
Eastern Washington University Eastern Washington University 

EWU Digital Commons EWU Digital Commons 

EWU Masters Thesis Collection Student Research and Creative Works 

Spring 2018 

DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN 

EXPANSION OF THE CURRENT FAIR MODEL EXPANSION OF THE CURRENT FAIR MODEL 

Beth M. Anderson 
Eastern Washington University 

Follow this and additional works at: https://dc.ewu.edu/theses 

 Part of the Databases and Information Systems Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
Anderson, Beth M., "DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN EXPANSION OF THE 
CURRENT FAIR MODEL" (2018). EWU Masters Thesis Collection. 483. 
https://dc.ewu.edu/theses/483 

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital 
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of 
EWU Digital Commons. For more information, please contact jotto@ewu.edu. 

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/483?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu


 
 

DETERMINING VULNERABILITY USING ATTACK GRAPHS: 

AN EXPANSION OF THE CURRENT FAIR MODEL 

 

A Thesis 

Presented To 

Eastern Washington University 

Cheney, Washington 

 

In Partial Fulfillment of the Requirements 

for the Degree 

Master of Science in Computer Science 

 

By 

Beth M. Anderson 

Spring 2018 

  



ii 
 

THESIS OF BETH M. ANDERSON APPROVED BY 

 

 

 

 

 

 

             

DAN LI, GRADUATE COMMITTEE      DATE 

 

 

 

 

 

 

             

STUART STEINER, GRADUATE COMMITTEE    DATE 

 

 

 

 

 

 

             

JASON ASHLEY, GRADUATE COMMITTEE     DATE 

 

 

   



iii 
 

DETERMINING VULNERABILITY USING ATTACK GRAPHS: 

AN EXPANSION OF THE CURRENT FAIR MODEL 

By 

Beth M. Anderson 

Spring 2018 

 

ABSTRACT 

Factor Analysis of Information Risk (FAIR) provides a framework for measuring and 

understanding factors that contribute to information risk. One such factor is FAIR 

Vulnerability; the probability that an event involving a threat will result in a loss. An 

asset is vulnerable if a threat actor’s Threat Capability is higher than the Resistance 

Strength of the asset. In FAIR scenarios, Resistance Strength is currently estimated for 

entire assets, oversimplifying assets containing individual systems and the surrounding 

environment. This research explores enhancing estimations of FAIR Vulnerability by 

modeling interactions between threat actors and assets through attack graphs. By 

breaking down the scenario into more representative and quantifiable parts, more detailed 

and precise analyses are possible. 

Keywords—Factor Analysis of Information Risk; Attack Graphs; Resistance Strength; 

Vulnerability; 
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DETERMINING VULNERABILITY USING ATTACK GRAPHS: 

AN EXPANSION OF THE CURRENT FAIR MODEL 

Beth Anderson 

Factor Analysis of Information Risk (FAIR) [1] provides the ability to understand 

and quantify risk and the components that comprise it. FAIR breaks from traditional risk 

assessments where risk is measured with qualitative ratings such as high, medium and 

low. Instead, FAIR provides a model to quantify risk into dollars and cents. FAIR 

accomplishes this by breaking down risk into understandable measurable components 

that combine in the FAIR ontology. However, there is still work to be done to develop 

FAIR into a more realistic and robust ontology. One component within the FAIR 

ontology, Vulnerability, lacks a realistic estimation model that captures the complexities 

of networks surrounding assets, vulnerabilities, and other nuances. This research expands 

upon the current FAIR model to address limitations of FAIR Vulnerability by expanding 

the ontology to include attack graphs.  

This paper is structured as follows: To begin, the current FAIR model is explained 

and areas for improvement within FAIR Vulnerability are highlighted. Then, a solution to 

limitations of FAIR Vulnerability is presented, followed by a description of attack graphs 

and vulnerabilities. Following that, an example network is introduced, the corresponding 

attack graph analyzed, and FAIR is applied to exploratory scenarios using this network. 

Finally, future work is discussed, and the paper concludes. 

 

 



2 
 

1.   FACTOR ANALYSIS OF INFORMATION RISK 

Factor Analysis of Information Risk (FAIR) [1] places risk into an ontology 

(Figure 1) where lower components combine together to determine higher components 

until the root of the ontology, Risk, is determined. Each factor within the FAIR ontology 

represents a probability distribution [1]. Components lower in the ontology are defined 

using minimum, most likely, and maximum. By estimating values of measurable 

components, probabilities that are difficult or impossible to measure can be determined 

using the probability distributions of measurable components further down the ontology. 

The FAIR ontology is used bottom up, where measurements are provided at more 

granular components at the bottom and then combined to determine components higher 

up the ontology. However, when explaining structure of the FAIR ontology, it is easiest 

to explain from the top down, starting with Risk and breaking it down into smaller 

components. 

1.1   Risk 

Figure 1. FAIR Ontology [1] 
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Within FAIR, Risk defined as “the probable frequency and probable magnitude of 

a future loss” [1]. Risk is the combination of how likely it is that a loss will occur (Loss 

Event Frequency) and how much is likely to be lost (Loss Magnitude). These two 

components, Loss Event Frequency and Loss Magnitude comprise the first layer of the 

FAIR ontology and are the direct descendants of Risk. 

1.2   Loss Magnitude and Subcomponents 

Loss Magnitude represents the magnitude of incurred loss — i.e. how much loss 

is likely to result. This is measured in currency units, such US dollars, or Euros, and is 

related to the asset, the thing of value. The more valuable the asset is, the larger Loss 

Magnitude is likely to be. Loss Magnitude is defined as “the probable magnitude of 

primary and secondary loss resulting from an event” [1]. However, determining a 

probability distribution for the entirety of Loss Magnitude is difficult as there are many 

different factors that determine how much money will be lost. Because of this, Loss 

Magnitude is broken down into two subcomponents: Primary and Secondary Loss.  

Primary Loss is “primary stakeholder loss that materializes directly as a result of 

the event” [1]. Primary Loss is measurable as companies can determine how much money 

it will take to get operations back up and running, as well as how much an asset is worth. 

Examples of Primary Loss include: lost revenue from outages, wages paid to workers 

when work is not being completed, and replacement of tangible assets such as cash. This 

node is represented by a probability distribution with values for the minimum, most 

likely, and maximum amount of money that would be directly lost due to a loss event.  
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Secondary Loss is the other component that comprises Loss Magnitude. 

Compared to Primary Loss, Secondary Loss is the fallout of the event rather than the 

direct result [1]. Examples of Secondary Loss include results from reputation loss, fines, 

and judgements. Secondary Loss is more nuanced than Primary Loss and is more difficult 

to measure. Because of this, Secondary Loss is broken down further into Loss Event 

Frequency and Loss Magnitude in the same way that Risk is broken down at the top on 

the ontology. Secondary Loss Event Frequency is defined as “the percentage of primary 

events that have secondary effect” [1]. As not all scenarios have the potential for 

Secondary Loss; it is important to measure how often the primary event will result in a 

secondary event. Secondary Loss Events can include fines and judgements being levied 

because of negligence. The other half of Secondary Loss is Secondary Loss Magnitude, 

the “loss associated with secondary stakeholder reactions” [1]. This would include 

notification cost, credit monitoring, legal defense costs, and diminished stock prices. 

Measurements taken on Secondary Loss Event Frequency and Secondary Loss 

Magnitude are combined to create a probability distribution that represents Secondary 

Loss. The probability distribution of Secondary Loss is then combined with the 

distribution representing Primary Loss to determine Loss Magnitude, the amount of 

damage an event could inflict.  

