

(2.11) Pncyl((ufuel \ ωfuel)/2) =
count(ncyl = 2&fuel = gas)

count(ncyl = 2)
=

2

3

Now, the results of Equation 2.10 and Equation 2.11 can be substi-
tuted to find the value of the expression in 2.8.

[Pncyl(ωfuel/1) + Pncyl((ufuel \ ωfuel)/2)− 1.0] =
1

3
This process is iterated across each unique pair and each attribute,

with the solutions substituted into 2.5 to find the value of significance
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idx fuel-type body-style num-of-cylinders highway-mpg
1 gas convertible .5 .1786
1 gas sedan 1 0
3 gas sedan 1 0
2 diesel sedan .5 .1071
2 diesel sedan 0 1
3 diesel wagon .5 .1071

Table 2.4. Auto Data with Cluster Assignments

idx fuel-type body-style num-of-cylinders highway-mpg
1 gas convertible .5 .1786
1 gas sedan 1 0

Table 2.5. Auto Data - Cluster 1

idx fuel-type body-style num-of-cylinders highway-mpg
2 diesel sedan .5 .1071
2 diesel sedan 0 1

Table 2.6. Auto Data - Cluster 2

idx fuel-type body-style num-of-cylinders highway-mpg
3 gas sedan 1 0
3 diesel wagon .5 .1071

Table 2.7. Auto Data - Cluster 3

of the attribute ‘number of cylinders’. These significance values will
weight the calculation of distance between each data point and cluster
center in Section 4.6.

4.4. Random Assignment of Data Points to Clusters. The
user defines K, the number of clusters, as an argument for the mixed
k-means clustering. In this example, consider K = 3. Each data point
is then assigned, at random, to each of the clusters.

Let column ‘idx’ be the index of the cluster assigned to each data
point. Then, a column can be added to the normalized data table for
the index. This column is not an additional attribute; it is added to
the table for illustrative purposes.

4.5. Calculation of Cluster Centers. Recall, for a numeric at-
tribute, the cluster center is calculated to be the mean of the values of
each data point in the cluster.
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idx fuel-type body-style num-of-cylinders highway-mpg
1 gas .75 .0893
2 diesel sedan .25 .5536
3 .75 .5536

Table 2.8. Cluster Center Values

Consider the first cluster in Table 2.5. Let cc1 be a vector that
describes the center of the first cluster. Let cc1a be the ath entry of
cc1. Then, the first cluster center value for the attribute ‘number of
cylinders’ is cc13 = mean({.5, 1}) = .75 and the value for the attribute
‘highway mileage’ is cc14 = mean({.1786, 0}) = .0893.

Now, for categorical attributes, the cluster center is defined as the
mode, (although the probability of an equivalent value occurring within
the cluster is also used to compute the distance between a given point
and a cluster center). Clearly, the first cluster center value for the at-
tribute ‘fuel type’ is cc11 = gas. However, for the attribute ‘body-style’
cc12 there is no unique mode. The cluster center is left undefined for
this attribute, and all calculation of distance will be from the probabil-
ity of an equivalent value occurring within the cluster. While possible,
this is not a likely scenario for clusters in a data set with a sufficiently
large number of data points. We continue with the small sample size
for illustrative purposes.

The probability of an equivalent value occurring within the cluster
is represented as a ratio cdkm(i) with respect to each unique value of
the categorical attribute in Equation 2.12, where φk is the set of data
points, xn such that xn is in the kth cluster and φki is the set of data
points in φk such that the mth component of the data point has the
value of umi.

(2.12) cdkm(i) =
|φki|
|φk|

This process is iterated for each of the three clusters, finding the
cluster centers reported in Table 2.8.

4.6. Calculation of the Distance to Each Cluster Center.
Consider the distance between the data point in the first row, x1, and
the first cluster center from 2.8. For a categorical attribute, the distance
is zero if the value of the data point is equal to the mode of the cluster,
otherwise, the distance is computed as in 2.3. For a numeric attribute,
the distance between a data point and a cluster is simply the Euclidean
distance, as in 2.2. The total distance is the sum of the squares of each
numeric and categorical distance, as in 2.4.
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Since the fuel type of the first data point and first cluster’s mode
are equivalent,

ρfuel(x1, 1) = 0

For the attribute body style, there is no defined center value. This
value will be calculated from the proportion of equivalent values, as the
value of the data point is not equal to the value of the cluster center.

ρbody(x1, 1) =

|um|∑
i=1

cdkm(i)

M − 1
[Pbody(ω/xnm(i)+Pbody((um \ω)/um(i))−1.0]

ρbody(x1, 1) =
2∑
i=1

cdkm(i)

3
(Pbody(ω/xnm(i)) + Pbody((ubody \ ω)/um(i)))

Writing the sum explicitly, we have the following expression for ρbody(x1, 1).
Since we have two unique values and two data points, this computa-
tion is simple. Additionally, this illustrates the problem with having
too many unique values of numeric attributes that was resolved in dis-
cretization.5

ρbody(x1, 1) = cdconvt(Pbody({convert}/{convert})+
Pbody({sedan}/{sedan})− 1.0)+

cdsedan(Pbody({sedan}/{sedan})+
Pbody({convert}/{convert})− 1.0)

ρbody(x1, 1) = .5 ∗ 1.0 + .5 ∗ 1.0 = 1.0;

The attributes number of cylinders and highway mileage are both nu-
meric, and use the Euclidean distance.

ρncyl(x1, 1) = (.75− .5) = .25

ρmpg(x1, 1) = (.0893−, 1786) = −.0893

The total distance is then the sum of the squares of the distance
for each attribute.

5In a more realistic example, this expression might not include such trivial
probabilities. For example,

ρbody(x1, 1) = cdconvt(Pbody({convt}/{convt, truck})+
Pbody({sedan}/{sedan,wagon})− 1.0)+

cdsedan(Pbody({sedan}/{sedan, truck})+
Pbody({convert}/{convert, wagon})− 1.0)
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d(x1, 1) =
M∑
m=1

[ρm(1, x1)]2 = 02 + 1.02 + .252 + .08932 ≈ 1.07

This process is iterated for each unique pair of cluster and data
point. When we have calculated the distance between each data point
and each cluster center, we will be able to determine which cluster
center is closest to each data point.

4.7. Cluster Reassignment for Each Data Point. Each data
point xn is reassigned to the cluster k that minimizes d(k, xn). In the
case of x1, the cluster with index k = 1 has the minimum distance
d(x1, 1) as calculated in 4.6. This process of reassigning data points to
the closest cluster is iterated for every data point in the data set.

4.8. Loop Conditions and Iteration. In the first iteration of
this example, x3 is reassigned to the first cluster. Since at least one
data point has changed cluster assignment, the process is repeated from
Section 4.5.

If there are no changes in cluster assignment, the clustering algo-
rithm returns the last iteration’s cluster assignments.





CHAPTER 3

Error Analysis

In Chapter 1 and Chapter 2, two algorithms for clustering data are
introduced. In this chapter, we will discuss the methods for analyzing
the clustering produced by these two algorithms. This discussion is ap-
plicable to comparisons between the algorithms and between multiple
trials with the same algorithm.

Three processes for error analysis are included in the source to
determine the quality of the mixed k-means clustering, especially rel-
ative to numeric k-means. Silhouette Values are adapted from their
application to numeric k-means [13] as both a graphical and numeric
representation of the fit of a clustering model. Performance ratios are
adapted from Alsahaf’s MATLAB implementation [2] to compare the
result of numeric and mixed k-means clustering on benchmark data
sets from SGI [14], where the structure of the data is known in an ad-
ditional attribute, hidden from the clustering algorithm. Finally, two
new graphical representations are proposed. The first displays the dis-
tance between a given data point and each of the cluster centers, in
R2. The second builds a geometric figure in R3, where planes on integer
coordinates are defined by the R2 representation for each data point.

1. Silhouette Values

The silhouette value is a measure of the goodness of fit of a model for
a particular data point. In both numeric and mixed k-means clustering,
the distance between a data point and each of the cluster centers can
be calculated. The silhouette value compares the distance to the two
cluster centers with the least distance, as the ratio of their difference
divided by their maximum. The mean of all silhouette values in a data
set is a measure of the goodness of fit across the data set. Assuming
a natural structure of M -dimensional spherical partitions of the data
set, the number of clusters that maximizes the average silhouette value
is considered to be the optimal number of clusters for the data set.

1.1. Definition of Silhouette Value. The silhouette value for
a data point xn within the kth cluster (with center cck) is defined in

21
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No. of Centers Mean Silhouette Value
2.0000 0.6942
3.0000 0.6883
4.0000 0.7090
5.0000 0.8917
6.0000 0.8078

Table 3.1. mean Silhouette Values for Synthetic Data

equation 3.1. Let ccz be the second closest cluster center to xn. That
is, let ccz ∈ {ccζ , 1 < ζ < K, ζ 6= k} that minimizes distance d(xn, z).

Let an = d(xn, k) be the distance between xn and cck, as defined in
Equation 2.4. Let bn = d(xn, z) be the distance between xn and ccz, as
defined in Equation 2.4.

(3.1) sn =
bn − an

max(an, bn)

Here, the optimal silhouette value is 1, where the data point is
at the cluster center. If the silhouette value is 0, the data point is
equidistant from the two closest cluster centers. If the silhouette value
is negative, there is a cluster center closer to the data point than its
assigned cluster’s center.

In both k-means algorithms, we choose the number of clusters that
minimizes the difference between the mean silhouette value and 1. That
is, the number of clusters that maximizes the mean silhouette value.

1.2. Example with Synthetic Data. We have generated a set of
synthetic data with two numeric attributes, and five spherical clusters,
and 2,400 data points. Table 3.1 lists the mean silhouette value for
each trial of numeric k-means clustering on the synthetic data set.

First, we cluster using k = 2 (two centers or means) for the numeric
k-means algorithm. Figure 3.1 includes a scatter plot of the synthetic
data, coloring each data point by its cluster assignment.

The silhouette values for this clustering can now be visualized with
a bar graph in Figure 3.1. In this graph, there are many silhouette
values that are significantly less than one. This suggests that there
may be another value of k that will better fit the data.

Consider the assignment with k = 3 (3 distinct clusters). The scat-
ter plot in Figure 3.2 colors each data point according to its clustering
assignment. Here it is more obvious that the clustering assignment
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Figure 3.1. Scatter Plot & Silhouette Graph, k=2
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does not fit the data set. Figure 3.2 confirms the graphical observa-
tion, with a large portion of data points with silhouette values near
zero in the second cluster.

For k = 4 (4 clusters), we have an improved result. Figure 3.3
show the scatter plot and silhouette graph. This has a reasonable
mean silhouette graph value, and most clusters have consistently high
silhouette values.

When k = 5 (the actual number of clusters in the synthetic data
set), we have a silhouette graph (Figure 3.4) similar to the k = 4
model, but the mean silhouette value is significantly greater. This
improvement in fit can be seen clearly in the scatter plot in Figure 3.4,
where each cluster center is clearly at the center of a cluster of data
points (rather than equidistant to each cluster center. This observation
is clear in a scatter plot in R2, but is not easy to visualize with a greater
number of attributes or with categorical attributes.

When a sixth cluster is introduced (k = 6), we find that one cluster
center again lies between other clusters. The points in the cluster are
generally denser at a larger radius from the center of the cluster, with
very few points near the center of the cluster (Figure 3.5). While this
cluster center is closer to some points, the mean silhouette value has
decreased, and there is one cluster where the majority of data points
have silhouette values less than 0.7.
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Figure 3.2. Scatter Plot & Silhouette Graph, k=3
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Figure 3.3. Scatter Plot & Silhouette Graph, k=4
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Figure 3.4. Scatter Plot & Silhouette Graph, k=5



28 3. ERROR ANALYSIS

Figure 3.5. Scatter Plot & Silhouette Graph, k=6
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2. Performance Ratios

The performance ratio is a comparison between the clustering pro-
duced by the algorithm and the “true” categorization for benchmark
data sets. This ratio can be compared with other unsupervised cluster-
ing algorithms as a measure of accuracy. The performance ratio is not
used in application, where the true categorization of data is unknown.

The performance ratio is defined as the maximum percentage of
common assignments between a permutation of the clustering assign-
ments and the“true” categorization, as defined in 3.2. Let xn be the
nth data point. Let cck be the kth cluster center.

Let Υ be a k! × k permutation matrix where each row of Υ is a
unique permutation of the indexes of the clustering assignments. Let
Υp,k be the pth row of the kth column of Υ. Let θn be the assigned
index of xn in the clustering. Let φn be the assigned index of xn in
the the“true” categorization. Let γn be an index function, to denote
a common assignment between the permutation of the clustering and
the “true” categorization.

γn =

{
1 if Υp,thetan = φn
0 if Υp,θn 6= φn

Then R, the performance ratio, can be defined as average of the
values of the indicator function γ, for the permutation that maximizes
this sum.

