
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

Spring 2018

DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN

EXPANSION OF THE CURRENT FAIR MODEL EXPANSION OF THE CURRENT FAIR MODEL

Beth M. Anderson
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Anderson, Beth M., "DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN EXPANSION OF THE
CURRENT FAIR MODEL" (2018). EWU Masters Thesis Collection. 483.
https://dc.ewu.edu/theses/483

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/483?utm_source=dc.ewu.edu%2Ftheses%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

DETERMINING VULNERABILITY USING ATTACK GRAPHS:

AN EXPANSION OF THE CURRENT FAIR MODEL

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

By

Beth M. Anderson

Spring 2018

ii

THESIS OF BETH M. ANDERSON APPROVED BY

DAN LI, GRADUATE COMMITTEE DATE

STUART STEINER, GRADUATE COMMITTEE DATE

JASON ASHLEY, GRADUATE COMMITTEE DATE

iii

DETERMINING VULNERABILITY USING ATTACK GRAPHS:

AN EXPANSION OF THE CURRENT FAIR MODEL

By

Beth M. Anderson

Spring 2018

ABSTRACT

Factor Analysis of Information Risk (FAIR) provides a framework for measuring and

understanding factors that contribute to information risk. One such factor is FAIR

Vulnerability; the probability that an event involving a threat will result in a loss. An

asset is vulnerable if a threat actor’s Threat Capability is higher than the Resistance

Strength of the asset. In FAIR scenarios, Resistance Strength is currently estimated for

entire assets, oversimplifying assets containing individual systems and the surrounding

environment. This research explores enhancing estimations of FAIR Vulnerability by

modeling interactions between threat actors and assets through attack graphs. By

breaking down the scenario into more representative and quantifiable parts, more detailed

and precise analyses are possible.

Keywords—Factor Analysis of Information Risk; Attack Graphs; Resistance Strength;

Vulnerability;

iv

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Dan Li of the Computer Science

Department at Eastern Washington University. Her unwavering support and trust in me

was stronger than I felt for myself. She consistently allowed this paper to be my own and

gave encouragement and counsel whenever I steered off course.

I would also like to thank my colleagues and advisors at RiskLens who supported my

work: Bryan Smith, Isaiah McGowan, Forrest Ireland, and the rest of the engineering

team. Without their encouragement, support, input, and review, this thesis would not be

what it is today.

Thank you.

Beth Anderson

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES, TABLES AND EQUATIONS .. vii

INTRODUCTION ...1

1. FACTOR ANALYSIS OF INFORMATION RISK ..2

1.1 Risk ...2

1.2 Loss Magnitude and Subcomponents ...3

1.3 Loss Event Frequency and Subcomponents ...4

2. PROBLEMS WITH FAIR VULNERABILITY ..8

3. SOLUTION..9

4. ATTACK GRAPHS...11

4.1 MulVal ..11

4.1.1 Advisories ...13

4.1.2 Host Configuration..14

4.1.3 Network Configuration ...15

4.1.4 Principals...15

4.1.5 Interactions ..15

4.1.1 Policy ..16

4.2 Bayesian Attack Model ...16

5. VULNERABILITY DATA ...17

5.1 Vulnerability Information ...18

5.1.1 CVE...18

5.1.2 CWE ..18

5.1.3 CVSS...19

vi

5.2 Application of Vulnerabilities..21

6. MODEL NETWORK ..23

6.1 Description of Model Network ...23

6.2 Creation of the Attack Graph ..26

6.3 Analysis of Attack Graph ..28

6.4 FAIR Analysis ..29

7. EXPERIMENTATION ..33

7.1 Original Model Network with CVSS Calculation ..33

7.2 Remove Vulnerability on File Server from Model Network36

7.3 Remove Vulnerability on Web Server from Model Network38

7.4 Remove Both Vulnerabilities from Model Network39

7.5 Add Hypothetical Low Complexity Vulnerability to Model Network39

7.6 Add Hypothetical High Complexity Vulnerability to Model Network42

8. FURTHER RESEARCH ...44

9. CONCLUSION ..45

10. REFERENCES ...47

11. APPENDIX ...51

vii

LIST OF FIGURES, TABLES, AND EQUATIONS

Figure 1. Fair Ontology..2

Figure 2. Graphical representation of the MulVal tool ..12

Table 1. Exploitability metric details ...20

Figure 3. Example Network with 2 vulnerabilities ..22

Equation 1. Skill and Effort CVSS equation ...22

Figure 4. Model Network ...23

Table 2. Descriptions of the two found vulnerabilities ..25

Figure 5. Attack graph for Model Network ...27

Table 3. Attack graph nodes for Model Network ..28

Figure 6. Loss Exposure of Model Network ..32

Figure 7. Loss Exposure of Model Network with CVSS calculation35

Figure 8. Loss Exposure of Model Network with CVE-2003-0252 removed from web

server. ...36

Figure 9. Comparison of Loss Exposure of the original Model Network compared to the

Model Network without CVE-2002-0392 on the web server ..37

Figure 10. Loss Exposure of Model Network with CVE-2003-0252 removed from web

server and CVSS calculation. ..38

Figure 11. Comparison of Loss Exposure of the original Model Network compared to the

Model Network without CVE-2003-0252 on the web server with CVSS calculation

..38

Figure 12. Loss Exposure of Model Network with hypothetical low complexity

vulnerability ...40

Figure 13. Comparison of the Loss Exposure of the original Model Network compared to

the Model Network with hypothetical low complexity vulnerability40

Figure 14. Loss Exposure of Model Network with hypothetical low complexity

vulnerability and CVSS calculation ...41

viii

Figure 15. Comparison of the Loss Exposure of the original Model Network compared to

the Model Network with hypothetical low complexity vulnerability with CVSS

calculation ..42

Figure 16. Loss Exposure of Model Network with hypothetical high complexity

vulnerability and CVSS calculation ...43

Figure 17. Comparison of the Loss Exposure of the original Model Network compared to

the Model Network with hypothetical high complexity vulnerability with CVSS

calculation ..43

Information fed into MulVal for the Model Network .. Appendix A

Attack graph for Original Model Network with CVSS calculation Appendix B

Attack graph for Model Network without CVE-2003-0252 Appendix C

Attack graph for Model Network without CVE-2003-0252 with CVSS calculation

.. Appendix D

Attack graph for Model Network with low complexity vulnerability Appendix E

Attack graph for Model Network with low complexity vulnerability with CVSS

calculation ...Appendix F

Attack graph for Model Network with high complexity vulnerability with CVSS

calculation .. Appendix G

DETERMINING VULNERABILITY USING ATTACK GRAPHS:

AN EXPANSION OF THE CURRENT FAIR MODEL

Beth Anderson

Factor Analysis of Information Risk (FAIR) [1] provides the ability to understand

and quantify risk and the components that comprise it. FAIR breaks from traditional risk

assessments where risk is measured with qualitative ratings such as high, medium and

low. Instead, FAIR provides a model to quantify risk into dollars and cents. FAIR

accomplishes this by breaking down risk into understandable measurable components

that combine in the FAIR ontology. However, there is still work to be done to develop

FAIR into a more realistic and robust ontology. One component within the FAIR

ontology, Vulnerability, lacks a realistic estimation model that captures the complexities

of networks surrounding assets, vulnerabilities, and other nuances. This research expands

upon the current FAIR model to address limitations of FAIR Vulnerability by expanding

the ontology to include attack graphs.

This paper is structured as follows: To begin, the current FAIR model is explained

and areas for improvement within FAIR Vulnerability are highlighted. Then, a solution to

limitations of FAIR Vulnerability is presented, followed by a description of attack graphs

and vulnerabilities. Following that, an example network is introduced, the corresponding

attack graph analyzed, and FAIR is applied to exploratory scenarios using this network.

Finally, future work is discussed, and the paper concludes.

2

1. FACTOR ANALYSIS OF INFORMATION RISK

Factor Analysis of Information Risk (FAIR) [1] places risk into an ontology

(Figure 1) where lower components combine together to determine higher components

until the root of the ontology, Risk, is determined. Each factor within the FAIR ontology

represents a probability distribution [1]. Components lower in the ontology are defined

using minimum, most likely, and maximum. By estimating values of measurable

components, probabilities that are difficult or impossible to measure can be determined

using the probability distributions of measurable components further down the ontology.