1.3   Loss Event Frequency and Subcomponents 

Where Loss Magnitude tells us how much can be lost, Loss Event Frequency is 

how frequent a loss is expected to happen, often measured in events per period such as 

twice per year. It is important to note that Loss Event Frequency is how often an event 

completely comes to fruition, not how frequently an event is attempted. For example, 
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Loss Event Frequency would measure how often a hacker successfully infiltrates a 

database (once a year) not how often hackers attempt to infiltrate (many times a day). In 

the same way that Loss Magnitude is further broken down into more understandable and 

measurable components, so is Loss Event Frequency. Loss Event Frequency is comprised 

of Threat Event Frequency and Vulnerability.  

Threat Event Frequency is the “probable frequency, within a given time-frame, 

that threat agents will act in a manner that may result in loss” [1]. Threat Event 

Frequency includes all potential events including those that result in loss as measured by 

Loss Event Frequency and those that do not. In the earlier example, Threat Event 

Frequency is how often hackers tried to infiltrate the database, which may be many times 

a day. In this case, the probability distribution can be decided at the Threat Event 

Frequency level. If there are logs that measure how often threat actors attack, there is no 

need to measure at lower levels of the ontology. However, there are some situations 

where measuring at Threat Event Frequency is difficult. Thus, Threat Event Frequency is 

broken down into two other components, Contact Frequency and Probability of Action.  

Contact Frequency is “the probable frequency, within a given time-frame, that 

threat agents will come into contact with assets” [1]. A threat agent is anything that can 

cause a loss event, from a hacker to a tornado. Contact Frequency includes both logical 

contact, such as a scan of a web server, or physical contact, such as an employee stealing 

sensitive documents. Several types of contact include a threat agent randomly 

encountering an asset, contact during regular business activities, or a threat agent 

purposeful contacting an asset. It is useful to measure at Contact Frequency if there is an 

asset that is contacted for reasons other than the loss event. For example, having a 
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database manager access the database to check logs every day would be a type of contact. 

However, it is unlikely that each time the manager accesses the logs is a loss event. 

Contact happens all the time; what determines if an event becomes a threat is the 

Probability of Action. Probability of Action is “the probability that a threat agent will act 

upon an asset once contact has occurred” [1]. Once contact has been made, there is a 

probability that the threat agent will or will not do something negative to the asset. In the 

example of Contact Frequency mentioned earlier, a database manager is checking the 

daily logs, meaning that he or she has access to information about the database. The 

Probability of Action would measure if he or she attempts to do damage to the database, 

whether it be to breech confidentiality or degrade the integrity of the data. Most of the 

time, Probability of Action in this case would be near 0%. Unless the employee is 

disgruntled, the chances of them doing anything negative during these checks is small. 

On the other hand, a hacker purposely contacting a web server would have a Probability 

of Action of a 100%. The combination of how often an asset is contacted and the 

probability that action will be taken upon contact determines Threat Event Frequency.  

Loss Event Frequency is comprised of both Threat Event Frequency, made of 

Contact Frequency and Probability of Action, and Vulnerability. Even if the Threat Event 

Frequency of an asset is high, with events happening constantly, this does not mean that 

the asset will have high Loss Event Frequency, the frequency that something damaging 

has happened. This is because not every attempt at an asset is successful. Vulnerability is 

the probability that an event involving a threat will result in a loss. Note that this 

definition of vulnerability is different from typical definitions of vulnerability. When 

speaking of vulnerability as defined by FAIR, “FAIR Vulnerability” will be used. When 
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speaking of vulnerability as a flaw in the defenses of an asset, such as an exploitable 

software bug, “vulnerability” will be used. FAIR Vulnerability is “the probability that a 

threat agent’s actions will result in a loss” [1]. FAIR Vulnerability is further broken down 

into Threat Capability and Resistance Strength.  

Threat Capability is the level of ability of the threat actor measured on a 

percentile scale from 0-100. Threat Capability is determined based on a population of 

threat actors also known as a threat community. For example, the probability distribution 

for the Threat Capability of Cyber Criminals may place the least capable threat actor in 

the 60th percentile, the most capable actor at the 100th percentile, and a majority of threat 

actors within the 90th percentile [1]. The rationale behind this measurement is that Cyber 

Criminals are more skilled and have better resources than an average cyber threat agent. 

Threat Capability is directly compared against Resistance Strength to determine FAIR 

Vulnerability.  

The Resistance Strength of an asset is measured on the same scale as Threat 

Capability. Resistance Strength is defined as “the level of difficulty that a threat agent 

must overcome” [1]. This could be how strong the brick and mortar of a house is against 

a hurricane or how advanced an anti-virus software is against malicious software. The 

Resistance Strength of an asset is how capable the asset protects itself against threats. 

Being on the same scale as Threat Capability, Resistance Strength is directly compared to 

Threat Capability. If Threat Capability is higher than Resistance Strength, the threat event 

would become a loss event – i.e. The threat actor would successfully complete his or her 

goal. If Resistance Strength is higher than Threat Capability, then the asset is safe, and no 

loss would occur. 
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Measurements of Resistance Strength and Threat Capability are combined to 

determine FAIR Vulnerability. Threat Event Frequency can be broken down into Contact 

Frequency and Probability of Action or measured directly at Threat Event Frequency. 

The probability distribution resulting from the combinations of Threat Event Frequency 

and FAIR is Loss Event Frequency which combined with Loss Magnitude quantifies 

Risk.  

2.   PROBLEMS WITH FAIR VULNERABILITY 

The current method of determining FAIR Vulnerability has room for 

improvement. The current estimation model for FAIR Vulnerability as described by an 

industry expert [2] places the burden of estimating Resistance Strength on the analyst 

who must determine values for minimum, maximum and most likely, for the Resistance 

Strength of the entire asset. For example, if an analyst discovers that an asset has a SQL 

injection vulnerability, it is up to him or her to decide how much impact that vulnerability 

has on the strength of the asset. Introduce new analysts and the resulting Resistance 

Strengths of the same asset can vary. Additionally, assets can be made up of intricate 

systems and parts, all of which have their own strengths and weaknesses. An analyst 

would have to determine and then aggregate the Resistance Strength of a complicated 

connection of different subsystems. Without detailed knowledge of all the aspects of an 

asset, an analyst cannot make accurate judgements about the asset’s Resistance Strength. 

Furthermore, assets can live within larger systems where threats can elevate privileges 

outside of the asset, allowing access to the asset that would be difficult to model through 

FAIR in its current form. For example, a web application is connected to many other 

systems ranging from servers to databases. A vulnerability within any of the connected 
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systems has the potential to expose the web application to attackers. Looking at just the 

vulnerabilities of one part of the highly connected network potentially misses interesting 

and important attack pathways. Assets are not always single units, they can be multi-layer 

systems with each part having various levels of Resistance Strength.  

A solution to these limitations is to create a model of FAIR Vulnerability that can 

account for the complexities and intricacies of real assets. Determining the Resistance 

Strength at the asset level oversimplifies highly complex assets that may be involved in 

larger systems. A model that can make use of information about the internals of an asset, 

or its relationships to external systems will better represent the real world. 

3.   SOLUTION 

The proposed solution introduces an expansion to the calculation of FAIR 

Vulnerability by employing an attack graph to model paths a threat actor can take to 

successfully harm an asset. Along these paths, the threat actor will exploit vulnerabilities 

in sequence, elevating his or her privilege along the way. However, it should be noted 

that this expansion to FAIR will not fit all risk scenarios modellable by FAIR. For 

example, a tornado destroying a server warehouse would not be an applicable scenario. 