(3.2) R =
K!

max
p=1

(
1

N
·
N∑
n=1

γn)

3. Visualization of Clustering

When there are many attributes, data points, and clusters it be-
comes difficult to visualize the location of data points in relation to
their cluster centers. With three numeric attributes, data points and
cluster centers can be visualized in R3. With additional numeric at-
tributes, locations can be projected into fewer dimensions to give a
visual representation. These relationships in R3 are not well defined
for categorical attributes, especially categorical attributes with many
unique values.

We propose a visualization that compares the distances between
each data point and each cluster center. Figure 3.6 is a visualization
of mixed k-means clustering in both R2 and R3, using the ‘lenses’ data
set from Chapter 5 Section 5.
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This visualization is not used formally in our analysis, but is useful
for building intuition in certain concepts around error analysis. They
can be used to demonstrate some properties of clustering algorithms on
simple synthetic data sets. We do not have evidence of the usefulness
of theses figures or their geometric properties in application to larger
data sets.

A data point can be represented in R2. The visual representation
of data point xn is defined as a polygon with verticies in the set Vn,
as defined in Equation 3.3. Let d(xn, k) be the distance from the data
point xn to the kth cluster center. LetK be the total number of clusters.
We use polar coordinates here for convenience.

(3.3) V2 =
N⋃
n=1

{(r, θ)|r = d(xn, k) and θ =
2πk

K
}

where 1 < n < N and 1 < k < K.
A cluster of data points or an entire data set can be represented

in R3. We define a polygon in R3, by the set of points V3 in equation
3.4. First, we assign each of the data points an height hn, using the
following procedure.

(1) Let k = 1.
(a) Order the data points in cluster k by their row number.
(b) Assign each data point xn in cluster k a consecutive inte-

ger value hn, where the least value of hn is 1.
(c) Let k = k + 1.

(2) While k < K do
(a) Let ξ be the greatest value of hn assigned in cluster (k−1).
(b) Order the data points in cluster k by their row number.
(c) Assign each data point xn in cluster k a consecutive in-

teger value hn, where the least value of hn is ξ + 1. Let
k = k + 1.

Now, we can define V3, using cylindrical coordinates for conve-
nience.

(3.4) V3 =
N⋃
n=1

{(r, θ, h)|r = d(xn, k) and θ =
2πk

K
and h = hn}

where 1 < n < N and 1 < k < K.
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Figure 3.6. Visualization of mixed clustering on lenses
data set





CHAPTER 4

MATLAB Implementation

Chapters 2 discussed an algorithm for clustering mixed data sets.
Chapter 3 discussed methods for analyzing clustering algorithms. In
this chapter, the challenges of implementing both of these chapters are
discussed through a series of examples. The source code for all of these
implementations is included in Appendixes B, C and D.1

This chapter highlights four adaptations of our implementation
from Alsahaf’s MATLAB implementation [2] and Ahmad’s algorithm
[1]. This selection focuses on the challenges that required the most cre-
ative solutions or problems that assisted in the understanding of the
function of the algorithm. First, Section 1 describes adaptations that
improve the overall efficiency of the implementation and the process
of debugging. Second, Section 2 discusses an adaptation that deviates
from both Alsahaf’s implementation and Ahmad’s original algorithm to
avoid assumptions about the structure of numeric attributes. Section 3
discusses efforts to debug unintended implications of the previous sec-
tion’s adaptive value for κi. Finally, Section 4 addresses the need for an
efficient calculation of error for increasingly complex benchmark data
sets. This chapter gives a brief overview of the type of work required
for writing and adapting the source code which composes the bulk of
the thesis.

1. Object Oriented Programming

The original MATLAB implementation written by Alsahaf [2] first
needed to be generalized to accept a generic n ×m matrix and labels
to designate categorical attributes. Once generalized, the program was
inefficient when running hundreds of trials on benchmark data sets.
Across each of these trials, the values for the discretized data and sig-
nificance were the same, but they were re-computed for every trial on
the data set. The program was first adapted to move normalization,
discretization and significance calculations outside of the loop that it-
erates trials.

1A current verison of the source code is available at
https://github.com/cam3715/mkmeans
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methods
function obj = mixedclust(data, k, max iter, ...

inputType,trialsNo)

[dn, ¬] = size(data);
[¬, ¬] = size(inputType);
if nargin < 4

trialsNo = 1;
inputType = [];

elseif nargin < 3
max iter = 1000;

elseif nargin < 2
display('Not Enough Arguments')

end
obj.tempvar.dn = dn;
obj.trialsNo = trialsNo;
obj.data = data;
obj.k = k;
obj.max iter = max iter;
obj.inputType = inputType;

% replace NaN entrieies
obj.data(isnan(obj.data)) = 1;
obj = normalize(obj);
obj = discretize(obj);
obj = sigpairs(obj);

Figure 4.1. Objects in mixedclust.m

This increased efficiency, but the problem of reducing runtime when
debugging errors when testing benchmark categorical data sets re-
mained. Some errors would appear after a large number of trials,
which seemed to depend on the random seed for the trial (see Section
3). A try-catch statement block2 was added within the loop, where the
trial would be discounted and repeated if any error appeared. This

2a try-catch statement block gives instructions if an error is encountered during
the specified section of code. For example, the conditional instructions might be
print ’Error in Section 5a’. Then the system would print ’Error in Section 5a’ if
and only if an error is encountered in the section. Try-catch statement blocks can
be used in this way to flag errors, which is useful for debugging, but they can also
be used to develop temporary workarounds for known bugs.
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workaround made it possible to find preliminary benchmark results,
but did not identify the underlying errors in the algorithm or source
code.

To minimize repeated computation when debugging, the program
was rewritten to pass an object that included the original and dis-
cretized data matrices and other temporary variables. First, Alsahaf’s
implementation was rewritten to minimize the number of sub-functions
and to contain those sub-functions within a single m-file. Second, a
function was created to handle data input from a comma separated
values (CSV) file and another function to handle input/output and the
user interface for the clustering algorithm. The serial program was
then rewritten to input and output structs3, and finally those structs
were used as properties of the objects. This required that many of
the dependencies written by Alsahaf be retrofitted to be passed ob-
jects instead of vector arguments, which enabled additional sections of
the code to be adapted for parallel processing but increased overhead.
Finally, the data input and data output functions were rewritten as
classes, which made it easier to output and graphically display various
results for a sequence of benchmark tests.

The result is not a true object oriented design. The original serial
implementation was adapted to operate on objects instead of passing
large structs (as shown in Figure 4.1). That is, the MATLAB source
is an objected oriented program, but it does not necessarily follow
object oriented design principles. This could be improved by rewriting
the entire program with object oriented design in mind. It would be
optimal to redesign the implementation for true object oriented design
when simultaneously vectorizing the code for CUDA optimization and
parallel processing. Additionally, a handle class should be used for
many of the sub-functions rather than a value class (as it is currently)
which would diminish the overhead and bottlenecks during parallel
processing.

2. Discretization: Adaptive Number of Means

The adaptive number of means for the discretization is the most
significant deviation from Ahmad’s algorithm. Both Ahmad and Al-
sahaf use constant values of ki for all numeric attributes [1]. This

3A struct is a group of variables that can be accessed through a structure tag,
using a member access operator. For example, the variable idx might have the tag
mixedclust. In MATLAB, the member access operator is ‘.’, so idx is accessed as
mixedclust.idx. Variables with the same tag are physically grouped together in
memory.
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Ahmed’s Implementation

Generalized inputs and calculations,
with individual value-based variables

Variables organized in structs

Structs organized into properties
of objects in value classes

Functions organized into methods
of objects in value classes

(Future)
Value classes rewritten as handle classes

Figure 4.2. Use of variables in each version of the
MATLAB source

assumes that every numeric attribute has the same structure, which is
not a reasonable assumption for many complex data sets. Additionally,
this assumes that the structure of the numeric attributes of a data set
can be determined by the user’s observation or some other simple test.
Clustering is used when there is much unknown about the underlying
structure of the data, and it is often impractical to spend much time
investigating the structure of each attribute. This is especially true in
the case of our application to ASSISTments, where there are over one
million data points (responses) in the smaller of the two data sets.

The procedure for this adaptation is described in Chapter 2, Section
1. For limitations of computational time, this implementation samples
a user defined range of values of κi for each numeric attribute Ai,
where 2 ≤ κi << N . The silhouette value of each potential value of
κi is stored, where value of κi minimizes the difference between 1 and
the respective silhouette value. An additional conditional, described
in Section 4.4, further restricts this value of κi to avoid a trivial result
(which causes bugs in the calculation of significance).

This impact of this adaptive value of κi has not been fully explored.
It is included in our implementation to avoid the use of a constant value
of κi. Future research may indicate a more efficient method of selection
for κi or a method for a selection of κi that improves the clustering
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obj.tempvar.idx cat = find(-1*obj.inputType+1);
for i=1:numel(obj.tempvar.idx cat)

silh avg = zeros(max k,1);
data num = ...

obj.data(:,obj.tempvar.idx cat(i));
for k iter=1:max k

[idx,¬,¬,D]=...
kmeans(data num,k iter+1,'dist', ...

...
'sqeuclidean','MaxIter',100,...
'Options',statset('UseParallel',1));

[Drow,¬] = size(D);
silh = zeros(1,Drow);
for drow = 1:Drow

[a drow,excl D] = min(D(drow,:));
b drow = ...

min(D(drow,[1:(excl D-1),...
(excl D+1):end]));

silh(drow) = (b drow-a drow)...
/max(a drow,b drow);

end

Figure 4.3. Discretization in mixedclust.m

results and better reflects the underlying structure of the data. The
emphasis of this modification is not the particular method of selection
of κi, but the use of an adaptive value.

3. Hidden Bugs: Unique Values After Discretization

The bug that persisted longest in the source turned out to be a lack
of unique values in a discretized numeric attribute; the bug took over 4
months to resolve. This bug presented itself with error messages nested
about 4-5 function calls deep, in MATLAB’s nchoosek, which outputs a
matrix of unique pairs (n=2) of k unique values (in this context k is not
the number of clusters). If k = 1, nchoosek returns an error, however
the error notes that ‘n must be an integer’. Consistently, n was input
as an integer, which could be confirmed by MATLAB’s debugger.

The try − catch statement block was successful as a temporary
workaround for this bug, as a different random seed for the k-means in
the discretization function usually returned more unique values. When
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%Ensure selection has >1 unique value
if numel(unique(idx))>1

silh avg(k iter) = mean(silh);
else

silh avg(k iter) = -10000000;
end

end
[¬,k best] = max(silh avg);
k best = k best+1;
obj.data discrete(:,obj.tempvar.idx cat(i)) ...

= ...
kmeans(obj.data(:,obj.tempvar.idx cat(i)),...
k best);

Figure 4.4. Unique Values after discretization in mixedclust.m

rewriting the source to pass objects, and breaking the clustering algo-
rithm into multiple method functions, it became clear that the error
‘n must be an integer’ was also reported when k is not an integer or
k < 2. A conditional was added to the discretization method (lines
164− 169 of mixedclust.m in Figure 4.4) that omits values of κi that
output a single cluster. This conditional replaces the recorded average
silhouette value with a number significantly less than −1 so that these
values of κi will not be selected for the discretization of the attribute.

An additional conditional was added to give a more descriptive
error message when n choose k is called and k < 2. An additional case
of single unique values may occur during computations of distance on
a cluster with a subset of discretized values, (although for any data
point within the cluster, its value would be equal to the mode, and the
distance would be defined as 0).

4. Performance Ratios and the Hungarian Algorithm

Performance ratios were a challenge in early benchmark tests. The
performance ratio compares permutations of the output to the ‘known’
classification of the data for benchmark sets. Since the output varies
by the initial random seed (that first assigns data points to clusters),
distinct trials may result in equivalent permutations of the output but
have significant differences in output labels.

Alsahaf’s implementation [2] worked with binary permutations.
This was first adapted to handle more unique values in the output
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for i=1:obj.trialsNo
idx = obj.(name).idx(:,:,i);
k = numel(unique(obj.output));
ErrorMatrix = zeros(k);
output values = unique(obj.output);
for emCol = 1:k

for emRow = 1:k
output emRow = ...

output values(emRow);
for oRow = 1:length(obj.output)

if (obj.output(oRow) 6= ...
output emRow)...

&& (idx(oRow) ...
== emCol);

ErrorMatrix(emCol, ...
emRow)...
= ...

ErrorMatrix(emCol,emRow)+1;
end

end
end

end
[mEM, nEM] = size(ErrorMatrix);
if mEM6=nEM

display('Warning, matrix must ...
be square');

end
[¬, count] = ...

assignmentoptimal(ErrorMatrix);
obj.(name).performance(i) = ...

1-count/length(idx);
end

Figure 4.5. Performance ratios in clusteringCompare.m

using MATLAB’s perms function. If a data point xn is assigned to
cluster k, the nth output value is k. Using perms the value k in
the output vector would be substitutes for the kth term of perms(1 :
numel(unique(output))). In serial applications, before the introduction
of MATLAB’s Parallel Processing Toolbox, this was computationally
expensive for large numbers of unique values of the output. Addition-
ally, before upgrading RAM storage, MATLAB was unable to store the
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permutation matrix when K ≥ 11, where K is the number of clusters
and the number of unique output values.