The FAIR ontology is used bottom up, where measurements are provided at more

granular components at the bottom and then combined to determine components higher

up the ontology. However, when explaining structure of the FAIR ontology, it is easiest

to explain from the top down, starting with Risk and breaking it down into smaller

components.

1.1 Risk

Figure 1. FAIR Ontology [1]

3

Within FAIR, Risk defined as “the probable frequency and probable magnitude of

a future loss” [1]. Risk is the combination of how likely it is that a loss will occur (Loss

Event Frequency) and how much is likely to be lost (Loss Magnitude). These two

components, Loss Event Frequency and Loss Magnitude comprise the first layer of the

FAIR ontology and are the direct descendants of Risk.

1.2 Loss Magnitude and Subcomponents

Loss Magnitude represents the magnitude of incurred loss — i.e. how much loss

is likely to result. This is measured in currency units, such US dollars, or Euros, and is

related to the asset, the thing of value. The more valuable the asset is, the larger Loss

Magnitude is likely to be. Loss Magnitude is defined as “the probable magnitude of

primary and secondary loss resulting from an event” [1]. However, determining a

probability distribution for the entirety of Loss Magnitude is difficult as there are many

different factors that determine how much money will be lost. Because of this, Loss

Magnitude is broken down into two subcomponents: Primary and Secondary Loss.

Primary Loss is “primary stakeholder loss that materializes directly as a result of

the event” [1]. Primary Loss is measurable as companies can determine how much money

it will take to get operations back up and running, as well as how much an asset is worth.

Examples of Primary Loss include: lost revenue from outages, wages paid to workers

when work is not being completed, and replacement of tangible assets such as cash. This

node is represented by a probability distribution with values for the minimum, most

likely, and maximum amount of money that would be directly lost due to a loss event.

4

Secondary Loss is the other component that comprises Loss Magnitude.

Compared to Primary Loss, Secondary Loss is the fallout of the event rather than the

direct result [1]. Examples of Secondary Loss include results from reputation loss, fines,

and judgements. Secondary Loss is more nuanced than Primary Loss and is more difficult

to measure. Because of this, Secondary Loss is broken down further into Loss Event

Frequency and Loss Magnitude in the same way that Risk is broken down at the top on

the ontology. Secondary Loss Event Frequency is defined as “the percentage of primary

events that have secondary effect” [1]. As not all scenarios have the potential for

Secondary Loss; it is important to measure how often the primary event will result in a

secondary event. Secondary Loss Events can include fines and judgements being levied

because of negligence. The other half of Secondary Loss is Secondary Loss Magnitude,

the “loss associated with secondary stakeholder reactions” [1]. This would include

notification cost, credit monitoring, legal defense costs, and diminished stock prices.

Measurements taken on Secondary Loss Event Frequency and Secondary Loss

Magnitude are combined to create a probability distribution that represents Secondary

Loss. The probability distribution of Secondary Loss is then combined with the

distribution representing Primary Loss to determine Loss Magnitude, the amount of

damage an event could inflict.

1.3 Loss Event Frequency and Subcomponents

Where Loss Magnitude tells us how much can be lost, Loss Event Frequency is

how frequent a loss is expected to happen, often measured in events per period such as

twice per year. It is important to note that Loss Event Frequency is how often an event

completely comes to fruition, not how frequently an event is attempted. For example,

5

Loss Event Frequency would measure how often a hacker successfully infiltrates a

database (once a year) not how often hackers attempt to infiltrate (many times a day). In

the same way that Loss Magnitude is further broken down into more understandable and

measurable components, so is Loss Event Frequency. Loss Event Frequency is comprised

of Threat Event Frequency and Vulnerability.

Threat Event Frequency is the “probable frequency, within a given time-frame,

that threat agents will act in a manner that may result in loss” [1]. Threat Event

Frequency includes all potential events including those that result in loss as measured by

Loss Event Frequency and those that do not. In the earlier example, Threat Event

Frequency is how often hackers tried to infiltrate the database, which may be many times

a day. In this case, the probability distribution can be decided at the Threat Event

Frequency level. If there are logs that measure how often threat actors attack, there is no

need to measure at lower levels of the ontology. However, there are some situations

where measuring at Threat Event Frequency is difficult. Thus, Threat Event Frequency is

broken down into two other components, Contact Frequency and Probability of Action.

Contact Frequency is “the probable frequency, within a given time-frame, that

threat agents will come into contact with assets” [1]. A threat agent is anything that can

cause a loss event, from a hacker to a tornado. Contact Frequency includes both logical

contact, such as a scan of a web server, or physical contact, such as an employee stealing

sensitive documents. Several types of contact include a threat agent randomly

encountering an asset, contact during regular business activities, or a threat agent

purposeful contacting an asset. It is useful to measure at Contact Frequency if there is an

asset that is contacted for reasons other than the loss event. For example, having a

6

database manager access the database to check logs every day would be a type of contact.

However, it is unlikely that each time the manager accesses the logs is a loss event.

Contact happens all the time; what determines if an event becomes a threat is the

Probability of Action. Probability of Action is “the probability that a threat agent will act

upon an asset once contact has occurred” [1]. Once contact has been made, there is a

probability that the threat agent will or will not do something negative to the asset. In the

example of Contact Frequency mentioned earlier, a database manager is checking the

daily logs, meaning that he or she has access to information about the database. The

Probability of Action would measure if he or she attempts to do damage to the database,

whether it be to breech confidentiality or degrade the integrity of the data. Most of the

time, Probability of Action in this case would be near 0%. Unless the employee is

disgruntled, the chances of them doing anything negative during these checks is small.

On the other hand, a hacker purposely contacting a web server would have a Probability

of Action of a 100%. The combination of how often an asset is contacted and the

probability that action will be taken upon contact determines Threat Event Frequency.

Loss Event Frequency is comprised of both Threat Event Frequency, made of

Contact Frequency and Probability of Action, and Vulnerability. Even if the Threat Event

Frequency of an asset is high, with events happening constantly, this does not mean that

the asset will have high Loss Event Frequency, the frequency that something damaging

has happened. This is because not every attempt at an asset is successful. Vulnerability is

the probability that an event involving a threat will result in a loss. Note that this

definition of vulnerability is different from typical definitions of vulnerability. When

speaking of vulnerability as defined by FAIR, “FAIR Vulnerability” will be used. When

7

speaking of vulnerability as a flaw in the defenses of an asset, such as an exploitable

software bug, “vulnerability” will be used. FAIR Vulnerability is “the probability that a

threat agent’s actions will result in a loss” [1]. FAIR Vulnerability is further broken down

into Threat Capability and Resistance Strength.

Threat Capability is the level of ability of the threat actor measured on a

percentile scale from 0-100. Threat Capability is determined based on a population of

threat actors also known as a threat community. For example, the probability distribution

for the Threat Capability of Cyber Criminals may place the least capable threat actor in

the 60th percentile, the most capable actor at the 100th percentile, and a majority of threat

actors within the 90th percentile [1]. The rationale behind this measurement is that Cyber

Criminals are more skilled and have better resources than an average cyber threat agent.

Threat Capability is directly compared against Resistance Strength to determine FAIR

Vulnerability.

The Resistance Strength of an asset is measured on the same scale as Threat

Capability. Resistance Strength is defined as “the level of difficulty that a threat agent

must overcome” [1]. This could be how strong the brick and mortar of a house is against

a hurricane or how advanced an anti-virus software is against malicious software. The

Resistance Strength of an asset is how capable the asset protects itself against threats.

Being on the same scale as Threat Capability, Resistance Strength is directly compared to

Threat Capability. If Threat Capability is higher than Resistance Strength, the threat event

would become a loss event – i.e. The threat actor would successfully complete his or her

goal. If Resistance Strength is higher than Threat Capability, then the asset is safe, and no

loss would occur.

8

Measurements of Resistance Strength and Threat Capability are combined to

determine FAIR Vulnerability. Threat Event Frequency can be broken down into Contact

Frequency and Probability of Action or measured directly at Threat Event Frequency.

The probability distribution resulting from the combinations of Threat Event Frequency

and FAIR is Loss Event Frequency which combined with Loss Magnitude quantifies

Risk.

