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Introduction

In 1924 Satyendra Nath Bose sent a manuscript to Einstein, in which he presented a statis-
tical study of Planck’s black body spectrum. Einstein translated the paper into German and
published it later that year [1]. Then in 1925 Einstein published a second paper on the topic
[2] generalizing Bose’s approach to an ideal Bose gas. These two papers introduced for the
first time, what we now know as Bose-Einstein statistics. As we will see in Ch. 1, this theory
predicts that when a system of bosons, particles that do not obey the Pauli exclusion principle,
is sufficiently cold and dense large portions of the system’s population will enter or condense
into the ground state forming a Bose-Einstein Condensate (BEC). The development of the laser
cooling, magneto-optical trapping, magnetic trapping, and radiofrequency evaporation in the
1970’s and 80’s eventually allowed Cornell and Wieman at Boulder, Ketterle at MIT, and Hulet
at Rice to observe the first BECs in 1995 [3, 4, 5]. In recognition of the their work Cornell,
Wieman, and Ketterle were awarded the Nobel Prize in Physics in 2001 [6, 7]. Since their ini-
tial production the study of BECs has offered exciting new insights into many fields including
quantum mechanics and solid state physics [8].

As research with BECs has continued further progress in certain areas has been stunted
due to a ubiquitous challenge, gravity. It is possible to experimentally negate the effects of the
Earth’s magnetic field but there is no recourse for handling its gravitational field. One way
to study BECs in absence of gravitational effects is to place them in free fall, thereby creating
a microgravity environment, which can be accomplished in one of two ways. One method for
doing this is to simply drop an entire BEC experiment from a great height and observe the
condensates it produces as it falls, which was first done in 2010 [9]. This method has the
downside of the placing a restriction on the duration of the experiment because the amount of
the time in free fall is finite. Alternatively, a BEC experiment could be put into orbit around
the Earth. This is precisely what the NASA Cold Atom Laboratory project (CAL) aims to do
by installing a BEC experiment aboard the International Space Station (ISS). For a long time
the size and high power consumption of BEC experiments would have made operating one on
the ISS an insurmountable challenge. However, the development of magnetic trapping on atom
chips, non-conducting surfaces with conducting lithographic traces printed on them, make such
an endeavor possible, due to their decreased power consumption, and small form factor.

This thesis presents the development of an atom chip based BEC experiment similar to
CAL at Bates College, that will serve as a functional testbed for future research aboard the
ISS. Both a theoretical background and a description of the experimental process by which a
BEC is formed on the atom chip are provided. This process is primarily driven by laser cooling
and magnetic trapping techniques. A 2D+ Magneto-Optical Trap (MOT), loaded from vapor
pressure, is used as a slowed source of 87Rb in order to load a 3D MOT. We present a qualitative
description of the 2D MOT, a discussion several experimental challenges encountered over the
course of the semester, and outline a path forward to condensation in a chip-based magnetic
trap through the use of radiofrequency evaporative cooling. To accomplish these goals this
thesis is structured around answering the following three questions:

v



INTRODUCTION vi

(1) What is a BEC?

(2) What techniques can we use to make a BEC?

(3) How can we implement these techniques experimentally?

Question 1 is answered in Ch. 1 where the process of Bose-Einstein condensation is described
starting with a derivation of the relevant statistical mechanics and distribution functions. This
chapter ends by generalizing the conditions for condensation to an arbitrary confining potential
and introducing the Thomas-Fermi approximation. Before moving on to question 2, Ch. 2
provides a discussion of the semi-classical description of atom-light interactions. This is done
by deriving the Optical Bloch equations, with the goal of developing an expression for the
scattering rate of an atom in a near resonant radiation field. Relying on the results of the
previous chapter, Ch. 3 provides the first part of the answer to question 2 with a theoretical
description of laser cooling and magneto-optical trapping. The answer to question 2 is completed
in Ch. 4 where magnetic trapping and radiofrequency evaporation are described. This chapter
focuses on the use of straight conductors to form magnetic traps specifically those that might
be formed on an atom chip. Question 3 is then answered in Ch. 5 which provides a detailed
description of the experimental systems we have built over the last two semesters and how they
will be used to achieve Bose-Einstein condensation. Finally, Ch. 6 provides a discussion of the
progress made this semester, current standing, and outlook for the experiment at Bates and the
CAL project at large.



CHAPTER 1

Bose-Einstein Condensation

In this chapter we will develop a theory to describe Bose-Einstein condensation and the
resulting BECs. To do this we will start by considering the quantum mechanical behavior of
indistinguishable particles. Since we are ultimately interested in considering ensembles of large
numbers, a purely quantum mechanical description will prove to be impractical and a statistical
approach will be required. We derive the basics of Boltzmann statistics and quantum statistics
and use the resulting distribution functions to see that in the proper conditions BEC should
form.

1. Bosons and Fermions

In this section we will start by considering a system of two distinguishable particles and
progress to the indistinguishable case following the derivation in [10]. Assume that these parti-
cles are in states Ψa(r1), and Ψb(r2) respectively, neglecting spin. In this case Ψ(r1, r2), ignoring
the possibility of entangled states, can be written as

(1.1) Ψ(r1, r2) = Ψa(r1)Ψb(r2).

Our assumption of distinguishable particles is implicit in this statement because it requires us
to be able to definitively say that particle 1 is in state Ψa, and particle 2 is in state Ψb. From
a classical stand point this seems like an absurd concern, since we should be able to somehow
label or mark the particles to clearly distinguish them. However, if our system comprises two
particles of the same species, say two electrons, or as will be our case in lab, two 87Rb atoms
because these particles are completely identical, and we have no way of labeling them, so they
are indistinguishable. As Griffiths says “It is not just that we don’t happen to know which
electron is which; God doesn’t know which is which, because there is no such things as this
electron or that electron.”

To accommodate the case of indistinguishable particles we can rewrite equation 1.1 as

(1.2) Ψ±(r1, r2) = A[Ψa(r1)Ψb(r2)±Ψb(r1)Ψa(r2)],

where A is a constant of normalization. This allows us to deal with our uncertainty as to which
particle is in which state by taking advantage of a linear combination in which either the two
states we are using as a basis, Ψa(r1)Ψb(r2) and Ψb(r1)Ψa(r2), have the same or opposite signs.
This indicates the existence of two kinds of indistinguishable particles, bosons for which the
possible states add, and fermions for which the possible states subtract. To show the difference
between how fermions and bosons behave we will consider the case in which both particles are
in the same state, Ψa = Ψb. Applying this condition to the two equations represented in 1.2
results in

(1.3) Ψ−(r1, r2) = A[Ψa(r1)Ψa(r2)−Ψa(r1)Ψa(r2)] = 0,

1



2. STATISTICAL MECHANICS 2

and

(1.4) Ψ+(r1, r2) = A[Ψa(r1)Ψa(r2) + Ψa(r1)Ψa(r2)] = 2AΨa(r1)Ψa(r2).

In this case Ψ− = 0 which means that is no chance of finding two fermions same state. This
fundamental property of fermions is known as the Pauli exclusion principle. On the other hand
Ψ+ 6= 0 which shows that this restriction does not apply to bosons. It is precisely the fact that
there is no restriction on the number of bosons in a given state that allows for them to form a
BEC! This property of bosons will be the object of our further study.

Using equation 1.4 as a mode we can write Ψ+ for a system of N bosons in the same state,
if we lump all of the constants into A, as:

(1.5) Ψ+ = A
N∏
n=1

Ψa(rn).

Unfortunately we have now run into the impracticality of this method for treating indistin-
guishable particles. It is true that thus far the equations have been manageable, but we have
only considered a system consisting of 2 particles. There are N terms in the product on the
RHS of equation 1.5 for a system of N particles. We are interested in studying systems with
numbers of particles on the order of at least 105 and there is not space in this entire thesis for
105 terms. To describe systems of a large number of indistinguishable particles, and ultimately
the phenomenon of Bose-Einstein Condensation, we will need to apply the insight gained from
this brief foray into quantum mechanics to a statistical approach, which is the topic of the next
section.

2. Statistical Mechanics

As we saw in the previous section it would futile to attempt to describe an ensemble of
indistinguishable particles by explicitly considering each particle’s wavefunction. Fortunately,
statistical mechanics provides us with a powerful tool that will allow us to move forward. We
will now develop statements for the probability of a particle occupying a given state. We will do
this first for particles in the high temperature limit by developing what are known as Boltzmann
statistics. While not our ultimate goal Boltzmann statistics offers a good description of particles
before condensation, which will be useful when describing evaporative cooling later on. They
also provide a good point of comparison for the descriptions we will develop for fermions and
bosons that are accurate outside the high temperature limit. The work in this section loosely
follows [11], although similar derivations can be found in almost any introductory statistical
mechanics text.

2.1. Boltzmann Statistics. To begin we will consider a system, with some energy E,
in thermal equilibrium with a significantly larger reservoir with energy UR at a well defined
temperature T . We will allow the system and reservoir to exchange energy, but not particles.
Let’s say that the system is in a state s1 with energy E(s1) and the probability of being in this
state is P (s1). Together the system and the reservoir form an isolated system, which means
that all microstates are equally probable. When the system is in s1 the reservoir will have some
number of accessible microsates: this number is known as its multiplicity and I will denote it by
ΩR(s1). As E(s1) increases ΩR(s1) will decrease because the system will have less energy causing
it to have a smaller number of accessible microstates, which means that P (s1) will decrease.
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The converse is of course true if E(s1) decreases. We can conclude that P (s1) is proportional
to ΩR(s1), which allows us to write that

(1.6) P (s1) = αΩR(s1),

where α is some as yet unknown constant of proportionality. To eliminate α we will consider
the ratio between P (s2) and P (s2)

(1.7)
P (s2)

P (s1)
=

ΩR(s2)

ΩR(s1)
,

where s2 is some second state of the system. We will now take advantage of the definition of
entropy that S = k ln(Ω) to rewrite ΩR:

(1.8)
P (s2)

P (s1)
=
eSR(s2)/k

eSR(s1)/k
= e[SR(s2)−SR(s1)]/k.

Now we need to consider that systems change in entropy from s1 to s2. Since the system is
small as compared to the reservoir we can make use of the thermodynamic identity:

(1.9) dSR =
1

T
(dUR + PdVR − µdNR).

In practice PdVR � dUR so we will take the contribution of PdVR to be negligible and drop
the term. Additionally, we are not allowing particles to enter or leave the system, therefore
µdNR = 0. Now keeping in mind that whatever energy the reservoir gains the system must lose,
the change in entropy in equation 1.8 can be written as

(1.10) SR(s2)− SR(s1) =
1

T
[UR(s2)− UR(s1)] = − 1

T
[E(s2)− E(s1)].

Plugging into equation 1.8 yields,

(1.11)
P (s2)

P (s1)
= e−[E(s2)−E(s1)]/kT =

e−E(s2)/kT

e−E(s1)/kT

Each of the exponential factors is know as a Boltzmann factor.
To learn more from equation 1.11 we need to rearrange it so that all s1 dependence is one

side and the s2 dependence is on the other, which results in

(1.12)
P (s2)

e−E(s2)/kT
=

P (s1)

e−E(s1)/kT
= α

It is now easy to see that since both sides are completely independent of each they must be
constant, which if we go back and check equation 1.6 must be α which means that it can
generalized to:

(1.13) P (s) = αΩR(s) = αe−E(s)/kT .

We now have enough information to find an expression for α. Since the particle must be in a
state some over the probabilities of being in each state must be one which means that:
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(1.14)
∑
s

P (s) = α
∑
s

e−E(s)/kT = 1.

Most authors define this constant α to be 1/Z to end up with the final equations:

(1.15) P (s) =
1

Z
e−E(s)/kT ,

and

(1.16) Z =
∑
s

e−E(s)/kT .

Equation 1.16 is the so called partition function and in conjunction with 1.15 is the workhorse
of statistical mechanics. However, we are rarely interested in considering a system of just one
particle. Generalizing our the results of this section to a system of many particles in our next
challenge.

2.2. The Maxwell-Boltzmann Distribution. We are now going expand on equations
1.15 and 1.16 to consider a system of N particles. Instead of considering the probability of a
particle being in a given state we will consider the average number of particles in a given state,
also known as the occupancy of state. This will be denoted as n̄MB, where the MB stands
for Maxwell-Boltzmann to avoid confusion when we develop different expressions for occupancy
when consider fermions and bosons specifically in later sections.

The probability of a being in a state can also be thought of as the fraction of the total
number of particles that will occupy that state on average and so we can write that

(1.17) n̄MB = NP (s) =
N

Z1

e−E(s)/kT ,

where Z1 is the partition function for a single particle in the system. Since Z1 represents that
possible states of one particle it makes sense to that that Z, the partition function for the entire
system, can be written as

(1.18) Z =
1

N !
ZN

1 .

The N ! term must be introduced to correct our counting since we are dealing with indistin-
guishable particles. Combining this statement for Z along with the following two results, from
a further study in Boltzmann statistics

(1.19) F = −kT lnZ, and µ =

(
∂F

∂N

)
T,V

,

where F is Helmholtz energy, we can write that:

(1.20) µ = −kt ln(Z1/N).

Finally, plugging back into equation 1.18 and simplifying we find that:
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(1.21) n̄MB = e−[E(s)−µ]/kT .

This result is known as the Maxwell-Boltzmann distribution, and as we said earlier provides an
expression for the occupancy of state as a function of its energy and temperature of the system.

Although I did not specifically mention this at the time, we made a significant assumption
in equation 1.18. This statement assumes that no two particles will “want” to be in the same
state, or to avoid the anthropomorphism, that the number of the single particle states is much
greater than the number of particles which can be represented by the condition that

(1.22) Z1 � N.

This assumption was also embedded into the derivation when we took the µdn term in
equation 1.9 to be zero. In the high temperature limit this condition is met because distance
between particles is large as compared to their matter waves, as in the case of an ideal gas.
If we are going to move forward thinking in terms of temperature it would be nice for this
condition to have an explicit temperature dependence. This can be accomplished by introducing
the thermal de Broglie wavelength, λth = h/

√
2πmkT , which is almost the true de Broglie

wavelength, λ = h/p and is frequently used in statistical mechanics, to quantify the realistic
range of a particle’s probability distribution in one dimension. The cube of the thermal de
Broglie wavelength, λ3

th gives the volume in which it is probable to find a particle, this is known
as a particle’s quantum volume. We can now rephrase equation 1.22 as

(1.23)
V

N
�
(

h√
2πmkT

)3

.

This is known as the thermodynamic limit.
So, Boltzmann statistics are only valid when the volume per particle is much greater than

the quantum volume of a particle in the system. By increasing temperature and/or decreasing
temperature sufficiently we should be able to violate this condition, in which case quantum
effects will begin to come into play. This is precisely what we are interested in, if we are going
to further investigate bosons’ freedom to have any number of particles in a state! We must now
modify our statistical approach to allow for more than one particle to be in one state, this is
the case considered in Quantum Statistics.

2.3. Quantum Statistics. We will now revisit our reservoir and system model that served
as the basis for developing Boltzmann statistics, but with one catch. Now we will permit the
reservoir and system to exchange particles in addition to energy.

We will proceed in the same manner as before and nothing will change in our derivation until
we reach the equivalent of equation (1.8), and need to invoke the thermodynamic identity. At
this point we will still take PdV to be zero, but since particles are now allowed to be exchanged
clearly µdN is in general not zero, so we must keep this term. This leads us to:

(1.24)
P (s2)

P (s1)
= e−[E(s2)−E(s1)−µN(s2)+µN(s1)]/kT =

e−[E(s2)−µN(s2)]/kT

e−[E(s1)−µN(s1)]/kT
,

instead of equation (1.9). Again we will proceed just as before only this time we will call the
constant of proportionality 1/Z and find that:
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(1.25) P (s) =
1

Z
e−[E(s)−µN(s)]/kT ,

and

(1.26) Z =
∑
s

e−[E(s)−µN(s)]/kT .

These two equations are analogous to equations 1.15, and 1.16, and Z is the so called grand
partition function. The real difference in this approach comes in clear in our next step, which
will be to use the grand partition function to find a distribution function for a system, because
we must treat fermions and bosons separately.

Until now we have conceptualized our system as containing particles and made statements
about the probability of a particle occupying a give state. We will now change our point of view
and consider a system state and make statements about the probability of it being occupied
by a number of particles. Let’s say that this state is occupied by n particles, has a chemical
potential µ, and each particle in this state has an energy ε. The probability of this state being
occupied by n particles is

(1.27) P (n) =
1

Z
e−n(ε−µ)/kT ,

the product of each particle’s individual probability of being in the state. To move on we will
need an expression for the grand partition function, but to do this requires choosing whether
we care considering fermions or bosons. Finally, quantum mechanics enters the picture! Let’s
begin with fermions.

2.4. The Fermi-Dirac Distribution. As we know fermions obey the Pauli exclusion
principle which means that n can only be 0 or 1. So the grand partition function for a system
of fermions is

(1.28) Z =
1∑

n=0

e−n(ε−µ)/kT = 1 + e−(ε−µ)/kT .

just as we reasoned earlier the occupancy, which I will now call n̄FD for Fermi-Dirac, can be
written as:

(1.29) n̄FD =
1∑

n=0

nP (n) = P (1).