In an effort to minimize the computational time an ‘error matrix’
was created, where each column index represented the original output
value and each row index was a substituted value, of the same set of
values. In the error matrix, the entry EM(row, col) is the count of data
points that were clustered into the rowth cluster that are not equal to
the colth value of the known classification.

The permutation that minimizes the error will have the minimal
sum of K elements of EM , where no two elements in the sum have
the same row or column index. In other words, the permutation will
substitute the value of each pair of column and row indicies in the
minimal sum those K elements of EM . Initially this sum was found
with a brute force method, which was did not scale significantly better
than the perms function. In a personal correspondence, Andonian sug-
gested the use of the Hungarian algorithm as a computationally efficient
method for minimizing these sums[3]. The source was then adapted
to take the output of Buehren’s implementation[7] of the Hungarian
Algorithm, and determine the performance ratio (as shown in figure
4.5).

This method using the Hungarian algorithm and the ‘error matrix’
was confirmed to find equal performance ratios to the perms substitu-
tion method, over many trials of multiple benchmark data sets.



CHAPTER 5

Results of MATLAB Implementation

Chapter 4 discussed the MATLAB implementation of the mixed k-
means algorithm (introduced in chapter 2). In this chapter, the results
of this implementation are analyzed using the methods discussed in
Chapter 3.

In this chapter we compare the results from our MATLAB imple-
mentation of the mixed k-means algorithm with the results from the
numeric k-means algorithm and the results published by Ahmad et al.,
to test the algorithm we clustered five benchmark data set with ‘known’
classifications. The clustering algorithm performed well on four of the
five data sets, with higher performance ratios than the numeric k-means
clustering algorithm. One of the data sets is known to perform well for
hierarchical clustering algorithms and perform poorly for variations of
the k-means clustering algorithm. Our implementation of the mixed k-
means clustering algorithm performs poorly here as well, possibly due
to the assumption of a m-dimensional spherically structured data set.

The clusteringCompare function in Appendix C was run on five
benchmark data sets to compare the accuracy of this implementation
with Ahmad’s results. Each of the data sets was obtained from Silicon
Graphics International (SGI) [14], where the attribute classification (as
categorical or numeric) was listed. Table 5.1 summarizes the results of
the benchmark tests and detailed outputs are included in Appendix A.

Data Set Mixed Numeric Ahmad
10 Trials 100 Trials 10 Trials 100 Trials

Iris 88.6% 85.4% 82.3% 84.2% 95%
Vote 87.3% 87.3% 86.9% 85.3% 87%
Lenses 58.3% 51.4% 46.5% 48.8%
Heart 84.0% 84.0% 76.3% 75.6% 83%
Australian 78.2% 75.3% 61.2% 59.2% 85%

Table 5.1. Benchmark average performance ratio
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Figure 5.1. Benchmark average performance ratio

1. Iris Plants - Numeric Data Set

The Iris data set demonstrates that the mixed k-means algorithm
will perform at least as well as the numeric k-means algorithm, on nu-
meric data sets. The mixed k-means algorithm is almost identical to the
numeric k-means algorithm for numeric data sets, with the exception
of significance weights placed on each attribute and the normalization
(scaling) within each attribute. In this case, the use of the significance
improves average performance by 1.2% — a small but consistent gain.

The Iris plants data set has four continuous attributes describing
sepal length, sepal width, petal length and petal width for three clas-
sifications of Iris plants. There is an equal count of each class of Iris
plant in the data set.

According to SGI, one of the classes is linearly separable, but the
remaining classes are not linearly separable [14]. That is, a convex
region can be defined such that all of the points of one class fall in that
convex region, and no points from the other classes fall in the convex
region. Algebraically, there exist weights w1, w2, w3, w4 and constant q
such that for all data points xn within the linearly separable class, we
have

4∑
m=1

wmxnm < q.
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For all data points xn not in the linearly separable class, we have

4∑
m=1

wmxnm ≥ q.

In the examples with synthetic data in Chapter 3 Section 1, the cluster
in the lower left portion of the scatter plots is linearly separable from
all of the other clusters.

Ahmad et al. report gains of 7% on the Iris data set [1] with their
implementation of the mixed k-means algorithm (using a fixed value of
κ in the discretization of each numeric attribute).

2. Voting Records - Categorical Data Set

The Voting Records data set demonstrates that the mixed k-means
algorithm performs as well as Ahmed and the numeric k-means algo-
rithm on data sets with purely categorical data. Numeric k-means is
applied using an integer representation of categorical labels, although
this does not give a meaningful measure of rank or distance. The nu-
meric k-means algorithm was not expected to perform well on this data
set, and would possibly perform differently on other categorical data
sets that have more unique values (a larger range of integer labels).

The Voting Records data set reports 16 votes for U.S. House of Rep-
resentatives Congressmen from the Congressional Quarterly Almanac
of 1985 [14]. Numeric k-means performs better than expected on this
categorical data set. This performance is assisted by two factors, the
distribution of attribute values and the binary output.

This data set has sixteen categorical variables, and two classes: Re-
publican and Democrat. Each vote is listed as an attribute with a value
(disposition) of yea, nay, unknown. The majority of the values of each
attribute are either yea or nay. The undecided dispositions range from
0% to 23.9%, with an average of just 5% of the data points in the Vot-
ing Records data set. Thus the behavior of most attributes approaches
that of a binary categorical attribute. Since binary attributes can be
represented with meaningful numeric measures of distance and rank,
most attributes are handled well by the numeric k-means algorithm.

Finally, the binary classification increases the chance that a given
clustering assignment will match the ”true” classification.

Ahmad et al. report a performance ratio of 87% [1], without a
comparison to the numeric k-means algorithm. Over 100 trials, our
average performance ratio confirmed Ahmad et al.’s result with 87.3%,
a 2.0% gain over numeric k-means.
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3. Heart Disease - Mixed Data Set

The Heart Disease data set shows improvement over the numeric k-
means algorithm with a mix of categorical and numeric attributes. The
heart disease data set from SGI has a mix of 13 categorical and numeric
attributes across 270 data points. Five attributes of 13 have categorical
values, and two numeric attributes have discrete values [14]. This
data set is a realistic application of the mixed k-means algorithm, with
attributes that have a good mix of categorical, discrete and continuous
values.

Confirming Ahmed’s result, we find a performance ratio of 84% over
100 trials, a gain of 8.4% over numeric k-means. Ahmed et al. reported
an average performance ratio of 83.0% over 100 trials [1].

4. Australian Credit Approval - Mixed Data Set

The Australian credit approval data set shows improvement over
the numeric k-means algorithm with a mix of categorical and numeric
attributes. The Australian credit approval data set has 14 attributes, 8
categorical and 6 numeric. The number of unique values in categorical
variables ranges from 2 to 14. Missing values have been replaced with
the mean of the attribute [14], so we have no NaN values1. This is
another realistic application of the mixed k-means algorithm.

We perform significantly below Ahmad’s implementation on the
Australian Credit Approval data set, with a performance ratio of 75.3%
compared to Ahmad’s performance ratio of 85% [1]. This may be due to
the selection of the value of κ for the discretization of numeric attributes
and calculation of significance. Rather than using an adaptive value
of κi, Ahmad et al., may have improved their clustering by letting
the user define κi with some knowledge of the structure of the data.
Alternatively, the result of a performance ratio of 85% could be the
performance of a best trial rather than the average over many trials.
We were not able to replicate an average performance ratio of 85%
with a fixed value for κ. We still have a 16.1% gain over the numeric
k-means algorithm, which has a performance ratio of only 59.2%.

5. Limitations: Fitting Contact Lenses

This data set compares four attributes to the type of contact lenses
that a patient is prescribed. This data set does not have the assumed

1A NaN value is a value that is not a number. In some cases this includes values
of infinity, but for the purposes of this thesis, NaN values are ’char’ (character)
values or any other non-numeric representation of the data.
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m-dimensional spherical structure. Instead, it is known that this data
set performs well with hierarchical clustering algorithms that itera-
tively sub-partition clusters [14]. Here, the mixed k-means algorithm
outperforms the numeric k-means algorithm (as expected), but does
not perform well enough for use in practice.

The attributes are all categorical, where the attribute age has three
possible values and the remaining attributes (spectacle prescription,
astigmatic, and tear production rate) have binary values. These at-
tributes behave similarly to the Voting Records data set in Section
2.

This data set does not perform well for either mixed or numeric
k-means clustering algorithms, although the mixed k-means algorithm
has a 2.6% gain over numeric k-means, the performance ratio of each
remains close to 50%. Our result here are trivial, the clustering either
appears to converge in two iterations or loses a cluster in the first it-
eration. Hierarchical clustering algorithms perform significantly better
on this data set [8]. The results for this data set were not published
by Ahmad et al.

6. Conclusion

The mixed k-means clustering algorithm was effective, and con-
sistently had a greater performance ratio than the numeric k-means
algorithm for four of the five data sets. In the Iris data set, while
falling short of the 95% performance ratio published by Ahmad et al,
our implementation of the mixed k-means algorithm averaged slightly
higher than the numeric k-means algorithm. Since this is a numeric
data set, we did not expect significant gains, and were confirming that
the mixed k-means algorithm does not perform any worse. Any gains
in this data set should be limited to the effects of the weighted distance
from significance.

The Voting Records data set also had small gains over numeric k-
means. All attributes in this data set are categorical, so the gains in
performance were expected to be higher. Each attribute behaves simi-
lar to binary attributes, which may give the numeric k-means algorithm
some advantage for this data set.

The Heart Disease data set and Australian Credit Card data set
had the largest gains over numeric k-means. The mix of categorical
and numeric attributes in these data sets most closely reflects realistic
applications of the algorithm.
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The Lenses data set, a data set with all categorical attributes, per-
formed poorly with both numeric and mixed k-means clustering al-
gorithms. While the mixed k-means clustering algorithm performed
better than the numeric k-means clustering algorithm, a performance
ratio of 51.4% is not high enough for use in practical application. This
data set is known to perform well with hierarchical clustering algo-
rithms and not with k-means clustering algorithms, possibly because
it lacks a structure of m-dimensional spherical groupings.



CHAPTER 6

Application to ASSISTments

Chapters 2 through 5 discussed the development and testing of a
mixed k-means clustering algorithm. As noted in the introduction, the
algorithm was developed with the hope of automating differentiation
in the ASSISTments system. The first step towards this automation is
to use the mixed k-means clustering algorithm to cluster students, in
order to find more accurate regressions on smaller samples of students.

In this chapter, we discuss some of the challenges in the applica-
tion of the mixed k-means algorithm to the ASSISTments data set.
The initial objective was simply to gain an elementary understanding
of the structure of the data in this initial clustering of the students’
responses, and then to design an experiment that might yield mean-
ingful predictions. Due to limitations on computational time, we were
unable to complete this initial clustering. These limits appear in the
stages of preprocessing the data and in the calculation of significance.
While some improvements were made, an extensive redesign of the
implementation would be necessary to get meaningful results. Since
clustering is an NP-hard problem, a redesigned implementation (that
takes advantage of object oriented design and vectorized computations,
optimized for parallel processing and/or CUDA) may not sufficiently
reduce computational time.

1. Preprocessing for Significance: N Choose K

The attributes order id, assistment id, and problem id had to be
excluded because of the computational time required for the MATLAB
function nchoosek, which writes a matrix with all possible pairings of
elements of the attribute. The function nchoosek is used in both the
calculation of significance and the calculation of distance between a
data point and a cluster center. The function nchoosek takes 1.71
seconds for 1,000 unique values, 15.526 seconds for 2,000 unique values,
and 127.309 seconds for 5,000 unique values.1 The function nchoosek
is impractical when an attribute has more than 10,000 unique values.

1MATLAB v8.5, Windows 10 x64, Intel Core i7-6700k (4.00 GHz)
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Attribute Type Unique Values
order id Categorical 1011079
assignment id Categorical 6163
user id Categorical 8519
assistment id Categorical 22039
problem id Categorical 35978
original Numeric 2
correct Numeric 10
attempt count Numeric 270
ms first response time Numeric 155586
tutor mode Categorical 5
answer type Categorical 7
sequence id Categorical 1552
student class id Categorical 435
position Numeric 297
problem set type Categorical 4
base sequence id Categorical 1128
list skill ids Categorical 348
list skills Categorical 337
teacher id Categorical 242
school id Categorical 109
Table 6.1. Significance Values for 2009-10 Data Set

The inclusion of the attributes assignment id and user id increased
the computational time for the significance algorithm, such that the
cooling system of a personal computer is not sufficient to maintain a
safe operating temperature after many hours. These attributes have
also been excluded, but may be practical to execute on a dedicated
server.

2. Calculation of Significance

In the attribute with the greatest remaining number of unique val-
ues sequence id, there are 2, 407, 152 unique pairs of values to be com-
pared across 14 other attributes and 1, 011, 097 data points. This takes
approximately 5, 000 hours for this one attribute on a personal com-
puter.