This expansion is suited for situations that would be modellable by an attack graph – e.g. 

a threat actor is attempting to hack into a database to gain personally identifiable 

information. 

This expansion to FAIR introduces the idea that FAIR Vulnerability can be 

improved to take into account the features of an asset. This allows for the environment 

surrounding the asset as well as components of the asset to be described in terms of 
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concrete components and connections via an attack graph. Using an attack graph ensures 

that only the relevant aspects of an asset will be used in a FAIR scenario. There is no use 

in determining Resistance Strength for parts of the asset that would not be touched within 

a scenario.  

This expansion can use attack graphs in two different ways. The first would be to 

determine Resistance Strength for each attack step in the attack graph. These 

determinations are made by analysts informed by system configuration, known 

vulnerabilities, and Common Vulnerability Scoring System (CVSS) scores as well as 

expertise in the asset. This way requires more input; however, this could be beneficial if 

there are intricacies of the asset that are not completely encapsulated by the information 

provided to the attack graph. Analysts highly familiar with the configuration of an asset 

may be better able to determine the viability of an attack step than blind probability. 

The second way that attack graphs can be used is with Bayesian Networks to 

determine the probability of a successful attack. This would allow for the probability of 

an actor completing each step within the attack graph to be determined based on the 

probability of previous steps. Information such as vulnerabilities will be included to form 

probabilistic relations between the different steps in the attack sequence. However, this 

way does not inherently take into account differences in the Threat Capabilities of threat 

actors. 

The first and second way of using attack graphs within FAIR can be used in 

conjunction. There is no strict need to adhere to one technique or the other. Sometimes 

there will be situations where a step in the attack graph is more suited for an analyst to 

determine the Resistance Strength compared to the Threat Capability of the threat actor. 
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Other times this will not be needed, and Bayesian probability models the situation 

accurately. The general approach of the examples within this paper is to rely on a 

Bayesian network to provide probabilities that a threat actor would be able to make it to a 

particular step in the attack graph but analyze and adjust the Bayesian network based on 

knowledge about the model and the threat actor. 

4.   ATTACK GRAPHS 

Attack graphs are models that represent information about vulnerabilities and 

interaction in a network to show different paths that an attacker can follow to reach a 

given goal. Along each of these paths, the attacker will exploit vulnerabilities in 

sequence, elevating his or her privilege along the way. There are two main types of attack 

graphs: state-based representations and logical attack graphs. Within state-based 

representations each node represents the state of the whole network after a single atomic 

attack. The number of state nodes increases dramatically as the network increases, thus 

limiting the applicability of this type of graph to very small networks. Logical attack 

graphs on the other hand are defined as bipartite graphs that represent dependencies 

between security conditions and exploits [3]. This research uses logical attack graphs as 

the size of assets can range from small networks to dynamically large systems. 

4.1   MulVal 

Constructing an attack graph is a “tedious, error-prone and impractical for attack 

graphs larger than a hundred nodes” [4]. This tediousness can be alleviated by using tools 

such as MulVal, the Multi-host, Multi-stage Vulnerability Analysis Language tool [5]. 

MulVal is a scalable end to end framework that models the interaction of vulnerabilities 
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with system and network configurations. MulVal takes information encoded as Datalog 

facts to create an attack graph. Datalog is “a declarative logic language in which each 

formula is a function-free Horn clause, and every variable in the head of a clause must 

appear in the body of the clause” [6]. 

Using the information provided, as well as logical rules defined within the 

MulVal engine, MulVal creates a logical attack graph that shows steps an attacker can 

take to reach a specified goal and the configurations used in order to execute attack steps. 

Information is entered into the MulVal reasoning engine as Datalog facts. Interaction 

rules are also supplied to the reasoning engine. The engine then creates attack simulation 

traces that determine all different attack paths that could be used to reach the goal. The 

trace is then passed to a graph builder which creates a logical attack graph, which is then 

outputted to the user [7]. 

 

 

 

Figure 2. Graphical representation of the MulVal tool [5] 
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The logical attack graph consists of three different types of nodes: AND, OR and 

LEAF nodes. An AND node represents an attack step within the attack graph. An example 

of an AND node is “RULE 6 (direct network access)”. This AND node is determined 

based on interaction rules that are inputted into the MulVal tool as well as preconfigured 

rules that are already included in the tool. OR nodes are privilege nodes. An example of a 

OR node would be “netAccess (webServer, tcp, 80)”. This means that an attacker has 

privileges to access the web server using tcp on port 80. The final type of node is a LEAF 

node which represents the configuration of the system. An example of a LEAF node 

would be “hacl(internet, webServer, tcp, 80)”, which means that the web server can 

connect to the internet using tcp on port 80. All three of these nodes types comprise the 

attack graph created by MulVal [7]. 

The following sections describe each type of information provided to the MulVal 

engine in order to create the attack simulation trace and eventually an attack graph [5]. 

4.1.1   Advisories 

Advisories relate to what vulnerabilities exist in the network. Vulnerabilities can 

be determined by using a vulnerability scanner such as an OVAL (Open Vulnerability 

Assessment Language) scanner or one of the many other available options [8-9]. The 

original MulVal research used an OVAL scanner which uses OVAL formalized 

vulnerability definitions to test a machine to see if any of those definitions are matched 

[10]. The results from the OVAL scanner are translated into a Datalog fact and supplied 

to the MulVal engine. An example of a Datalog fact of a vulnerability is 

vulExists(webServer, ’CAN-2002-0392’, httpd). 
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This fact tells that there is a vulnerability involving the server program httpd on a web 

server with the ID of CAN-2002-0392. Another Datalog clause is used to capture the 

effect of the vulnerability.  

vulProperty(’CAN-2002-0392’, remoteExploit, privilegeEscalation). 

This Datalog fact shows that the vulnerability CAN-2002-0392 enables arbitrary code 

execution by a remote attacker with all the program’s privileges. This information can be 

determined from sources such as the National Vulnerability Database (NVD) provided by 

the National Institute of Standards and Technology (NIST) [11]. However, many 

vulnerability scanners already correlate this data and provide information about the 

impact of the vulnerability which can be fed into the MulVal reasoning engine. 

4.1.2   Host Configuration 

Host configuration is information about the software and services that are running 

on hosts as well as the configuration of those hosts. This information can also be 

determined using scanners. For example, one could use the OVAL scanner to extract 

configuration parameters such the port numbers and privileges of a program on a host. 

This data is converted to Datalog clauses like 

networkService(webServer, httpd, TCP, 80, apache). 

This clause describes a web server with a program httpd listening on port 80 using TCP 

protocol and running as the user ‘apache’. 
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4.1.3   Network Configuration 

Network configuration is information about how network routers and firewalls are 

configured. MulVal models network configurations as abstract host access-control lists 

(HACL). This information can be found by looking at the configuration of network 

routers and firewalls. This information is converted to Datalog clauses like the following 

which shows that TCP traffic is allowed from the internet to port 80 on the web server. 

hacl(internet, webServer, TCP, 80) 

4.1.4   Principals 

Principals refer to the users of the network and their accounts on the network 

hosts. For example, a system admin has an account on the web Server with root 

permission. This is written in Datalog as 

hasAccount(sysAdmin, webServer, root). 