From here it is quite simple to use the results in equations 1.27 and 1.28 to get an expression
for P (1), after simplifying we find that:

(1.30) n̄FD =
1

e(ε−µ)/kT + 1
.

This result is called the Fermi-Dirac distribution.
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2.5. The Bose-Einstein Distribution. Now we will follow a similar procedure for a
system of bosons, which we have shown do not obey the Pauli exclusion principle. This means
that in principle that grand partition function for a system of bosons is the infinite series,

(1.31) Z = 1 + e−(ε−µ)/kT + e−2(ε−µ)/kT + e−3(ε−µ)/kT + . . . .

Fortunately this is a geometric series with a common ratio between terms of e−(ε−µ)/kT < 1,
because ε < µ, since the Gibbs factors cannot keep growing without limit. Therefore, the series
must converge, and we can write that:

(1.32) Z =
1

1− e−(ε−µ)/kT
.

Now, with Z in hand we can write the occupancy, now n̄BE for Bose-Einstein, as before:

(1.33) n̄BE =
∑
n

nP (n) =
∑
n

n
1

Z
e−n(ε−µ)/kT .

We have now run into another potentially infinite sum. To handle this one we will play a
small trick with some calculus, and make the the notation tidier by letting x = (ε − µ)/kT .
Continuing from equation 1.33,

∑
n

n
1

Z
e−n(ε−µ)/kT =

1

Z
∑
n

ne−nx

= − 1

Z
∑
n

∂

∂x
e−nx

= − 1

Z
∂Z
∂x

.(1.34)

Now all that is left to do is to integrate, and simply. So, sparring the reader the intermediate
calculus and and algebra we find that:

(1.35) n̄BE =
1

e(ε−µ)/kT − 1
.

This is the so called Bose-Einstein distribution and describes the occupancy of a given state
of a system of bosons. In the next section we will use it to describe Bose-Einstein condensation
by investigating its behavior. To motivate this exercise I would first like to first compare the
three distribution functions developed in this section, Maxwell-Boltzmann, Fermi-Dirac, and
Bose-Einstein, as shown in Figure 1.1.

As we should hope states with high energy or when (ε− µ)/kT � 1 all three distributions
predict the same occupancy. However, things become more interesting in state with lower
energy. Since, we did not consider quantum effects in our derivation for the Maxwell-Boltzmann
distribution, and we are now in the regime where they should play a role, it is fair to say that
it will not give an accurate prediction of occupancy. So discounting the Maxwell-Boltzmann
distribution we are left with the Fermi-Dirac, and Bose-Einstein distributions, which display
remarkably different behavior. As ε decreases for a given system state more particles will have
access to it. Since, only one fermion may occupy a given state and a given time it is reasonable
that the Fermi-Dirac distribution approaches 1. On the other hand, because bosons do not
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Figure 1.1. A comparison of the Maxwell-Boltzmann, Fermi-Dirac, and Bose-
Einstein distributions for a fixed T and µ.

have this restriction the Bose-Einstein distribution blows up. This behavior suggestions two
questions: first, what happens when there is a large number of bosons in a state, and second,
is there a way to force many bosons to occupy the same state? The answers to these questions
will the topic of the next section.

3. Bose-Einstein Condensation

In this section we will return to the Bose-Einstein distribution to describe the process of
Bose-Einstein condensation. This derivation has been compiled from those presented in [11,
12, 13, 14, 15, 16]. To begin let’s consider a system of N non-interacting bosons in the low
temperature limit, T → 0. In this case the vast majority of the energy has been removed from
the system and a particle must reside in the lowest-energy available state. For bosons this will
always be the ground state with energy ε0 so they must all occupy the ground state. This is to
say that:

(1.36) lim
T→0

1

e(ε0−µ)/kT − 1
= N

Of course mathematically the Bose-Einstein distribution approaches infinity in this case, but
this is clearly not a physical result as it would violate the conservation of mass. So the reasonable
interpretation of this limit is that as temperature decreases the occupancy of the ground state
will increase until, when it is cold enough, it becomes N . This suggests some sort of condensation
process, although as we will see later it is not necessary to reach absolute zero for there to be
large number of atoms in the ground state.

We will now consider two groups of particles in this system, particles in the ground state
with an occupancy of N0, and particles in all the excited states(ε 6= ε0) with an occupancy of
Ne, so that N = N0 +Ne. From the Bose-Einstein distribution we know that:

(1.37) N0 =
1

e(ε0−µ)/kT − 1
,

and

(1.38) Ne =
∑
all s

1

z−1eεs/kT − 1
,
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where I have let z = eµ/kT , which is known as the fugacity. To make further analytic progress
we will need to convert the summation to an integral. To do this more easily we will introduce
the density of states a(ε), the number of single particle states per unit energy. For some volume
V with particles of mass m,

(1.39) a(ε) =
2√
π

(
2πm

h2

)3/2

V
√
ε.

It is important to realize that the a(ε) gives a zero weight to the ground state ε0 = 0.
Normally, in the thermodynamic limit we don’t worry about this because so few particles will
be in the ground state that dropping them from the total will have a negligible effect. In our
case, however, we know that that N0 � 0, so dropping it would have a significant impact.
To correct for this we will use equation 1.37 to add N0 back in explicitly. Now rewriting the
summation as an integral:

N = Ne +N0

=

∫ ∞
0

a(ε)
1

z−1eε/kT − 1
dε+N0

=
2√
π

(
2πm

h2

)3/2

V

∫ ∞
0

√
ε

z−1eε/kT − 1
dε+

1

e(ε0−µ)/kT − 1
.(1.40)

For now, however, it will be simpler to just work with Ne which is given by Ne = N − N0.
Taking advantage of the change of variable x = ε/kT we can write

(1.41) Ne =
2√
π

(
2πmkT

h2

)3/2

V

∫ ∞
0

√
x

z−1ex − 1
dx.

The next step is to impose the restriction that the occupancy of a given state must be greater
than or equal to zero, n ≥ 0as it would not be physical to have a negative number of particles
in a state. If z < 0 the integrand will be negative over the entire range of integration resulting
in Ne < 0 which clearly cannot describe a physical case. When z > 1 as x gets small there will
be a value of x = x0 such that z−1ex = 1 which will cause the integrand to blow up, and then
for x < x0 the integrand will be negative. Therefore, we may restrict ourselves to 0 ≤ z ≤ 1
as fugacities outside of this range to not represent physical situations [17]. Over this range the
integral increases monotonically with z and is therefore bounded at z = 1. This allows us to
write that:

(1.42) Ne ≤
2√
π

(
2πmkT

h2

)3/2

V

∫ ∞
0

√
x

ex − 1
dx.

This integral does not have a nice analytic solution, but including the factor of 2/
√
π, it is

approximately 2.612. We will discuss the value of this integral, the choice to include the factor
of 2/

√
π, and approximations of other integrals of this form later on. For now we will just use

this value in our bound for Ne.
The case where
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(1.43) Ne = 2.612

(
2πmkT

h2

)3/2

V.

can be interpreted to mean that the excited states have reached their maximum capacity and
cannot hold any additional particles. Therefore, at fixed T , and V if more particles are added to
the system they will all be forced into the ground state. Alternatively, at fixed N a decrease in
T or V will force some particles into the ground state. To consolidate of how these parameters
affect N0 we can define a particle density ρ ≡ N/V . Now, a decrease in temperature or an
increase in density corresponds to an increase in N0. This phenomenon of particles being forced
into the ground state is known as Bose-Einstein condensation and the condition for it to occur
is:

(1.44) N > 2.612

(
2πmkT

h2

)3/2

V,

or that

(1.45) T > Tc ≡
h2

2πmkT

(
N

2.612V

)2/3

,

Where Tc is the critical or condensation temperature below which Bose-Einstein condensation
will occur. Using Tc we can write equation 1.43 in the more useful form:

(1.46) Ne = N

(
T

Tc

)3/2

(T < Tc).

Since N0 = N −Ne we can write that:

(1.47) N0 = N

[
1−

(
T

Tc

)3/2
]

(T < Tc).

At this point our system has two phases: the thermal phase consisting of Ne, and the the
condensed phase consisting of N0. Figure 1.2 shows how the occupancies of the thermal and
condensed phases change as temperature is decreased from T > Tc to T = 0. The particles in
the condensed phase are referred to as a Bose-Einstein Condensate(BEC).

Established how and under what conditions a BEC will form only prompts more questions.
Such as, what are the properties of such a system? Is there anything happening in a BEC that
would warrant greater study or the potential to be used for some other purpose? Notice that,
excluding the factor of 2.612, Tc is precisely the temperature at which the quantum volume
equals the volume per particle, meaning that the particles’ wave functions are beginning to
overlap, Figure 1.3 is an attempt to depict this. As the process continues the wave functions
will gradually become spatially localized. This has the interesting consequence of the particles
becoming indistinct. What I mean by this is that not only are the particles indistinguishable,
meaning that you cannot tell particle A from particle B, but that you cannot even tell that
there are in fact two particles! A BEC can be thought of as a macroscopically large body of
completely indistinct matter, because in the limit where T → 0 and ρ→∞ all of the particles
will exist in the same spatial region while exhibiting the same quantum mechanical behavior.
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Figure 1.2. While T > Tc N0 = 0 and Ne = N . As T falls below Tc particles
begin to move rapidly to the ground state, thereby condensing.

This behavior is the origin for the description of a BEC being like one “super” atom. A BEC is
an inherently quantum mechanical system which is precisely why they are of interest for further
study.

Figure 1.3. As the atoms are cooled their de Broglie wavelengths become ex-
pand and begin to overlap so that eventually individual atoms become indistinct.

It is interesting to note that on its surface Bose-Einstein condensation seems very similar
to a gas condensing into a liquid because the gas cools the number of particles in the ground
sate increases disproportionately. It is, however, fundamentally a different process. Vapor
condensing is driven inter-particle interactions, specifically an attractive force. Our derivation
for Bose-Einstein condensation assumes that the particles are non-interacting. Thus Bose-
Einstein condensation is a purely quantum mechanical process as it does not depend on inter-
particle interactions.

We have described the processes of Bose-Einstein condensation, and at least hinted at why
the resulting BECs are of interest. We will shift our focus to realizing a BEC in lab. This will
require reworking some of the theory in order to more appropriately describe the conditions in
which we will be able create a BEC in lab.
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3.1. BEC in a Harmonic Trap. Our work so far in describing a Bose-Einstein con-
densation, since introducing a(ε), the density of states, has been in terms of some volume V .
Essentially, we have been considering a system of bosons trapped in a box. In lab we do not
have an analog to this magic box that we could load with bosons. What we can do instead is to
form confining magnetic potentials, or traps. This called magnetic trapping which is discussed
in detail in Ch. 4, but for now it is sufficient to know that magnetic traps, to a very good
approximation, can be modeled as harmonic potentials. Quantum mechanically the difference
between our previous BEC derivation and the situation in lab can be thought of as finding
allowed sates of a three dimensional square well potential with a characteristic volume versus
the three dimensional harmonic potential that has a characteristic frequency. All we will need
to do to appropriately modify our derivation is to consider the density of states for a three
dimensional harmonic oscillator instead of a box.

We will consider an isotropic harmonic oscillator with a resonance frequency of ω0, also
known as the trap frequency. The density of states for this potential is

(1.48) b(ε) =
ε2

2(~ω0)3
.

Moving forward as before we can write Ne as:

Ne =

∫ ∞
0

b(ε)
1

z−1eε/kT − 1
dε

=
1

2(~ω)3

∫ ∞
0

ε2

z−1eε/kT − 1
dε.(1.49)

We can now make the same change of variables, x = ε/kT , and find a bound for Ne by the same
argument as we used previously which yields:

(1.50) Ne ≤
(
kT

~ω0

)3
1

2

∫ ∞
0

x2

ex − 1
dx.

The integral once again does not have an analytic solution, but including the factor of 1/2, it is
approximately 1.202. This numeric approximation, and the choice to include the factor of 1/2
will be discussed directly following this derivation.

Now the excited states will be filled in the case that

(1.51) Ne = 1.202

(
kT

~ω0

)3

.

and our condition for the onset of condensation becomes

(1.52) N ≥ 1.202

(
kT

~ω0

)3

,

or

(1.53) T > Tc ≡
~ω3

0

k

(
Ne

1.202

)1/3
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Finally, we can do the same algebra as before to find that

(1.54) N0 = N

[
1−

(
T

Tc

)3
]

(T < Tc).

This is result is clearly analogous to equation 1.47. In fact, they are same excluding a redefined
critical temperature in terms of ω0, and the exponential dependence on the T/Tc ratio increasing
to the much stronger power of 3 as opposed to the 3/2 for bosons in a box.

4. Bose-Einstein Integrals

In the previous two sections we described Bose-Einstein condensation for two different con-
fining potentials, and interestingly the the results turned out to be surprisingly similar. To
explain the reason for such strong parallels between the two derivations in this section we are
going to take a closer look at the underlying mathematics used in sections 1.3.1 and 1.3.2.

To begin I have rewritten the integrals in equations 1.41 and 1.50 and placed them side by
side for comparison. ∫ ∞

0

x1/2

z−1ex − 1
dx

∫ ∞
0

x2

z−1ex − 1
dx

The similarities between the two integrals are immediately apparent, the only difference being
the power of x. They are both integrals of the general form

(1.55) Gs(z) =

∫ ∞
0

xs−1

z−1ex − 1
,

which are known as the Bose-Einstein integrals and appear frequently in the study of Bose-
Einstein statistics [12]. One reason for this is that the integrand is just the product of the
Bose-Einstein distribution and x to some power. In the cases we have considered the power of
x is equivalent to that of the energy term in a density of states. Therefore, integrals of form
Gs(z) will appear in any expression counting the number of bosons in a system.

4.1. Computing Gs(1). Our previous work depended on numeric approximations of the
integrals 2√

π
G3/2(1) and 1

2
G3(1). In this section we provide an explanation of how these numeric

approximations are obtained. This will require introducing three special functions: the Riemann
zeta function ζ(s), the Gamma function Γ(s), and the the polylogarithm Lis(z). These functions
are defined respectively as [18, 19]:

(1.56) ζ(s) =
∞∑
n=1

1

ns
, Re[s] > 0,

and

(1.57) Γ(s) =

∫ ∞
0

xs−1e−xdx, Re[s] 6= −1,−2,−3 . . . ,

and
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(1.58) Lis(z) =
∞∑
n=1

zn

ns
, s ∈ C.

Additionally, Lis(z) has the following integral representation:

(1.59) Lis(z) =
z

Γ(s)

∫ ∞
0

xs−1

ex − z
dx, Re[s] > 0.

Now that we have the required tools to move forward, let’s consider

(1.60) lim
z→0

Gn(s) =

∫ ∞
0

ze−xxs−1dx = zΓ(s).

This suggests that it might be useful to define a new function gn(z), sometimes called the
Bose-Einstein function, such that

(1.61) Gn(z) = gn(z)Γ(n).

Now writing gn(z) in terms of Gn(z) results in

gn(z) =
1

Γ(n)

∫ ∞
0

xs−1

z−1ex − 1
dx

=
1

Γ(n)

∫ ∞
0

xs−1ze−x

1 + ze−x
dx

=
1

Γ(n)

∫ ∞
0

xs−1

∞∑
n=1

(ze−x)ndx.(1.62)

The step from the second line to the third line requires recognizing the form of a geometric
series multiplied by its common ratio. The starting point of the index on the summation is
adjusted to account for this extra factor of the ratio. The sum in the integrand has the closed
form

(1.63)
∞∑
n=1

(ze−x) =
z

ex − z
.

Replacing the sum we can write that

gn(z) =
z

Γ(n)

∫ ∞
0

xs−1

ex − z
dx

= Lis(z)

=
∞∑
n=1

zn

ns
(1.64)

= z +
z2

2s
+
z3

3s
. . . .
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Considering the first few terms of gn(z) it is clear that as z → 0, gn(z) → z. This means that
our definition of gn(z) will reproduce equation 1.61, exactly as we should hope. In the case
where z = 1

gn(1) =
∞∑
n=1

1

ns

= ζ(s)(1.65)

The method used to approximate the integrals in equations 1.41 and 1.50 was to write them
in the form of gn(z) using that Γ(3/2) =

√
π/2 and Γ(3) = 2. Then by equation 1.64 the

integrals reduce to ζ(s) when z = 1. The Riemann zeta for s = 3/2 and s = 3 has approximate
values of ζ(3/2) ≈ 2.612 and ζ(3) ≈ 1.202. The goal earlier was not to allow that mathematics
distract from the physics, but now the results in the previous section could be written more
precisely in terms of ζ(s) as

(1.66) T > Tc ≡
~ω3

0

k

(
Ne

ζ(3/2)

)2/3

,

and

(1.67) T > Tc ≡
~ω3

0

k

(
Ne

ζ(3)

)1/3

,

for the box and harmonic oscillator respectively.