2. PROBLEMS WITH FAIR VULNERABILITY

The current method of determining FAIR Vulnerability has room for

improvement. The current estimation model for FAIR Vulnerability as described by an

industry expert [2] places the burden of estimating Resistance Strength on the analyst

who must determine values for minimum, maximum and most likely, for the Resistance

Strength of the entire asset. For example, if an analyst discovers that an asset has a SQL

injection vulnerability, it is up to him or her to decide how much impact that vulnerability

has on the strength of the asset. Introduce new analysts and the resulting Resistance

Strengths of the same asset can vary. Additionally, assets can be made up of intricate

systems and parts, all of which have their own strengths and weaknesses. An analyst

would have to determine and then aggregate the Resistance Strength of a complicated

connection of different subsystems. Without detailed knowledge of all the aspects of an

asset, an analyst cannot make accurate judgements about the asset’s Resistance Strength.

Furthermore, assets can live within larger systems where threats can elevate privileges

outside of the asset, allowing access to the asset that would be difficult to model through

FAIR in its current form. For example, a web application is connected to many other

systems ranging from servers to databases. A vulnerability within any of the connected

9

systems has the potential to expose the web application to attackers. Looking at just the

vulnerabilities of one part of the highly connected network potentially misses interesting

and important attack pathways. Assets are not always single units, they can be multi-layer

systems with each part having various levels of Resistance Strength.

A solution to these limitations is to create a model of FAIR Vulnerability that can

account for the complexities and intricacies of real assets. Determining the Resistance

Strength at the asset level oversimplifies highly complex assets that may be involved in

larger systems. A model that can make use of information about the internals of an asset,

or its relationships to external systems will better represent the real world.

3. SOLUTION

The proposed solution introduces an expansion to the calculation of FAIR

Vulnerability by employing an attack graph to model paths a threat actor can take to

successfully harm an asset. Along these paths, the threat actor will exploit vulnerabilities

in sequence, elevating his or her privilege along the way. However, it should be noted

that this expansion to FAIR will not fit all risk scenarios modellable by FAIR. For

example, a tornado destroying a server warehouse would not be an applicable scenario.

This expansion is suited for situations that would be modellable by an attack graph – e.g.

a threat actor is attempting to hack into a database to gain personally identifiable

information.

This expansion to FAIR introduces the idea that FAIR Vulnerability can be

improved to take into account the features of an asset. This allows for the environment

surrounding the asset as well as components of the asset to be described in terms of

10

concrete components and connections via an attack graph. Using an attack graph ensures

that only the relevant aspects of an asset will be used in a FAIR scenario. There is no use

in determining Resistance Strength for parts of the asset that would not be touched within

a scenario.

This expansion can use attack graphs in two different ways. The first would be to

determine Resistance Strength for each attack step in the attack graph. These

determinations are made by analysts informed by system configuration, known

vulnerabilities, and Common Vulnerability Scoring System (CVSS) scores as well as

expertise in the asset. This way requires more input; however, this could be beneficial if

there are intricacies of the asset that are not completely encapsulated by the information

provided to the attack graph. Analysts highly familiar with the configuration of an asset

may be better able to determine the viability of an attack step than blind probability.

The second way that attack graphs can be used is with Bayesian Networks to

determine the probability of a successful attack. This would allow for the probability of

an actor completing each step within the attack graph to be determined based on the

probability of previous steps. Information such as vulnerabilities will be included to form

probabilistic relations between the different steps in the attack sequence. However, this

way does not inherently take into account differences in the Threat Capabilities of threat

actors.

The first and second way of using attack graphs within FAIR can be used in

conjunction. There is no strict need to adhere to one technique or the other. Sometimes

there will be situations where a step in the attack graph is more suited for an analyst to

determine the Resistance Strength compared to the Threat Capability of the threat actor.

11

Other times this will not be needed, and Bayesian probability models the situation

accurately. The general approach of the examples within this paper is to rely on a

Bayesian network to provide probabilities that a threat actor would be able to make it to a

particular step in the attack graph but analyze and adjust the Bayesian network based on

knowledge about the model and the threat actor.

4. ATTACK GRAPHS

Attack graphs are models that represent information about vulnerabilities and

interaction in a network to show different paths that an attacker can follow to reach a

given goal. Along each of these paths, the attacker will exploit vulnerabilities in

sequence, elevating his or her privilege along the way. There are two main types of attack

graphs: state-based representations and logical attack graphs. Within state-based

representations each node represents the state of the whole network after a single atomic

attack. The number of state nodes increases dramatically as the network increases, thus

limiting the applicability of this type of graph to very small networks. Logical attack

graphs on the other hand are defined as bipartite graphs that represent dependencies

between security conditions and exploits [3]. This research uses logical attack graphs as

the size of assets can range from small networks to dynamically large systems.

4.1 MulVal

Constructing an attack graph is a “tedious, error-prone and impractical for attack

graphs larger than a hundred nodes” [4]. This tediousness can be alleviated by using tools

such as MulVal, the Multi-host, Multi-stage Vulnerability Analysis Language tool [5].

MulVal is a scalable end to end framework that models the interaction of vulnerabilities

12

with system and network configurations. MulVal takes information encoded as Datalog

facts to create an attack graph. Datalog is “a declarative logic language in which each

formula is a function-free Horn clause, and every variable in the head of a clause must

appear in the body of the clause” [6].

Using the information provided, as well as logical rules defined within the

MulVal engine, MulVal creates a logical attack graph that shows steps an attacker can

take to reach a specified goal and the configurations used in order to execute attack steps.

Information is entered into the MulVal reasoning engine as Datalog facts. Interaction

rules are also supplied to the reasoning engine. The engine then creates attack simulation

traces that determine all different attack paths that could be used to reach the goal. The

trace is then passed to a graph builder which creates a logical attack graph, which is then

outputted to the user [7].

Figure 2. Graphical representation of the MulVal tool [5]

13

The logical attack graph consists of three different types of nodes: AND, OR and

LEAF nodes. An AND node represents an attack step within the attack graph. An example

of an AND node is “RULE 6 (direct network access)”. This AND node is determined

based on interaction rules that are inputted into the MulVal tool as well as preconfigured

rules that are already included in the tool. OR nodes are privilege nodes. An example of a

OR node would be “netAccess (webServer, tcp, 80)”. This means that an attacker has

privileges to access the web server using tcp on port 80. The final type of node is a LEAF

node which represents the configuration of the system. An example of a LEAF node

would be “hacl(internet, webServer, tcp, 80)”, which means that the web server can

connect to the internet using tcp on port 80. All three of these nodes types comprise the

attack graph created by MulVal [7].

The following sections describe each type of information provided to the MulVal

engine in order to create the attack simulation trace and eventually an attack graph [5].

4.1.1 Advisories

Advisories relate to what vulnerabilities exist in the network. Vulnerabilities can

be determined by using a vulnerability scanner such as an OVAL (Open Vulnerability

Assessment Language) scanner or one of the many other available options [8-9]. The

original MulVal research used an OVAL scanner which uses OVAL formalized

vulnerability definitions to test a machine to see if any of those definitions are matched

[10]. The results from the OVAL scanner are translated into a Datalog fact and supplied

to the MulVal engine. An example of a Datalog fact of a vulnerability is

vulExists(webServer, ’CAN-2002-0392’, httpd).

14

This fact tells that there is a vulnerability involving the server program httpd on a web

server with the ID of CAN-2002-0392. Another Datalog clause is used to capture the

effect of the vulnerability.

vulProperty(’CAN-2002-0392’, remoteExploit, privilegeEscalation).

This Datalog fact shows that the vulnerability CAN-2002-0392 enables arbitrary code

execution by a remote attacker with all the program’s privileges. This information can be

determined from sources such as the National Vulnerability Database (NVD) provided by

the National Institute of Standards and Technology (NIST) [11]. However, many

vulnerability scanners already correlate this data and provide information about the

impact of the vulnerability which can be fed into the MulVal reasoning engine.

4.1.2 Host Configuration

Host configuration is information about the software and services that are running

on hosts as well as the configuration of those hosts. This information can also be

determined using scanners. For example, one could use the OVAL scanner to extract

configuration parameters such the port numbers and privileges of a program on a host.

This data is converted to Datalog clauses like

networkService(webServer, httpd, TCP, 80, apache).

This clause describes a web server with a program httpd listening on port 80 using TCP

protocol and running as the user ‘apache’.