4.1.5   Interactions 

Interactions model how components within a network interact. General rules can 

be established for the network using Horn clauses. In Horn clauses, the first line is the 

conclusion, or result, and the remaining lines are the conditions that enable the 

conclusion. An example of this is 

execCode(Attacker, Host, Priv) :- vulExists(Host, VulID, Program), 

vulProperty(VulID, remoteExploit, privEscalation), networkService(Host, 

Program, Protocol, Port, Priv), netAccess(Attacker, Host, Protocol, Port), 

malicious(Attacker). 
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The earlier Horn clause describes that an attacker would be able to execute arbitrary code 

on the machine under the privilege Priv, if there was a program running on a host that 

allowed for privilege escalation, that program was listening on Protocol and Port while 

running under Priv privilege, and the attacker can access that Protocol and Port through 

the network. Words capitalized within this clause (Host, Program, VulID, ect.) are Prolog 

variables that matched, meaning that this rule can be applied to any set of actual 

parameters that match this pattern. Using the extendibility of these rules, general sets of 

rules have been created and special network specific rules can be added to the MulVal 

engine as needed.  

4.1.6   Policy 

Policy refers to access permissions on data. If a policy is not explicitly allowed, 

then it is assumed to be prohibited. For example, 

allow(Everyone, read, webPages) 

allow(systemAdmin, write, webPages) 

This policy says that anyone can read web pages and that the user systemAdmin is 

allowed to write web pages. Like the Horn clauses of configuration, Everyone is 

capitalized meaning it is a Prolog variable that represents any user. 

4.2   Bayesian Attack Model 

Attack graphs, such as the one created by the MulVal tool, provide information 

about the paths that a threat actor can take to reach a particular goal. However, Attack 

graphs are not well suited to model ongoing attacks as they cannot represent the 

progression of an attacker through the system [12]. Adding a Bayesian network to an 

attack graph adds the probability that an attacker would be reach a step within the attack 
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graph. A Bayesian network is a probabilistic graphical model based on a directed acyclic 

graph where nodes represent random variables and edges represent the probabilistic 

dependences between those variables.  

Within the context of an attack graph, nodes represent exploits e and conditions c 

each of which have two probabilities, p(e) and p(c) for individual scores and P(e) and 

P(c) for cumulative scores respectively. Individual score p(e) is the probability that the 

exploit e will be successfully be executed given that all other conditions for exploit are 

already met. This is the intrinsic likelihood of an exploit in isolation without the influence 

of any other factors. The same is for p(c), but with conditions rather than exploits. P(e) 

and P(c) are cumulative scores that measure the overall likelihood that exploit e will be 

successfully executed or that condition c will be met. These probabilities are based on 

probabilities earlier in an attack sequence [13]. Conditional probabilities are of the main 

interest within attack graphs as those probabilities model the likelihood of an attacker 

reaching a particular node within the graph. 

5.   VULNERABILITY DATA 

As mentioned earlier “vulnerability” has a different meaning within the context of 

FAIR. FAIR vulnerability is “the probability that a threat agent’s actions will result in a 

loss” [1]. However, the definition of vulnerability within this section is a “weakness in an 

IS (Information System), system security procedures, internal controls, or implementation 

that could be exploited” [14]. More specifically, a vulnerability is “a specific bug in a 

specific software which can be abused in an unintended manner to potentially cause a 

negative impact to the user of the software” [15]. Information about vulnerabilities in 
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software and hardware is available, enumerated, and cataloged though Common 

Vulnerabilities and Exposures, Common Weakness Enumeration, and the Common 

Vulnerability Scoring System. 

5.1   Vulnerability Information 

5.1.1   CVE 

Common Vulnerabilities and Exposures (CVE) is list of publicly known common 

identifiers for cyber security vulnerabilities [16]. After being launched in 1999 by 

MITRE Corporation, CVE is now the industry standard for identifying vulnerabilities. A 

CVE identifier (CVE-1999-0400) maintains a one to one relationship with a vulnerability 

and a standardized description for each vulnerability or exposure. While CVE is a 

dictionary, not a database, it does feed into NVD [11]. This database is very useful for 

this work as MulVal engine needs information about the vulnerability beyond the name.  

5.1.2   CWE 

Common Weakness Enumeration (CWE) [17] is similar to CVE, except that it is a 

list of common software weaknesses that can occur in software architecture, design, code 

or implementation that can lead to exploitable security vulnerabilities. According to 

MITRE, the difference between weaknesses and vulnerabilities is that a software 

weakness is an error that can lead to software vulnerabilities. Examples of software 

weaknesses include buffer overflows, authentication errors, and code injection (e.g. SQL 

Injection (CWE-89)). CWE can be useful for analysts to determine the type of 

vulnerability they are looking at. Seeing that a vulnerability has a CWE of SQL Injection 

allows for quick understanding about what type of attack would be able to exploit this 
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vulnerability. Additionally, CWEs can be used to categorize sets of vulnerabilities, 

leading to further research into how the skill needed by an attacker to exploit 

vulnerabilities can be related to CWEs. 

5.1.3   CVSS 

Common Vulnerability Scoring System (CVSS) is the industry standard for 

measuring the severity of vulnerabilities in software [18]. This system provides a way to 

translate the characteristics of a vulnerability and produce a numerical score that reflects 

the severity. Version 2 of the CVSS was released in June 2007 and has been replaced by 

Version 3 in June 2015. Both version 2 and 3 are included in databases such as the 

National Vulnerability Database and some older vulnerabilities are only scored using 

version 2, including the vulnerabilities that were found on the Model Network. 

The CVSS calculates three different scores: a base, a temporal, and an 

environmental score. The base score is calculated using intrinsic and fundamental 

characteristics of the vulnerability that do not change over time or in different 

environments. The temporal score is based on characteristics that change over time, but 

not between user environments. Finally, the environmental score is calculated using 

characteristics that are dependent upon the user’s environment. The CVSS score 

expressed on a scale from 0 to 10, with 10 being the most severe. 

Of interest in this research are the exploitability metrics included in the base 

score. The exploitability metric group measures how difficult a vulnerability is to exploit. 

Table 1 describes the metrics for exploitability as well as the associated numerical value 



20 
 

for each. This table describes version 2 of CVSS scoring system as the vulnerabilities 

within the Model Network used in this paper are scored using version 2. 

Exploitability Metric Value Value Description Numeric 

Access Vector: 

The minimum level of 

access needed to exploit 

the vulnerability 

Local An attacker must have physical 

access to the system or a local 

(shell) account  

0.395 

AdjacentNetwork An attacker must have access to 

either the broadcast or collusion 

domain of the vulnerable software 

0.646 

Network An attacker does not need local 

network access or local access 

1.0 

Access Complexity:  

The complexity of the 

attack needed to exploit 

the vulnerability  

High Specialized accesses conditions. For 

example, an attacker must employ 

DNS hijacking. 

0.35 

Medium Somewhat specialized access 

conditions. For example, 

information must be gathered before 

the attack 

0.61 

Low No specialized access conditions 0.71 

Authentication: 

The number of times an 

attacker must 

authenticate to exploit a 

vulnerability 

Multiple An attacker must authenticate two 

or more times 

0.45 

Single An attacker must authenticate once 0.56 

None Authentication is not needed 0.704 

 

 

Table 1. Exploitability metric details [19] 
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5.2   Application of Vulnerabilities 

Understanding the severity of a vulnerability allows for informed decisions to be 

made about how a vulnerability will impact FAIR vulnerability. Previous research [20] 

demonstrates a way to determine the effort and skill that a threat actor would need to 

possess to successfully exploit a vulnerability. This is based on the exploitability metric 

group of CVSS scores described earlier. One important thing to note is that CVSS base 

scores of vulnerabilities are calculated independently. However, in an attack graph, 

vulnerabilities are not in isolation. Because of this, the base CVSS score in some 

situations is not accurate.  