4.2. Generalizing for any Density of States. Now that we have a solution to gn(z) we
can generalize our work done earlier for any density of states. In general a density of states c(ε)
has the form

(1.68) c(ε) = Cεs−1,

where C is some real constant determined by the confining potential and ε is energy whose
power is also depends the potential. As we said earlier

Ne =

∫ ∞
0

c(ε)

z−1eε/kt − 1
dε

= C

∫ ∞
0

εs−1

z−1eε/kt − 1
dε

= C(kT )s
∫ ∞

0

xs−1

z−1eε/kt − 1
dx.(1.69)

The last line is obtained by making the change of variables, x = ε/kT , as before. Now we
will apply the condition that z = 1, to consider the case where the excited states are full and
condensation must occur and find that
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Ne = C(kT )s
∫ ∞

0

xs−1

eε/kt − 1
dx

= C(kT )sΓ(s)
1

Γ(s)

∫ ∞
0

xs−1

eε/kt − 1
dx

= C(kT )sΓ(s)gn(1)

= C(kT )sΓ(s)ζ(s).(1.70)

This means that in general the condition for Bose-Einstein condensation to occur is

(1.71) N > C(kT )sΓ(s)ζ(s),

or

(1.72) T > Tc ≡
1

k

(
N

CΓ(s)ζ(s)

)1/s

.

From here we can write Ne in terms of Tc which results in

(1.73) Ne = N

(
T

Tc

)s
.

Finally, from here we can generalize our expression for N0 the number of atoms in a condensate.

(1.74) N0 = N

[
1−

(
T

Tc

)s]
Interestingly the dependence on the T/Tc goes as one plus the exponent of the energy term in
c(ε). For a more rigorous description of this generalization as well as considerations of other
confining potentials see [20]. We have now described the process of Bose-Einstein condensation
for two specific cases and in general along with a brief overview of some of the underlying
mathematics. In the next section we will develop a simple model for describing a BEC itself.

5. The Thomas-Fermi Approximation

So far we established that a system of bosons will condense to the ground state if certain
conditions are met. We have not yet discussed any properties of the condensate itself. Our
previous work has assumed non-interacting bosons, in this section we will make use of the inter-
particle interactions, that must be present in a real condensate, in order to describe the size
of the shape of a condensate. As we will see this method also provides a means by which to
distinguish the condensed phase from the thermal phase. To do this we will follow the work
presented in [21, 14].

A result from scattering theory is that the energy due to inter-particle interactions can be
accounted for by adding a term proportional to |ψ|2 to the Hamiltonian for the system [14].

(1.75) H =
~2

2M
∇2 + V (r) + g|ψ|2,

where
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(1.76) g =
4π~2N0a

M
.

The resulting time-independent Schrödinger equation is

(1.77)

[
~2

2M
∇2 + V (r) + g|ψ|2

]
ψ = µψ.

This is called the Gross-Pitaevskii equation. As Foot suggests one could continue from here by
applying the variational method to obtain an approximation for the ground state energy and
calculate the size of the condensate from there, but there is an easier approach. In order to
achieve condensation temperature must decrease and density must increase. As temperature
decreases kinetic energy decreases and as density increases |ψ|2 increases. So in a condensate
the kinetic contribution to the total energy gets small while the interaction contribution gets
large [14]. On this basis we will take the kinetic term in H to be negligible, and equation 1.77
becomes

(1.78)
[
V (r) + g|ψ|2

]
ψ = µψ.

Therefore, in the region where ψ 6= 0, which is where the condensate is located

(1.79) |ψ|2 =
µ− V (r)

g
.

Treating the kinetic energy as negligible is called the Thomas-Fermi approximation and it is
valid in the so called Thomas-Fermi regime. Experimentally we do not measure |ψ(r)|2 the
probability of finding a particle at a given point directly, but rather number density n(r) of the
system which can be written as

n(r) = N0|ψ(r)|2

= n0

(
1− V (r)

µ

)
,(1.80)

where n0 = N0µ/g, the density at the center of the condensate. As mentioned previously, our
BECs will formed in traps that can be described as harmonic oscillator so we will consider the
potential of a three dimensional harmonic oscillator

(1.81) V (r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2).

Applying this potential to equation 1.80 we find that:

(1.82) n(r) = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
,

where
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(1.83) Ri =

√
2µ

Mω2
i

⇒ µ =
1

2
Mω2

iR
2
1 i = x, y, z.

From equation 1.82 we can see that the condensate will have the shape of an inverted parabola
in all three directions and will therefore be ellipsoidal. Equation 1.83 shows that the atoms fill
up a trap to µ which is the chemical potential of the system as it is the energy associated with
adding or removing one particle from the system.

The kinetic energy of thermal atoms in general cannot be ignored and because they are less
dense their inter-particle interactions are less significant. To a good a approximation |ψ|2 for
thermal atoms can be described by a Gaussian, which are the allowed sates of non-interacting
particles in a harmonic oscillator. So the density distribution of a cloud thermal atoms will be fit
well by a simple Gaussian. On the other had because condensed atoms enter the Thomas-Fermi
regime a cloud that has atoms in both the thermal and condensed phases can be described by
a function that has the form of an inverted parabola around the origin and is Gaussian on the
sides. This is precisely the method used in many BEC experiments to determine if a condensate
is in fact present and if so how large it is.



CHAPTER 2

Atom-Light Interactions

We have now explored Bose-Einstein condensation, providing an answer to our first question:
what is a BEC? Our second question is: what techniques can we use to make a BEC? However,
the first part of the answer to this question, in Ch. 3, relies heavily on atom-light interactions.
So before beginning to answer this question it is necessary to take a detour and investigate
closely these interactions between atoms and electromagnetic radiation. I have decided that it
will be less disruptive to our general line of inquiring to place this material here so that when
in Ch. 3 we need to make use of the results in this chapter we can due so, as opposed to being
to forced to halt our progress and derive them at the time.

Our ultimate goal in this chapter is to find an expression for the scattering rate, Rscatt, of
a system of atoms. This is rate at which atoms emit or scatter photons when exposed to a
near-resonant monochromatic radiation field. A monochromatic radiation field is just a more
complicated way to say “light from a laser”. There are two common methods for the deriving
an expression for Rscatt. The first is a purely classical description known as the Lorentz model
in which an atom and an electron are modeled as a driven damped harmonic oscillator where
the radiation provides that driving force. The second is a semi-classical approach in which the
atom is treated quantum mechanically and the radiation in treated as a classical field. The
two methods yield equivalent results for near resonant interaction, precisely the regime we are
concerned with. However, the semi-classical approach is more theoretically rigorous, and less
manipulation of the result is required to write Rscatt in its most useful form. Furthermore,
although it is a purely classical analysis of the situation the Lorentz model does not require
significantly less work than the semi-classical analysis. For all of these reasons, we will proceed
with the semi-classical description. This derivation has been developed from the work presented
in [14, 22, 23]. If the reader desires [24] provides a thorough derivation of the Lorentz model.

1. Two-Level System

We will start from the time-dependent Schrödinger equation

(2.1) i~
∂Ψ

∂t
= HΨ.

where Ψ is the time-dependent wave function, and H is the Hamiltonian of the system. We
will express the Hamiltonian as H = H0 +H ′(t) where H0 is the unperturbed Hamiltonian and
H ′(t) is some time-dependent perturbation.

Before introducing the electromagnetic radiation as a time-dependent perturbation we are
going to limit ourselves to two-level system as shown in Figure 2.1. This system is composed of
an atom that has two allowable states: a ground state |g〉 and one excited state |e〉. Although
this may seem arbitrarily restrictive the behavior of many atoms behave as two-level systems
to a good approximation. Yet, it is not perfect and one particular instance where the theory

19
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developed in this chapter breaks down will be mentioned in Ch. 3 as part of the discussion of
optical molasses and the Doppler limit.

|g>

|e> E
e 
, ω

e

E
g 

, ω
g

E
0 
, ω

0

Figure 2.1. A two-level system is comprise of the two states |g〉 and |e〉. Each
state has an associated energy and frequency.

From introductory quantum mechanics we write the time evolution of each of the two states
as

Ψg(r, t) = |g〉 e−iEgt/~

Ψe(r, t) = |e〉 e−iEet/~,(2.2)

where Eg and Ee are given by

H0 |g〉 = Eg |g〉
H0 |e〉 = Ee |e〉 .(2.3)

Since there are only two states we need only to consider the two-dimensional Hilbert space
which |g〉 and |e〉 form a basis set. So we can write the generalized wave function as

(2.4) Ψ(r, t) = cg |g〉 e−iωgt + ce |e〉 e−iωet,
where I have introduced that ωn = En/~, n = g, e. Normalization requires that the coefficients
cg and ce satisfy

(2.5) |cg|2 + |ce|2 = 1.

Now we have a good description of the electron’s unperturbed state which exists when there
is no incident radiation on the atom. Now turning on our laser, electric field E = E0 cos(ωt) of
the radiation incident on the atom will introduce a perturbation described by

(2.6) H ′(t) = er ·E0 cos(ωt)

Now we plug equation 2.4 into the time-dependent Schrödinger equation which yields:

(2.7) i~
[
ċg |g〉 e−iωgt + ċe |e〉 e−iωet + cg |g〉

(
−iEg

~

)
e−iωgt + ce |e〉

(
−iEe

~

)
e−iωet

]
= cg[H

0 |g〉]e−iωgt + ce[H
0 |e〉]e−iωet + cg[H

′ |g〉]e−iωgt + ce[H
′ |e〉]e−iωet.
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Fortunately we can use equations 2.3 to realize that the last two terms on the left side are equal
to the first two terms on the right side. After canceling those four terms we are left with the
slightly simpler equation

(2.8) i~
[
ċg |g〉 e−iωgt + ċe |e〉 e−iωet

]
= cg[H

′ |g〉]e−iωgt + ce[H
′ |e〉]e−iωet.

To isolate ċg and ċe we can take the inner product with respect to |g〉 and |e〉 respectively. This
is done simply by multiplying through by either 〈g| or 〈e|. This process results in the following
pair of first-order coupled ordinary differential equations:

iċg =
1

~
H ′gee

−iω0tce,

iċe =
1

~
H ′gee

iω0tcg,(2.9)

where ω0 = ωe − ωg which is the frequency associated with the energy difference between |e〉
and |g〉 and H ′ij = 〈i|H ′ |j〉. Finally substituting equation 2.6 for H ′ results in:

iċg = Ω cos(ωt)e−iω0tce,

iċe = Ω∗ cos(ωt)eiω0tcg,(2.10)

where the Rabi frequency Ω is defined as

(2.11) Ω ≡ 〈g| er ·E0 |e〉
~

=
−eE0

~
〈e| r |g〉 =

−µE0

~
,

where µ is the induced dipole moment. In order to keep progressing with an analytic solution
when we need to make use of these equations in future sections we must introduce the rotating
wave approximation to equations 2.10. This is nothing more than applying the original stipu-
lation that we are considering near-resonant radiation. The first step is to rewrite the cos(ωt)
terms using Euler’s formula

iċg =
Ω

2

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
ce,

iċe =
Ω∗

2

(
ei(ω+ω0)t + e−i(ω−ω0)t

)
cg.(2.12)

Since we are limiting ourselves to near-resonant radiation ω+ω0 ∼ 2ω0. Therefore, the (ω+ω0)t
term oscillates very fast as compared to (ω − ω0)t. On this basis we will approximate that the
(ω + ω0)t average to zero. This allows us write equations 2.12 as:

iċg =
Ω

2
eiδtce,

iċe =
Ω∗

2
e−iδtcg,(2.13)

where the detuning δ = ω − ω0.
We have now described the time evolution of our two-level system, but for one problem. Since

an excited state is not a stationary state an excited atom will eventually fall back down or decay
to the ground state by spontaneously emitting a photon. This process is called spontaneous
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emission and leads to a flaw in our work so far. According to our current equations if the laser
is turned off E0 = 0 ⇒ ċg = ċe = 0. This means that when the laser is turned off all atoms in
|e〉 will stay there despite the fact that we know they must decay from |g〉 to |e〉. Some authors
use this simple argument to justify adding decay terms into equations 2.10, or into comparable
equations later on in the derivation, that depend on cg and ce to correct for this. However, with
a more careful consideration of spontaneous emission we can develop analytic expressions for
these decay terms and explicitly demonstrate how they relate to cg and ce.

2. Spontaneous Emission

The idea of spontaneous emission was first proposed by Einstein when he studied Plank’s
blackbody spectrum. We now know that the cause of spontaneous emission is due to a coupling
between the atom and the electromagnetic vacuum field. At the time Einstein developed what
are known as the Einstein A and B coefficients which represent the rate of transitions from one
state to another and the constant of proportionality between this rate and energy density to
describe spontaneous emission. Although he is ultimately correct the method does not provide a
description of the process by which spontaneous emission occurs. This was instead accomplished
by Victor Weisskopf and his advisor Eugene Wigner in what is now called the Weisskopf-Wigner
theory. This section follows their work with the goal of describing the decay from |e〉 to |g〉 as
presented in [22, 25].

Just as before we will consider a two-level atom. This time, however, we will also keep track
of the state of the vacuum field’s state, by tracking the photons present in the field. So our
entire system includes both the atom and the vacuum. We will start with the system in state
|e, 0〉, meaning that the atom is in the excited state and there are no photons present in the
field. After the atom decays the state of the system is |g, 1S〉, meaning that the atom is in the
ground state and there is one photon present in the field emitted in mode S = (k, ε), where k is
the wave vector indicting the direction the photon was emitted and ε is the polarization vector
of the photon. Now, analogously to equation 2.4, we can write that

(2.14) Ψ(t) = ce0(t)e−iω0t |e, 0〉+
∑
S

cg1S(t)e−iωkt |g, 1S〉 ,

where ω0 is the same as previously ωk = ck, the frequency of an emitted photon. Now, using the
same method as in the previous section we can substitute equation 2.14 into the time-dependent
Schrödinger equation, and remove the terms duplicated on both sides of the equation. Then
expressions for ˙cg1S and ˙ce0 can be found by taking the inner product with respect to |g, 1S〉 and
|e, 0〉 and respectively. These products results in:

iċg1S(t) = ce0(t)Ω∗Se
i(ωk−ω0)t,(2.15)

and

iċe0(t) =
∑
S

cg1S(t)ΩSe
−i(ωk−ω0)t.(2.16)

where ΩS is the vacuum Rabi frequency and defined as:

(2.17) ΩS ≡
−µ ·Eωk

~
.
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In this expression the dipole moment µ = e 〈e| r |g〉 and the electric field per mode derives from
the classical expression for energy density as:

(2.18) Eωk =

√
~ωk
2ε0V

ε̂

where V is the volume used to quantize the field [26].
To solve equations 2.15 and 2.16 we will first directly integrate equation 2.15 as

(2.19) cg1S(t) = iΩ∗S

∫ t

0

ce0(t′)ei(ωk−ω0)t′dt′.

Plugging this result into equation 2.16 we find that:

(2.20) ċe0(t) = −
∑
S

|Ωs|2
∫ t

0

ce0(t′)e−i(ωk−ω0)(t−t′)dt′.

Our strategy moving forward will be to convert the sum to an integral, then consider the two
integrals separately, and finally take the product of the two results to find a simplified form of
ċe0(t).

To convert the sum to an integral we will consider it in the continuum limit, V → ∞. In
this case we can write that:

(2.21)
∑
S

=
∑
k,ε

=
2∑
ε=1

∫
D(k)d3k,

where D(k) is the density of states in k-space and limits of the sum over ε are justified because

the photon is polarized with respect to two axes, ε = ε1k̂1 + ε2k̂2, where k̂1 and k̂2 are unit
vectors in the plane orthogonal to k. Since k is quantized as ki = 2πn/L, with i = x, y, z there
is one state in a volume (2π/L)3 = (2π)3/V , therefore D(k) = V/(2π)3. Now using the spherical
coordinates (k, θ, φ) with d3k = k2 sin(θ)dkdθdφ we can continue from equation 2.21 and find
that:

(2.22)
∑
S

=
2∑
ε=1

∫ ∞
0

k2dk

∫ π

0

sin(θ)dθ

∫ 2π

0

dφ

Having successfully converted the sum to an integral we will now compute the sum in
equation 2.20 as follows:

(2.23)
∑
k,ε

|Ωs|2 =
∑
k,ε

ωk
2ε0V ~

(µ · ε)2 =

∫ ∞
0

k2 ωk
2(2π)3ε0~

[
2∑
ε=1

∫ π

0

sin θdθ

∫ 2π

0

(µ · ε)2dφ

]
.

Working with just the term in brackets and breaking ε into into its components results in:

(2.24)
2∑
ε=1

∫ π

0

sin θdθ

∫ 2π

0

(µ · ε)2dφ =

∫ π

0

sin θdθ

∫ 2π

0

[
(µ · εk1)2 + (µ · εk2)2

]
dφ.
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To further simplify the dot products we will take a brief stroll into some vector calculus
using k̂1, k̂2, and k̂3, where k = kk̂3 and the other two unit vectors span the plane orthogonal
to k, as described earlier. Thinking classically this using the direction of propagation along with
the two axes of polarization as an orthonormal basis set. More to the point using this basis set
we can write that:

µ = (µ · k̂1)k̂1 + (µ · k̂2)k̂2 + (µ · k̂3)k̂3

|µ|2 = (µ · k̂1)2 + (µ · k̂2)2 + (µ · k̂3)2

|µ|2 − (µ · k̂3)2 = (µ · k̂1)2 + (µ · k̂2)2

|µ|2 sin2 θ = (µ · k̂1)2 + (µ · k̂2)2

.(2.25)

The last line is achieved by choosing to orient the spherical axes of our coordinate system to be
in the direction of µ, which we can do without loss of generality. Now it is a simple matter to
evaluate the integrals in 2.24, which results in:

(2.26)
2∑
ε=1

∫ π

0

sin θdθ

∫ 2π

0

(µ · ε)2dφ =
8π

3
|µ|2.