The number of unique values of each categorical attribute leads
to problems with both computational time and storage in RAM. This
is not surprising, as expectation-maximization machine learning algo-
rithms are NP-hard [9]. In this case, to calculate the significance of
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an attribute, each unique pair of unique values of the element must be
compared. On a personal computer, this comparison takes 85 seconds.

Let u(Am) be the number of unique elements in attribute Am.
Counting the comparison in n choose k and omitting permutations of
order, we find that there are u(Am)2−u(Am) comparisons. Then, on a
personal computer, the approximate time to complete the computation
is expressed below, in hours.

t =
85

3600

M∑
m=1

[u(Am)2 − u(Am)]

Considering all of the attributes would take approximately 2.4 × 1010

hours. Considering the 9 attributes that minimize computational time
would take 310 hours, and 8 attributes that minimize computational
time would take 31 hours. Removing more attributes would likely yield
a trivial result, as the majority of the data is not considered. It is not
practical to complete these calculations on a personal computer.

3. Conclusions from Application

The source for the calculation of significance is written in serial, as-
signing each Central Processing Unit (CPU) core to one comparison of
unique values, computing each of the steps to find the significance, and
returning the result. Vectorization of that code may significantly de-
crease the necessary computational time, and would allow for a Graph-
ics Processing Unit (GPU) to process the code. MATLAB is generally
optimized for vectorized code, and includes GPU parallel computing
with NVIDIA CUDA graphics cards in the parallel computing tool-
box. This would be the next step in improving this algorithm, but
there is not sufficient time to complete this within the project.

An improved source may be run on the MATLAB Distributed Com-
puting Server for Amazon EC2. This would allow for up to 256 workers
in the parallel processing instead of the four workers in an Intel Core
i7 processor. In addition to dramatic performance enhancements, a
cloud computing solution would eliminate temperature concerns with
an extended run time, as professional server systems are better suited
for temperature management. Unfortunately, cloud computing is not
available on the Student License of MATLAB.

While the mixed k-means algorithm allows for additional types of
data to be considered for clustering of data sets, it may not be practical
for very large data sets, especially data sets with large numbers of
unique values of categorical attributes. Even with an improved source,
it may not be practical to update clustering daily or weekly in order to
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keep up with an expanding data base of problems, scaffolding questions,
and student responses. The mixed k-means algorithm may be best
suited for small data sets, or to determine clustering rules for a system
where new types of problems or users are not likely to be encountered
regularly. Without the introduction of new types of problems or users,
the clustering could be run monthly or annually, and regression models
on each cluster may be updated more frequently.



CHAPTER 7

Conclusions and Further Research

We have shown that the mixed k-means algorithm performs at least
as well as the numeric k-means algorithm on numeric data sets, and
improves performance on categorical data sets. The mixed k-means al-
gorithm is limited by two assumptions common to the numeric k-means
algorithm: (a) that there are no NaN entries, and (b) that the data set
can be structed into sum number (k) of m-dimensional spheres. For
benchmark data sets, two methods of error analysis can be used to
compare the goodness of fit of a clustering model: performance ratios
and silhouette values. Finally, the proposed mixed k-means implemen-
tation is not practical for application to a data set with categorical
attributes that have a large number of unique values.

1. Questions for Future Research

There are three immediate extensions of this implementation of
Ahmad’s mixed k-means algorithm. First, this MATLAB implemen-
tation should be tested on a larger variety of data sets, in an effort to
demonstrate a broader utility. Additional benchmark tests should be
compared to a larger variety of clustering algorithms including both
modifications of k-means and hierarchical algorithms. This experimen-
tation may also yield some intuition for the types of data sets where
the mixed k-means algorithm performs well and the types where it is
prone to error or trivial results.

Second, the MATLAB implementation should be rewritten with
attention to object oriented design, as well as vectorizing the process in
whole or in part to take advantage of CUDA and parallel processing for
large data sets. In this redesign of the implementation, a number of the
objects and functions should be written as handle classes rather than
as value classes to decrease general overhead and eliminate bottlenecks
in parallel processing. The larger classes dealing with data input and
output from the CSV file and interacting with the user would likely
function well as value classes, while the class ‘mixedclust’ that is used
to execute the clustering (and repeatedly manipulates large matrices)
might function better as a handle class.

51



52 7. CONCLUSIONS AND FURTHER RESEARCH

Third, the optimization of κi in the discretization should be stud-
ied further. There is likely a better measure than silhouette value for
the goodness of fit of a clustering or the number of clusters, for the
discretization of a single attribute. Silhouette values do not always be-
have well at boundaries, as κi approaches N or 1, where the number of
clusters or number of data points per cluster (respectively) approaches
1. A hierarchial clustering algorithm might perform well instead of
the numeric k-means for determining the appropriate number of clus-
ters for discretization. Optimally the selection of κi should reflect the
underlying structure of the attribute Ai. In the case that Ai is a con-
tinuously distributed numeric attribute, there may be an optimal ratio
of κi to N .

After further study of this implementation, there are a number of
questions that extend the application to the ASSISTments data set.
The original problem that inspired this thesis has been solved in part
by Piech et al. [11], specifically building directed graphs that give
trajectories for students between skills. After consideration of the ob-
jectives of current users of the ASSISTments application, it may be
sufficient to use skill-builders with randomly selected problems and dif-
ferentiate with trajectories built from directed graphs of skills rather
than directed graphs of problems within each skill.

An algorithm that considers both categorical and numeric attributes
may provide additional insight into the ASSISTments data set. This
would require substantial improvements in the performance of this im-
plementation, as well as additional computing resources. If this is
achieved, it would be interesting to investigate the inclusion or ex-
clusion of specific attributes in the clustering (and the impact on the
significance values). Additionally, if the data set is clustered by indi-
vidual responses (in its current for as a CSV file, rather than building a
matrix with metrics for students or problems), is a pattern revealed by
a partition of groups of students, problems or sequences? Finally, do
different data sets (specifically 2009-2010 vs. 2012-2013) impact this
result? Further research in these questions of application should care-
fully consider existing literature on clustering within the ASSISTments
data sets.



CHAPTER 8

Reflection

This thesis was not able to meet the original goals and objectives
for a value added feature for the ASSISTments application. The prod-
uct of this thesis, the MATLAB source, contributes both a functional
implementation and a suggestion of adaptive discretization. More sig-
nificantly, this thesis has developed personal skill, interest and under-
standing in three key areas: the process of inquiry in mathematics, the
design of computer programs, and quantitative analysis of educational
systems. Finally the work of this thesis has impacted my work as a
pre-service teacher, in time-management, philosophy of curriculum and
assessment design, and in developing understanding of and experience
in mathematics research.

1. Inquiry in mathematics

This thesis developed my understanding for the process of inquiry
in mathematics, how existing research is reviewed and how new ap-
plications are explored. In particular, the connections between graph
theory, real analysis, probability, and computer science were reinforced
as well as the connection between pure and applied mathematics. In
this thesis, as I found bugs and explored the implications of my own
adaptations of the mixed k-means algorithm, I was forced to review
and connect content from previous and current study in each of these
fields.

Mathematical inquiry requires not only problem solving skills but
also flexibility among multiple representations and sub-fields. Addi-
tionally, mathematical inquiry requires flexibility in process and pro-
cedure, investigating connections between new content areas, scaling
solutions from specific cases to general applications, and adjusting the
project’s time-line for unexpected digressions. In connection to mathe-
matics education, an understanding of and experience with the method
of inquiry in mathematical science are essential to build authentic con-
tent and to model authentic problem solving.
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2. Design of computer programs

A lack of formal computer science coursework has significantly af-
fected this thesis. My background in computer science can be more ac-
curately be described as experience ‘coding’ in a number of languages.
This allows me to quickly become comfortable in new environments
and with new languages , and continue to learn and troubleshoot in fo-
rums. However, some of the significant challenges in this thesis would
be resolved with a deeper theoretical understanding of principles of
program design and the use and role of hardware.

Restrictions on data input and output, and design for parallel pro-
cessing, object oriented design and CUDA optimization would all have
significantly improved constraints on memory and computational time
experienced throughout this thesis (in the process of this thesis, I up-
graded the hardware of my personal computer a half dozen times, over-
heated the CPU, and replaced the laptop with a desktop). A better
understanding of computer science may have given me an early idea of
the realistic hardware requirements for this thesis. This has motivated
me to integrate computer science coursework into my graduate studies,
along with further study in mathematics and statistics. Additionally,
this has reinforced the importance of integrating introductory com-
puter science concepts and tools into K-16 science and mathematics
curriculum.

3. Quantitative analysis of educational systems

The most significant impact of this thesis is an understanding of the
complexity and difficulty of the problem of quantitative analysis of edu-
cational systems. I had hoped that methods of educational data mining
would quickly yield results that either give an accurate assessment of
students’ progress and needs (which can then be used to evaluate the
effectiveness of particular programs) or results that would provide fast
and accurate differentiation for students (which could be powerful for
underserved demographics). Unfortunately this process of quantitative
analysis is much more complex, and the development and benchmark
testing of an algorithm took longer that I had anticipated.

I will continue to study quantitative analysis of educational systems
in graduate school. This thesis has given me perspective on the role of
quantitative assessment in education, which may serve better as a re-
search tool than a definitive diagnostic. Large educational data sets are
complex, and if data is collected on many attributes with a fine level of
precision, it can be computationally difficult to find meaningful results;
smaller data sets may not be able to scale across diverse populations.
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Current methods of quantitative assessment may be better served for
curriculum development and internal assessments than driving policy
decisions. This experience of research in quantitative analysis has im-
proved my teaching, better integrating and analyzing qualitative and
quantitative assessment of my students and lessons, especially in ques-
tions of difference in performance of specific socioeconomic groups.





APPENDIX A

Benchmark Performance

1. Performance on Benchmark Data Sets, 10 Trials

1 nTrials = 10
2 -------------------------
3 Iris
4 Elapsed time is 480.705623 seconds.
5 -------------------------
6 Mixed kMeans Numeric kMeans
7

8

9 Performance 0.88591 0.82282
10 Silhouette 0.78531 0.81208
11

12 -------------------------
13 Lenses
14 Elapsed time is 26.449903 seconds.
15 -------------------------
16 Mixed kMeans Numeric kMeans
17

18

19 Performance 0.58261 0.46522
20 Silhouette 0.58863 0.58624
21

22 -------------------------
23 Heart
24 Elapsed time is 838.774515 seconds.
25 -------------------------
26 Mixed kMeans Numeric kMeans
27

28

29 Performance 0.83963 0.76296
30 Silhouette 0.45377 0.81353
31

32 -------------------------
33 Vote
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34 Elapsed time is 670.403463 seconds.
35 -------------------------
36 Mixed kMeans Numeric kMeans
37

38

39 Performance 0.87327 0.86866
40 Silhouette 0.75569 0.61724
41

42 -------------------------
43 Australian
44 Elapsed time is 164.631749 seconds.
45 -------------------------
46 Mixed kMeans Numeric kMeans
47

48

49 Performance 0.782 0.61248
50 Silhouette 0.58958 0.89507
51

52 -------------------------

2. Performance on Benchmark Data Sets, 100 Trials

1 nTrials = 100
2 -------------------------
3 Iris
4 Elapsed time is 4277.812547 seconds.
5 -------------------------
6 Mixed kMeans Numeric kMeans
7

8

9 Performance 0.85416 0.84174
10 Silhouette 0.79697 0.81175
11

12 -------------------------
13 Lenses
14 Elapsed time is 254.807561 seconds.
15 -------------------------
16 Mixed kMeans Numeric kMeans
17

18

19 Performance 0.51391 0.48783
20 Silhouette 0.59164 0.58876
21

22 -------------------------
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23 Heart
24 Elapsed time is 8931.101548 seconds.
25 -------------------------
26 Mixed kMeans Numeric kMeans
27

28

29 Performance 0.83981 0.75615
30 Silhouette 0.45644 0.79679
31

32 -------------------------
33 Vote
34 Elapsed time is 7893.835162 seconds.
35 -------------------------
36 Mixed kMeans Numeric kMeans
37

38

39 Performance 0.87327 0.85276
40 Silhouette 0.75569 0.61025
41

42 -------------------------
43 Australian
44 Elapsed time is 7232.194358 seconds.
45 -------------------------
46 Mixed kMeans Numeric kMeans
47

48

49 Performance 0.75392 0.59216
50 Silhouette 0.59283 0.86832
51

52 -------------------------





APPENDIX B

Object Oriented Clustering - MATLAB Source

1 classdef mixedclust
2 %MIXEDCLUST is a class for copmuting kmeans clustering
3 %for data sets with numeric and categorical variables.
4 %
5 % Other m-files required:
6 % assignmentoptimal.m, Markus Buehren ...
7 % http://www.mathworks.com/matlabcentral/...
8 % fileexchange/6543-functions-for-the-...
9 % rectangular-assignment-problem ...