An example of the base CVSS score not being accurate would be two 

vulnerabilities that exist on two separate hosts connected to each other (Figure 3). Host 1 

is connected to the internet, where the attacker is residing, as well as Host 2 with 

firewalls between both. Host 2 is only connected to Host 1. Both Host 1 and Host 2 have 

one vulnerability, Vuln 1 and Vuln 2 respectively. The first vulnerability, Vuln 1, present 

on Host 1, when successfully exploited allows an attacker to gain access to the local 

network of Host 2. Vuln 2, which is present on Host 2 has a base Access Vector metric of 

AdjacentNetwork. However, within this example, because a threat actor can gain access 

to the local network of Host 2 using Vuln 1, the Access Vector of Vuln 2 should be 

changed from AdjacentNetwork to Network. Changing this metric would increase the 

overall score of the vulnerability. The dependent relationships of vulnerabilities need to 

be taken into account when determining the Resistance Strength of an asset. 
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Once new base metrics of each vulnerability within the attack graph have been 

determined, the effort and skill needed to exploit a vulnerability can be calculated. This is 

calculated by using the Access Vector ([AV]), Access Complexity ([AC]), and 

Authentication ([Au]). Equation 1 shows how to calculate both the effort score (es(e)) 

and the skill score (ss(e)) 

𝑒𝑠(𝑒) & 𝑠𝑠(𝑒) =  
0.6395

[𝐴𝑉] ∗ [𝐴𝐶] ∗ [𝐴𝑢]
− 0.2794 

 

The larger the score is, the more effort or skill is required to successfully exploit 

the vulnerability. This scoring system has been found to accurately match the success 

rates of simulated attacks [20]. The skill score required by a threat actor can theoretically 

be mapped directly to Threat Capability, as Threat Capability is the skill of the threat 

actor. However, in a broader sense, Threat Capability also includes the time and 

resources that a threat actor has access to. This means that Threat Capability also includes 

the effort that a threat actor is willing to go through to achieve a goal. The distinction 

Figure 3. Example network with 2 vulnerabilities 

Equation 1. 
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between skill and effort of the threat actor in relation to Threat Capability is a subject that 

calls for further discussion and inquiry beyond the scope of this paper. However, within 

the context of this paper, effort and skill will be used interchangeably. 

6.   MODEL NETWORK 

As a proof of concept that attack graphs can add value to FAIR Analyses, a 

simple model network [5, 21-22] is used as an example (Figure 4). 

 

 

6.1   Description of Model Network 

This Model Network has three zones: internet, dmz, and internal, separated by 

two firewalls. The network also has 3 hosts: a web server named webServer located 

within the dmz zone, a workstation named workStation, and a file server named 

fileServer, both of within internal. All three of these hosts are managed by administrators 

using the username root. Users, modeled as a single user with the username userAccount, 

Figure 4. Model Network 
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have access to workStation, which is many different machines. These many workstations 

run the same software configuration maintained as a collection of application binaries on 

the file server and are treated as a single entity. The binaries for the workstations are 

exported from ‘export/share’ through NFS from the file server. The file server also 

exports ‘/export/www/’ to the web server.  

The MulVal tool also includes a scanner that detects vulnerabilities. The scanner 

found CVE-2002-0392 and CAN-2003-0252, which has been upgraded to CVE-2003-

0252. CVE-2002-0392 on the web server and CVE-2003-0252 on the file server of the 

Model Network. Both vulnerabilities can result in privilege escalation and are remotely 

exploitable. Table 2 describes the two found vulnerabilities and their characteristics. 
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Location webServer fileServer 

Description Apache 1.3 through 

1.3.24, and Apache 2.0 

through 2.0.36, allows 

remote attackers to cause 

a denial of service and 

possibly execute arbitrary 

code via a chunk-encoded 

HTTP request that causes 

Apache to use an incorrect 

size. 

Off-by-one error in the xlog 

function of mountd in the Linux 

NFS utils package (nfs-utils) 

before 1.0.4 allows remote 

attackers to cause a denial of 

service and possibly execute 

arbitrary code via certain RPC 

requests to mountd that do not 

contain newlines. 

Access Vector Network Network 

Access Complexity Low Low 

Authentication None None 

Confidentiality Partial Complete 

Integrity Partial Compete 

Availability Partial Complete 

CVSS v2.0 Base Score 7.5 (High) 10.0 (High) 

Additional 

Information 

- Provides unauthorized 

access 

- Allows unauthorized 

disclosure of 

information 

- Allows disruption of 

service 

- Provides administrator 

access 

- Allows unauthorized 

disclosure of information 

- Allows disruption of service 

Table 2. Descriptions of the two found vulnerabilities [23-24] 
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6.2   Creation of the Attack Graph 

The primary concern within the Model Network is a remote attacker infiltrating 

the system. Therefore, a reasonable goal for this scenario would be a remote attacker 

executing arbitrary code on one of the hosts within the network. For this example, the 

goal of the attacker will be to execute code on the workstation. The attacker is located 

outside of the network on the internet. To achieve this goal, the attacker must navigate 

into the dmz zone, where the web server is located and then move into the internal zone 

where both the file server and the workstation are located. Once inside the internal zone, 

the attacker must gain privileges in order to execute code on the workstation. This 

process can be modeled using an attack graph. The previous information describing the 

network is formatted and fed into the MulVal tool. See Appendix A for the input given to 

the MulVal tool for this Model Network. The MulVal engine runs through the many 

pathways that an attacker may try and create an attack graph that contains all of the 

pathways that an attacker can take to successfully infiltrate the system and be able to 

execute arbitrary code on the workstation. The attack graph produced by the MulVal tool 

is seen as Figure 5 and nodes are seen in Table 3.  
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Node # Node Name Node 

Type 

1 execCode (workStation, root) OR 

2 RULE 4 (Trojan horse installation) AND 

3 accessFile (workStation, write, ’/usr/local/share’) OR 

4 RULE 16 (NFS semantics) AND 

5 accessFile (fileServer, write, ‘/export’) OR 

6 RULE 10 (execCode implies file access) AND 

7 canAccessFile (fileServer, root, write,’/export’) LEAF 

8 execCode (fileServer, root) OR 

9 RULE 2 (remove exploit of a server program) AND 

10 netAccess (fileServer, rpc, 100005) OR 

11 RULE 5 (multi-hop access) AND 

12 hacl (webServer, fileServer, rpc, 100005) LEAF 

13 execCode (webServer, apache) OR 

14 RULE 2 (remote exploit of a server program) AND 

15 netAcess (webServer, tcp, 80) OR 

16 RULE 6 (direct network access) AND 

17 hacl (internet, webServer, tcp, 80) LEAF 

18 attackerLocated (internet) LEAF 

19 networkServiceInfo (webServer, httpd, tcp, 80, apache) LEAF 

20 vulnExists(webServer, ‘CVE-2002-0392’, httpd, remoteExploit, 

privEscalation) 

LEAF 

21 networkServiceInfo(fileServer,mountd,rpc,100005,root) LEAF 

22 vulExists(fileServer, ‘CVE-2003-0252’, mountd, remoteExploit, 

privEscalation) 

LEAF 

23 RULE 17 (NFS shell) AND 

24 hacl (webServer, fileServer, nfsProtocol, nfsPort) LEAF 

25 nfsExportInfo(fileServer, ‘/export’, write, webServer) LEAF 

26 nfsMounted(workStation, ‘usr/local/share’, fileServer, “/export’, read) LEAF 

 

 

6.3   Analysis of Attack Graph 

Based on the attack graph, there are several ways that an attacker could move 

through this network in order to reach the final goal of executing code on the workstation. 