Finally, by using the change of variables ωk = ck, we can write the summation in equation 2.20
as:

(2.27)
∑
S

|Ωs|2 =
|µ|2

6π2ε0~c3

∫ ∞
0

ω3
kdωk.

Now we will shift our focus to the integral in equation 2.20. Evaluating this integral requires
some careful approximation. We will assume that ce0(t′) varies at a rate Γ� ω0. The integral
makes non-zero contributions when t ∼ t′. On this basis we can replace ce0(t′) with ce0(t) and
pull it out of the integral, which becomes

(2.28)

∫ t

0

ce0(t′)e−i(ωk−ω0)(t−t′)dt′ ≈ ce0(t)

∫ t

0

e−i(ωk−ω0)(t−t′)dt′.

Since Γ � ω0, we are only interested in t � ω0. This allows us to let the upper limit of the
integral approach ∞. Applying these conditions we find that:

(2.29) ce0(t)

∫ ∞
0

e−i(ωk−ω0)(t−t′)dt′ = πδ(ωk − ω0)− iP
(

1

ωk − ω0

)
,

where P represents the Cauchy principle part. Since P is purely imaginary it only contributes
a phase shift and we will ignore it here. We can do this because we are primarily concerned
with the time derivatives of ce0 and cg1S which must be in phase with each other, so for our
purposes a phase shift just represents a change of origin. Putting our results of the sum and
integral terms in equation 2.20 together we find that:

(2.30) ċe0(t) = −Γ

2
ce0(t),
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where

(2.31) Γ =
ω3

0|µ|2

3πε0~c3
.

We will see in the next section that Γ is the decay rate of the population of atoms in the excited
state. Doing so requires furthering our work so that we can consider and ensemble of two-level
atoms, instead of just one.

3. Density Matrix

Our work until this point has only dealt with pure states. These are states that can be
expressed with a single ket as |Ψ〉. Since we have only been considering a system consisting
of one atom its state can always be described by equation 2.4 which is to say that the system
is in either |g〉, |e〉, or some linear combination of the two. If our ultimate goal were to study
singular atoms this would be sufficient. However, since we hope to progress to laser cooling and
later Bose-Einstein condensation we must describe the behavior of an entire ensemble of atoms
in a radiation field.

In quantum mechanics there are two kinds of ensembles, pure and mixed. A pure ensemble
is one in which every atom is in the same state, which is certainly a special case. In a mixed
ensemble atoms are free to exist in any given |Ψ〉. This is the case we must consider because
in general there is no reason why a group of our two-level atoms should all be in the same
state. At this point it may seem like we need throw out our previous work and start again,
but fortunately each atom on an individual basis can still be said to be in a pure state |Ψ〉,
as defined earlier. In this way a mixed state can be thought of as mixture of pure states. So
we should be able to describe our mixed ensemble in terms of each of its members. In this
section we present the density operator as a means by which to accomplish this following the
presentations in [14, 22, 27, 28, 29]

3.1. An Introduction to the Density Matrix. When considering a pure quantum me-
chanical state it is common practice to describe the system in terms of expectation values:

(2.32) 〈A〉 = 〈Ψ|A |Ψ〉 .
This approach works well when the situation is limited to pure states, but will not work well
when attempting to use to many pure state to describe an mixed one. In order accomplish this
we need to introduce the density operator

(2.33) ρ ≡ |Ψ〉 〈Ψ| .
We can write any pure state and its conjugate as

(2.34) |Ψ〉 =
n∑
i=1

ci |ψi〉 ,

and

(2.35) 〈Ψ| =
n∑
i=1

c∗i 〈ψi| ,
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where {ψi} forms a basis set and
∑n

i=1 |ci|2 = 1. This allows us to say that the elements of the
density matrix are given by

(2.36) ρi,j = 〈ψi| ρ |ψj〉 = 〈ψi|Ψ〉 〈Ψ|ψj〉 = cic
∗
j .

Thus far we still have just a description of a pure state |Ψ〉. However, since each atom is
described by a pure state we are actually trying to describe an ensemble of states |Ψi〉, each
with some fractional probability pi. So the entire system can be described by a sum of pure
state density matrices as

(2.37) ρ =
n∑
i=1

pi |Ψi〉 〈Ψi| .

Now we are ready to consider an ensemble of two-level atoms for which the density matrix
for a pure state can be written as

(2.38) ρ ≡ |Ψ〉 〈Ψ| =
(
cg
ce

)(
c∗g c∗e

)
=

(
|cg|2 cgc

∗
e

cec
∗
g |ce|2

)
=

(
ρgg ρge
ρeg ρee

)
.

Now that we have a specific density matrix it is easier to understand the meanings of the
individual terms. The diagonal elements are called the densities and represent the probability
of finding a particle in either |e〉 or |g〉. The off-diagonal terms are called the coherences and
in general represent the response of the system to the frequency a perturbation. In our case
we are interested in considering the perturbation due to the radiation field of a laser, so the
coherences will depend on ω the frequency of the laser. This concept is more clearly illustrated
if we consider the form of the dipole moment p induced in an atom by the radiation field.
Choosing to align our coordinate system such that E = Eo cos(ωt)ẑ we can write that

〈p〉 = 〈−ez〉 = −e
∫

Ψ∗(t)zΨ(t)d3r

= −e
∫ (

cg |g〉 e−iωgt + ce |e〉 e−iωet
)∗
z
(
cg |g〉 e−iωgt + ce |e〉 e−iωet

)
d3r

= −e
(
cec
∗
g 〈ψe| z |ψg〉 eiω0t + cgc

∗
e 〈ψg| z |ψe〉 e−iω0t

)
.(2.39)

So the coherences determine the magnitude of p which can also be thought of as the strength
of the coupling between the atom and the radiation field. The greater the dipole moment the
greater the coupling.

In our model atoms scatter a photons due to spontaneous emission induced |e〉 → |g〉
transitions, which cause a change over time in the populations of the two states. By this logic
Rscatt will depend on how the density matrix evolves in time. So moving forward our task will
be to derive expressions for the time derivatives of the elements of ρ. Equation 2.37 describes
just one of the many pure states represented in the mixed ensemble and does not describe the
entire statistical mixture. However, we are primarily concerned with the time dependence of
the density matrix, which in is given as

(2.40) i~
dρ

dt
= [H, ρ].
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Since we are considering an ensemble of identical atoms in the same field the density matrix of
each pure sate will evolve over time in the same way, which is to say that ρ̇ is the same for all
pure states. Thus it is valid to describe the time evolution of the entire system in terms of the
time derivative of a singular pure state.

In the previous two sections we have considered the coupling between the two-level atom
system, a near-resonant radiation field, and the vacuum field. We can now represent this
coupling in terms of two density matrices, each one due to the coupling of one field in the
absence of the other. Working with two separate sets of equations due to each field would be
a terrible nuisances, so instead we will consider the coupling due to the net field which is just
the superposition of the two fields. In practice this means that we can simply add the elements
each density matrix to find the density matrix due to the presence of both fields. In general
this combination of density matrices can be written as

(2.41) ρnet = ρrad + ρvac =
n∑
i=1

piρradi +
n∑
i=1

piρvaci .

In sections 3.2 and 3.3 we calculate the elements of the two individual density matrices and in
section 3.4 we combine them.

3.2. Radiation Field Coupling. First we will consider the coupling due to the radiation
field. Starting with the definitions for the elements of ρ it follows that:

ρgg = cgc
∗
g

˙ρgg = ċgc
∗
g + cg ċ∗g.(2.42)

Using equations 2.15 to substitute for ċg and ċe we find

˙ρgg =
−iΩ

2
eiδtcec

∗
g + cg

iΩ∗

2
e−iδtc∗e

=
i

2
(Ω∗ρ̃ge − Ωρ̃eg),(2.43)

where ρ̃ge ≡ ρgee
−iδt and ρ̃eg ≡ ρege

iδt, I will refer to these terms as the complex coherences. In
our two-level system if an electron enters the ground state it must have left the excited state.
Therefore,

˙ρee = − ˙ρgg

=
i

2
(Ωρ̃eg − Ω∗ρ̃ge).(2.44)

We have expressions for the time derivatives of the populations and we now turn our attention
to the time derivatives of the complex coherences.
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ρ̃ge = ρgee
−iδt

˙̃ρge = ρge
d

dt
e−iδt + ρ̇gee

−iδt

= −iδρ̃ge + (ċgce + cg ċe)e
−iδt

= −iδρ̃ge +
iΩ

2
(ρgg − ρee)(2.45)

By following the same process it is a simple matter to show that:

(2.46) ˙̃ρeg = iδρ̃eg +
iΩ∗

2
(ρee − ρgg).

By comparing equations 2.45 and 2.46 we see that ˙̃ρge = ( ˙̃ρeg)
∗.

3.3. Vacuum Field Coupling. To account for the coupling due to the vacuum field, or
rather the density matrix terms due to this coupling, we will start just as in equation 2.42 and
then substitute using equation 2.38.

ρ̇ee = ċec
∗
e + ceċ∗e

= −Γ

2
cec
∗
e − ce

Γ

2
c∗e

= −Γρee(2.47)

As a brief aside, equation 2.47 is just a first-order separable differential equation and we can
write the solution as:

(2.48) ρee(t) = ρee(0)e−Γt.

Now it is clear that the excited state population decays with a rate of Γ. This justifies the choice
of to leave the factor of 1/2 out of the definition of Γ in equation 2.31. By the same argument
as previously

(2.49) ρ̇gg = −ρ̇ee = Γρee.

The time derivative ˙̃ρge of the vacuum field can as follows:

ρ̇ge = ċgc
∗
e + cg ċ∗e

= 0− Γ

2
cgc
∗
e

= −Γ

2
ρge.(2.50)

The argument that the first term goes to zero is that there is no decay out of the ground state
which means ċg = 0. At first glance this may seem like a contradiction with equation 2.49,
however, normalization requires that this be the case. Furthermore, ρ̇gg does not have any
dependence on ce or c∗e. By a similar argument we find that:

(2.51) ρ̇eg = −Γ

2
ρeg.
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3.4. The Optical Bloch Equations. All that is left to do now is to add the results
developed in the previous two sections for the time derivatives of the density matrix elements.
This results skipping minor algebraic steps in the coherence equations we find that:

ρ̇gg = Γρee +
i

2
(Ω∗ρ̃ge − Ωρ̃eg)

ρ̇ee = −Γρee +
i

2
(Ωρ̃eg − Ω∗ρ̃ge)

˙̃ρge = −
(

Γ

2
+ iδ

)
ρ̃ge +

iΩ

2
(ρgg − ρee)

˙̃ρeg = −
(

Γ

2
− iδ

)
ρ̃eg +

iΩ∗

2
(ρee − ρgg)(2.52)

These are the Optical Bloch Equations. As a quick sanity consider let’s consider the case
where we turn off the laser. In this case the radiation contribution to field vanishes and all that
remains is the vacuum field. Our equations support this because all of the terms terms related
to the coupling with the radiation field go to zero. The only terms that remain are ones due to
the interaction with the vacuum field, the only field still present. The converse argument would
hold, but is less enlightening since there is no physical way to“turn off” the vacuum field. We
now have a set of four differential equations that we can use to solve for any element of the
density matrix as a function of time.

4. Saturation and Power Broadening

Our last step before finding an expression for Rscatt is to use the Optical Bloch equations,
developed in the previous section to solve for ρee. In order to simplify the equations we use the
population difference w = ρgg − ρee, and the fact that relationship that ρ̃ge = (ρ̃eg)

∗.To begin,

we will rewrite the expression for ˙̃ρge using w.

(2.53) ˙̃ρge = −
(

Γ

2
+ iδ

)
ρ̃ge +

iΩ

2
w.

Now we need to find an expression for ẇ = ˙ρgg − ˙ρee.

ẇ = Γρee +
i

2
(Ω∗ρ̃ge − Ωρ̃eg)−

[
−Γρee +

i

2
(Ωρ̃eg − Ω∗ρ̃ge)

]
= 2Γρee + i(Ω∗ρ̃ge − Ωρ̃eg).(2.54)

We can move one step further by writing ρee in terms of w using the relationship due the
normalization that ρee + ρgg = 1

ρee = ρgg − w
= 1− ρee − w

=
1− w

2
.(2.55)

Plugging this result into equation 2.54 and making use of the relationship between the complex
coherences results in:
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(2.56) ẇ = Γ− Γw + i [Ω∗ρ̃ge − Ω(ρ̃ge)
∗] .

Moving forward we will consider the steady state condition in which ẇ = ˙̃ρge = 0. Our
approach now will be to use this condition to set equations 2.53 and 2.56 equal to zero to find
a solution for ρee. First, we will solve equation 2.53 for w.

(
Γ

2
+ iδ

)
ρ̃ge =

iΩ

2
w

ρ̃ge =
iwΩ

Γ + 2iδ

(ρ̃ge)
∗ =

−iwΩ

Γ− 2iδ
(2.57)

Now we will use these results in equations 2.54 and solve for W and we find that:

(2.58) w =
Γ2 + 4δ2

Γ2 + 4δ2 + 2|Ω|2
.

We can learn a little more about w by rewriting it as follows:

(2.59) w =
1

1 + s
, where s ≡ 2|Ω|2

Γ2 + 4δ2
=

s0

1 + 4δ2

Γ2

.

We have now written w as a Lorentzian with saturation parameter s. In the on resonance
(δ = 0) case s reduces to

(2.60) s0 =
2|Ω|2

Γ2
.

Both Γ and |Ω|2 are proportional to the strength of the radiation field. This suggests that
there should be a a way to write s0 in terms of the the intensity I of the field. This form is
experimentally more useful as I = P/A, where A is area. So, with a power meter and good of
idea of beam waist I can be calculated more easily in an optics lab than Ω or Γ. For reasons
I cannot explain the literature does a poor job explicitly showing how this form in terms of I
is obtained. So, I have decided to present a simple method I worked out using the previous
definitions of Γ and |Ω|2 in this chapter.

2|Ω|2

Γ2
=

2|Ω|2τ
Γ

=
2E2

0µ
2τ

~2

3πε0~c3

ω3
0µ

2

=
6πε0c

3E2
0τ

~ω3
0

(2.61)

So far all we have done is to introduce Γ = 1/τ , plug in the definitions of Ω and Γ, and simplify.
Obtaining the final results requires the use of two well know relations:
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ω =
2πc

λ
,

and

I =
cnε0

2
E2

0 .

where n is the refractive index, in a vacuum n = 1. Using the first relation to substitute for ω0

and pulling the proper terms together to replace them with I using the second relations results
in:

2|Ω|2

Γ2
=

3λ3τI

hπc

=
I

Isat
, where Isat ≡

hπc

3λ3τ
.(2.62)

We have now defined the saturation intensity Isat which serves as a useful scale for I.
Now we will make use of equation 2.55 to find an expression for ρee, which results in:

ρee =
s

2(1 + s)

=
s0/2

1 + s0

1+ 4δ2

Γ2

1

1 + 4δ2

Γ2

=
s0/2

1 + 4δ2

Γ2 + s0

(2.63)

=

(
s0/2

1 + s0

)(
1

1 + 4δ2

Γ2(1+s0)

)
(2.64)

Equation 2.64 shows us that ρee has a lorentzian line shape withe a line width(FWHM)

(2.65) Γ′ = Γ
√

1 + s0 = Γ

√
1 +

I

Isat
.

Notice that is the low intensity limit, I → 0 the line width is Γ, but as I increases so does Γ′.
This effect is know as power broadening and can be thought of as an example of the time-energy
uncertainty principle. In practice equation it is more useful to write ρee, using equations 2.63
and 2.62 as:

(2.66) ρee =
1

2

I/Isat
1 + (2δ/Γ)2 + I/Isat

Finally we are ready to write an expression for the scattering rate Rscatt. In our two-level
model an atoms emit, or scatters photons when they relax back to |g〉 from |e〉. Therefore

Rscatt = ρ̇gg

=
Γ

2

I/Isat
1 + (2δ/Γ)2 + I/Isat

.(2.67)
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Figure 2.2. Power broadening is illustrated by plotting ρee as a function of δ
for several different s0 or I in units of Isat. As s0 increases the peak on resonance
approaches 1/2 and the Γ′ increases.

As I increase, Rscatt approaches Γ/2. This corresponds to individual atoms spending, on average,
half their time in the |g〉 and half in |e〉. Our definition of Isat is such that I = Isat ⇒ Rscatt =
Γ/4. In other words when I = Isat half of the maximum number of photons are being scattered.

In the next chapter we will make heavy use of our expression for Rscatt as we begin to explore
how to achieve the conditions necessary for Bose-Einstein Condensation to occur. There is
certainly more that could be said about any of the topics in this chapter. The two-level model
we employed turns out to be good model for many situations and is a common tool for solving
other questions in atomic physics. The Optical Bloch equations and the density matrix are also
commonly used tools the field, and are solved for many different situations. These, however are
not critical to description of laser cooling, the first step in achieving Bose-Einstein condensation,
which relies on rate at which a laser can deliver momentum kicks to an atom. This is why the
approach here has been focused on finding Rscatt at the expense of greater breadth.