15

4.1.3 Network Configuration

Network configuration is information about how network routers and firewalls are

configured. MulVal models network configurations as abstract host access-control lists

(HACL). This information can be found by looking at the configuration of network

routers and firewalls. This information is converted to Datalog clauses like the following

which shows that TCP traffic is allowed from the internet to port 80 on the web server.

hacl(internet, webServer, TCP, 80)

4.1.4 Principals

Principals refer to the users of the network and their accounts on the network

hosts. For example, a system admin has an account on the web Server with root

permission. This is written in Datalog as

hasAccount(sysAdmin, webServer, root).

4.1.5 Interactions

Interactions model how components within a network interact. General rules can

be established for the network using Horn clauses. In Horn clauses, the first line is the

conclusion, or result, and the remaining lines are the conditions that enable the

conclusion. An example of this is

execCode(Attacker, Host, Priv) :- vulExists(Host, VulID, Program),

vulProperty(VulID, remoteExploit, privEscalation), networkService(Host,

Program, Protocol, Port, Priv), netAccess(Attacker, Host, Protocol, Port),

malicious(Attacker).

16

The earlier Horn clause describes that an attacker would be able to execute arbitrary code

on the machine under the privilege Priv, if there was a program running on a host that

allowed for privilege escalation, that program was listening on Protocol and Port while

running under Priv privilege, and the attacker can access that Protocol and Port through

the network. Words capitalized within this clause (Host, Program, VulID, ect.) are Prolog

variables that matched, meaning that this rule can be applied to any set of actual

parameters that match this pattern. Using the extendibility of these rules, general sets of

rules have been created and special network specific rules can be added to the MulVal

engine as needed.

4.1.6 Policy

Policy refers to access permissions on data. If a policy is not explicitly allowed,

then it is assumed to be prohibited. For example,

allow(Everyone, read, webPages)

allow(systemAdmin, write, webPages)

This policy says that anyone can read web pages and that the user systemAdmin is

allowed to write web pages. Like the Horn clauses of configuration, Everyone is

capitalized meaning it is a Prolog variable that represents any user.

4.2 Bayesian Attack Model

Attack graphs, such as the one created by the MulVal tool, provide information

about the paths that a threat actor can take to reach a particular goal. However, Attack

graphs are not well suited to model ongoing attacks as they cannot represent the

progression of an attacker through the system [12]. Adding a Bayesian network to an

attack graph adds the probability that an attacker would be reach a step within the attack

17

graph. A Bayesian network is a probabilistic graphical model based on a directed acyclic

graph where nodes represent random variables and edges represent the probabilistic

dependences between those variables.

Within the context of an attack graph, nodes represent exploits e and conditions c

each of which have two probabilities, p(e) and p(c) for individual scores and P(e) and

P(c) for cumulative scores respectively. Individual score p(e) is the probability that the

exploit e will be successfully be executed given that all other conditions for exploit are

already met. This is the intrinsic likelihood of an exploit in isolation without the influence

of any other factors. The same is for p(c), but with conditions rather than exploits. P(e)

and P(c) are cumulative scores that measure the overall likelihood that exploit e will be

successfully executed or that condition c will be met. These probabilities are based on

probabilities earlier in an attack sequence [13]. Conditional probabilities are of the main

interest within attack graphs as those probabilities model the likelihood of an attacker

reaching a particular node within the graph.

5. VULNERABILITY DATA

As mentioned earlier “vulnerability” has a different meaning within the context of

FAIR. FAIR vulnerability is “the probability that a threat agent’s actions will result in a

loss” [1]. However, the definition of vulnerability within this section is a “weakness in an

IS (Information System), system security procedures, internal controls, or implementation

that could be exploited” [14]. More specifically, a vulnerability is “a specific bug in a

specific software which can be abused in an unintended manner to potentially cause a

negative impact to the user of the software” [15]. Information about vulnerabilities in

18

software and hardware is available, enumerated, and cataloged though Common

Vulnerabilities and Exposures, Common Weakness Enumeration, and the Common

Vulnerability Scoring System.

5.1 Vulnerability Information

5.1.1 CVE

Common Vulnerabilities and Exposures (CVE) is list of publicly known common

identifiers for cyber security vulnerabilities [16]. After being launched in 1999 by

MITRE Corporation, CVE is now the industry standard for identifying vulnerabilities. A

CVE identifier (CVE-1999-0400) maintains a one to one relationship with a vulnerability

and a standardized description for each vulnerability or exposure. While CVE is a

dictionary, not a database, it does feed into NVD [11]. This database is very useful for

this work as MulVal engine needs information about the vulnerability beyond the name.

5.1.2 CWE

Common Weakness Enumeration (CWE) [17] is similar to CVE, except that it is a

list of common software weaknesses that can occur in software architecture, design, code

or implementation that can lead to exploitable security vulnerabilities. According to

MITRE, the difference between weaknesses and vulnerabilities is that a software

weakness is an error that can lead to software vulnerabilities. Examples of software

weaknesses include buffer overflows, authentication errors, and code injection (e.g. SQL

Injection (CWE-89)). CWE can be useful for analysts to determine the type of

vulnerability they are looking at. Seeing that a vulnerability has a CWE of SQL Injection

allows for quick understanding about what type of attack would be able to exploit this

19

vulnerability. Additionally, CWEs can be used to categorize sets of vulnerabilities,

leading to further research into how the skill needed by an attacker to exploit

vulnerabilities can be related to CWEs.

5.1.3 CVSS

Common Vulnerability Scoring System (CVSS) is the industry standard for

measuring the severity of vulnerabilities in software [18]. This system provides a way to

translate the characteristics of a vulnerability and produce a numerical score that reflects

the severity. Version 2 of the CVSS was released in June 2007 and has been replaced by

Version 3 in June 2015. Both version 2 and 3 are included in databases such as the

National Vulnerability Database and some older vulnerabilities are only scored using

version 2, including the vulnerabilities that were found on the Model Network.

The CVSS calculates three different scores: a base, a temporal, and an

environmental score. The base score is calculated using intrinsic and fundamental

characteristics of the vulnerability that do not change over time or in different

environments. The temporal score is based on characteristics that change over time, but

not between user environments. Finally, the environmental score is calculated using

characteristics that are dependent upon the user’s environment. The CVSS score

expressed on a scale from 0 to 10, with 10 being the most severe.

Of interest in this research are the exploitability metrics included in the base

score. The exploitability metric group measures how difficult a vulnerability is to exploit.

Table 1 describes the metrics for exploitability as well as the associated numerical value

20

for each. This table describes version 2 of CVSS scoring system as the vulnerabilities

within the Model Network used in this paper are scored using version 2.

Exploitability Metric Value Value Description Numeric

Access Vector:

The minimum level of

access needed to exploit

the vulnerability

Local An attacker must have physical

access to the system or a local

(shell) account

0.395

AdjacentNetwork An attacker must have access to

either the broadcast or collusion

domain of the vulnerable software

0.646

Network An attacker does not need local

network access or local access

1.0

Access Complexity:

The complexity of the

attack needed to exploit

the vulnerability

High Specialized accesses conditions. For

example, an attacker must employ

DNS hijacking.

0.35

Medium Somewhat specialized access

conditions. For example,

information must be gathered before

the attack

0.61

Low No specialized access conditions 0.71

Authentication:

The number of times an

attacker must

authenticate to exploit a

vulnerability

Multiple An attacker must authenticate two

or more times

0.45

Single An attacker must authenticate once 0.56

None Authentication is not needed 0.704

Table 1. Exploitability metric details [19]

21

5.2 Application of Vulnerabilities

Understanding the severity of a vulnerability allows for informed decisions to be

made about how a vulnerability will impact FAIR vulnerability. Previous research [20]

demonstrates a way to determine the effort and skill that a threat actor would need to

possess to successfully exploit a vulnerability. This is based on the exploitability metric

group of CVSS scores described earlier. One important thing to note is that CVSS base

scores of vulnerabilities are calculated independently. However, in an attack graph,

vulnerabilities are not in isolation. Because of this, the base CVSS score in some

situations is not accurate.