10 % /content/assignmentoptimal.m
11 % This function implements the Hungarian Algorithm.
12 %
13 % Subfunctions:
14 % significance (C) Ahmad Alsahaf - GNU GPL
15 % cluster center (C) Ahmad Alsahaf - GNU GPL
16 % algo dist (C) Ahmad Alsahaf - GNU GPL
17 % dist to center (C) Ahmad Alsahaf - GNU GPL
18 %
19 % These subfunctions can also be found as part ...

of Ahmad Alsahaf's...
20 % amjams/mixedkmeans package on MATLAB ...

Central/FileExchange. They ...
21 % have been modified for use, and are inluded ...

in mixedclust.m.
22 % http:///www.mathworks.com/...
23 % matlabcentral/fileexchange
24 %
25 % Author: Camden Glenn Bock
26 % 598 Bates College, Lewistion, ME 04240
27 % cbock@bates.edu, camdenbock@gmail.com
28 % http://www.camdenbock.com
29 % December 2015; Last Revision: 12/30/2015
30 %
31 %% Copyright (C) 2016 Camden Bock - GPL v. 3.0
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32 %
33 % 'This program is liscensed under GPL v3.0'
34 % 'This program is modified from Ahmad Alsahaf`s ...

package: ...
35 % amjams/mixedkmeans'.
36 %
37 % This program is free software: you can ...

redistribute it and/or modify
38 % it under the terms of the GNU General Public ...

License as published by
39 % the Free Software Foundation, either version 3 of ...

the License, or
40 % any later version.
41 %
42 % This program is distributed in the hope that it ...

will be useful,
43 % but WITHOUT ANY WARRANTY; without even the ...

implied warranty of
44 % MERCHANTABILITY or FITNESS FOR A PARTICULAR ...

PURPOSE. See the
45 % GNU General Public License for more details.
46 %
47 % You should have received a copy of the GNU ...

General Public License
48 % along with this program. If not, see ...

<http://www.gnu.org/licenses/>.
49 %
50 %
51 % 'This program comes with ABSOLUTELY NO WARRANTY;' ...
52 % 'for details type view source. This is free ...

software, and' ...
53 % 'you are welcome to redistribute it display under ...

certain' ...
54 % 'conditions; see <http://www.gnu.org/licenses/>', ...
55 % ('Copyright (C) 2016 Camden Bock, Bates College'))
56

57

58

59 %------------- BEGIN CODE --------------
60

61 properties
62 data
63 m idx
64 k
65 max iter
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66 inputType
67 trialsNo
68 mixedClustering
69 numericClustering
70 origionalData
71 significances
72 data discrete
73 normalizedData
74 tempvar
75 all dist
76 silh mean
77 performance
78 idx
79 end
80

81 methods
82 function obj = mixedclust(data, k, max iter, ...

inputType,trialsNo)
83

84 [dn, ¬] = size(data);
85 [¬, ¬] = size(inputType);
86 if nargin < 4
87 trialsNo = 1;
88 inputType = [];
89 elseif nargin < 3
90 max iter = 1000;
91 elseif nargin < 2
92 display('Not Enough Arguments')
93 end
94 obj.tempvar.dn = dn;
95 obj.trialsNo = trialsNo;
96 obj.data = data;
97 obj.k = k;
98 obj.max iter = max iter;
99 obj.inputType = inputType;

100

101 % replace NaN entrieies
102 obj.data(isnan(obj.data)) = 1;
103 obj = normalize(obj);
104 obj = discretize(obj);
105 obj = sigpairs(obj);
106 obj = signif(obj);
107 end
108 function visulaizeNum(obj, trialnum)
109 if nargin < 2
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110 trialnum = 1;
111 end
112 pointClusterVis(obj.numericClust, trialnum)
113 end
114 function visualizeMix(obj, trialnum)
115 if nargin < 2
116 trialnum = 1;
117 end
118 pointClusterVis(obj.mixedClust, trialnum)
119 end
120 function obj = normalize(obj)
121 obj.tempvar.m distance = ...
122 zeros(obj.tempvar.dn,obj.k,obj.trialsNo);
123 obj.tempvar.n distance = ...
124 zeros(obj.tempvar.dn,obj.k,obj.trialsNo);
125

126

127

128 %% Mixed KMeans
129 obj.tempvar.silhouette mixed mean = ...

zeros(1,obj.trialsNo);
130

131 obj.m idx = zeros(obj.tempvar.dn,obj.trialsNo);
132

133 [obj.tempvar.n,obj.tempvar.m] = size(obj.data);
134 obj.tempvar.idx num = find(¬obj.inputType);
135

136 %% Normalize Numeric Data
137 for i=1:numel(obj.tempvar.idx num)
138 obj.data(:,obj.tempvar.idx num(i)) = ...
139 (obj.data(:,obj.tempvar.idx num(i)) ...

- ...
140 repmat(min(obj.data(:,obj.tempvar.idx num(i))),...
141 size(obj.data(:,obj.tempvar.idx num(i))))) ...

...
142 /(max(obj.data(:,obj.tempvar.idx num(i)))...
143 -min(obj.data(:,obj.tempvar.idx num(i))));
144 end
145 obj.normalizedData = obj.data;
146 end
147 function obj = discretize(obj)
148 %% Discretize Numeric Data
149 obj.data discrete = obj.data;
150 %ensure k << N
151 % if obj.tempvar.dn >1000
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152 % max k = ...
round(obj.tempvar.dn/200);

153 % else
154 max k = 20;
155 % end
156 obj.tempvar.idx cat = find(-1*obj.inputType+1);
157 for i=1:numel(obj.tempvar.idx cat)
158 silh avg = zeros(max k,1);
159 data num = ...

obj.data(:,obj.tempvar.idx cat(i));
160 for k iter=1:max k
161

162 [idx,¬,¬,D]=...
163 kmeans(data num,k iter+1,'dist', ...

...
164 'sqeuclidean','MaxIter',100,...
165 'Options',statset('UseParallel',1));
166 [Drow,¬] = size(D);
167 silh = zeros(1,Drow);
168 for drow = 1:Drow
169 [a drow,excl D] = min(D(drow,:));
170 b drow = ...

min(D(drow,[1:(excl D-1),...
171 (excl D+1):end]));
172 silh(drow) = (b drow-a drow)...
173 /max(a drow,b drow);
174 end
175 %Ensure selection has >1 unique value
176 if numel(unique(idx))>1
177 silh avg(k iter) = mean(silh);
178 else
179 silh avg(k iter) = -10000000;
180 end
181

182 end
183 [¬,k best] = max(silh avg);
184 k best = k best+1;
185 obj.data discrete(:,obj.tempvar.idx cat(i)) ...

= ...
186 kmeans(obj.data(:,obj.tempvar.idx cat(i)),...
187 k best);
188 end
189 end
190 function obj = sigpairs(obj)
191 D = obj.data discrete;
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192

193 % define the attribute, its unique values, ...
and all unique pairs

194 for i=1:obj.tempvar.m
195

196 a = D(:,i);
197 unique a = find(accumarray(a+1,1))-1;
198 all pairs = nchoosek(unique a,2);
199 varname = ['var', num2str(i)];
200 obj.tempvar.(varname).all pairs = ...

all pairs;
201

202 end
203 end
204 function obj = signif(obj)
205

206 sigs = zeros(obj.tempvar.m,1);
207 parfor i=1:obj.tempvar.m
208

209 sigs(i) = significance(obj,i);
210

211 end
212 obj.significances = sigs;
213 end
214 function obj = mclust(obj)
215 n = obj.tempvar.dn;
216 for iMixed = 1:obj.trialsNo
217 %try
218 curr idx = randi([1 obj.k],n,1);
219

220 obj = algo distance(obj);
221

222 new idx = zeros(n,1);
223

224 count = 0;
225 while(isequal(new idx,curr idx)==0 &&...
226 count<obj.max iter)
227

228 if count>0
229 curr idx = new idx;
230 end
231

232 all centers = struct;
233 droppedACluster = 0;
234 for i=1:obj.k
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235 curr cluster = ...
obj.data(curr idx==i,:);

236 curr center = ...
cluster center(curr cluster, ...
obj);

237 if curr center.cluster size < 1
238 droppedACluster = 1;
239 end
240 name = ...

['center ',sprintf('%03d',i)];
241 all centers.(name) = curr center;
242 end
243

244 silh c = zeros(1,n);
245

246 if droppedACluster == 0
247

248 for i=1:n
249 k distances = zeros(obj.k,1);
250 data i = obj.data(i,:);
251 for j=1:obj.k
252 name now = ['center ',...
253 sprintf('%03d',j)];
254 center now = ...

all centers.(name now);
255 obj.tempvar.data i = ...

data i;
256 obj.tempvar.center now ...

= center now;
257 obj.tempvar.all dist = ...

obj.all dist;
258 k distances(j) = ...

dist to center(obj);
259 end
260

261 [¬,new idx(i)] = ...
min(k distances);

262 min1 = min(k distances);
263 min2 = ...

min(setdiff(k distances(:),...
264 min(k distances(:))));
265 silh c(i) = (min2-min1)/...
266 max(min1,min2);
267 end
268 else
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269 new idx = randi([1 obj.k],n,1);
270 end
271 count = count+1;
272 end
273

274 idx = new idx;
275 obj.m idx(:,iMixed) = idx;
276 obj.silh mean(iMixed) = mean(silh c);
277 % catch
278 % fprintf('Error ...

Non-existent field categorical. ...
iMixed = %d', ...

279 % iMixed);
280 % display('- - - - ...

execution will continue - - - -')
281 % iMixed = iMixed-1;
282 % end
283 end
284

285 end
286 %% Significances
287 function sig = significance(obj,idx)
288 %SIGNIFICANCE: finds the significance of a ...

categorical attribute or a
289 %discretized version of a numerical attribute
290

291 % input:
292 % D: the dataset of all attributes
293 % idx: index of the attribute whose ...

significance is to be found
294 %
295 % ouput:
296 % sig: the significance of the attribute
297 %
298 %
299 % Copyright 2015 Ahmad Alsahaf
300 % Research fellow, Politecnico di Milano
301 % ahmadalsahaf@gmail.com
302

303 % number of attributes
304 D = obj.data discrete;
305 m = size(D,2);
306

307 % define the attribute, its unique values, ...
and all unique pairs
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308 a = D(:,idx);
309 unique a = find(accumarray(a+1,1))-1;
310 varname = ['var', num2str(idx)];
311 all pairs = obj.tempvar.(varname).all pairs;
312 %Note nchoosek is impractical for n>15
313 num pairs = size(all pairs,1);
314

315 % the number of all ∆ distances
316 num ∆ = (m-1)*num pairs;
317

318 % find all ∆s and average them
319 feature c = 1:m; feature c(idx)=[]; ...

%complementary feature set
320 ∆ sum = 0; %initialize
321 for i=1:num pairs
322 curr pair = all pairs(i,:);
323 for j=1:(m-1)
324 % intialize distance
325 d = 0;
326

327 % initalize support set
328 w = [];
329 w c = [];
330

331 % the number of categorical values ...
in D(:,feature c(j))

332 data temp = D(:,feature c(j))+1;
333 unique j = ...

find(accumarray(data temp,1))-1;
334 vj = numel(unique j);
335

336

337 % begin algorithm
338 for t = 1:vj
339 ut = unique j(t);
340

341 % locations
342 ut in aj = ...

find(D(:,feature c(j))==ut);
343 x in ai = find(a==curr pair(1));
344 y in ai = find(a==curr pair(2));
345

346 % probabilities
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347 p ux = ...
numel(x in ai(ismembc(x in ai, ...
ut in aj))) ...

348 /numel(x in ai);
349 p uy = ...

numel(y in ai(ismembc(y in ai, ...
ut in aj))) ...

350 /numel(y in ai);
351

352 % conditions
353 if p ux≥ p uy
354 w = [w;ut]; ...

%update support set
355 d = d+p ux; ...

%update distance
356 else
357 w c = [w c;p uy]; ...

%update complement ...
support set

358 d = d+p uy; ...
%update distance

359 end
360

361

362 end
363 ∆ = d-1; ...

%restrict distance to [0,1]
364 ∆ sum = ∆ sum + ∆;
365 end
366 end
367 % find average distance, which is the ...

significance
368 sig = ∆ sum/num ∆;
369 end
370

371

372 %% Algo Distance
373

374 function obj = algo distance(obj)
375 % Copyright 2015 Ahmad Alsahaf
376 % Research fellow, Politecnico di Milano
377 % ahmadalsahaf@gmail.com
378 data discrete = obj.data discrete;
379

380 % data dimenionsality
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381 [¬,m] = size(data discrete);
382

383 %intialize distance vector; which contains ...
all distances between all pairs

384 all dist = [];
385

386 for i = 1:m
387 % define ai, the current attribute
388 ai = data discrete(:,i);
389

390 % find all pairs of unique values in ...
current feature

391 unique ai = find(accumarray(ai+1,1))-1;
392 all pairs = nchoosek(unique ai,2);
393

394 % find complement feature set
395 feat c = 1:m; feat c(i) = [];
396

397 for j= 1:size(all pairs,1)
398 % initialize sum and define current ...

pair
399 sum ∆ = 0;
400 curr pair = all pairs(j,:);
401

402 % find distance between the pair ...
for all Aj

403 for k = 1:m-1
404 % define aj
405 aj = data discrete(:,feat c(k));
406

407 % update the sum
408 % intialize distance
409 d = 0;
410

411 % initalize support set
412 w = [];
413 w c = [];
414

415 % the number of categorical ...
values in aj

416 unique j = ...
find(accumarray(aj+1,1))-1;

417

418 vj = numel(unique j);
419
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420 % begin algorithm
421 for t = 1:vj
422 ut = unique j(t);
423

424 % locations
425 ut in aj = find(aj==ut);
426 x in ai = ...

find(ai==curr pair(1));
427 y in ai = ...

find(ai==curr pair(2));
428

429 % probabilities
430 p ux = ...

numel(x in ai(ismembc(x in ai, ...
ut in aj))) ...