CHAPTER 3

Laser Cooling

In Ch. 1 we established that a BEC will form given a combination of sufficiently low tem-
perature and high density. If we are going to form a BEC in lab we need to be able to meet
these conditions, and doing so experimentally is certainly a nontrivial process. Meeting the first
caveat for condensation, achieving T < Tc, requires a means by which to cool an ensemble of
atoms. The most common way to begin cooling this ensemble is with a technique known as
laser cooling, the topic of this chapter. Meeting the second caveat requires a means by which
to decrease the volume of the ensemble, if we assume we cannot increase the atom number.
This can also be thought of as increasing the spatial confinement of the ensemble, or trapping
the atoms more tightly. An initial method for trapping and cooling atoms, called a Magneto-
Optical trap (MOT), is described later in this chapter. After a MOT we will rely on a different
technique, magnetic trapping, to provide the necessary increase in density and complete the
cooling process, which is discussed Ch. 4.

We will begin our discussion of laser cooling with a conceptual description of the technique.
Then, for the sake of a more thorough explanation as well as an understanding of the effect of
certain experimental parameters we will apply the semi-classical model for atom-light interac-
tions, developed in the previous chapter. Finally we will depart from a general description of
laser cooling and describe how it is specifically implemented to cool 87Rb, the species we will
use to form our BECs. This theoretical description of laser cooling has been developed from
the work presented in [13, 14, 22]

1. Qualitative Background

From the advent of spectroscopy light has been used to study matter on a molecular and
atomic scale. Usually this work is presented in terms of a conservation of energy, by measuring
the energy of photons either emitted or absorbed by an atom it is possible to study its internal
structure. However, in addition to energy momentum must also be conserved in atom light
interactions. Since photons carry momentum whenever they interact with atoms, through either
emission or absorption, there must be a transfer of momentum which means that light can
exert a force on atoms. This force provides the basis for laser cooling and trapping techniques
developed in the last three decades. Theses tools have in turn lead to many exciting new
developments including improved atomic clocks, the study of BECs, and the birth of a new
sub-field in Atomic, Molecular, and Optical physics that is making use of these techniques to
study what was previously inaccessible. In acknowledgment of their instrumental role in the
development on laser cooling and trapping S. Chu, c. Cohen-Tannoudji, and W.D. Phillips were
awarded the Nobel Prize in Physics in 1997 [30, 31, 32].

Initially, the connection between exerting a force on an ensemble of atoms and cooling it can
be difficult to see or may even seem contradictory. However, recalling the Maxwell-Boltzmann
speed distribution we can write that:

33
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(3.1) v̄ =

√
8kT

πm
,

where v̄ is the average speed of a particle in an ideal gas. This tells us that v ∝
√
T which means

that slowing down a group of particles reduces their temperature. This relationship between v
and T is precisely the idea that laser cooling is based on. In laser cooling, light from a laser
is used to exert a force on an atom that opposes its direction of motion. This slows the atom
down which in turn cools it.

The simplest case is to consider an atom of mass m moving in one direction with speed v
and a laser beam, with wave number k, propagating in the opposite direction. If the light is on
resonance with an allowed transition in the atom it will absorb a photon. This “collision” causes
the atom’s momentum to decrease by an amount ~k, the momentum carried by the photon.
Using conservation of momentum we can find the corresponding change in the atom’s speed,
which relates to how much it is cooled as follows:

Pi = Pf

mvi − ~k = mvf

∆v = −~k
m
.(3.2)

After this transition’s decay time τ the atom will emit a photon of the same frequency. This
again by conservation of momentum will alter the atom’s velocity. In the case where a photon is
emitted in the same direction that it was absorbed initial reduction in the atom’s speed would
be completely negated. However, these photons are emitted in a random direction. This means
that if we consider the time average of this effect, the change in momentum over many atom-
photon interactions, the effect of these emissions cancel each other out, and the net effect is a
reduction in the atom’s speed which corresponds to a decrease in its temperature. This process
is depicted in figure 3.1.

a

b

c

v

hk

m
v -

Figure 3.1. (a)A resonant photon incident on an atom. (b) The photon is
absorbed and the atom feels a momentum kick to the right, causing it to slow
down. (c) A photon is spontaneously emitted in a random direction
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An initially helpful, albeit, classical analogy is to take a large mass moving is some direction,
like a car rolling down a street in neutral. Now take your high velocity ping-pong ball launcher,
that you always keep handy, and fire at the car. Each ping-pong ball will reduce the car’s
momentum by some small, almost negligible, amount but the effect an incredibly large number
of collisions will result in a significant decrease in the car’s speed.

On its surface we now have a full description of laser cooling. However, upon further inspec-
tion many questions have been left unanswered. What does it actually mean for the incident
photons to be resonant? What is the briefly mentioned decay time τ? Finally, perhaps most
frustrating of all, if there is a change in the atom’s momentum then there must be a force ex-
erted on it by the light what is this force? These are all good questions deserving of satisfactory
answers.

2. Radiation Force

Building on our work in the precious section we can begin to describe the force exerted on
an atom by adsorbing photons F abs. For the sake of simplicity we will only concern ourselves
with the magnitude Fabs as we have already specified that it is directed to oppose the atom’s
motion. Force can be thought of simply as a change in momentum over time F = dP

dt
. Every

time an atom absorbs a photon it receives a momentum kick of ∆P = ~k. So we can write that:

(3.3) Fabs = ~k
Nph

∆t
,

where Nph is the number of photons absorbed and δt is the time required to absorb Nph. An
excited atom cannot absorb another photon is spontaneously emits, or scatters, a photon to
relax back down to the ground state. So an atom can absorb photons at the same rate that it
scatters them, meaning that the scattering rate Rscatt = Nph/∆t. This allows that for the slight
simplification of equation 3.3 to:

(3.4) Fabs = ~kRscatt.

Now we can make use of equation 2.67, our major result from chapter 2 to write that:

(3.5) Fabs = ~k
Γ

2

I/Isat
1 + (2δ/Γ)2 + I/Isat

.

We now have an expression for the forces exerted on an atom by a laser beam as a function of
I and δ. The challenge now is figure our how slow atoms with this force

3. Optical Molasses

Earlier we consider an atom moving against a resonant laser to describe laser cooling. At it
core the nature of the interactions in this simple case are the mechanism behind laser cooling.
However, with only one laser Fabs will only act to slow down the atom when it is moving against
the direction of propagation, and will increase its speed, thus heating the system, when it is
moving in the direction of propagation. To correct for this we will expand our situation to a one
dimensional case in which the atom is free to move in both the positive and negative directions
with two lasers, one propagating in each direction. This setup has become known as optical
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molasses because the atom is subject a frictional or damping force, which is always acting to
slow its motion.

Understanding the premise of optical molasses requires introducing the Doppler effect, which
is why it is sometimes referred to as Doppler cooling and was first proposed in 1974 by [33].
If an atom is moving towards a laser it will perceive its frequency to be blue shifted higher
and vice versa. This means that a resonant laser in the lab frame will be seen and shift above
resonance by an atom moving towards it and below resonance by an atom moving away from
it. Our desire is for the net force of the two lasers to be in opposition to the atoms motion.
This is accomplished by tuning both lasers below resonance in the lab frame, or red detuning.
When an atom moves toward either of the red detuned lasers it will see it as blue shifted closer
to resonance and the other as red shifted farther from resonance as shown in figure 3.2. This
causes the atom to scatter more photons and feel a stronger force from the laser it is moving
towards and to scatter fewer photons from the laser it is moving away from. The net result is
to slow the motion of the atom

ω

+kv

-kv

|g>
v

Atom
Laser 1 Laser 2

|e>

ω
0

Figure 3.2. An atom moving to the right in the radiation fields of two lasers.
The lasers are red-detuned from resonance with the |g〉 → |e〉 transition with
frequency ω0 to a frequency of ω. The atom sees laser 1 further red-detuned away
from resonance and laser 2 blue-detuned closer to. Note that the color does not
indicated the frequency of the laser but the Doppler shift relative to the atom.

Using this conceptual explanation of the process it is a fairly simple task to describe the
net force in the low intensity case. A high intensity model would require considering the dipole
force which we will not do here. Before we can use equation 3.5 to write the net force equation
of optical molasses we need to redefine the detuning term in order to account for the Doppler
effect. It can be rewritten as

(3.6) δ = (ω − ω0 ± kv),

where k is the wave number and v is the speed of the atom. The Doppler shift of laser the atom
is moving towards is given by +kv and −kv for the laser the atom is moving away from. Now
we can write that
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(3.7) Fmol = Fabs(ω − ω0 − kv)− Fabs(ω − ω0 + kv).

It is reasonable to assume low velocities, kv � Γ, because an atom moving too fast will see the
light as Doppler shifted so far from resonance it will not scatter enough photons to be slowed.
Under this assumption

Fmol ≈ Frad(ω − ω0)− kv∂F
∂ω
− Frad(ω − ω0)− kv∂F

∂ω

≈ −2kv
∂F

∂ω

≈ 8~k2 I

Isat

δ/Γ

[1 + (2δ/Γ)2]2
v.(3.8)

Since I/Isat � 1 it has been dropped from the denominator. Finally we let

(3.9) α = −8~k2 I

Isat

δ/Γ

[1 + (2δ/Γ)2]2
,

and can say that

(3.10) Fmol = −αv.

In the case where δ < 0 ⇒ α > 0 Fmol provides a damping force requires that always acts in
opposition to an atoms motion. This damping forces makes it as though the atoms are caught
in molasses or some other viscous liquid which is where this configuration gets its name and
was first implemented by Steven Chu at Bell Laboratories in 1985 [34]. Is is important to note
that the detuning must be below resonance in order to cool the atoms, tuning above resonance
would result in heating the system. As we have already discussed the system’s temperature and
energy are related. So, in order to understand the cooling effects of optical molasses it will be
more useful to reformulate equation 3.10 to show how Fmol reduces the energy of the system.
For a particle with energy E = 1

2
mv2 Newton’s second law gives

(3.11)
dE

dt
= Mv

dv

dt
= vFmol = −αv2 = −2α

M
E.

So far we have limited ourselves to the one-dimensional case of one pair counter propagating
lasers. Of course in reality an atom is free to move in all three directions. To provide cooling
along all three directions optical molasses is usually implemented with three orthogonal pairs
of counter propagating lasers. Generalizing for the region of intersection between all six beams
is a simple matter of allowing v2 = v2

x + v2
y + v2

z , since the behavior in each direction we be
like that of the one dimensional case. Unfortunately equation 3.11 cannot be the whole answer
because in principle is would allow the energy of the system to go to 0 corresponding with a
temperature absolute zero! This is certainly an unphysical result and there must be another,
as yet unconsidered, processes occurring to prevent this from happening. Finding the limit of
Doppler cooling is the topic of the next section.
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4. Doppler Cooling Limit

In this section we will discuss what prevents Doppler cooling from being able to cool a sample
to an arbitrarily low temperature. Until now we have consider that the force from one laser
beam on atom is F abs which is oversimplification. The force is more appropriately expressed as

(3.12) F = F abs + δF abs + F spont + δF spont.

The affects of F abs have already been take into account in the previous section. As mentioned
earlier the time average affect of the spontaneously emitted photons F̄ spont = 0. We have not
yet considered how fluctuations in the absorption and spontaneous emission forces, δF abs and
δF spont impact the net force.

Spontaneous emission always accompanies absorption. Over time it has no net effect, but
on a photon by photon basis spontaneous emission leads to a random walk in momentum space
because every emission gives a momentum kick in a random direction. This walk is of a number
of steps N , equivalent the number of photons emitted. So the mean square velocity increases
as

(3.13)
(
v2
)
spont

= N v2
r = Rscatttv

2
r ,

where vr = ~k/m is the recoil velocity imparted on the atom with every emission. In order to
consider just one direction at a time, as we did before, the mean square speed along just the
z-axis can be written as

(3.14)
(
v2
z

)
spont

= ηRscatttv
2
r =⇒

(
dv2

z

dt

)
spont

= ηRscattv
2
r .

Every spontaneously emitted photon gives has a recoil velocity of the z-direction of vrz =
(~k/m) cos θ, the factor of η = 〈cos2 θ〉 the angular average has been added to account for this.
In the case of isotropic spontaneous emission η = 1/3.

The fluctuations δF spont stem from the fact that an atom does not always scatter the same
number of photons in a time t. Fluctuations around the mean scattering rate lead to a walk in

mometum spce along the laser beam. Similar to
(
v2
z

)
spont

we can write that

(3.15)
(
v2
z

)
abs

= Rscatttv
2
r =⇒

(
dv2

z

dt

)
abs

= Rscattv
2
r .

So far these results are just for one laser beam. To generalize to describing the atom’s motion
due to six laser beams in the z-direction requires two assumptions. First, that the scattering
rate for a pair of counter propagating beams is 2Rscatt. Second, to account for the contribution
of the off axis beams to δF spont we will assume that radiation is symmetric so that η = 1/3
and that each of the 3 pairs contributes equally. The first assumption adds a factor of 2 to
both equations 3.14 and 3.15, and the second assumption adds an additional factor of 3 to 3.15.
Similar to equation 3.11 we find that

d

dt

(
1

2
Mv2

z

)
= 4ErRscatt − αv2

z ,(3.16)
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where Er = 1
2
mv2

r is the recoil energy. We now have a result that make physical sense because
the additional terms prevents temperature from approaching absolute zero. To determine the
steady state condition we set the derivative equal to zero and solve for v2

z and find that

(3.17) v2
z =

4ErRscatt

α
.

The equipartition theorem tells us that 1
2
Mv2

z = 1
2
kBT since the kinetic energy in just the z-

direction is one quadratic degree of freedom. To take advantage of this we can multiply equation
3.17 by 1

2
M so that it equates energies which results in

(3.18) kBT =
~2k2Rscatt

α
,

after also substituting for Er and vr. Finally, plugging in for α we find that

(3.19) kBT =
~Γ

4

1 + (2δ/Γ)2

2δ/Γ
.

This is most easily done by first rewriting α as

(3.20) α = − −4~k2δ

(Γ2/4 + δ)
Rscatt.

Equation 3.19 has a minimum at δ = −Γ/2 which corresponds to a temperature of

(3.21) TD =
~Γ

2kB
.

This temperature TD is referred to as the Doppler limit and is the lowest possible temperature
in an optical molasses of two-level atoms. In practice it turns out that because real atoms are not
two-level systems much much colder temperatures are attainable experimentally with Doppler
cooling. Cooling below the Doppler limit was first observed in 1992 by W.D. Phillips at NIST
[35]. This additional cooling is known as the Sisyphus effect, which is not discussed in this
thesis, but was described for the first time by C. Cohen-Tannoudji in the same year [36]. While
we now have an effective method to cool atoms it is important to realized that Optical molasses
is not a trap. Doppler cooling alone only provides a velocity dependent force and due to the
atoms’ random walk in momentum space they will eventually leave the region of intersection
between all six beams and be lost. The next section describes one technique adding a position
dependent force to correct for this.

5. Magneto-Optical Trap

This section describes how a Magneto-Optical trap(MOT) works. The motivation for its
development was the desire to confine atoms in an optical molasses by adding a position-
dependent force to the existing velocity dependent one and was invented by J. Dalibard and S.
Chu 1987 [37] . This is accomplished by turning on a quadrupole magnetic field, usually from a
pair of anti-Helmholtz coils, such that the zero of the field and the center of the optical molasses
are co-located as shown in figure 3.3. The quadrupole will be discussed in greater detail in Ch. 5
but for now it is sufficient to know that the field is zero at the center of the coils and increases in
all direction away from the center. The dangerous misconception that frequently gets developed
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Figure 3.3. The setup for a MOT. A pair of anti-Helmholtz coils are added
along one of the axis of the optical molasses beams.

at this point is that a magnetic force is being used as a position dependent force. This is not
the case! The magnetic force does not play a role in this trap as it does in other magnetic traps,
described in chapter 5, at least not to any significant level. The position dependent force is
due to the Zeeman shift experienced by the atoms as the move away from the center into areas
where the magnetic field is non-zero.

When an atom is placed in an external magnetic field the degeneracy associated with pro-
jection of angular momentum along the z-axis will be removed due to the Zeeman effect. This is
due to a further splitting of the magnetic sub-levels. The splitting for an atom in state |F,MF 〉
relative to the F energy levels, in the weak-field case, is given by

(3.22) ∆Ez = µBgjmjBext,

to a first order approximation. The Bohr magneton is µB, and gj is the Landé g-factor. For the
sake of simplicity we will consider an external magnetic field with constant gradient such that
in the z-direction Bextz = z dB

dz
. As it turns out near the center a quadrupole field this is a very

good approximation in any direction. So equation 3.21 becomes

(3.23) ∆Ez = µBgjmjz
dB

dz
.