An example of the base CVSS score not being accurate would be two

vulnerabilities that exist on two separate hosts connected to each other (Figure 3). Host 1

is connected to the internet, where the attacker is residing, as well as Host 2 with

firewalls between both. Host 2 is only connected to Host 1. Both Host 1 and Host 2 have

one vulnerability, Vuln 1 and Vuln 2 respectively. The first vulnerability, Vuln 1, present

on Host 1, when successfully exploited allows an attacker to gain access to the local

network of Host 2. Vuln 2, which is present on Host 2 has a base Access Vector metric of

AdjacentNetwork. However, within this example, because a threat actor can gain access

to the local network of Host 2 using Vuln 1, the Access Vector of Vuln 2 should be

changed from AdjacentNetwork to Network. Changing this metric would increase the

overall score of the vulnerability. The dependent relationships of vulnerabilities need to

be taken into account when determining the Resistance Strength of an asset.

22

Once new base metrics of each vulnerability within the attack graph have been

determined, the effort and skill needed to exploit a vulnerability can be calculated. This is

calculated by using the Access Vector ([AV]), Access Complexity ([AC]), and

Authentication ([Au]). Equation 1 shows how to calculate both the effort score (es(e))

and the skill score (ss(e))

𝑒𝑠(𝑒) & 𝑠𝑠(𝑒) =
0.6395

[𝐴𝑉] ∗ [𝐴𝐶] ∗ [𝐴𝑢]
− 0.2794

The larger the score is, the more effort or skill is required to successfully exploit

the vulnerability. This scoring system has been found to accurately match the success

rates of simulated attacks [20]. The skill score required by a threat actor can theoretically

be mapped directly to Threat Capability, as Threat Capability is the skill of the threat

actor. However, in a broader sense, Threat Capability also includes the time and

resources that a threat actor has access to. This means that Threat Capability also includes

the effort that a threat actor is willing to go through to achieve a goal. The distinction

Figure 3. Example network with 2 vulnerabilities

Equation 1.

23

between skill and effort of the threat actor in relation to Threat Capability is a subject that

calls for further discussion and inquiry beyond the scope of this paper. However, within

the context of this paper, effort and skill will be used interchangeably.

6. MODEL NETWORK

As a proof of concept that attack graphs can add value to FAIR Analyses, a

simple model network [5, 21-22] is used as an example (Figure 4).

6.1 Description of Model Network

This Model Network has three zones: internet, dmz, and internal, separated by

two firewalls. The network also has 3 hosts: a web server named webServer located

within the dmz zone, a workstation named workStation, and a file server named

fileServer, both of within internal. All three of these hosts are managed by administrators

using the username root. Users, modeled as a single user with the username userAccount,

Figure 4. Model Network

24

have access to workStation, which is many different machines. These many workstations

run the same software configuration maintained as a collection of application binaries on

the file server and are treated as a single entity. The binaries for the workstations are

exported from ‘export/share’ through NFS from the file server. The file server also

exports ‘/export/www/’ to the web server.

The MulVal tool also includes a scanner that detects vulnerabilities. The scanner

found CVE-2002-0392 and CAN-2003-0252, which has been upgraded to CVE-2003-

0252. CVE-2002-0392 on the web server and CVE-2003-0252 on the file server of the

Model Network. Both vulnerabilities can result in privilege escalation and are remotely

exploitable. Table 2 describes the two found vulnerabilities and their characteristics.

25

 CVE-2002-0392 CVE-2003-0252

Location webServer fileServer

Description Apache 1.3 through

1.3.24, and Apache 2.0

through 2.0.36, allows

remote attackers to cause

a denial of service and

possibly execute arbitrary

code via a chunk-encoded

HTTP request that causes

Apache to use an incorrect

size.

Off-by-one error in the xlog

function of mountd in the Linux

NFS utils package (nfs-utils)

before 1.0.4 allows remote

attackers to cause a denial of

service and possibly execute

arbitrary code via certain RPC

requests to mountd that do not

contain newlines.

Access Vector Network Network

Access Complexity Low Low

Authentication None None

Confidentiality Partial Complete

Integrity Partial Compete

Availability Partial Complete

CVSS v2.0 Base Score 7.5 (High) 10.0 (High)

Additional

Information

- Provides unauthorized

access

- Allows unauthorized

disclosure of

information

- Allows disruption of

service

- Provides administrator

access

- Allows unauthorized

disclosure of information

- Allows disruption of service

Table 2. Descriptions of the two found vulnerabilities [23-24]

26

6.2 Creation of the Attack Graph

The primary concern within the Model Network is a remote attacker infiltrating

the system. Therefore, a reasonable goal for this scenario would be a remote attacker

executing arbitrary code on one of the hosts within the network. For this example, the

goal of the attacker will be to execute code on the workstation. The attacker is located

outside of the network on the internet. To achieve this goal, the attacker must navigate

into the dmz zone, where the web server is located and then move into the internal zone

where both the file server and the workstation are located. Once inside the internal zone,

the attacker must gain privileges in order to execute code on the workstation. This

process can be modeled using an attack graph. The previous information describing the

network is formatted and fed into the MulVal tool. See Appendix A for the input given to

the MulVal tool for this Model Network. The MulVal engine runs through the many

pathways that an attacker may try and create an attack graph that contains all of the

pathways that an attacker can take to successfully infiltrate the system and be able to

execute arbitrary code on the workstation. The attack graph produced by the MulVal tool

is seen as Figure 5 and nodes are seen in Table 3.

27

F
ig

u
re

 5
.

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk

28

Node # Node Name Node

Type

1 execCode (workStation, root) OR

2 RULE 4 (Trojan horse installation) AND

3 accessFile (workStation, write, ’/usr/local/share’) OR

4 RULE 16 (NFS semantics) AND

5 accessFile (fileServer, write, ‘/export’) OR

6 RULE 10 (execCode implies file access) AND

7 canAccessFile (fileServer, root, write,’/export’) LEAF

8 execCode (fileServer, root) OR

9 RULE 2 (remove exploit of a server program) AND

10 netAccess (fileServer, rpc, 100005) OR

11 RULE 5 (multi-hop access) AND

12 hacl (webServer, fileServer, rpc, 100005) LEAF

13 execCode (webServer, apache) OR

14 RULE 2 (remote exploit of a server program) AND

15 netAcess (webServer, tcp, 80) OR

16 RULE 6 (direct network access) AND

17 hacl (internet, webServer, tcp, 80) LEAF

18 attackerLocated (internet) LEAF

19 networkServiceInfo (webServer, httpd, tcp, 80, apache) LEAF

20 vulnExists(webServer, ‘CVE-2002-0392’, httpd, remoteExploit,

privEscalation)

LEAF

21 networkServiceInfo(fileServer,mountd,rpc,100005,root) LEAF

22 vulExists(fileServer, ‘CVE-2003-0252’, mountd, remoteExploit,

privEscalation)

LEAF

23 RULE 17 (NFS shell) AND

24 hacl (webServer, fileServer, nfsProtocol, nfsPort) LEAF

25 nfsExportInfo(fileServer, ‘/export’, write, webServer) LEAF

26 nfsMounted(workStation, ‘usr/local/share’, fileServer, “/export’, read) LEAF

6.3 Analysis of Attack Graph

Based on the attack graph, there are several ways that an attacker could move

through this network in order to reach the final goal of executing code on the workstation.

To begin, the attacker is based on the internet, which is represented in the attack graph as

node 18. From the internet, the attacker can compromise the web server by remotely

exploiting the vulnerability CVE-2002-0392. As the web server is allowed to access the

file server, the attacker can then exploit the vulnerability CVE-2003-0252 and become

root on the file server. Once the attacker is root on the file server, he or she can modify

files on the file server. Since the executable binaries for the workstation reside on the file

Table 3. Attack graph nodes for Model Network

29

server, the attacker can change executable programs on the workstation. If a user then

executes an attacker compromised program, the attacker would have the ability to

execute code on the workstation, thus reaching his or her goal.

The MulVal engine also implements a Bayesian network to determine the

conditional probabilities of a threat actor moving through the attack graph. These values

can be found on Figure 5 as the number after the description of the node and a colon. For

example, Node 23, Rule 17 (NFS shell) has the probability of 0.512. Based on the

outputted attack graph (Figure 5), the probability that a threat actor would be able to

execute code on the workstation, the goal of the attack graph, is 0.43. That means that

43% of threat actors would be able to infiltrate the workstation and execute code.

6.4 FAIR Analysis

Now that an attack graph has been made, a FAIR analysis can be defined.