431 /numel(x in ai);
432 p uy = ...

numel(y in ai(ismembc(y in ai, ...
ut in aj))) ...

433 /numel(y in ai);
434

435 % conditions
436 if p ux≥ p uy
437 w = [w;ut]; ...

%update support set
438 d = d+p ux; ...

%update distance
439 else
440 w c = [w c;p uy]; ...

%update complement ...
support set

441 d = d+p uy; ...
%update distance

442 end
443

444

445 end
446 ∆ = d-1; ...

%restrict distance to [0,1]
447 sum ∆ = sum ∆ + ∆;
448 end
449 % update the distance vector
450 sum ∆ = sum ∆/(m-1);
451
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452 % arranged as ...
[attribute idx,first value(lower), ...
...

453 % ...
second value(higher),distance];

454 pair sorted = sort(curr pair,'ascend');
455 all dist = [all dist; ...
456 i,pair sorted(1),pair sorted(2),...
457 sum ∆];
458 obj.all dist = all dist;
459 end
460 end
461

462 end
463

464 %% Cluster Center
465 function [ center ] = cluster center(cluster, obj)
466 %CLUSTER CENTER find cluster centers for ...

mixed attributes
467

468 % inputs:
469 % cluster: the members of the cluster
470 % input type: binary index indicating ...

the type of attributes...
471 % (1 for categorical)
472 %
473 % output:
474 % center: the center of the cluster
475 % Copyright 2015 Ahmad Alsahaf
476 % Research fellow, Politecnico di Milano
477 % ahmadalsahaf@gmail.com
478

479 % intialize a structure variable to save ...
the centers

480

481 input type = obj.inputType;
482 center = struct;
483

484 % cluster dimensions, and numerical and ...
categorical feature indices

485 [n,¬] = size(cluster);
486 center.cluster size = n;
487 cat idx = find(input type);
488 num idx = find(¬input type);
489
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490

491 % find center for each numerical attribute
492 for i=1:numel(num idx)
493 curr att = cluster(:,num idx(i));
494 name = ['att ',sprintf('%03d',num idx(i))];
495 center.numerical.(name) = mean(curr att);
496 end
497

498 % find center for each categorical attribute
499 for i=1:numel(cat idx)
500 curr att = cluster(:,cat idx(i));
501 name = ['att ',sprintf('%03d',cat idx(i))];
502 uniq curr att = ...

find(accumarray(curr att+1,1))-1;
503

504 for j=1:numel(uniq curr att)
505 name value = ...

['value ',sprintf('%03d',j)];
506 curr value = uniq curr att(j);
507 count value = ...

numel(find(curr att==curr value));
508 center.categorical.(name).(name value).value ...

= curr value;
509 center.categorical.(name).(name value).count ...

= count value;
510 end
511 end
512

513 end
514

515 %% Distance to Center
516

517 function theta = dist to center(obj)
518

519 % dist to center: computes the the distance ...
between a data point and a

520 % cluster center
521

522 % inputs:
523 % x: a data point
524 % c: a cluster center ...

(structure)
525 % input type: binary index ...

indicating attributes (1 = categorical)
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526 % sig: significance of all ...
attributes in the dataset

527 % dist all: list of all distances ...
of categorical values

528 %
529 % output:
530 % theta: the distance between x and c
531 %
532 %
533 % Copyright 2015 Ahmad Alsahaf
534 % Research fellow, Politecnico di Milano
535 % ahmadalsahaf@gmail.com
536

537 x = obj.tempvar.data i;
538 c = obj.tempvar.center now;
539 input type = obj.inputType;
540 sig = obj.significances;
541 dist all = obj.tempvar.all dist;
542

543 % find indices
544 cat idx = find(input type);
545 num idx = find(¬input type);
546

547 % load cluster size
548 cluster size = c.cluster size;
549

550 % distance for numerical attributes
551

552 % initialize numerical distance to zero
553 sum distance numerical v = ...

zeros(1,numel(num idx));
554

555 % find distance for each numerical ...
attribute and add to sum

556 for i=1:numel(num idx)
557 d = x(num idx(i));
558 name = ['att ',sprintf('%03d',num idx(i))];
559 num center = c.numerical.(name);
560 curr significance = sig(num idx(i));
561 curr dist = ...

(curr significance*(d-num center))ˆ2;
562 sum distance numerical v(i) = curr dist;
563 end
564 sum distance numerical = ...

sum(sum distance numerical v);
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565

566 % display(c)
567 % initialize categorical distance to zero
568 sum distance categorical = 0;
569

570 % find distance for each categorical ...
attribute and add to sum

571 for i=1:numel(cat idx)
572 % access the current categorical ...

attribute from structure
573 name = ['att ',sprintf('%03d',cat idx(i))];
574 curr att = c.categorical.(name);
575 value names = fieldnames(curr att);
576

577 % initialize sum for this categorical ...
attribute

578 sum categorical current = ...
zeros(1,numel(value names));

579

580 % now access values within that ...
attribute in the cluster

581

582 for j=1:numel(value names)
583 value in point = x(cat idx(i));
584 value in cluster = ...

curr att.(value names{j}).value;
585 count in cluster = ...

curr att.(value names{j}).count;
586

587 % find the distance from the list
588 sorted values = ...
589 sort([value in point,value in cluster],...
590 'ascend');
591 idx dist = dist all(:,1)==...
592 cat idx(i)&dist all(:,2) == ...
593 sorted values(1) & ...

dist all(:,3) ==...
594 sorted values(2);
595

596 % set distance to zero if value is ...
equal to center, compute dist

597 % othewise (i.e. only update when ...
different values

598
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599 if (sorted values(1) 6= ...
sorted values(2))

600 sum categorical current(j) = ...
((1/cluster size)*...

601 count in cluster*...
602 dist all(idx dist, 4))ˆ2;
603 end
604 end
605 sum distance categorical = ...

sum(sum categorical current);
606 end
607 % overall distance
608 theta = sum distance numerical + ...

sum distance categorical;
609 end
610

611

612 end
613 end





APPENDIX C

Benchmark Performance - MATLAB Source

1 %Testing of Benchmark Data Sets
2 nTrials = 1;
3 sendEmail('Benchmark Begin!')
4

5 for i=1:5
6 if i==1
7 display('Iris')
8 iris = ...

clusteringCompare('iris.all.csv',[],5,2,nTrials);
9 sendEmail('Iris Done!')

10 % elseif i==2
11 %
12 % display('Lenses')
13 % lenses = ...

clusteringCompare('lenses.all.csv',1:4,5,2,nTrials);
14 % sendEmail('Lenses Done!')
15 elseif i==3
16

17 display('Heart')
18 heartlabels = [2,3,6,7,9,11,12,13];
19 heart = clusteringCompare('Heart2.csv',...
20 heartlabels,14,2,nTrials);
21 sendEmail('Heart Done!')
22

23 elseif i==4
24

25 display('Vote')
26 vote = ...

clusteringCompare('vote.all.csv',1:16,17,2,nTrials);
27 sendEmail('Vote Done!')
28

29 elseif i==5
30

31 display('Australian')

79
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32 australianlabels = [1,4,6,8,9,11,12];
33 australian = ...

clusteringCompare('australian.all.csv',...
34 australianlabels,15,2,nTrials);
35 sendEmail('Australian Done!')
36

37 end
38

39 % pause(15*60)
40 end
41

42 statsSummary

1 classdef clusteringCompare
2 %CLUSTERINGCOMPARE Summary of this class goes here
3 % Detailed explanation goes here
4 %
5 % Author: Camden Glenn Bock
6 % 598 Bates College, Lewistion, ME 04240
7 % cbock@bates.edu, camdenbock@gmail.com
8 % http://www.camdenbock.com
9 % December 2015; Last Revision: 12/30/2015

10 %
11 %% Copyright (C) 2016 Camden Bock - GPL v. 3.0
12 %
13 % 'This program is liscensed under GPL v3.0'
14 % 'This program is modified from Ahmad Alsahaf`s ...

package: ...
15 % amjams/mixedkmeans'.
16 %
17 % This program is free software: you can ...

redistribute it and/or modify
18 % it under the terms of the GNU General Public ...

License as published by
19 % the Free Software Foundation, either version 3 of ...

the License, or
20 % any later version.
21 %
22 % This program is distributed in the hope that it ...

will be useful,
23 % but WITHOUT ANY WARRANTY; without even the ...

implied warranty of
24 % MERCHANTABILITY or FITNESS FOR A PARTICULAR ...

PURPOSE. See the
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25 % GNU General Public License for more details.
26 %
27 % You should have received a copy of the GNU ...

General Public License
28 % along with this program. If not, see ...

<http://www.gnu.org/licenses/>.
29 %
30 %
31 % 'This program comes with ABSOLUTELY NO WARRANTY;' ...
32 % 'for details type view source. This is free ...

software, and' ...
33 % 'you are welcome to redistribute it display under ...

certain' ...
34 % 'conditions; see <http://www.gnu.org/licenses/>', ...
35 % ('Copyright (C) 2016 Camden Bock, Bates College'))
36

37

38

39 %% ------------- BEGIN CODE --------------
40

41 properties
42 mixedClust
43 numericClust
44 output
45 trialsNo
46 inputType
47 data
48 tempvar
49 end
50 methods
51 function obj = clusteringCompare(filename, ...

catAttributes, ncols, ...
52 startRow, trialsNo)
53 if nargin < 5
54 trialsNo = 1;
55 elseif nargin < 4
56 startRow = 1;
57 elseif nargin < 3
58 display('not enough inputs')
59 end
60 obj.trialsNo = trialsNo;
61 obj = dataimport(obj,filename, ...

catAttributes, ncols, startRow);
62 [n,m] = size(obj.data);
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63 obj.mixedClust = mixedclust(obj.data, ...
obj.tempvar.k, 1000,...

64 obj.inputType,trialsNo);
65 obj.mixedClust = mclust(obj.mixedClust);
66 obj.mixedClust.idx = ...

obj.mixedClust.m idx(:,:,1);
67 obj.numericClust = struct;
68 obj.numericClust.idx = zeros(m,obj.trialsNo);
69 obj.numericClust.D = ...

zeros(m,obj.tempvar.k,obj.trialsNo);
70 obj.numericClust.silh = zeros(n,obj.trialsNo);
71 obj.numericClust.avg silh = ...

zeros(1,obj.trialsNo);
72 for i=1:obj.trialsNo
73 [idx,¬,¬,D] = ...

kmeans(obj.data,obj.tempvar.k);
74 obj.numericClust.idx = idx;
75 obj.numericClust.dist(:,:,i) = D;
76 silh = zeros(n,1);
77 for j = 1:n
78 x = sort(D(j,:));
79 silh(j) = (x(2)-x(1))/x(2);
80 end
81 obj.numericClust.silh(:,i) = silh;
82 obj.numericClust.avg silh(i) = mean(silh);
83 end
84 obj = compareOut(obj);
85 end
86 function obj = compareOut(obj)
87 obj.numericClust.performance = ...

zeros(1,obj.trialsNo);
88 obj.mixedClust.performance = ...

zeros(1,obj.trialsNo);
89 for nameidx=1:2
90 if nameidx==1
91 name = 'mixedClust';
92 elseif nameidx==2
93 name = 'numericClusst';
94 end
95 for i=1:obj.trialsNo
96 idx = obj.(name).idx(:,:,i);
97 k = numel(unique(obj.output));
98 ErrorMatrix = zeros(k);
99 output values = unique(obj.output);

100 for emCol = 1:k
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101 for emRow = 1:k
102 output emRow = ...

output values(emRow);
103 for oRow = 1:length(obj.output)
104 if (obj.output(oRow) 6= ...

output emRow)...
105 && (idx(oRow) ...

== emCol);
106 ErrorMatrix(emCol, ...

emRow)...
107 = ...

ErrorMatrix(emCol,emRow)+1;
108 end
109 end
110 end
111 end
112 [mEM, nEM] = size(ErrorMatrix);
113 if mEM6=nEM
114 display('Warning, matrix must ...

be square');
115 end
116 [¬, count] = ...

assignmentoptimal(ErrorMatrix);
117 obj.(name).performance(i) = ...