It is now easy to see that the mj levels vary linearly as an atom moves away from the center
of the trap. For z > 0 the mj < 0 levels are Zeeman shifted to lower energy and the mj > 0
are shifted to high energy. This means that the mj < 0 transitions moved closer to resonance
and the mj > 0 farther from resonance, since δ < 0 is required for Doppler cooling as shown in
figure 3.4. The opposite is true for displacements for z < 0 displacements. Using the behavior
of the Zeeman shifts as a guide we set the polarization of the pair of beams along the z-axis.
The beam propagating in the negative z-direction is set to a σ− circular polarization, meaning
that it has the appropriate polarization to drive |0, 0〉 → |1,−1〉 transitions. The positive going
beam is set to a σ+ circular polarization so it can drive |0, 0〉 → |1, 1〉 transitions. This means
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that if an moves to a z > 0 position it will scatter more photons from the beam propagating
in the negative z-direction and feel a force back towards center due to an imbalance in Frad
between the two beams. If instead the atom moved to a z < 0 position the direction of the
would flip and the atom would again be pushed towards the center of the trap. In this way the
addition of a magnetic field adds a restoring force in addition to a damping force.
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Figure 3.4. As an atom moves to areas with B > 0 it will scatter more photons
from the σ+ beams and fewer from the σ− beam. This imbalance in the radiation
force will push the atom back towards center. The opposite case occurs for B < 0
areas.

We can now incorporate the new Zeeman induced restoring in the optical molasses equations.
First, we need to add the Zeeman shifts to the detuning so equation 3.16 becomes

(3.24) δ = (ω ± kv − (ω0 ∓ βz)),

where

(3.25) βz =
gjµB
~

dB

dz
z

is the Zeeman shift at position z with the approximation of a linear field generalized for any
field. Now using the updated δ equation 3.7 can be writen as

FMOT = F σ−

scatt(ω − kv − (ω0 + βz))− F σ+

scatt(ω + kv − (ω0 − βz))

= F σ−

scatt(ω − kv − ω0 − βz)− F σ+

scatt(ω + kv − ω0 + βz)(3.26)

In addition to assuming kv � Γ we will aslso assume small displacements from the trap center.
So just as before we can approximate FMOT as

FMOT = −2
∂F

∂ω
kv − 2

∂F

∂ω
βz

= −αv − αβ

k
z.(3.27)
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This shows that for small displacements and speeds a MOT behaves like the classical damped
harmonic oscialltor with a damping coeffcient α and spring constant αβ

k
. So atoms in a MOT

are both slowed and collected at the zero point of the magnetic field.

6. Two-Dimensional Magneto-Optical Trap

A MOT, just like optical molasses, has a maximum capture velocity, only atoms moving
sufficiently slow will be trapped which can make initially loading a MOT challenging. The
common solution to this problem is to load a MOT from a beam of atoms slowed below the
capture velocity directed at its center. The first method for obtaining a slowed beam of atoms is
called chirp cooling and involves loading thermal atoms into one of a collimating tube and using
a laser propagating in the opposite direction along the tube to slow the atoms. To correct for
the Doppler shift of the laser as seen by the atoms decreasing as the atoms slow, the frequency
is chirped or ramped down to keep it on resonance. This technique was first implemented by
by J.V. Prodan, and W.D. Phillips at NIST in 1984 [38]. Coordinating the chirped laser to
stay on resonance with many atoms for a long period time proved challenging which prompted
W.D. Phillips and H. Metcalf to develop a device called a Zeeman slower later that same year
[39]. The general theory of operation is that gaseous atoms are loaded into a collimating tube
and far red-detuned laser is sent down the tube in the opposite direction. While the atoms are
moving very fast down the tube they will see the light red shifted onto resonance and experience
a slowing radiation force. A varying magnetic field is applied along the length of the slower so
that it is strongest at the end where the laser enters and zero where the atoms enter the tube.
This provides a Zeeman shift to keep the atoms on resonance with the laser even after they have
been slowed significantly.

While a Zeeman slowers are an effective technique for achieving a slowed beam of atoms,
they are large (about one meter long), and require strong magnetic fields. This makes them
ill-suited for used aboard the ISS. We will make use of a different method, developed in more
recent years, called a 2D MOT, to achieve a slowed beam of atoms [40, 41]. In the MOT, or
more accurately the 3D MOT, described in the previous section all of the atoms are confined
to the center of the trap because that is where the field minimum is located. If instead the field
was only quadrupole in two dimensions the field would have a zero along an entire axis. In the
two directions where the field increases the atoms experience the same combination cooling and
confining force as in a 3D MOT. Along the axis of zero field atoms are unconfined and free to
escape. This creates a slowed beam of atoms along the unconfined axis.

This beam can be capped off in one additional direction by adding a red-detuned push beam
in the opposite direction on the unconfined axis. The push beam causes atoms to preferentially
move in its direction of propagation along the zero line of the magnetic field. The addition of
a push beam is indicated by referring to the apparatus as a 2D+ MOT. The + represents the
addition of confinement in one direction along the previously completely unconfined axis. A
2D+ MOT can be thought of as taking a full balloon(the 3D MOT) and making a tiny pin hole
in it so that gas is allowed to escape in one direction but is still confined in all others. This
slowed beam can then be used to load a 3D MOT.

7. Laser Cooling 87Rb

So far our discussion of laser cooling has been limited to a hypothetical two-level atom. Of
course in reality when implementing these techniques we are forced to choose a real atom that
will not behave as purely a two-level system. The first concern when choosing as atom since our
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ultimate goal in to form a BEC is to pick an atom that is bosonic, meaning it has a composite
whole integer spin. The next, priority is that the atom have a simple electron structure so that
working out a laser scheme for its energy levels is not and experimental disaster. Many isotopes
of alkali metals are bosonic making them suitable for laser cooling because they have only one
valence electron and the frequencies of these transitions are easily generated by today’s lasers.
A popular choice that we also use at bates is 87Rb although 7Li, 133Cs, and 23Na among others
are also common choices.

Effective laser cooling requires finding what is known as a cycling or closed transition in the
hyperfine structure. Such a transition is one that can be driven between a ground hyperfine level
and excited hyperfine level that are only allowed to move between each other. The selection
rule for electric dipole radiation induced transitions in the hyperfine structure states is that

(3.28) ∆F = ±1, 0,

for an atom in state |F 〉. This result is derived from a conservation of angular momentum
between an absorbed or emitted photon and the atom. If we apply this selection rule to the
52P1/2 → 52S1/2 transition F ′ = 3 can only decay to F = 2 as shown in figure 3.5. So we should
be able to detune the cooling laser from the |2〉 → |3′〉 transition and drive only those transitions
because the light will be far off resonance with other transitions allowed by the selection rules:
|2〉 → |1′〉, and |2〉 → |2′〉.

In reality due to the line width of the laser and the Doppler shifting of the moving atoms
|2〉 → |2′〉 transitions will occur. Once an atom is in |2′〉 is it free to decay to |1〉 at which point
it will be lost from the cooling cycle. To get these atoms back into the |2〉 → |3′〉 transition
an additional laser, called a repump, tuned to the |1〉 → |2′〉 transition is required. Atoms that
have fallen out of cooling cycle will be on resonance with repump and get sent to |2′〉 where they
have a chance to decay down to |2〉 at which point they reenter the cooling. If instead an atoms
decays back to |1〉 it will simply be kicked back up by the repump. The combination of the
cooling and repump lasers allow us to drive transitions in 87Rb almost as if it were a two-level
system.
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Figure 3.5. The cooling light, red-detuned from |2〉 → |3′〉 drives an almost
closed transition in 87Rb. The repump, on resonance with |1〉 → |2′〉 returns
atoms to the cooling cycle. This figure was drawn using data from [42]



CHAPTER 4

Magnetic Trapping

In Ch. 3 three we saw how laser cooling can be used to cool and trap the atoms. Laser cooling
allows atoms to start progressing towards condensation, but it is not sufficient due to both the
cooling and relatively weak confinement in a MOT. To make it the rest of the way in attaining
sufficiently low temperature and high density we will make use of magnetic trapping. Magnetic
trapping allows for much tighter confinement leading to high density. Once high density as been
achieved in a magnetic trap radio frequency evaporative cooling may be implemented to cool the
atoms below Tc. In this chapter we will begin with a theoretical description of magnetic trapping
developed from [14, 43, 13]. Then we will move on, to describe a few specific magnetic traps
focusing on ones that can be generated on an atom chip that will be used on the experiment
at Bates and in the CAL apparatus. Finally we will explain how radio frequency evaporative
cooling works.

1. Magnetic Dipole Potential Energy

Magnetic trapping is predicated on the idea that when a magnetic dipole µ is placed in an
external magnetic field B(r) it feels a force. Therefore, the dipole will also have an associated
potential energy given by

(4.1) V (r) = −µ ·B(r).

The magnetic dipole moment for an atom in state |IJFMF 〉 can be written as

(4.2) µ = −gFµBF
~

.

This results in such an atom having a magnetic potential energy of

(4.3) V (r) = gFµBMFB(r),

and an associated force of

(4.4) Fmag = −∇V (r) = −gFµBMF∇B(r).

Depending on the orientation of µ when the dipole is placed in the magnetic field, or more
accurately when the field is turned on one of two states could arise. When the dipole moment
is aligned with the field µz > 0 ⇒ V (r) < 0 so lower potential energy is attained at higher
field. This is said to be the strong field seeking state and an atom occupies it if the product
gFMF < 0. This state cannot be trapped. The trappable state occurs if the dipole moment is
anti-aligned with the field, µz < 0⇒ V (r) > 0. Therefore, lower potential is achieved at lower
field and gFMF > 0. So in the trappable state atoms are attracted to field minima thus magnetic
trapping becomes simply a challenge of generating a magnetic field with a local minimum. Since
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not all states are trappable if the magnetic field is turned on while the sample occupies a variety
of MF levels, those atoms in untrappable states will be accelerated out of the trap and lost.
If the Larmor precession given by ωL = µB/~, for atoms initially in trapped states, is greater
than the perceived change in direction of B the adiabatic approximation can be applied. This
condition is met when ωL � ωT where ωT is the frequency of oscillation in the trap, or the
trap frequency. In this case the atoms move slowly enough that that their dipole moments can
follow the field keeping MF constant. Therefore, as the direction of the field changes an atom
will maintain its trapped state. In this case atom’s potential energy only depends on B = |B|.

2. The Quadrupole Trap

Atoms were first magnetically trapped in a quadrupole field in 1985 at NIST [44]. As
mentioned earlier in our discussion of MOTs this field is easily generated by a pair of anti-
Helmholtz coils. It meets the local minimum criteria by having B = 0 at the center. If we write
B = Bxx̂+Byŷ +Bzẑ the azimuthal symmetry of the field requires that

(4.5)
∂Bx

∂x
=
∂By

∂y
,

where we have chosen the z-direction to be through the center of the coils. Maxwell’s Laws
state that ∇ ·B = 0 which requires that

(4.6) 2
∂Bx

∂x
=
∂Bz

∂z
.

Using this information to find an expression for the quadruple field we find

(4.7) B = c(xx̂+ yŷ − 2zẑ),

where c and sets the gradient of the field based on the coil geometry and current. This shows
that the field will be linear in all directions and

(4.8) B = |B| = c
√
x2 + y2 + 4z2.

The potential in one direction in a quadrupole trap is shown in blue in 4.1. While the
quadrupole trap is useful for its simplicity and ease of implementation, it has a flaw. As trapped
atoms cross the the zero point cusp in the potential the adiabatic approximation breaks down.
Essentially, the field is changing too rapidly at this point for µ to follow which introduces the
possibility for the atom to undergo a ∆MF transition [45]. If a ∆MF transition does occur the
atom will enter an untrapped state and be lost from the trap. In this case the atom is said to
have undergone a Majorana spin flip, as moving from a trapped to untrapped state means that
its spin is now pointing in the opposite direction. Atoms lost this way are frequently referred to
as Majorana losses. Majorana losses can be avoided by adding a constant bias field to the trap
which creates a so-called Ioffe-Pritchard trap. The effect is to both lift the minimum from zero
and smooth it out. This can be accomplished by adding one additional coil to the quadrupole
trap [46].
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Figure 4.1. The trapping potential for the quadrupole and hypothetical Ioffe-
Pritchard Trap.

3. Atom Chip Traps

For many years it was common practice for atoms first loaded into a quadrupole trap to
then be transferred to other coil based magnetic traps. Over this period a variety of different
trap geometries with different coil configurations were developed. The first BEC was formed
in an atom chip in 2001 which opened up a whole new set of possibilities for the field[47]. An
atom chip is simply a piece of non-conducting material on which conducting traces are printed
in order to generate magnetic fields for trapping. The principle behind atom chip-based traps is
that the fields from straight conductors are used to form microscopic traps as opposed the much
larger traps made using magnet coils. The advantages to atom-chip based magnetic trapping
are many, but center around the idea that chip traps offer tighter confinements at much lower
currents on a much smaller scale. The tighter confinement allows for more efficient evaporative
cooling which leads to faster condensation as colder temperatures. The decreased form factor
and power consumption, while a great boon on earth to be sure, are what make it now feasible
to put a BEC experiment in the International Space Station. This is why we are specifically
concerned with trapping on an atom chip. In this section we will explore a few basic atom chip
traps.

3.1. The Infinite Wire Trap. The first example we will consider is strictly speaking a
pedagogical example and not an experimentally implementable trap. It does serve to illustrate
the basics of atom chip trapping. To begin consider an infinitely long wire carrying a current
I. The solution to the Biot-Savart law for this case is

(4.9) B(z) =
µ0I

2πz
,

where x is the distance away from the wire and µ0 is the permeability of free space. If we now
add a constant bias field in the negative y-direction, as shown in Figure 4.2, there will be a
point directly above the wire where Bwire = By−bias. This condition occurs at
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(4.10) z0 =
µ0I

2πBy−bias
.

Bwire By-bias

I

z

y
x

Figure 4.2. An infinitely long wire carrying current into the page generates a
magnetic field around its self that points in the clockwise direction. A bias field
is added in the negative y-direction.

Since at z = z0 Bwire andBy−bias are pointing in opposite directionsB(z0) = Bwire+By−bias = 0.
So atoms in a trappable state in this field will be confined in the x and y-directions, but are
free to span the length of the wire. The lack of confinement in the x-direction makes this
configuration clearly not a true trap. However, with just a straight wire and constant bias
field we have managed achieve magnetic confinement along two axis. This technique of using a
constant bias field to cancel a the spatial varying field of a conductor is the basis of atom chip
trapping.

3.2. Z-Wire Trap. To add confinement in the z-direction we will simply bend our wire
into a z-shape and let it have some finite length as shown in 4.3. If we only bend the wire then
we have solved the confinement. A field minimum still occurs at a height z0 above the center
of the middle portion of the z, but now the field increases in either direction along the center
of the z as the tails are approached. Therefore, placing the origin in the middle of the z there
is a field minimum at point (0, 0, z0) in all three dimensions, resulting in a trap.
Technically Bmin 6= 0 because the contributions for the the two tails do not completely cancel
out at a height z0 above the wire and this should be an Ioffe-Pritchard trap. Experimentally
z0 is small enough that Majorana spin flips are still an issue. To correct for this we need to
increase Bmin which can be done by adding an additional bias field in the x-direction.

A more rigorous description of the resulting magnetic field can be obtained by applying the
Biot-Savart law to each segment of the z and adding the results along with the contributions
from the bias fields. The magnetic field of straight wire segment is given by [26]

(4.11) B =
µ0I

4πs
(sin θ2 − sin θ1),
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Figure 4.3. A z-shaped current carrying wire with constant bias fields in the x
and -y-directions. A trap forms centered at a height x0 above the middle part of
the z between the two tails.
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Figure 4.4. The magnetic field at point P due to wire segment carrying current I.

where s and θ are defined as shown in Figure 4.4.
As an illustration of the this calculation we will apply equation 4.11 to the tail label 1 in

Figure 4.3 which we will say generates a field B1. Keeping the origin at the center of the z and
using the coordinate system as defined in Figure 4.3 we can write that

s =
√

(x+ L2/2)2 + z2,(4.12)

θ1 = tan−1

(
y + L1

s

)
,(4.13)

θ1 = tan−1
(y
s

)
,(4.14)

where L1 and L2 are the lengths of segments 1 and 2 respectively. We will decompose B1 into
its components B1x and B1z. We will do this by considering the geometry presented in Figure
4.5 and find that
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B1x = − sinφ,(4.15)

B1z = cosφ,(4.16)

φ = tan−1

(
z

x+ L2/2

)
.(4.17)
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Figure 4.5. The direction of B1 facing the negative y-direction for current flow-
ing in the same direction.

A similar process can be made for the other two segments of the z which results in a field with
a magnitude of the form

(4.18) B(x, y, z) =
√

(B1x +B3x +Bx−bias)2 + (B2y +By−bias)2 + (B1z +B2z +B3z)2.

Figure 4.6 shows a model of a z-wire trap that could be created on the atom chip at Bates.
From this model it is easy to see that z-wire trap offers tight confinement in the y and z-
directions, but comparatively weaker confinement in the x-direction. The asymmetry of this
trap is undesirable because it leads to less efficient evaporative cooling and condensate that is
elongated in one direction. The final atom chip trap that we will investigate offers one method
improving the symmetry of the z-wire trap.