To begin, the attacker is based on the internet, which is represented in the attack graph as 

node 18. From the internet, the attacker can compromise the web server by remotely 

exploiting the vulnerability CVE-2002-0392. As the web server is allowed to access the 

file server, the attacker can then exploit the vulnerability CVE-2003-0252 and become 

root on the file server. Once the attacker is root on the file server, he or she can modify 

files on the file server. Since the executable binaries for the workstation reside on the file 

Table 3. Attack graph nodes for Model Network 
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server, the attacker can change executable programs on the workstation. If a user then 

executes an attacker compromised program, the attacker would have the ability to 

execute code on the workstation, thus reaching his or her goal. 

The MulVal engine also implements a Bayesian network to determine the 

conditional probabilities of a threat actor moving through the attack graph. These values 

can be found on Figure 5 as the number after the description of the node and a colon. For 

example, Node 23, Rule 17 (NFS shell) has the probability of 0.512. Based on the 

outputted attack graph (Figure 5), the probability that a threat actor would be able to 

execute code on the workstation, the goal of the attack graph, is 0.43. That means that 

43% of threat actors would be able to infiltrate the workstation and execute code.  

6.4   FAIR Analysis 

Now that an attack graph has been made, a FAIR analysis can be defined. 

Realistically, an organization would define the scope of a scenario that FAIR will be 

applied to and then an attack graph would be created. In this case, an attack graph and 

model network have already been defined, so instead, the scope of the scenario will be 

decided based on the attack graph. The end goal of the attack graph, an attacker executing 

code on the workstation, is not a scenario in FAIR. However, by being able to execute 

code on the workstation, the attacker has compromised the integrity of the asset, which is 

modellable by FAIR. Thus, this FAIR scenario will calculate risk, expressed as Loss 

Exposure (how much money a company could lose), due to Cyber Criminals harming the 

integrity of the workstation. Cyber Criminals are chosen in this case as they were 

discussed earlier.  
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Based on the attack graph created earlier, the probability that a threat actor would 

have a high enough Threat Capability to compromise the Resistance Strength of the 

workstation in order to execute code was 43%. This is also a measurement for FAIR 

Vulnerability, as FAIR Vulnerability is the probability that an event involving a threat 

will result in a loss. It is important to note that defining FAIR vulnerability using this 

single attack graph increases the specificity of the FAIR Analysis. It would not be correct 

to assume that this scenario would also cover a threat actor stealing information from the 

file server. While an actor could steal information from the file server through similar 

attack paths as an actor attempting to execute code on the web server, the attack graph 

was created with the latter goal and the probability reflects that particular goal, not all 

goals. To reflect this, the scope of the scenario should be updated to represent the risk of 

Cyber Criminals harming the integrity of the workstation by executing arbitrary code on 

the workstation.  

There are other aspects to a FAIR scenario besides FAIR Vulnerability, like Loss 

Event Frequency and Loss Magnitude. Since this is a proof of concept, much of this 

information is unavailable and estimates are used instead. The Threat Event Frequency of 

Cyber Criminals attempting to comprise the integrity of the workstation within this 

scenario is estimated at a minimum of once per year, a maximum of 10 times per year 

with a most likely of 5.5 times per year. This Threat Effect Frequency may be high for 

this asset. From the little information known about this network, there is no indication 

that the workstation stores valuable information that would be targeted by Cyber 

Criminals. But for the sake of having results, (if there are no threat events, there is no 
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risk) it is assumed that Cyber Criminals attempt to comprise the Model Network between 

1 and 10 times a year. 

As for Primary and Secondary Loss, estimations will also be used. Within 

Primary Loss, the replacement cost for the asset is estimated between $100 and $100,000 

with a most likely of $50,050. If the integrity of the machines was compromised and 

valuable software corrupted, it may cost a large amount money to replace. However, it is 

difficult to estimate without more information, hence the broad range. Primary Loss also 

includes the amount of money spent on fixing the problem. Estimated, it would take a 

minimum of 50 hours to a maximum of 100 hours to fix damage to the asset, with a most 

likely of 75 hours. This value is multiplied by the average wage of the employee, which 

is set at $60 per hour, to determine the cost of man hours if the integrity of the 

workstation was compromised. Within Secondary Loss, it is estimated that between 20% 

to 70% of integrity compromises would have an adverse effect on secondary 

stakeholders. In this case, the secondary stakeholders could be the users of the 

workstation which are estimated to have a worth of $100 to the organization. Within a 

real FAIR analysis, all of these values would have defensible evidence to support the 

validity of these estimations. 

Now that all aspects of a FAIR scenario have been established, an analysis is run 

on the scenario. Figure 6 is a graphical representation of the results of the FAIR analysis. 

This shows that the potential Loss Exposure is as high as 1.3 million dollars with an 

average loss of $286,000. This output was created using the RiskLens Cyber Risk 

Quantification Engine [25]. The output histogram is a binning of the results of a Monte 

Carlo simulation of the FAIR Scenario. An interesting feature of the RiskLens output is 
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the red line present on the histogram. This corresponds with the Risk Appetite set by the 

organization. The Risk Appetite, also known as Risk Tolerance, is the “the amount and 

type of risk that an organization is willing to take in order to meet their strategic 

objectives” [26]. Within this example, the Risk Appetite of the organization is $100,000. 

Looking at the output, one can see that the Risk Appetite is lower than a majority of the 

distribution. This indicates that there is more risk in this scenario than the organization is 

willing to have and there should be steps taken to mitigate this risk. 

 

 

By adding an attack graph to the calculation of FAIR Vulnerability, the results of 

this analysis are more defensible. Rather than having an analyst set the Resistance 

Strength of the asset, the attack graph can show the exact path an attacker would be able 

to take to achieve the goal of executing code on the workstation, allowing for a more 

granularized approach to the analysis. Using Bayesian probabilities further increases the 

defensibility of the results. Using attack graphs within FAIR is flexible; if there was a 

situation that the Bayesian probabilities do not accurately represent the situation, these 

probabilities can be adjusted. Additionally, since the asset is now situated within an 

Figure 6. Loss Exposure of Model Network 



33 
 

attack graph, a risk analyst completing a FAIR analysis will also have a better idea of 

what sort of vulnerabilities and configurations are important. This provides more insight 

into potential remediation methods and ways that risk can be mitigated. 

7.   EXPERIMENTATION 

Another advantage of adding attack graphs to FAIR scenarios is the ability to 

experiment and adjust the attack graph based on what-if analyses. For example, removing 

a vulnerability from a network and determining the new attack graph would show the 

effect of patching. For the Model Network, the machines have long uptimes and any 

patching would result in loss of availability [5]. Any downtime is best avoided, so the 

ability to theoretically patch vulnerabilities and see the change in resulting risk is very 

valuable. Within this section, different experiments will be ran on the Model Network to 

highlight helpful analyses that are available if attack graphs are integrated into FAIR. 

Additionally, research on CVSS scores will be integrated into the current MulVal engine 

to increase the realism of the attack graphs. 