Realistically, an organization would define the scope of a scenario that FAIR will be

applied to and then an attack graph would be created. In this case, an attack graph and

model network have already been defined, so instead, the scope of the scenario will be

decided based on the attack graph. The end goal of the attack graph, an attacker executing

code on the workstation, is not a scenario in FAIR. However, by being able to execute

code on the workstation, the attacker has compromised the integrity of the asset, which is

modellable by FAIR. Thus, this FAIR scenario will calculate risk, expressed as Loss

Exposure (how much money a company could lose), due to Cyber Criminals harming the

integrity of the workstation. Cyber Criminals are chosen in this case as they were

discussed earlier.

30

Based on the attack graph created earlier, the probability that a threat actor would

have a high enough Threat Capability to compromise the Resistance Strength of the

workstation in order to execute code was 43%. This is also a measurement for FAIR

Vulnerability, as FAIR Vulnerability is the probability that an event involving a threat

will result in a loss. It is important to note that defining FAIR vulnerability using this

single attack graph increases the specificity of the FAIR Analysis. It would not be correct

to assume that this scenario would also cover a threat actor stealing information from the

file server. While an actor could steal information from the file server through similar

attack paths as an actor attempting to execute code on the web server, the attack graph

was created with the latter goal and the probability reflects that particular goal, not all

goals. To reflect this, the scope of the scenario should be updated to represent the risk of

Cyber Criminals harming the integrity of the workstation by executing arbitrary code on

the workstation.

There are other aspects to a FAIR scenario besides FAIR Vulnerability, like Loss

Event Frequency and Loss Magnitude. Since this is a proof of concept, much of this

information is unavailable and estimates are used instead. The Threat Event Frequency of

Cyber Criminals attempting to comprise the integrity of the workstation within this

scenario is estimated at a minimum of once per year, a maximum of 10 times per year

with a most likely of 5.5 times per year. This Threat Effect Frequency may be high for

this asset. From the little information known about this network, there is no indication

that the workstation stores valuable information that would be targeted by Cyber

Criminals. But for the sake of having results, (if there are no threat events, there is no

31

risk) it is assumed that Cyber Criminals attempt to comprise the Model Network between

1 and 10 times a year.

As for Primary and Secondary Loss, estimations will also be used. Within

Primary Loss, the replacement cost for the asset is estimated between $100 and $100,000

with a most likely of $50,050. If the integrity of the machines was compromised and

valuable software corrupted, it may cost a large amount money to replace. However, it is

difficult to estimate without more information, hence the broad range. Primary Loss also

includes the amount of money spent on fixing the problem. Estimated, it would take a

minimum of 50 hours to a maximum of 100 hours to fix damage to the asset, with a most

likely of 75 hours. This value is multiplied by the average wage of the employee, which

is set at $60 per hour, to determine the cost of man hours if the integrity of the

workstation was compromised. Within Secondary Loss, it is estimated that between 20%

to 70% of integrity compromises would have an adverse effect on secondary

stakeholders. In this case, the secondary stakeholders could be the users of the

workstation which are estimated to have a worth of $100 to the organization. Within a

real FAIR analysis, all of these values would have defensible evidence to support the

validity of these estimations.

Now that all aspects of a FAIR scenario have been established, an analysis is run

on the scenario. Figure 6 is a graphical representation of the results of the FAIR analysis.

This shows that the potential Loss Exposure is as high as 1.3 million dollars with an

average loss of $286,000. This output was created using the RiskLens Cyber Risk

Quantification Engine [25]. The output histogram is a binning of the results of a Monte

Carlo simulation of the FAIR Scenario. An interesting feature of the RiskLens output is

32

the red line present on the histogram. This corresponds with the Risk Appetite set by the

organization. The Risk Appetite, also known as Risk Tolerance, is the “the amount and

type of risk that an organization is willing to take in order to meet their strategic

objectives” [26]. Within this example, the Risk Appetite of the organization is $100,000.

Looking at the output, one can see that the Risk Appetite is lower than a majority of the

distribution. This indicates that there is more risk in this scenario than the organization is

willing to have and there should be steps taken to mitigate this risk.

By adding an attack graph to the calculation of FAIR Vulnerability, the results of

this analysis are more defensible. Rather than having an analyst set the Resistance

Strength of the asset, the attack graph can show the exact path an attacker would be able

to take to achieve the goal of executing code on the workstation, allowing for a more

granularized approach to the analysis. Using Bayesian probabilities further increases the

defensibility of the results. Using attack graphs within FAIR is flexible; if there was a

situation that the Bayesian probabilities do not accurately represent the situation, these

probabilities can be adjusted. Additionally, since the asset is now situated within an

Figure 6. Loss Exposure of Model Network

33

attack graph, a risk analyst completing a FAIR analysis will also have a better idea of

what sort of vulnerabilities and configurations are important. This provides more insight

into potential remediation methods and ways that risk can be mitigated.

7. EXPERIMENTATION

Another advantage of adding attack graphs to FAIR scenarios is the ability to

experiment and adjust the attack graph based on what-if analyses. For example, removing

a vulnerability from a network and determining the new attack graph would show the

effect of patching. For the Model Network, the machines have long uptimes and any

patching would result in loss of availability [5]. Any downtime is best avoided, so the

ability to theoretically patch vulnerabilities and see the change in resulting risk is very

valuable. Within this section, different experiments will be ran on the Model Network to

highlight helpful analyses that are available if attack graphs are integrated into FAIR.

Additionally, research on CVSS scores will be integrated into the current MulVal engine

to increase the realism of the attack graphs.

7.1 Original Model Network with CVSS Calculation

In the original calculation of the MulVal engine, all Leaf nodes, including nodes

representing vulnerabilities are set with a probability of 1. This is not accurate as there

are differences in the difficulty of vulnerabilities; not all vulnerabilities require the same

level of skill of effort to exploit. Because of this, it is important to integrate CVSS scores

into the calculation of the probability of steps requiring vulnerability exploitation.

Research discussed earlier [20] was employed to calculate the skill and effort needed to

successfully exploit each vulnerability. A vulnerability found in the network is CVE-

34

2002-0392, which is located on the web server. The exploitability metrics for CVE-2002-

0392 are Network for the Access Vector, Low for Access Complexity, and None for

Authentication. Completing Equation 1 with the corresponding numerical values in Table

1, the resulting score for skill and effort is 1. 70% of simulated attackers sampled from a

normal distribution were able to successfully exploit a vulnerability of that score [20].

Thus, the probability of an attacker successfully exploiting that vulnerability is also 70%.

CVE-2003-0252, which is on the file server has the same exploitability metric, and thus

also has 0.7 probability. The MulVal Bayesian engine was adapted to allow for differing

probability of leaf nodes and was run with nodes 20 and 22 with probabilities of 0.7

corresponding to the two vulnerabilities. The attack graph with the probability scores is

seen in Appendix B.

The probability of 0.7 for both vulnerabilities is based on an entire population of

threat actors. In the FAIR scenario defined earlier, the analysis was specifically

calculating the risk of Cyber Criminals affecting the integrity of the workstation. Most

Cyber Criminals are in the 90th percentile of threat actors. This means that while only

70% of threat actors in the general population would be able to exploit these

vulnerabilities, the threat capability of Cyber Criminals exceeds the general population.

Thus, the original probability of the MulVal tool, with the probability of exploiting a

vulnerability is 1, is more similar to the actual probability of a Cyber Criminal being able

to exploit a vulnerability than the general population. However, knowing the FAIR

Vulnerability of an asset for the general threat population is also useful. Therefore, both

the original MulVal tool with the probability of vulnerabilities being exploiting being 1

35

and the probability of the vulnerability being exploited based on the effort and skill score

of the vulnerability determined by CVSS scores will be explored.

The corresponding Loss Exposure of this experiment is the Loss Exposure of a

general threat population, not specifically Cyber Criminals. Here it can be seen that the

FAIR Vulnerability of the general threat population being able to reach the end goal of

executing code on the web server is 0.2953 compared to 0.43 when the probability of

exploiting a vulnerability was 1. This highlights the importance of understanding who the

threat actor is in a scenario. Within this particular scenario, if an organization was

concerned about a general threat population the average Loss Exposure would be $204K.

On the other hand, If the organization was concerned about Cyber Criminals targeting

their assets, the threat capability of Cyber Criminals on average is higher than the general

threat population, so the average Loss Exposure of that scenario is $286K as Cyber

Criminals are more likely to be able to succeed in their goals than the general population.