3.3. Double Wire Z-Trap. A double wire z-trap can be used to created a dimple trap.
This trap is formed by adding two additional wires to the z configuration as shown in Figure
4.8, no additional bias fields are required. The additional wires add to the fields generated by
the tails in the region near the center of the z to provide greater confinement. The potential of
this trap be calculted in the same manner as before by simply adding in the components in the
x and z-directions added by the new wires. This results in a potential of the form

(4.19)

B(x, y, z) =
√

(B1x +B3x +B4x +B5x +Bx−bias)2 + (B2y +By−bias)2 + (B1z +B2z +B3z +B4z +B5z)2,
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Figure 4.6. B(x, y, z0) is plotted for I = 2.5A for a possible z-wire trap con-
figuration on the atom chip at Bates. For Mathematica code see Lundblad Lab
archives.

where the two new wires have been labeled 4 and 5 respectively. Figure ?? models this potential
for our chip at Bates for in the x and y-directions for z = z0.

I1

Bx-bias

By-bias

z y

x

I2

Figure 4.7. A double wire z or dimple trap. Additional confinement is achieved
by the addition of two dimple wires over the z-wire trap.

4. Radiofrequency Evaporation

Evaporative cooling is the technique implemented in the final stage before condensation
occurs. It allows us to reduce the temperature of a sample below Tc. For being an integral
process in achieving Bose-Einstein condensation the basic concept is remarkably simple. In
general cooling a system requires reducing its energy. Our discussion of laser cooling presented
a method for slowing the atoms in a sample to reduce their kinetic energy, and thereby the
temperature of the sample. Since each atom carries some energy the total energy of the system
can be reduced by simply removing the most energetic atoms. After these atoms are removed,
the system will re-equilibrate at a lower temperature, through inter-particle collisions. This
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Figure 4.8. B(x, y, z0) is plotted for I = 2.5A and I = −2A for a possible
double z-wire trap configuration on the atom chip at Bates. For Mathematica
code see Lundblad Lab archives

process is referred to as evaporative cooling and is the mechanism by which a cup of hot coffee
cools while sitting on a table. As we all know, this process can be accelerated by blowing across
the surface of the coffee to remove the hottest particles faster. This same technique could be
used to cool a sample atoms given a method to “blow” the hottest atoms out of the trap.

The trick now is to determine how to evporatively cool magnetically trapped atoms. Since
the atoms will be trapped in a vacuum the notion of “blowing” the hottest ones away is not
especially helpful because there is no air. So in order to evaporatively the cool our magnetically
trapped atoms we need a way to selectively remove the most energetic ones from the trap
while still holding onto the cooler ones. Earlier in this chapter we introduced the notion of
trapped and untrapped states. Flipping a trapped atom’s spin or causing the atom to undergo
a |F,MF 〉 → |F,−MF 〉 transition will place it in an untrapped state causing it to be rejected
from the trap. So instead of the using electromagnetic radiation to drive transitions between
hyperfine levels we can use much lower frequencies to drive transitions between MF levels. In
a harmonic trap the most energetic atoms move the farthest away from the trap center, at the
field minimum. In these areas of high field the Zeeman splitting between their MF levels is the
greatest. The energies associated with these transitions are generally on the of kHz to low mHz.
So by tuning a radio frequency signal to correspond to a |F,MF 〉 → |F,−MF 〉 transition far
away from the trap center and we can couple the MF and −MF levels for the hot atoms that
make it far from the trap center. Once an atom becomes resonant with this transition it will be
moved to the opposite MF and be removed from the trap as shown in Figure 4.9. By ramping
down the frequency atoms with progressively less energy will be removed. If we consider the
atoms in the trap to be in a Boltzmann distribution this process removes the high velocity tail of
the distribution. After the removal of the atoms a new lower average energy will be established.
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Figure 4.9. A rf signal is applied to atoms trapped in a harmonic potential



CHAPTER 5

Experimental Apparatus

In Ch. 1 we explored Bose-Einstein condensation and established BECs as worthy of further
study. Then in Ch. 2-4 we presented the techniques of laser cooling and magnetic trapping as
means by which to achieve condensation. Therefore, Ch. 1-4 provide answers to questions 1 and
2. Our task now is to answer question 3 by describing how the previously described theory is
actually implemented in lab. In this chapter we walk through the experiment and its subsystems
that we are building at Bates. Finally, we will complete our answer of question 3 by describing
the process by which we will experimentally realize condensation.

1. Vacuum System

The core of the experiment is the RuBECiTM vacuum system, produced by Cold Quanta,
as shown in Figure 5.1.

Figure 5.1. Cold Quanta’s RuBECiTM vacuum system with key components labeled.

The RuBECiTM is a two chamber vacuum system, the 2D MOT if formed in the lower chamber
which is then used to load the 3D MOT in the upper chamber. The two chambers are separated
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by a silicon disk with a 0.75mm diameter pinhole which allows for differential pumping between
the two chambers so that the pressure in the upper chamber can be maintained at 10−9 Torr
by a 2 l/s ion pump while the vapor pressure in the lower chamber reaches 10−7 Torr. This is
precisely the advantage of this type of dual chamber vacuum system for BEC creation. It is
possible achieve and good ultra-high vacuum in close proximity to the atom source.

The source of 87Rb is a rubidium getter located inside the lower vacuum chamber. Essentially
this is just a piece of rubidium salt with a wire running through it. When current is allowed to
flow through the salt it heats up and off gas rubidium vapor. This gaseous rubidium is certainly
thermal and therefore can be described by a Maxwell velocity distribution. While most of the
atoms will be moving too fast to be captured in the 2D+ MOT the distribution requires that
there be a low velocity tail of slow atoms which is what the 2D+ MOT is loaded from. We will
discuss the optical side of the 2D+ MOT later, but the required two dimensional quadrupole
magnetic field is provided by a set of four permanent rare earth magnets located off each of the
corners of the 2D+ MOT cell. The slowed beam generated by the 2D+ MOT is aligned through
the pinhole and used to load a 3D MOT in the upper vacuum chamber. The coil assembly
comprised of four pairs of Helmholtz coils is placed around the upper cell to provide all of the
required magnetic fields for the 3D MOT, quadrupole trap, transfer to the atom chip and atom
chip traps that are not generated on the atom chip itself. Ultimately the cold cloud of atoms will
be loaded into a trap on the atom chip that forms the top wall of the upper chamber. Current
is supplied to the atom chip through the break out board which is located directly above the
atom chip along with the antenna to antenna to provide and rf signal for evaporative cooling.

By itself the RuBECiTM provides everything required to make BECs with a few exceptions.
The power supplies to provide current to the rubidium getter, coil assembly, and atom chip are
separate, but more importantly the RuBECiTM alone does not provide any of the laser power
or optomechanics necessary for laser cooling. The next several sections describe the systems we
have built in lab to supply the required laser light.

2. Laser System

This section provides a brief description of the laser systems used before moving on to
describe the optics system in detail. The primary cooling light is sourced from a 780nm Vescent
diode laser. The laser is locked to the crossover resonance between the |2〉 → |2′〉 and |2〉 → |3′〉
of the 87Rb D2 line using saturated absorption spectroscopy in a vapor cell. This places the
laser about 133 MHz red detuned from resonance with the |2〉 → |3′〉 transition. The repump
laser is a home made diode laser built by Prof. Emeritus George Ruff and is locked to resonance
with the |1〉 → |2′〉. This is accomplished by using a beat note technique in which its signal is
beat against the master laser to generate an error signal.

3. Optics Switching System

In a typical BEC experiment one laser system provides power to an optomechanical system.
The optics then provide the necessary power splitting and polarization control and then deliver
the light to the vacuum system to manipulate the atoms as desired. At Bates we have the
unusual situation of using the same laser system and partially the same opto-mechanics to
provide light to two separate BEC experiments: the original Zeeman slower and large magnetic
coil driven experiment (BEC1) and the new 2D MOT and atom chip based experiment (BEC2)
that is currently being built. This creates a problem because both control systems need to
be able to control some the same shutters and AOMs(Acousto-optic modulator). This section
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presents the electronics that we designed and built to allow control of these shared components
to be swapped between the two experiments.

Since we only ever intend to run one experiment at a time, solving this issue of splitting
control of the shutters is simple matter as they only require a digital control signal. The TTL
output from both control systems for a given shutter are used as inputs of a Exclusive OR
gate (XOR) and the shutter is controlled directly from the output. Therefore the shutter will
open only if one experiment, not both, sends a logic high signal because an XOR has been used
instead of an OR gate. This was a desired fail safe feature against human error associated with
having both experiments in an active state at the same time.

The sleeping beast really rears its head when working out how to seamlessly swap control
of the shared components that require an analog control signal as well as a digital one. In
our case components of this type include three AOMs and the lock signal for the master laser.
The problem is how to select which set of digital and analog signals to pass through to various
components as illustrated in Figure 5.2.

AOM1 AOM2 AOM3 Laser Lock

Optics Switching
System

BEC1 BEC2

Analog
Digital

Figure 5.2. A Diagram of the analog and digital control signals from each BEC
experiment being passed onto the shared components. The optics switching sys-
tem allows us to select which experiments control signals are used.

It is clear that there is a need for the black box we have dubbed the Optics Switching system
to provide the required signal processing. Each BEC control system has four pairs of digital
and analog control signals than need to switched between depending on which experiment is
running. The question is now what goes inside the black box shown in figure 5.2. The circuit
we designed to solve this problem is shown in Figure 5.3. It is worth mentioning that this
problem could have solved much more simply with a physical switch or with a dedicated digital
out line from one of the control systems. The advantage to the method we have chosen is that
the switching occurs automatically, making it one less thing to worry about while running the
experiment.

Each of the inputs of the XOR gate marked A and B represent the output from two four
input OR gates. These OR gates receive the four digital signals for each of the four components
that that require an analog control signal from each experiment’s control system. In this way
A is high if any of the digital lines from the first experiment are high and B is high if any of the
digital lines from the second experiment are high. Moving into the clock circuit the output of
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Figure 5.3. A schematic of our clock circuit, the electronics that allow the optics
switching system to select which analog signal to pass.

the XOR is sent two places the first is an AND gate that is used to discern between when the
output of the XOR is high because A is high and B is low or vice versa. Second, the output is
sent to a monostable that generates a square pulse every time the output from the XOR goes
high. The rising edge from this square pulse is used to trigger the clock on a D-type flip-flop.
When the state of the control systems changes so that A is high and B is low the input of
the flip-flop D will be high so that when the clock of the flip-flop sees the rising edge from the
monostable it will set the output Q high. In the opposite case Q will be set low. The signal on
Q is then used to control a digitally actuated single pull double throw switch that moves from
connecting the analog signal from BEC1 to the component when A is true and B is false, and
the signal from BEC2 when A is false and B is true. Finally, the chosen signal is only passed
onto the component if the output of an XOR dedicated that specific component is high, in the
same way the shutters are controlled. Table 1 shows the truth table for the clock circuit. The
cases where the value of one input changes while the other is high are ignored because only one
experiment will be run at a time and when an experiment in inactive all the digital outputs are
set to default to low. The critical feature of this circuit is that once control has been switch over
to one system, for instance BEC1 it will remain there until it sees a high from BEC2, regardless
of how many times the logic level of A changes. This allows the clock circuit to function with
just the information provided in the existing digital outputs and does not require an additional
dedicated line from either system.

A B D Clk Q Switch
↑ F T ↑ T 1
F ↑ F ↑ F 2
↓ F F - NC NC
F ↓ F - NC NC

Table 1. Truth table describing the operation of the clock circuit.

4. Optomechanics

Now that we have solved the issue of switching control of the optical systems between
experiments we will move on to describe the optomechanics for the experiment. Since the layout
of optomechanical systems is a fundamentally spatial issue this section is structure around seven
figures, each of which illustrates a separate optomechanical subsystem. A brief description of
the general purpose and function of each system will be provided, but the finer details will be
left in the figures for the reader to study as they wish.
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4.1. Master Laser. We will begin all the way upstream with the master laser as shown
in Figure 5.4. Approximately 30 mW of power is sent from the master laser to a tapered
amplifier that is at driven at about 1850 mA, which results in an output power around 550
mW. From the tapered amplifier beams are split off for spectroscopy and the Zeeman slower in
BEC1. The spectroscopy beam is ultimately used to generate the beat note required to lock the
repump. After splitting off these two beams the light is double passed through an AOM each
time acquiring a shift of +59MHz resulting in light that is approximately 2.5Γ red detuned from
resonance with the |2〉 → |3′〉 where Γ = 6 MHz and is the line width of D2 transition. The
master laser is used as the cooling light for the MOTs of both experiments. Finally, we select
which experiment to send the light to with a flipper mirror. When the mirror is up the light is
coupled into a fiber that carries it to BEC1 and when the mirror is down the light is coupled
into a fiber going to BEC2.

Fiber Coupler

AOM

λ/2

λ/2λ/2 To BEC 1 MOT

To BEC 2 MOT

To Zeeman Slower

To Spectroscopy

λ/2

Opto Isolator

TA

Master Laser

λ/2

Key

Mirror

Half Waveplate

PBS

Flipper Mirror

Retro Re"ecton

Shutter

Figure 5.4. A diagram of the initial amplification, power splitting, and fiber
coupling of the master laser.

4.2. Repump Laser. Now we will describe the analogous system for the repump laser,
as shown in Figure 5.5. In a similar configuration the light is amplified by a tapered amplifier
usually run at 1550 mA. After this a beam is split off for the Zeeman slower and the rest of
the power continues to an AOM where it is shifted almost onto resonance with the |1〉 → |2′〉
transition. Once again the light is delivered to the chosen experiment by means of a flipper
mirror. When the mirror is up the light continues on its original path to be coupled into a fiber
going to BEC1’s MOT and when the mirror is down the light is coupled into a fiber taking it
to BEC2’s MOT.

4.3. Master and Repump Combination. As our focus is on BEC2 the the paths to
BEC1 will be dropped from our discussion at this point. We will proceed in the case where
both flipper mirrors are down and the the master and repump light are both being sent to
BEC2. Figure 5.6 shows how the master and repump lights are coupled onto the same path for
use in the 2D and 3D MOTs. The output of the trap and repump optical fibers are typically 140
mW and 30 mW respectively. Both lights are combined on a polarizing beam splitter (PBS).
Instead of the throwing the rejected light away we chose to use it for the push beam in the 2D+
MOT. Finally another PBS is used to split the combined trap light into beams for the 2D and
3D MOTs.
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Figure 5.5. A diagram of the initial amplification, power splitting, and fiber
coupling of the repump laser.
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Figure 5.6. The output of the master and repump fibers are coupled onto the
same path for future use in the 2D and 3D MOTs.

4.4. 2D MOT. We will now follow the 2D MOT beam paths as shown in Figure 5.7. The
first step is to send the beam into a periscope to raise it to a height of 3.75 in above the optical
table from an initial height of 2.00 in. This aligns the beams appropriately with the lower
vacuum cell. Once at this raised height the beam is split into two beams each with about 27
mW of power from the master laser and 3 mW from the repump. Both beams are then expanded
in cylindrical telescopes to provide beams with a horizontal beam waist of (10.8±0.4) mm and
vertical waist of (20.2±0.6) mm. From here the beams are directed into the lower vacuum cell.
The counter propagating beams required to form a MOT are attained by retroreflecting the
beams back on themselves. Quarter waveplates are used before both beams enter the vacuum
chamber in order to ensure the circular polarization required for a MOT as described in Ch. 3.
The analysis required to align these waveplates will be discussed in the next section.

The beam waists were measured by incrementally blocking the beam with a razor blade
and measuring the power of the that was not blocked. These data, a set of points of power
as a function of distance the edge of the razor had been extended, were fit to a gaussian error
function. Figure 5.8 shows an example of this fit.

To have a 2D+ MOT with additional confinement along one direction of the unconfined axis
a push beam is required. The challenge is that the push beam must be directed vertical up into
the lower vacuum chamber in order to improve loading into the 3D MOT as shown in Figure
5.9. The height of the push beam is lowered in a periscope to 1.30 in above the table so that it
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Figure 5.7. After being raised 3.75 in off the table the 2D MOT beams are split
in two and expanded in a telescope. These beams are directed into the lower
vacuum cell and retroreflected to provide the required master and repump light
for a 2D MOT.

Figure 5.8. A plot of 2D MOT horizontal beam waist data and the Gaussian
error function fit. For Mathematica code see Lundblad Lab archives.

can get underneath the lower vacuum chamber. It is also expanded in a telescope to maximize
the portion of the experiment’s bore that it covers. Once the push beam reaches the vacuum
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chamber a ccd camera is coupled onto its path using a PBS to image the 2D MOT from below.
The path is then directed vertically up in to the vacuum chamber by means a 450 angled mirror.
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Figure 5.9. Diagram of the push beam’s path to the vaccum chamber. A ccd
camera is coupled onto the push beam path on the last PBS to image the 2D
MOT from below.

4.5. 3D MOT. The only parts of the experiment’s optomechanical system left to be dis-
cussed are the power splitting and polarization control for the 3D MOT. After being separated
from the 2D MOT beam the 3D beam is further divided into four beams each of which is then
symmetrically expanded in telescopes and carry about 26 mW of power, as shown if Figure 5.10.
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Figure 5.10. A diagram of the power splitting, expansion, and polarization
control of the 3D MOT beams.
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After the telescopes two beams are lifted in periscopes to the appropriate height and directed
into the upper vacuum chamber after having their polarization set by quarter waveplates. The
other two 3D MOT beams are lifted in periscopes to point below the center of the vacuum
chamber to send the beams at angle through the center of the cell as shown in Figure 5.11.
These beams are separated by 450 and are retroreflected. So this 3D MOT is formed using
four beams two of which are retroreflected to reach the required total of three pairs of counter
propagating beams.
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Figure 5.11. Two of the 3D MOT beams are sent on angles through the vacuum
chamber so that the are separated by 450.