1-count/length(idx);
118 end
119 end
120 end
121 function obj = dataimport(obj,filename, ...

catAttributes, ncols, startRow)
122

123 delimiter = ',';
124 endRow = inf;
125

126 %% Format string for each line of text: ...
Autmoated for user input

127 inputBlock = ('%f');
128 formatSpec = char(1:(2*ncols + 8));
129 for i = 2:2:(2*ncols)
130 formatSpec((i-1):i) = inputBlock;
131 end
132 formatSpec((2*ncols+1):(2*ncols+8))=...
133 ('%[ˆ\n\r]');
134

135 %% Open the text file.
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136 fileID = fopen(filename,'r');
137

138 %% Read columns of data according to format ...
string.

139 % This call is based on the structure of ...
the file used to generate this

140 % code. If an error occurs for a different ...
file, try regenerating the code

141 % from the Import Tool.
142 dataArray = textscan(fileID, ...

formatSpec, endRow(1)-startRow(1)+1, ...
143 'Delimiter', delimiter, 'HeaderLines', ...

startRow(1)-1, ...
144 'ReturnOnError', false);
145 for block=2:length(startRow)
146 frewind(fileID);
147 dataArrayBlock = textscan(fileID, ...

formatSpec, ...
148 endRow(block)-startRow(block)+1, ...

'Delimiter', delimiter, ...
149 'HeaderLines', startRow(block)-1, ...

'ReturnOnError', false);
150 for col=1:length(dataArray)
151 dataArray{col} = [dataArray{col}; ...

dataArrayBlock{col}];
152 end
153 end
154

155 %% Close the text file.
156 fclose(fileID);
157

158 %% Create output variable
159 datasource = [dataArray{1:end-1}];
160

161 %% Options for alsahaf mixed kmeans
162 obj.data = datasource(:,1:(end-1));
163 obj.output = datasource(:,end);
164 if min(min(obj.output))==0
165 obj.output = obj.output + 1;
166 elseif min(min(obj.output))6=1
167 disp('Error: Datasource may not have ...

proper categorical assignments')
168 end
169

170 obj.tempvar.k = length(unique(obj.output));
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171

172 [¬,dc] = size(obj.data);
173 obj.inputType = zeros(1,dc);
174 for q=1:length(catAttributes)
175 obj.inputType(catAttributes(q)) = 1;
176 if min(min(obj.data(:, ...

catAttributes(q)))) == 0
177 obj.data(:,catAttributes(q)) =...
178 obj.data(:, catAttributes(q)) + 1;
179 elseif min(min(obj.data(:, ...

catAttributes(q)))) 6=1
180 disp('Error: Datasource may not ...

have proper categorical ...
assignments')

181 end
182 end
183 obj.tempvar.inputType = obj.inputType;
184 end
185 function visulaizeNum(obj, trialnum)
186 if nargin < 2
187 trialnum = 1;
188 end
189 pointClusterVis(obj.numericClust, trialnum)
190 end
191 function visualizeMix(obj, trialnum)
192 if nargin < 2
193 trialnum = 1;
194 end
195 pointClusterVis(obj.mixedClust, trialnum)
196 end
197 end
198

199 end

1 %Stats for 100trail clusterings
2 % varnames = {'australian','heart','iris','lenses','vote'};
3 % clustnames = {'mixedClust','numericClust'};
4 % propnames = ...

['k','idx','silhouette','performance','distance'];
5 v = 5;
6 n = 100;
7

8 summary = struct;
9 summary.perf = zeros(v,n);
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10 summary.silh = zeros(v,n);
11

12 summary.k = zeros(1,v);
13 summary.mixMaxP = zeros(v,1);
14 summary.mixAvgP = zeros(v,1);
15 summary.mixMedP = zeros(v,1);
16 summary.mixMaxS = zeros(v,1);
17 summary.mixAvgS = zeros(v,1);
18 summary.mixMedS = zeros(v,1);
19

20 summary.numMaxP = zeros(v,1);
21 summary.numAvgP = zeros(v,1);
22 summary.numMedP = zeros(v,1);
23 summary.numMaxS = zeros(v,1);
24 summary.numAvgS = zeros(v,1);
25 summary.numMedS = zeros(v,1);
26 for i=1:v
27 if i==1
28 this = australian;
29 elseif i==2
30 this = heart;
31 elseif i==3
32 this = iris;
33 elseif i==4
34 this = lenses;
35 elseif i==5
36 this = vote;
37 end
38 now = this.mixedClust;
39

40 summary.k(i) = now.k;
41 summary.mixMaxP(i) = max(now.performance);
42 summary.mixAvgP(i) = mean(now.performance);
43 summary.mixMedP(i) = median(now.performance);
44 summary.mixMaxS(i) = min(now.silhouette);
45 summary.mixAvgS(i) = mean(now.silhouette);
46 summary.mixMedS(i) = median(now.silhouette);
47

48 now = this.numericClust;
49 summary.numMaxP(i) = max(now.performance);
50 summary.numAvgP(i) = mean(now.performance);
51 summary.numMedP(i) = median(now.performance);
52 summary.numMaxS(i) = min(now.silhouette);
53 summary.numAvgS(i) = mean(now.silhouette);
54 summary.numMedS(i) = median(now.silhouette);
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55 end
56 clear cols
57 clear propnames
58 clear subname
59 clear this
60 clear v
61 clear varnames
62 clear i
63 clear ans
64 clear n
65 clear now
66 clear clustnames
67

68 figure
69 bar([summary.mixMaxP,summary.numMaxP]);
70 hold on
71 title 'Benchmark Maximum Performance Ratio'
72 hold off
73 fig2plotly();
74

75 figure
76 bar([summary.mixAvgP,summary.numAvgP]);
77 hold on
78 title 'Benchmark Mean Performance Ratio'
79 hold off
80 fig2plotly();
81

82 figure
83 bar([summary.mixMedP,summary.numMedP]);
84 hold on
85 title 'Benchmark Median Performance Ratio'
86 hold off
87 fig2plotly();
88 close all
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Visualization of Data Point 2D and 3D

1 function pointClusterVis(clustering,trialnum)
2 %POINTCLUSTERVIS plots polar and cylinderical ...

visualizations of clustering
3 %
4 % Input:
5 % clustering - struct
6 % .k - number of means
7 % .idx - cluster assignments ...

(indicies) for each trial
8 % .distances - distance from each point ...

to each center
9 % trialnum - trial to visualize ...

(default 1)
10 %
11 % Author: Camden Glenn Bock
12 % 598 Bates College, Lewistion, ME 04240
13 % cbock@bates.edu, camdenbock@gmail.com
14 % http://www.camdenbock.com
15 % December 2015; Last Revision: 12/30/2015
16 %
17 %% Copyright (C) 2016 Camden Bock - GPL v. 3.0
18 %
19 % 'This program is liscensed under GPL v3.0'
20 % 'This program is modified from Ahmad Alsahaf`s ...

package: ...
21 % amjams/mixedkmeans'.
22 %
23 % This program is free software: you can redistribute ...

it and/or modify
24 % it under the terms of the GNU General Public License ...

as published by
25 % the Free Software Foundation, either version 3 of the ...

License, or
26 % any later version.
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27 %
28 % This program is distributed in the hope that it will ...

be useful,
29 % but WITHOUT ANY WARRANTY; without even the implied ...

warranty of
30 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ...

See the
31 % GNU General Public License for more details.
32 %
33 % You should have received a copy of the GNU General ...

Public License
34 % along with this program. If not, see ...

<http://www.gnu.org/licenses/>.
35 %
36 %
37 % 'This program comes with ABSOLUTELY NO WARRANTY;' ...
38 % 'for details type view source. This is free software, ...

and' ...
39 % 'you are welcome to redistribute it display under ...

certain' ...
40 % 'conditions; see <http://www.gnu.org/licenses/>', ...
41 % ('Copyright (C) 2016 Camden Bock, Bates College'))
42

43

44

45 %------------- BEGIN CODE --------------
46

47 if nargin < 2
48 trialnum = 1;
49 elseif nargin < 1
50 display('not enough arguments')
51 end
52

53 idx = clustering.idx(:,trialnum);
54 distances = clustering.distance(:,:,trialnum);
55 rownum = 1:length(idx);
56

57 [idx,I] = sort(idx);
58 distances = distances(I,:);
59

60 k = numel(unique(idx));
61 X = zeros(length(rownum),k+1);
62 Y = zeros(length(rownum),k+1);
63 Z = zeros(length(rownum),k+1);
64 C = zeros(length(rownum),k+1);
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65

66 %plot regular polygon
67 ∆Angle = 2*pi/k;
68 theta = 0:∆Angle:2*pi;
69

70 radiusReg = zeros(1,k+1);
71 for i=1:k+1
72 radiusReg(i) = max(max(distances));
73 end
74 figure
75 subplot(1,2,1)
76 if gpuDeviceCount > 0
77 thetaG = gpuArray(theta);
78 radiusRegG = gpuArray(radiusReg);
79 polar(thetaG,radiusRegG,'b');
80 else
81 polar(theta,radiusReg,'-b');
82 end
83 hold on
84 for i=1:length(rownum)
85 distancePoint = distances(rownum(i),:);
86 %plot datapoint point polygon
87 radiusPoint = zeros(1,k+1);
88 parfor j=1:k
89 radiusPoint(j) = distancePoint(j);
90 end
91 radiusPoint(k+1) = radiusPoint(1);
92 if gpuDeviceCount > 0
93 thetaG = gpuArray(theta);
94 radiusPointG = gpuArray(radiusPoint);
95 polar(thetaG,radiusPointG,'-r');
96 else
97 polar(theta,radiusPoint,'-r');
98 end
99 [x,y] = pol2cart(theta, radiusPoint);

100 X(i,:) = x;
101 Y(i,:) = y;
102 Z(i,:) = rownum(i);
103 for j=1:k
104 C(i,j) = idx(i);
105 end
106 end
107 hold off
108 subplot(1,2,2)
109 if gpuDeviceCount > 0
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110 Xg = gpuArray(X);
111 Yg = gpuArray(Y);
112 Zg = gpuArray(Z);
113 Cg = gpuArray(C);
114 surf(Xg,Yg,Zg,Cg);
115 else
116 surf(X,Y,Z,C);
117 end
118 end



Bibliography

[1] Amir Ahmad and Lipika Dey. A k-mean clustering algorithm for mixed nu-
meric and categorical data. Data & Knowledge Engineering, 63(2):503–527,
November 2007. URL: http://www.sciencedirect.com/science/article/
pii/S0169023X0700050X, doi:10.1016/j.datak.2007.03.016.

[2] Ahmad Alsahaf. amjams mixed kmeans, 2015. URL: http://www.mathworks.
com/matlabcentral/fileexchange/53489-amjams-mixed-kmeans.

[3] Alexander Andonian. Global Optima in sums of matrix elements and the Hun-
garian Algorithm, December 2015.

[4] Leon Bottou. Une Approche thorique de lApprentissage Connexioniste; ap-
plications la reconnaissance de la Parole. Universite de Paris, 1991. URL:
http://www.iro.umontreal.ca/~pift6266/A06/refs/bottou-1991.pdf.

[5] Lon Bottou and Yoshua Bengio. Convergence Properties of the K-Means Algo-
rithms. In Advances in Neural Information Processing Systems 7, pages 585–
592. MIT Press, 1995.

[6] P.S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means
Clustering. Microsoft Research, January 1998. URL: http://research.

microsoft.com/apps/pubs/default.aspx?id=68490.
[7] Markus Buehren. Functions for the rectangular assignment problem, December

2004. URL: http://www.mathworks.com/matlabcentral/fileexchange/

6543-functions-for-the-rectangular-assignment-problem/content/

assignmentoptimal.m.
[8] Jadzia Cendrowska. PRISM: An algorithm for inducing modular rules.

International Journal of Man-Machine Studies, 27(4):349–370, Octo-
ber 1987. URL: http://www.sciencedirect.com/science/article/pii/

S0020737387800032, doi:10.1016/S0020-7373(87)80003-2.
[9] Neil Heffernan. Personal Interview, February 2016.

[10] Neil Heffernan, Cristina Heffernan, and Aviv Brest. WPI Fine Grained Skills
- Skill Diagram, 2009. URL: http://teacherwiki.assistment.org/index.
php/WPI_Fine_Grained_Skills.

[11] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran
Sahmi, Leonidas J Guibas, and Jascha Sohl-Dickstein. Deep Knowledge
Tracing. Number 28 in Advances in Neural Information Processing Sys-
tems. Curran Associates, Inc., 2015. URL: http://papers.nips.cc/paper/
5654-deep-knowledge-tracing.pdf.

[12] Simon Rogers and Mark Girolami. A first course in machine learning. CRC
Press, Boca Raton, 2012.