Figure 7. Loss Exposure of Model Network with CVSS calculation

36

7.2 Remove Vulnerability on File Server from Model Network

An interesting prospect of using attack graphs within FAIR Analyses is the ability

to determine return on investment of patching vulnerabilities. To demonstrate this, the

same network as describe earlier was run with CVE-2003-0252, originally present on the

file server, was removed. Once this vulnerability was removed, a new attack graph was

calculated (Appendix C). This attack graph shows that the FAIR Vulnerability of the

asset is 32.77%. Compared to the 43% FAIR Vulnerability found when the network has 2

vulnerabilities, the FAIR Vulnerability of the asset was reduced by 10.23%. That seems

like a lot, but it is impossible to know how that affects risk without further analysis. The

previous FAIR Analysis was run with the same inputs as the original except FAIR

Vulnerability was updated from 43% as with 2 vulnerabilities, to 32.77% with just one

vulnerability. The results are seen in Figure 8.

Comparing the two Loss Exposures, we can see that removing one vulnerability

reduced the average Loss Exposure from $286K to $236K, a difference of $50K. If the

patching of CVE-2003-0252 on the file server cost the organization $1,000 due to the

availability of the file server being down, this would be well worth the investment. This

Figure 8. Loss Exposure of Model Network with CVE-2003-0252 removed from file server

37

scenario can be seen in Figure 9. If patching the vulnerability cost the organization

significantly more, then it might not be worth it as the organization is spending more

money fixing something than if a loss event was to occur.

It is also interesting to explore how threat community impacts this single

vulnerability’s probability. The same scenario, but with probability of a threat actor

successfully exploiting the vulnerability based on the entire threat actor population using

the CVSS score, was run. The corresponding attack graphs has the probability of the

threat actor executing code on the workstation at 0.2294 (see Appendix D). The same

scenario was run with the vulnerability of 22.94% and the results are shown in Figure 10.

Figure 9. Comparison of Loss Exposure of the original Model Network compared to the Model

Network without CVE-2003-0252 on the file server

38

7.3 Remove Vulnerability on Web Server from Model Network

For this experiment, CVE-2002-0392, present on the web server, was patched.

The result of the MulVal tool was surprising. Patching the vulnerability on the file server

caused no viable attack path to be found, meaning that an attacker would not be able to

Figure 11. Comparison of Loss Exposure of the original Model Network compared to the Model

Network without CVE-2003-0252 on the file server with CVSS calculation

Figure 10. Loss Exposure of Model Network with CVE-2003-0252 removed from file server and CVSS

calculation.

39

reach the end goal of executing arbitrary code on the workstation once this vulnerability

was patched. This provides interesting insight that patching a single vulnerability can

render an entire attack graph useless. This also highlights that there can exist choke

points within the attack graph that every pathway is required to go through to get to the

end goal. By recognizing these choke points, particular machines and vulnerabilities can

be monitored and patched more efficiently. However, it is important to note, that just

because there was not an attack graph for this very particular goal, that does not mean

that the entire asset is safe. There could be other goals of attackers that would be used

within different FAIR Analyses.

7.4 Remove Both Vulnerabilities from Model Network

Next, MulVal was run with no vulnerabilities present in either the web server or

the file server. Similarly, to when the CVE-2002-0392 was removed from the network,

there is no pathway for an attacker existing on the internet to reach the workstation in

order to execute code.

7.5 Add Hypothetical Low Complexity Vulnerability to Model Network

 Another interesting experiment is to see how risk is affected if a new vulnerability

is added to system. For this, a low complexity hypothetical vulnerability was added to the

network. This hypothetical vulnerability can be remotely exploited on the web server to

escalate privilege using the program httpd. The attack graph with this hypothetical

vulnerability is found in Appendix E. This attack graph shows that the probability of an

attacker being able to execute code on the workstation is 53.23%, when the probability of

exploiting all vulnerabilities is 1. Compared to the vulnerability of 43% of the original

40

situation, 53.23% is quite an increase. This increase can be seen in the Loss Exposure of

these two scenarios. Figure 12 shows the result of the Model Network with 3

vulnerabilities and a vulnerability exploitation probability of 1. The addition of a 3rd

vulnerability into the system increased the average loss exposure from $286K to $368K,

an increase of $82K.

Original plus Low Complexity Vulnerability

Figure 12. Loss Exposure of Model Network with hypothetical low complexity vulnerability

Figure 13. Comparison of the Loss Exposure of the original Model Network compared to the

Model Network with hypothetical low complexity vulnerability.

Original Plus Low Complexity Vulnerability

41

This situation could be seen when the scenario is using Cyber Criminals as the

threat actor, as the probability of cyber criminals being able to exploit the vulnerabilities

present on the network is near 1. However, there are also interesting implications to

explore if the threat actor is not a Cyber Criminal and instead was the general threat

population.

 Using the CVSS calculated probabilities (0.7) of the 2 actual vulnerabilities, the

hypothetical vulnerability was added with the same metric for exploitability as the two

known probabilities (Access Vector: Network, Access complexity: Low, and

Authentication: None). This means that the hypothetical vulnerability also has a

probability of exploitation of 0.7. Appendix F shows the attack graph for this situation.

Figure 14 shows the results for the loss exposure of the Model Network including a

hypothetical vulnerability with a probability of exploitation of 0.7 along with the two

known vulnerabilities similarly with a probability of exploitation of 0.7.

Figure 14. Loss Exposure of Model Network with hypothetical low complexity vulnerability and CVSS

calculation.

42

7.6 Add Hypothetical High Complexity Vulnerability to Model Network

 This experiment covers a situation where the third vulnerability added to the

Model Network is more complex than in the previous experiment. In this situation, the

exploitability metrics of the hypothetical vulnerability are Access Vector: Network,

Access complexity: High, and Authentication: Multiple. In a real FAIR scenario, the

viability of this sort of vulnerability can be determined. However, without much

information, it is difficult to say if the exploitability metrics of this vulnerability could be

possible within this network, so it will be assumed that they are. The Access Vector of

this vulnerability has stayed the same since attacker will have access to the web server

from the internet via the attack graph. Adjusting metrics based on these situations was

discussed in section 5.2. The effort and skill score for this hypothetical vulnerability is

3.98, which corresponds to about 30% of attackers selected from a normal distribution

Original with CVSS Plus Low Complexity Vulnerability with CVSS

Figure 15. Comparison of the Loss Exposure of the original Model Network compared to the

Model Network with hypothetical low complexity vulnerability with CVSS Calculations.

43

being able to exploit this vulnerability. Thus, the probability of the general threat

community being able to exploit this vulnerability is 0.3. Appendix G shows the attack

graph and Figure 16 shows the results of this FAIR analysis. The result of this experiment

shows that risk when a high complexity vulnerability is added to the Model Network is

less than the risk with a low complexity vulnerability. That is because a low complexity

vulnerability is easier to exploit than a high complexity vulnerability.

Figure 16. Loss Exposure of Model Network with hypothetical high complexity vulnerability and

CVSS Calculation.

Original with CVSS Plus High Complexity Vulnerability with CVSS

Figure 17. Comparison of the Loss Exposure of the original Model Network compared to the

Model Network with hypothetical high complexity vulnerability with CVSS calculation

44

8. FURTHER RESEARCH

 This paper is the first step in integrating attack graphs into the realm of FAIR. As

such, there is much more research that can be done to integrate attack graphs successfully

into FAIR. In general, FAIR analyses can take a large amount of time since analysts have

to determine the estimations of ontology components. Adding the time and resources

needed to determine network configuration and other information needed for attack graph

creation increases this pain point within FAIR. There has already been research on using

scanners and other tools to speed up attack graph generation [27]. These tools should be

explored in greater depth and added into information gathering for a FAIR analysis. In

addition, using attack graphs in more realistic and complex FAIR scenarios will be able

to determine how this process scales when an analysis includes numerous assets.

Research has been done to add intrusion detection systems to the Bayesian

networks of attack graphs. These networks can become sophisticated enough to

distinguish between stealthy and detectable attacks [12] and model non-perfect intrusion

detection systems [28]. Complexities such as these and other controls can be added to the

attack graph to even better represent real life systems. This also opens the opportunity for

what-if analyses to determine when adding intrusion detection systems to an asset would

be worthwhile and impactful.