5. Polarization Analysis

As mentioned earlier it is not sufficient for the laser beams in a MOT to be detuned from
resonance with the cooling transition. In order to conserve angular momentum the selection rules
require that the light must be circularly polarized light to drive to desired atomic transitions.
In this section we will describe how quarter waveplates are used to turn linearly polarized into
circularly polarized for use in laser cooling. To do this we will begin by formally introducing
the concept of polarization, a concept which as of yet I have judiciously danced around actually
defining. To do this we will loosely follow the presentation in [48].

In classical electromagnetic theory the typical picture of an electromagnetic wave is that of
a magnetic and electric field whose amplitudes vary sinusoidally and orthogonal to each other,
that copropagate as transverse waves. Usually, the assumption is made that the orientation
of the fields with respect the direction of propagation stays constant, but in general there is
no reason why this must be the case. In fact, in the case of naturally occurring light it is
not the case at all, this orientation or polarization as it is more commonly called, changes
rapidly. Polarization is how the direction of the electric and magnetic fields relative to the
direction of propagation, the question is now mathematically describing the polarization. Since
the directions of the electric and magnetic fields obey the right hand rule, one implies the other
so we need only consider the direction of one to the describe the polarization. The convention
in optics is to use the direction of the electric field E as the direction of polarization. In general
we can write that

E = E0e
i(k·r−ωt+φ)p̂,(5.1)
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where E0 is the amplitude of the field, k is the wave vector, ω is the angular frequency of
oscillation, φ is some constant phase shift, and p̂ is the direction of polarization. If we choose
z to be the direction of propagation E can easily be written as

(5.2) E = E0xe
i(kz−ωt+φx)x̂+ E0ye

i(kz−ωt+φy)ŷ,

or in terms of complex amplitudes as

(5.3) E = Ẽ0xe
iφxx̂+ Ẽ0ye

iφy ŷ.

This form lends itself well being described using linear algebra, and to do this we will put E in
the form

(5.4) E =

[
Ẽ0xe

iφx

Ẽ0ye
iφy

]
,

which is known as the Jones vector. The convention is to normalize Jones vectors so that they
just represent the direction of polarization For example, the Jones vectors describing linearly
polarized light with respect to the x and y-directions are

(5.5)

[
1
0

]
, and

[
0
1

]
respectively.

Nonlinearly polarized light is obtained when the phase difference between the components of
the Jones vector is nonzero, φy−φx 6= 0. More specifically, circularly polarized occurs when one
component lags the other by π/2 radians, φy−φx = ±π/2. The result of this is that the trailing
component attains the same value as the leading component at a time ωπ/2 later resulting in
the direction of polarization rotating circularly in time. The Jones vectors describing left and
right hand circularly polarized light are

(5.6)
1√
2

[
1
i

]
, and

1√
2

[
1
−i

]
,

where left and right refer counterclockwise and clockwise rotation. So, circularly polarized light
can be created by making the phase difference between the components of the Jones vector
±π/2. In linear light where there is no phase difference this can be accomplished by introducing
a phase shift of ±π/2. Fortunately this is a solved problem, the quarter-wave plate is a device
that is designed to alter the phase difference by ±π/2. This is accomplished by cutting a sheet of
a birefringent material so that the axes of minimum and maximum refraction are perpendicular
and the difference in their optical depths is one quarter of the wavelength it is intended to
manipulate. This is certainly a brief description of the quarter-wave plates, but a more detailed
exploration is beyond the scope of the this thesis, greater detail can be found in [48]. For
achieving our ultimate goal of laser cooling we interested in using quarter-wave plates as a tool
which makes it sufficient to understand what a quarter-wave plate does if not precisely how it
works.

The true power of writing the direction of polarization as a Jones vector is that any optical
element that manipulates polarization can be described by an operator called a Jones matrix.
To find the effect a given element has on light of a certain polarization we simply apply the
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element’s Jones matrix to the Jones vector for the light incident on the element. The resulting
Jones vector describes the transmitted light’s polarization state after the optical element has
acted on it. The Jones matrix for a quarter-wave plate with its fast axis oriented vertically is

(5.7)

[
1 0
0 −i

]
.

If we shine light that is linearly polarized at 45◦ to the axis through such a quarter- wave plate
the resulting polarization is given by

(5.8)

[
1 0
0 −i

]
1√
2

[
1
1

]
=

1√
2

[
1
−i

]
,

which is right hand circularly polarized. Generalizing from this specific example, circularly
polarized light can be obtained by passing linearly polarized light through a quarter-wave plate
oriented such that the angle between the fast axis and the direction of polarization is 45◦. By
passing our laser cooling light through polarizing beam splitters that transmit only vertically
linear polarized light and reflect only horizontally linear polarized light we are able to truly
work with the case shown in equation 5.8. The only challenge left to circularly polarize light
in lab is determining the appropriate orientation of a quarter-wave plate. This can be done
by using a polarization analyzer which is simply a quarter-wave plate that has been set to
turn incident circularly polarized light into either vertical or horizontally polarized light, and a
polarizing beam splitter. Precisely which circular polarization is linearly polarized with respect
to which axis depends on the specifics of a how a given analyzer is set, and for our purposes is
not important.

The experiment used to determine the orientations of a quarter-wave plate that result in the
circular polarization of vertically or horizontally polarized light is shown in Figure 5.12.

λ/4 λ/4

Polarization Analyzer

Key

PBS

λ/4

Quarter Waveplate

Power Meter

Figure 5.12. The optical experiment used to determine which orientations of the
quarter-wave plate produce circular polarized light from incident linearly polarized
light with respect to the vertical or horizontal axes.

The beam in first sent through a PBS in order to ensure a pure linear polarization state, and
the reflected mode of the PBS is discarded. The light is then incident on the quarter-wave that
is being calibrated and then continues into the polarization analyzer. When the quarter-wave
plate is adjusted such that that it produces circularly polarized light the quarter-wave plate
in the analyzer will then reconvert it to linearly polarized light. In this case the final PBS
will either transmit or reflect all of the light causing the power meter to read a maximum or a
minimum. So in a plot of power versus orientation of quarter-wave plate being calibrated the
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extrema represent the orientations that result in circularly polarized light. Figure 5.13 is an
example of one such plot for one of the quarter-wave plates used in the 3D MOT. Maxima occur
at (74.6± 0.3)◦ and (254.6± 0.3)◦, and minima occur at (164.6± 0.3)◦ and (344.6± 0.3)◦ based
on fitting the data to a function of the form

(5.9) P (θ) = P0 cos2
(
θ
π

180
+ δ
)
,

where θ represents the orientation of the wave plate in degrees, P0 is the maximum power
and δ is some constant phase shift. The uncertainties represent two standard deviations and
are obtained through standard propagation of error.

Figure 5.13. A plot of power as function of orientation for one full rotation of
a quarter-wave plate used in the 3D MOT.

The fact that two maxima and two minima are observed is expected because for one full
rotation of the quarter-wave plate there will be two possible orientations of the fast axes that
place it at a 45◦ angle with respect to the direction of polarization and two that place it at a
−45◦ angle.

By conducting a similar analysis for all of the quarter-wave plates intended to be used in
the MOTs we are able to ensure proper polarization. The ambiguity of not knowing which
extrema correspond to which direction of circular polarization is not critical to resolve in an
experimental context. The orientation of the quarter-wave plates on the retro reflected beams
does not matter. Since permanent magnets are used for the the 2D MOT magnetic field the
directions of its required polarizations are fixed. However, it is a simple matter to test the four
possible combinations of wave plate orientations while looking for a MOT. For a 3D MOT, based
on the direction of the field lines we can deduce that the polarization of the beams coaxial with
the magnet coils must be opposite that of the other beams. So, if the first guess of polarizations
is wrong it is a simple matter to reverse the direction of the current through the coils thereby
reversing the direction of the field or to flip all of the quarter waveplates.

6. Coil Assembly

Now that we have laser power of the correct polarization delivered to the proper locations it
is necessary to consider how the required magnetic fields for the 3D MOT and magnetic trapping
will be generated. All of the necessary fields not from the atom chip will be generated using
magnet coils in the coil assembly which fits around the upper vacuum cell as shown in Figure
5.1. The coil assembly contains four pairs of coils one in each Cartesian direction x, y, and z
plus an additional pair of transfer coils [49]. The x coils can be used in either a Helmholtz or
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anti-Helmholtz configuration. The anti-Helmoholtz configuration provides the quadrupole field
for the both the 3D MOT and quadrupole trap and the Helmholtz configuration will provide
one of the bias fields for trapping on the atom chip. The coils in the y and z coils will be used
to provide the bias fields for the trapping on the chip and to cancel out any stray background
magnetic fields. The final set of coils are the transfer coils which are oriented in the x-direction,
but are offset from the x coils so that their center is closer to the atom chip. These coils will be
used to help transfer the atoms from the quadrupole trap to the atom chip.

7. Control System

Now that we have discussed all the various subsystems required to form a BEC in this
experiment the final piece of the puzzle is an automated control system to coordinate all of
the moving parts. We have chosen to use a program called LabScript which is a python based
control system designed for shot experiments. The advantages to LabScript over other control
systems are many. First programming a shot in LabScript is very simple. Each command that
must be executed by some part of the experiment during a shot is accomplished by one line of
code in the control sequence. The clock for a given shot is started when the first command is
issued and the previous commands are executed some specified periods of time later. A nice
feature of LabScript is that the time for a for a command to issued can given relative to the
previous command so it is not necessary to track the total duration of the control sequence
while programming. In a BEC experiment a shot generally ends by imaging the condensate.
Frequently the analysis of these images must be handled by another program because other
control systems do not have the functionality to run the analysis themselves. Since LabScript is
Python based, which is a fully functioning high level programming language, it has the capability
to do all of the required analysis itself which eliminates the need for a separate analysis program.
Finally LabScript is text based, which allows for much cleaner better organized code as compared
to other graphically programmed control systems frequently used in laboratories.

8. Process to Realize a BEC

In this last section we will discuss process by which we will form a BEC. A shot begins by
using the 2D+ MOT to load a 3D MOT. After the 3D MOT has reached its maximum capacity
the magnetic field is turned off to allow for a brief period of sub-Doppler cooling in optical
molasses. The next step is to optically pump the atoms into the the |2, 2〉 state. While the
|2, 1〉 state is also magnetically trappable using the MF = 2 as opposed to MF = 1 results in
magnetic trapping force that is a factor of 2 stronger which greatly improves trapping. After
the optical pumping phase all of the lasers are shuttered and the x coils are ramped up to load a
quadrupole trap. This marks the end of the laser cooling part of the process and the beginning
of the magnetic trapping phase. Once in the quadrupole trap the atoms are slowly moved closer
to the atom chip by using the transfer coils to slowly shift the zero point of the field closer to
the surface of the chip. When the atoms are close enough they are loaded onto the atom chip by
ramping up a chip trap. With the atoms trapped on the chip the final stage is to evaporatively
cool the sample to below Tc at which point condensation occurs. Finally, a measurement of the
resulting BEC can be made using resonance imaging. For a more detailed description of BEC
production on a similar system the reader is directed to [50].



CHAPTER 6

Conclusion

We have now answered the three questions that were posed in the introduction. With regard
to question 1 (Ch. 1) a BEC forms when bosons rapidly condense into the ground state because
the system has become sufficiently cold and dense. BECs are macroscopically large systems
that behave quantum mechanically which is why they are of great use in the study of quantum
mechanics, solid state physics, and the development of high precision measurement techniques.
To answer question 2 (Ch. 2-4) we provided a theoretical description of how to take thermal
atoms to the point of condensation, T < Tc. This process begins with laser cooling to initially
cool and trap the atoms. From a MOT atoms are loaded into a magnetic trap which allows for
increased density and further cooling from radiofrequency evaporation. One of many possible
answers to question 3 (Ch. 5) is provided with a description of the systems we have built in
lab over that past two semesters. In general laser cooling requires the locking of lasers to
specific frequencies in order obtain the proper detuning, power splitting to create the 3 pairs of
counterpropagating beams required for a MOT and optical molasses, and finally polarization
control in order to drive the appropriate atomic transitions in a MOT. Our experiment uses
a 2D+ MOT formed in the lower chamber from vapor pressure, to load a 3D MOT in the
upper chamber. Magnetic trapping for this kind of atom chip experiment follows a two-fold
scheme. First, atoms are magnetically trapped in a standard quadrupole field generated by
a pair of anti-Helmholtz coils. The atoms are then transferred from the quadrupole trap to
the atom chip with the help of an additional pair of so-called transfer anti-Helmholtz coils.
Once the atoms are loaded onto the atom chip condensation is achieved through radiofrequency
evaporation. Question 3 is lacking a more experimentally detailed answer because we ran into
several setbacks over the course of the year. I would like to take the time to briefly describe
these challenges and present the qualitative results we have for the 2D MOT.

The original plan was that during the first semester we would build the optics switching
system while waiting for the first batch of optomechanical parts to be machined with the goal
of loading a 3D MOT by the end of the semester. Designing and assembling the switching
electronics went more or less smoothly and the system was successfully integrated with the
existing experiment’s control system. Unfortunately, due to other demands on machine shop
time the optomechanical parts for the 2D+ MOT were not ready until the beginning of the
second semester. At the start of the spring semester we were able to move forward aligning optics
and begin looking for the 2D+ MOT. We spent the next two weeks searching, unsuccessfully,
for a MOT only to finally discover that the ion pump had failed. After receiving a new pump
from ColdQuanta we found a 2D MOT in a matter of minutes after the Rb getter had warmed
up, as shown by the bright spot in Figure 6.1. The images were taken using a CCD camera with
a 33.5 mm convex lens approximately 5 cm in front of the camera looking up into the vacuum
chamber by using a 45◦ mirror placed directly under the lower chamber. The bright region in
the upper left corner of both images is just scattered light from the 2D MOT beams. The ring
in both images is the window into the lower vacuum chamber to provide optical access for the
push beam from below, and the gray haze within the ring is repump enhanced florescence of
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the rubidium vapor from the getter. The bright spot present in the image on the left is the
2D MOT. No MOT is present in the image on the right, which is presented for the purpose of
comparison.

Figure 6.1. The image on the left was taken with a 2D MOT (the bright spot)
present and the image on the right was taken in the absence of a 2D MOT. The
view is looking up into lower vacuum chamber.

Shortly after seeing a 2D MOT progress was halted again while waiting for additional op-
tomechanical parts to be machined. We received the rest of the parts with less than two weeks
left before the deadline for this thesis, but were still hopeful there would be time to see a 3D
MOT. We planned to characterize the loading rate, lifetime, and atom number of the MOT by
measuring florescence with a photo diode. Unfortunately, in the true spirit of Murphy’s law
with one week remaining before the required submission of this document, the RuBECi vacuum
system failed. We had 2D+ MOT up and running in the morning and had begun to look for
a 3D MOT when poor alignment of the 3D MOT beams was observed. The getter was turned
off to save rubidium while we made the appropriate adjustments. In the time it took to break
for lunch and realign the 3D MOT beams the RuBECi vacuum had failed. We discovered the
failure when we did not observe a 2D MOT, or any fluorescence in the lower vacuum chamber
after turning the getter back on to resume the 3D MOT search. When examining the cell more
closely we found what appeared to be a fish scale fracture, as shown in Figure 6.2, that might
be the cause of the leak. We cannot be certain that this fracture is the cause of the problem
because we do not have pictures of the cell from before the failure to confirm that the fracture
was not present. It does, however, seem to be the likely cause.

There have been unconfirmed reports of similar failures of ColdQuanta RuBECi vacuum
systems from the group working on the CAL project at the NASA Jet Propulsion Laboratory
(JPL) [51]. This is does not bode well for the CAL project, because if the vacuum system in
the apparatus being sent to the ISS fails the project will be seriously set back. In any case our
RuBECi is being sent back to ColdQuanta for a proper diagnosis, and we will receive a new
system. Sadly, this will not be in time for further results to be included in this thesis.

Once the new RuBECi arrives, the path forward for the experiment at Bates is pretty clear.
After observing a 3D MOT the subsystems for optical pumping, radiofrequency evaporation,
and absorption imaging need to be put in place. At this point we will be ready to load a MOT,
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Figure 6.2. The crack we found in the upper chamber of the RuBECi, located
in the upper right corner of the cell.

allow for sub-Doppler cooling in a brief optical molasses stage, optically pump the atoms into the
F = 2, MF = 2 state and load a quadrupole trap. From this point we can begin to work out the
logistics of transferring the atoms to the atom chip. Once the atoms are loaded into a chip trap
the final push towards condensation with evaporative cooling can be made. From this point on
we should be able to make BECs and the question becomes what do with them. The first task
for the new system is to use it as a testbed to aid in the development of experimental sequences
for use in CAL, aboard the ISS. Afterwards there are any number of the possible research paths
to pursue. No matter the choice the hope is that simplicity and ease of operation of the new
experiment will make it accessible and user-friendly for generations of undergraduates to come.
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