[13] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,

93

http://www.sciencedirect.com/science/article/pii/S0169023X0700050X
http://www.sciencedirect.com/science/article/pii/S0169023X0700050X
http://dx.doi.org/10.1016/j.datak.2007.03.016
http://www.mathworks.com/matlabcentral/fileexchange/53489-amjams-mixed-kmeans
http://www.mathworks.com/matlabcentral/fileexchange/53489-amjams-mixed-kmeans
http://www.iro.umontreal.ca/~pift6266/A06/refs/bottou-1991.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=68490
http://research.microsoft.com/apps/pubs/default.aspx?id=68490
http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem/content/assignmentoptimal.m
http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem/content/assignmentoptimal.m
http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem/content/assignmentoptimal.m
http://www.sciencedirect.com/science/article/pii/S0020737387800032
http://www.sciencedirect.com/science/article/pii/S0020737387800032
http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://teacherwiki.assistment.org/index.php/WPI_Fine_Grained_Skills
http://teacherwiki.assistment.org/index.php/WPI_Fine_Grained_Skills
http://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf
http://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf


94 BIBLIOGRAPHY

20:53–65, November 1987. URL: http://www.sciencedirect.com/science/
article/pii/0377042787901257, doi:10.1016/0377-0427(87)90125-7.

[14] Silicon Graphics International. SGI - MLC++: Datasets from UCI. URL:
http://www.sgi.com/tech/mlc/db/.

[15] Jie Sun, Robert Freund, and Thomas Magnanti. 15.094J Systems Optimiza-
tion: Models and Computation (SMA 5223), Spring 2004: Introduction to
Convex Constrained Optimization. (Massachusetts Institute of Technology:
MIT OpenCourseWare, 2004. URL: http://ocw.mit.edu/.

[16] S Trivedi, Z.A Pardos, and N.T Heffernan. Clustering Students to Generate
an Ensemble to Improve Standard Test Score Predictions. Lecture notes in
computer science., (6738):377–384, 2011.

[17] Zhenjie Zhang, Bing Tian, Dai Anthony, and K. H. Tung. On the Lower Bound
of Local Optimum in k-means Algorithm. 2006.

http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://www.sgi.com/tech/mlc/db/
http://ocw.mit.edu/


GNU General Public License
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This program is modified from Ahmad Alsahaf‘s package: amjam-

s/mixedkmeans (Licensed under GNU GPL). This program is licensed
under GNU GPL v3.0.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or any
later version.

This program is distributed in the hope that it will be useful, but
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of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

The source code is freely available at:
https://github.com/cam3715/mkmeans

Cite this source code with the following paper:

MLA:
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GNU General Public License 3.0
http:///www.gnu.org/licenses/

The GNU General Public License is a free, copyleft license for soft-
ware and other kinds of works.

The licenses for most software and other practical works are de-
signed to take away your freedom to share and change the works. By
contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our soft-
ware; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same freedoms
that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this Li-
cense giving you legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the GPL clearly ex-
plains that there is no warranty for this free software. For both users’
and authors’ sake, the GPL requires that modified versions be marked
as changed, so that their problems will not be attributed erroneously
to authors of previous versions.
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Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufac-
turer can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic pat-
tern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have
designed this version of the GPL to prohibit the practice for those prod-
ucts. If such problems arise substantially in other domains, we stand
ready to extend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and mod-
ification follow.

Terms and Conditions
(0) Definitions.

“This License” refers to version 3 of the GNU General Pub-
lic License.

“Copyright” also means copyright-like laws that apply to
other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed
under this License. Each licensee is addressed as “you”. “Li-
censees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or
part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work
“based on” the earlier work.

A “covered work” means either the unmodified Program
or a work based on the Program.

To “propagate” a work means to do anything with it that,
without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Prop-
agation includes copying, distribution (with or without modi-
fication), making available to the public, and in some countries
other activities as well.
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To “convey” a work means any kind of propagation that
enables other parties to make or receive copies. Mere interac-
tion with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal
Notices” to the extent that it includes a convenient and promi-
nently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for
the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and
how to view a copy of this License. If the interface presents a
list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

(1) Source Code.
The “source code” for a work means the preferred form of

the work for making modifications to it. “Object code” means
any non-source form of a work.

A “Standard Interface” means an interface that either is an
official standard defined by a recognized standards body, or,
in the case of interfaces specified for a particular programming
language, one that is widely used among developers working
in that language.

The “System Libraries” of an executable work include any-
thing, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to im-
plement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Com-
ponent”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a com-
piler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form
means all the source code needed to generate, install, and (for
an executable work) run the object code and to modify the
work, including scripts to control those activities. However,
it does not include the work’s System Libraries, or general-
purpose tools or generally available free programs which are
used unmodified in performing those activities but which are



GNU GENERAL PUBLIC LICENSE 99

not part of the work. For example, Corresponding Source in-
cludes interface definition files associated with source files for
the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed
to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that
users can regenerate automatically from other parts of the Cor-
responding Source.

The Corresponding Source for a work in source code form
is that same work.

(2) Basic Permissions.
All rights granted under this License are granted for the

term of copyright on the Program, and are irrevocable pro-
vided the stated conditions are met. This License explicitly
affirms your unlimited permission to run the unmodified Pro-
gram. The output from running a covered work is covered by
this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair
use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you
do not convey, without conditions so long as your license oth-
erwise remains in force. You may convey covered works to
others for the sole purpose of having them make modifications
exclusively for you, or provide you with facilities for running
those works, provided that you comply with the terms of this
License in conveying all material for which you do not control
copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your di-
rection and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relation-
ship with you.

Conveying under any other circumstances is permitted solely
under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

(3) Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective tech-

nological measure under any applicable law fulfilling obliga-
tions under article 11 of the WIPO copyright treaty adopted
on 20 December 1996, or similar laws prohibiting or restricting
circumvention of such measures.
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When you convey a covered work, you waive any legal
power to forbid circumvention of technological measures to
the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you
disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of
technological measures.

(4) Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source

code as you receive it, in any medium, provided that you con-
spicuously and appropriately publish on each copy an appro-
priate copyright notice; keep intact all notices stating that
this License and any non-permissive terms added in accord
with section 7 apply to the code; keep intact all notices of the
absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that
you convey, and you may offer support or warranty protection
for a fee.

(5) Conveying Modified Source Versions.
You may convey a work based on the Program, or the

modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you
also meet all of these conditions:
(a) The work must carry prominent notices stating that you

modified it, and giving a relevant date.
(b) The work must carry prominent notices stating that it is

released under this License and any conditions added un-
der section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applica-
ble section 7 additional terms, to the whole of the work,
and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in
any other way, but it does not invalidate such permission
if you have separately received it.

(d) If the work has interactive user interfaces, each must dis-
play Appropriate Legal Notices; however, if the Program
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has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and in-
dependent works, which are not by their nature extensions of
the covered work, and which are not combined with it such
as to form a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in
an aggregate does not cause this License to apply to the other
parts of the aggregate.

(6) Conveying Non-Source Forms.
You may convey a covered work in object code form under

the terms of sections 4 and 5, provided that you also convey
the machine-readable Corresponding Source under the terms
of this License, in one of these ways:
(a) Convey the object code in, or embodied in, a physical

product (including a physical distribution medium), ac-
companied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical
product (including a physical distribution medium), ac-
companied by a written offer, valid for at least three years
and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who pos-
sesses the object code either (1) a copy of the Corre-
sponding Source for all the software in the product that
is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no
more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corre-
sponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy
of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with
such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a des-
ignated place (gratis or for a charge), and offer equiva-
lent access to the Corresponding Source in the same way
through the same place at no further charge. You need not
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require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that
supports equivalent copying facilities, provided you main-
tain clear directions next to the object code saying where
to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obli-
gated to ensure that it is available for as long as needed
to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code
and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code
is excluded from the Corresponding Source as a System Li-
brary, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”,
which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) any-
thing designed or sold for incorporation into a dwelling. In
determining whether a product is a consumer product, doubt-
ful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers
to a typical or common use of that class of product, regardless
of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only signif-
icant mode of use of the product.

“Installation Information” for a User Product means any
methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corre-
sponding Source. The information must suffice to ensure that
the continued functioning of the modified object code is in no
case prevented or interfered with solely because modification
has been made.

If you convey an object code work under this section in,
or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of



GNU GENERAL PUBLIC LICENSE 103

possession and use of the User Product is transferred to the
recipient in perpetuity or for a fixed term (regardless of how
the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the In-
stallation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the
work has been installed in ROM).

The requirement to provide Installation Information does
not include a requirement to continue to provide support ser-
vice, warranty, or updates for a work that has been modified
or installed by the recipient, or for the User Product in which
it has been modified or installed. Access to a network may be
denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Informa-
tion provided, in accord with this section must be in a for-
mat that is publicly documented (and with an implementation
available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

(7) Additional Terms.
“Additional permissions” are terms that supplement the

terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of
the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may at
your option remove any additional permissions from that copy,
or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify
the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can
give appropriate copyright permission.

Notwithstanding any other provision of this License, for
material you add to a covered work, you may (if authorized by
the copyright holders of that material) supplement the terms
of this License with terms:
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(a) Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal no-
tices or author attributions in that material or in the Ap-
propriate Legal Notices displayed by works containing it;
or

(c) Prohibiting misrepresentation of the origin of that mate-
rial, or requiring that modified versions of such material
be marked in reasonable ways as different from the origi-
nal version; or

(d) Limiting the use for publicity purposes of names of licen-
sors or authors of the material; or

(e) Declining to grant rights under trademark law for use of
some trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual as-
sumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered
“further restrictions” within the meaning of section 10. If the
Program as you received it, or any part of it, contains a no-
tice stating that it is governed by this License along with a
term that is a further restriction, you may remove that term.
If a license document contains a further restriction but per-
mits relicensing or conveying under this License, you may add
to a covered work material governed by the terms of that li-
cense document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this sec-
tion, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice
indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be
stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

(8) Termination.
You may not propagate or modify a covered work except

as expressly provided under this License. Any attempt other-
wise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent
licenses granted under the third paragraph of section 11).
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However, if you cease all violation of this License, then
your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder
is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not ter-
minate the licenses of parties who have received copies or rights
from you under this License. If your rights have been termi-
nated and not permanently reinstated, you do not qualify to
receive new licenses for the same material under section 10.

(9) Acceptance Not Required for Having Copies.
You are not required to accept this License in order to re-

ceive or run a copy of the Program. Ancillary propagation
of a covered work occurring solely as a consequence of using
peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a cov-
ered work, you indicate your acceptance of this License to do
so.

(10) Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient auto-

matically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties
with this License.

An “entity transaction” is a transaction transferring con-
trol of an organization, or substantially all assets of one, or
subdividing an organization, or merging organizations. If prop-
agation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’s prede-
cessor in interest had or could give under the previous para-
graph, plus a right to possession of the Corresponding Source
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of the work from the predecessor in interest, if the predecessor
has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise
of the rights granted or affirmed under this License. For exam-
ple, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may
not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Pro-
gram or any portion of it.

(11) Patents.
A “contributor” is a copyright holder who authorizes use

under this License of the Program or a work on which the
Program is based. The work thus licensed is called the con-
tributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent
claims owned or controlled by the contributor, whether al-
ready acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims
that would be infringed only as a consequence of further mod-
ification of the contributor version. For purposes of this defi-
nition, “control” includes the right to grant patent sublicenses
in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide,
royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its con-
tributor version.

In the following three paragraphs, a “patent license” is any
express agreement or commitment, however denominated, not
to enforce a patent (such as an express permission to practice
a patent or covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against
the party.

If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not avail-
able for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or
other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to
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deprive yourself of the benefit of the patent license for this par-
ticular work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your con-
veying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction
or arrangement, you convey, or propagate by procuring con-
veyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to
use, propagate, modify or convey a specific copy of the cov-
ered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based
on it.

A patent license is “discriminatory” if it does not include
within the scope of its coverage, prohibits the exercise of, or
is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing soft-
ware, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work con-
veyed by you (or copies made from those copies), or (b) pri-
marily for and in connection with specific products or compi-
lations that contain the covered work, unless you entered into
that arrangement, or that patent license was granted, prior to
28 March 2007.

Nothing in this License shall be construed as excluding or
limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent
law.

(12) No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy



108 GNU GENERAL PUBLIC LICENSE

simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

(13) Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you

have permission to link or combine any covered work with
a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey
the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, sec-
tion 13, concerning interaction through a network will apply
to the combination as such.

(14) Revised Versions of this License.
The Free Software Foundation may publish revised and/or

new versions of the GNU General Public License from time to
time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If
the Program specifies that a certain numbered version of the
GNU General Public License “or any later version” applies to
it, you have the option of following the terms and conditions
either of that numbered version or of any later version pub-
lished by the Free Software Foundation. If the Program does
not specify a version number of the GNU General Public Li-
cense, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which fu-
ture versions of the GNU General Public License can be used,
that proxy’s public statement of acceptance of a version per-
manently authorizes you to choose that version for the Pro-
gram.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing
to follow a later version.

(15) Disclaimer of Warranty.
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THERE IS NO WARRANTY FOR THE PROGRAM,
TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

(16) Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE

LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MODI-
FIES AND/OR CONVEYS THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PRO-
GRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(17) Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability pro-

vided above cannot be given local legal effect according to their
terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in con-
nection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a
fee.

End of Terms and Conditions
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