7.1   Original Model Network with CVSS Calculation 

In the original calculation of the MulVal engine, all Leaf nodes, including nodes 

representing vulnerabilities are set with a probability of 1. This is not accurate as there 

are differences in the difficulty of vulnerabilities; not all vulnerabilities require the same 

level of skill of effort to exploit. Because of this, it is important to integrate CVSS scores 

into the calculation of the probability of steps requiring vulnerability exploitation. 

Research discussed earlier [20] was employed to calculate the skill and effort needed to 

successfully exploit each vulnerability. A vulnerability found in the network is CVE-
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2002-0392, which is located on the web server. The exploitability metrics for CVE-2002-

0392 are Network for the Access Vector, Low for Access Complexity, and None for 

Authentication. Completing Equation 1 with the corresponding numerical values in Table 

1, the resulting score for skill and effort is 1. 70% of simulated attackers sampled from a 

normal distribution were able to successfully exploit a vulnerability of that score [20]. 

Thus, the probability of an attacker successfully exploiting that vulnerability is also 70%. 

CVE-2003-0252, which is on the file server has the same exploitability metric, and thus 

also has 0.7 probability. The MulVal Bayesian engine was adapted to allow for differing 

probability of leaf nodes and was run with nodes 20 and 22 with probabilities of 0.7 

corresponding to the two vulnerabilities. The attack graph with the probability scores is 

seen in Appendix B.  

The probability of 0.7 for both vulnerabilities is based on an entire population of 

threat actors. In the FAIR scenario defined earlier, the analysis was specifically 

calculating the risk of Cyber Criminals affecting the integrity of the workstation. Most 

Cyber Criminals are in the 90th percentile of threat actors. This means that while only 

70% of threat actors in the general population would be able to exploit these 

vulnerabilities, the threat capability of Cyber Criminals exceeds the general population. 

Thus, the original probability of the MulVal tool, with the probability of exploiting a 

vulnerability is 1, is more similar to the actual probability of a Cyber Criminal being able 

to exploit a vulnerability than the general population. However, knowing the FAIR 

Vulnerability of an asset for the general threat population is also useful. Therefore, both 

the original MulVal tool with the probability of vulnerabilities being exploiting being 1 
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and the probability of the vulnerability being exploited based on the effort and skill score 

of the vulnerability determined by CVSS scores will be explored.  

The corresponding Loss Exposure of this experiment is the Loss Exposure of a 

general threat population, not specifically Cyber Criminals. Here it can be seen that the 

FAIR Vulnerability of the general threat population being able to reach the end goal of 

executing code on the web server is 0.2953 compared to 0.43 when the probability of 

exploiting a vulnerability was 1. This highlights the importance of understanding who the 

threat actor is in a scenario. Within this particular scenario, if an organization was 

concerned about a general threat population the average Loss Exposure would be $204K. 

On the other hand, If the organization was concerned about Cyber Criminals targeting 

their assets, the threat capability of Cyber Criminals on average is higher than the general 

threat population, so the average Loss Exposure of that scenario is $286K as Cyber 

Criminals are more likely to be able to succeed in their goals than the general population. 

 

 

 

Figure 7. Loss Exposure of Model Network with CVSS calculation 
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7.2   Remove Vulnerability on File Server from Model Network 

An interesting prospect of using attack graphs within FAIR Analyses is the ability 

to determine return on investment of patching vulnerabilities. To demonstrate this, the 

same network as describe earlier was run with CVE-2003-0252, originally present on the 

file server, was removed. Once this vulnerability was removed, a new attack graph was 

calculated (Appendix C). This attack graph shows that the FAIR Vulnerability of the 

asset is 32.77%. Compared to the 43% FAIR Vulnerability found when the network has 2 

vulnerabilities, the FAIR Vulnerability of the asset was reduced by 10.23%. That seems 

like a lot, but it is impossible to know how that affects risk without further analysis. The 

previous FAIR Analysis was run with the same inputs as the original except FAIR 

Vulnerability was updated from 43% as with 2 vulnerabilities, to 32.77% with just one 

vulnerability. The results are seen in Figure 8.  

 

 

Comparing the two Loss Exposures, we can see that removing one vulnerability 

reduced the average Loss Exposure from $286K to $236K, a difference of $50K. If the 

patching of CVE-2003-0252 on the file server cost the organization $1,000 due to the 

availability of the file server being down, this would be well worth the investment. This 

Figure 8. Loss Exposure of Model Network with CVE-2003-0252 removed from file server 
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scenario can be seen in Figure 9. If patching the vulnerability cost the organization 

significantly more, then it might not be worth it as the organization is spending more 

money fixing something than if a loss event was to occur. 

 

 

It is also interesting to explore how threat community impacts this single 

vulnerability’s probability. The same scenario, but with probability of a threat actor 

successfully exploiting the vulnerability based on the entire threat actor population using 

the CVSS score, was run. The corresponding attack graphs has the probability of the 

threat actor executing code on the workstation at 0.2294 (see Appendix D). The same 

scenario was run with the vulnerability of 22.94% and the results are shown in Figure 10.  

 

Figure 9. Comparison of Loss Exposure of the original Model Network compared to the Model 

Network without CVE-2003-0252 on the file server 
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7.3   Remove Vulnerability on Web Server from Model Network 

For this experiment, CVE-2002-0392, present on the web server, was patched. 

The result of the MulVal tool was surprising. Patching the vulnerability on the file server 

caused no viable attack path to be found, meaning that an attacker would not be able to 

Figure 11. Comparison of Loss Exposure of the original Model Network compared to the Model 

Network without CVE-2003-0252 on the file server with CVSS calculation 

Figure 10. Loss Exposure of Model Network with CVE-2003-0252 removed from file server and CVSS 

calculation. 
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reach the end goal of executing arbitrary code on the workstation once this vulnerability 

was patched. This provides interesting insight that patching a single vulnerability can 

render an entire attack graph useless. This also highlights that there can exist choke 

points within the attack graph that every pathway is required to go through to get to the 

end goal. By recognizing these choke points, particular machines and vulnerabilities can 

be monitored and patched more efficiently. However, it is important to note, that just 

because there was not an attack graph for this very particular goal, that does not mean 

that the entire asset is safe. There could be other goals of attackers that would be used 

within different FAIR Analyses.  

7.4   Remove Both Vulnerabilities from Model Network 

Next, MulVal was run with no vulnerabilities present in either the web server or 

the file server. Similarly, to when the CVE-2002-0392 was removed from the network, 

there is no pathway for an attacker existing on the internet to reach the workstation in 

order to execute code. 

7.5   Add Hypothetical Low Complexity Vulnerability to Model Network   

 Another interesting experiment is to see how risk is affected if a new vulnerability 

is added to system. For this, a low complexity hypothetical vulnerability was added to the 

network. This hypothetical vulnerability can be remotely exploited on the web server to 

escalate privilege using the program httpd. The attack graph with this hypothetical 

vulnerability is found in Appendix E. This attack graph shows that the probability of an 

attacker being able to execute code on the workstation is 53.23%, when the probability of 

exploiting all vulnerabilities is 1. Compared to the vulnerability of 43% of the original 
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situation, 53.23% is quite an increase. This increase can be seen in the Loss Exposure of 

these two scenarios. Figure 12 shows the result of the Model Network with 3 

vulnerabilities and a vulnerability exploitation probability of 1. The addition of a 3rd 

vulnerability into the system increased the average loss exposure from $286K to $368K, 

an increase of $82K.  

 

 

 

Original    plus Low Complexity Vulnerability 

Figure 12. Loss Exposure of Model Network with hypothetical low complexity vulnerability 

Figure 13. Comparison of the Loss Exposure of the original Model Network compared to the 

Model Network with hypothetical low complexity vulnerability. 

Original                                                   Plus Low Complexity Vulnerability 
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This situation could be seen when the scenario is using Cyber Criminals as the 

threat actor, as the probability of cyber criminals being able to exploit the vulnerabilities 

present on the network is near 1. However, there are also interesting implications to 

explore if the threat actor is not a Cyber Criminal and instead was the general threat 

population.  

 Using the CVSS calculated probabilities (0.7) of the 2 actual vulnerabilities, the 

hypothetical vulnerability was added with the same metric for exploitability as the two 

known probabilities (Access Vector: Network, Access complexity: Low, and 

Authentication: None). This means that the hypothetical vulnerability also has a 

probability of exploitation of 0.7.  Appendix F shows the attack graph for this situation. 

Figure 14 shows the results for the loss exposure of the Model Network including a 

hypothetical vulnerability with a probability of exploitation of 0.7 along with the two 

known vulnerabilities similarly with a probability of exploitation of 0.7. 

 

Figure 14. Loss Exposure of Model Network with hypothetical low complexity vulnerability and CVSS 

calculation. 
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7.6   Add Hypothetical High Complexity Vulnerability to Model Network 

 This experiment covers a situation where the third vulnerability added to the 

Model Network is more complex than in the previous experiment. In this situation, the 

exploitability metrics of the hypothetical vulnerability are Access Vector: Network, 

Access complexity: High, and Authentication: Multiple. In a real FAIR scenario, the 

viability of this sort of vulnerability can be determined. However, without much 

information, it is difficult to say if the exploitability metrics of this vulnerability could be 

possible within this network, so it will be assumed that they are. The Access Vector of 

this vulnerability has stayed the same since attacker will have access to the web server 

from the internet via the attack graph. Adjusting metrics based on these situations was 

discussed in section 5.2. The effort and skill score for this hypothetical vulnerability is 

3.98, which corresponds to about 30% of attackers selected from a normal distribution 

Original with CVSS                            Plus Low Complexity Vulnerability with CVSS 

Figure 15. Comparison of the Loss Exposure of the original Model Network compared to the 

Model Network with hypothetical low complexity vulnerability with CVSS Calculations. 
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being able to exploit this vulnerability. Thus, the probability of the general threat 

community being able to exploit this vulnerability is 0.3. Appendix G shows the attack 

graph and Figure 16 shows the results of this FAIR analysis. The result of this experiment 

shows that risk when a high complexity vulnerability is added to the Model Network is 

less than the risk with a low complexity vulnerability. That is because a low complexity 

vulnerability is easier to exploit than a high complexity vulnerability. 

 

 

 

 

Figure 16. Loss Exposure of Model Network with hypothetical high complexity vulnerability and 

CVSS Calculation. 

Original with CVSS                            Plus High Complexity Vulnerability with CVSS 

Figure 17. Comparison of the Loss Exposure of the original Model Network compared to the 

Model Network with hypothetical high complexity vulnerability with CVSS calculation 
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8.   FURTHER RESEARCH 

 This paper is the first step in integrating attack graphs into the realm of FAIR. As 

such, there is much more research that can be done to integrate attack graphs successfully 

into FAIR. In general, FAIR analyses can take a large amount of time since analysts have 

to determine the estimations of ontology components. Adding the time and resources 

needed to determine network configuration and other information needed for attack graph 

creation increases this pain point within FAIR. There has already been research on using 

scanners and other tools to speed up attack graph generation [27]. These tools should be 

explored in greater depth and added into information gathering for a FAIR analysis. In 

addition, using attack graphs in more realistic and complex FAIR scenarios will be able 

to determine how this process scales when an analysis includes numerous assets. 

Research has been done to add intrusion detection systems to the Bayesian 

networks of attack graphs. These networks can become sophisticated enough to 

distinguish between stealthy and detectable attacks [12] and model non-perfect intrusion 

detection systems [28]. Complexities such as these and other controls can be added to the 

attack graph to even better represent real life systems. This also opens the opportunity for 

what-if analyses to determine when adding intrusion detection systems to an asset would 

be worthwhile and impactful.  

 One limitation of the MulVal engine is that the set of interaction rules 

prepackaged with the engine are limited. They have not yet created exploit rules for 

vulnerabilities whose exploit consequences are confidentiality or integrity loss [5]. 

Further research can expand these rules and the engine to include a wider variety of rules, 

perhaps employing CWEs to characterize different sets of vulnerabilities and the attack 
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pathways that normally accompany those vulnerabilities. Other extensions have been 

proposed for the MulVal tool; these can also be employed to increase the modeling 

abilities of MulVal [29-30]. 

9.   CONCLUSION 

Revised FAIR enhances the calculation of FAIR Vulnerability from being based 

on analysts’ opinions, to being situated within a Bayesian network that models how a 

threat event would happen. Revised FAIR also offers flexibility in the calculation of 

FAIR Vulnerability as analysts can step in and change probabilities of nodes within the 

attack graph to better reflect knowledge about the network not captured by the original 

attack graph. Demonstrated within this paper, the probabilities of particular nodes can be 

determined by the effort and skill required to exploit a vulnerability based on CVSS 

scores.  

Adding attack graphs to FAIR analyses allows complex environments and assets 

to be broken down into more understandable and quantifiable pieces providing interesting 

analyses and new insights. Using Revised FAIR allows analysts to conduct granular 

what-if analyses to determine return on investment of actions such as patching a software 

vulnerability. By running a FAIR analysis before and after removing a vulnerability 

within the network, how much the risk has been reduced can be compared with the 

money spent to fix the vulnerability. Additionally, an attack graph provides the ability to 

model the impact of new vulnerabilities within a system. This was demonstrated by 

adding new vulnerabilities of both low and high complexity to the network and 

determining how this new vulnerability impact the loss exposure of the asset. Overall, 
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adding attack graphs to the calculation of FAIR Vulnerability provides greater precision, 

dependability, and detail to FAIR analyses.
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APPENDIX A 

attackerLocated(internet). 
attackGoal(execCode(workStation,_)). 
 
hacl(internet, webServer, tcp, 80). 
hacl(webServer, _,  _, _). 
hacl(fileServer, _, _, _). 
hacl(workStation, _, _, _). 
hacl(H,H,_,_). 
 
/* configuration information of fileServer */ 
networkServiceInfo(fileServer, mountd, rpc, 100005, root). 
nfsExportInfo(fileServer, '/export', _anyAccess, workStation). 
nfsExportInfo(fileServer, '/export', _anyAccess, webServer). 
vulExists(fileServer, 'CVE-2003-0252', mountd). 
vulProperty('CVE-2003-0252', remoteExploit, privEscalation). 
localFileProtection(fileServer, root, _, _). 
 
/* configuration information of webServer */ 
vulExists(webServer, 'CVE-2002-0392', httpd). 
vulProperty('CAN-2002-0392', remoteExploit, privEscalation). 
networkServiceInfo(webServer , httpd, tcp , 80 , apache). 
 
/* configuration information of workStation */ 
nfsMounted(workStation, '/usr/local/share', fileServer, 
'/export', read). 

 

Figure 18. Information fed into MulVal for the Model Network based on [5]. 
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APPENDIX B 

ADD ATTACK GRAPHS HERE 
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APPENDIX C 
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APPENDIX D 
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APPENDIX E 
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APPENDIX F 
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APPENDIX G 
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