 One limitation of the MulVal engine is that the set of interaction rules

prepackaged with the engine are limited. They have not yet created exploit rules for

vulnerabilities whose exploit consequences are confidentiality or integrity loss [5].

Further research can expand these rules and the engine to include a wider variety of rules,

perhaps employing CWEs to characterize different sets of vulnerabilities and the attack

45

pathways that normally accompany those vulnerabilities. Other extensions have been

proposed for the MulVal tool; these can also be employed to increase the modeling

abilities of MulVal [29-30].

9. CONCLUSION

Revised FAIR enhances the calculation of FAIR Vulnerability from being based

on analysts’ opinions, to being situated within a Bayesian network that models how a

threat event would happen. Revised FAIR also offers flexibility in the calculation of

FAIR Vulnerability as analysts can step in and change probabilities of nodes within the

attack graph to better reflect knowledge about the network not captured by the original

attack graph. Demonstrated within this paper, the probabilities of particular nodes can be

determined by the effort and skill required to exploit a vulnerability based on CVSS

scores.

Adding attack graphs to FAIR analyses allows complex environments and assets

to be broken down into more understandable and quantifiable pieces providing interesting

analyses and new insights. Using Revised FAIR allows analysts to conduct granular

what-if analyses to determine return on investment of actions such as patching a software

vulnerability. By running a FAIR analysis before and after removing a vulnerability

within the network, how much the risk has been reduced can be compared with the

money spent to fix the vulnerability. Additionally, an attack graph provides the ability to

model the impact of new vulnerabilities within a system. This was demonstrated by

adding new vulnerabilities of both low and high complexity to the network and

determining how this new vulnerability impact the loss exposure of the asset. Overall,

46

adding attack graphs to the calculation of FAIR Vulnerability provides greater precision,

dependability, and detail to FAIR analyses.

47

REFERENCES

[1] J. Jones, and J. Freund. Measuring and Managing Information Risk: A FAIR

Approach. Oxford, UK: Elsevier, 2015.

[2] Discussion with Bryan Smith, CTO of RiskLens. November 2017.

[3] L. Munoz-Gonzalez, D. Sgandurra, M. Barrere, and E. Lupu. “Exact inference

techniques for the analysis of bayesian attack graphs,” IEEE Transactions on

Dependable and Secure Computing, 2017.

[4] C. Wang, N. Du, and H. Yang. Generation and analysis of attack graphs. Procedia

Engineering, 29, 4053-4057, 2017.

[5] X. Ou, S. Govindavajhala, and A. Appel. “MulVAL: a logic-based network security

analyzer,” 14th USENIX Security Symposium, August 2005.

[6] J. Ramsdell. Datalog user manual.

http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html. Access on May

26, 2018

[7] J. Sembiring, M. Ramadhan, Y. Gondokaryono, and A. Arman. "Network security

risk analysis using improved MulVAL bayesian attack graphs." International Journal

on Electrical Engineering and Informatics 7, no. 4, 2015.

[8] Vulnerability Scanning Tools.

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools. Access

on May 26, 2018

48

[9] S. Ghaffarian and H. Shahriari. Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: a survey. ACM Computing Surveys

(CSUR), 50(4), 56, 2017.

[10] OVAL Language Overview. https://oval.mitre.org/language/about/overview.html.

Access May 26, 2018.

[11] National Vulnerability Database, https://nvd.nist.gov/vuln/detail/ CVE-2002-0392,

Accessed on May 4, 2018.

[12] A. François-Xavier, B. Olivier, B. Grégory, C. Vania, and D. Hervé. “Bayesian attack

model for dynamic risk assessment,” arXiv preprint arXiv:1606.09042, 2016.

[13] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based

probabilistic security metric. In IFIP Annual Conference on Data and Applications

Security and Privacy (pp. 283-296). Springer, Berlin, Heidelberg, July 2008.

[14] CNSS. National information assurance glossary. 2003.

[15] M. Tornquist, M. Analysis of software vulnerabilities through historical data. Lund

University Libraries, 2017

[16] Common Vulnerabilities and Exposures. https://cve.mitre.org/about/. Accessed

December 07, 2017.

[17] Common Weakness Enumeration. https://cwe.mitre.org/. Accessed December 07,

2017.

[18] Common Vulnerability Scoring System SIG. https://www.first.org/cvss/. Accessed

December 07, 2017.

49

[19] P. Mell, K. Scarfone, and S. Romanosky. A complete guide to the common

vulnerability scoring system version 2.0. June, 2007

[20] P. Cheng, L. Wang, S. Jajodia, and A. Singhal. Aggregating CVSS base scores for

semantics-rich network security metrics. In Reliable Distributed Systems (SRDS),

2012 IEEE 31st Symposium on (pp. 31-40). IEEE, October 2012.

[21] X. Ou, W. Boyer, and M. McQueen. A scalable approach to attack graph generation.

13th ACM Conference on Computer and Communications Security (CCS 2006),

October 2006.

[22] J. Sembiring, M. Ramadhan, Y. Gondokaryono, and A. Arman. Network security risk

analysis using improved MulVAL bayesian attack graphs. International Journal on

Electrical Engineering and Informatics 7, no. 4, 2015.

[23] NVD. CVE-2002-0392 detail. https://nvd.nist.gov/vuln/detail/CVE-2002-0392.

Accessed May 28, 2018.

[24] NVD. CVE-2003-0252 detail. https://nvd.nist.gov/vuln/detail/CVE-2003-0252.

Access May 28, 2018.

[25] RiskLens. www.app.risklens.com. Accessed May 28, 2018.

[26] Institute of Risk Manamgment. Risk appetite and tolerance.

https://www.theirm.org/knowledge-and-resources/thought-leadership/risk-appetite-

and-tolerance.aspx. Accessed May 28, 2018.

[27] O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs.

In International Symposium on Formal Methods for Components and Objects(pp.

344-371). Springer, Berlin, Heidelber, Novermber 2003.

https://nvd.nist.gov/vuln/detail/CVE-2003-0252

50

[28] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated generation and

analysis of attack graphs. Proceedings 2002 IEEE Symposium on Security and

Privacy. doi:10.1109/secpri.2002.1004377, 2002.

[29] E. Bacic, M. Froh, and G. Henderson. Mulval extensions for dynamic asset protection

(No. DRDC-ONTARIO-CR-2006-251). Cinnabar Networks Inc Ottawa (Ontario),

2006.

[30] M. Froh and G. Henderson. MulVAL extensions II. Defence R & D Canada-Ottawa,

2009.

51

APPENDIX A

attackerLocated(internet).
attackGoal(execCode(workStation,_)).

hacl(internet, webServer, tcp, 80).
hacl(webServer, _, _, _).
hacl(fileServer, _, _, _).
hacl(workStation, _, _, _).
hacl(H,H,_,_).

/* configuration information of fileServer */
networkServiceInfo(fileServer, mountd, rpc, 100005, root).
nfsExportInfo(fileServer, '/export', _anyAccess, workStation).
nfsExportInfo(fileServer, '/export', _anyAccess, webServer).
vulExists(fileServer, 'CVE-2003-0252', mountd).
vulProperty('CVE-2003-0252', remoteExploit, privEscalation).
localFileProtection(fileServer, root, _, _).

/* configuration information of webServer */
vulExists(webServer, 'CVE-2002-0392', httpd).
vulProperty('CAN-2002-0392', remoteExploit, privEscalation).
networkServiceInfo(webServer , httpd, tcp , 80 , apache).

/* configuration information of workStation */
nfsMounted(workStation, '/usr/local/share', fileServer,
'/export', read).

Figure 18. Information fed into MulVal for the Model Network based on [5].

52

APPENDIX B

ADD ATTACK GRAPHS HERE

A
tt

ac
k
 g

ra
p

h
 f

o
r

O
ri

g
in

al
 M

o
d

el
 N

et
w

o
rk

 w
it

h
 C

V
S

S
 c

al
cu

la
ti

o
n

53

APPENDIX C

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk
 w

it
h
o

u
t

C
V

E
-2

0
0

2
-0

3
9

2

54

APPENDIX D

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk
 w

it
h
o

u
t

C
V

E
-2

0
0

2
-0

3
9

2
 w

it
h
 C

V
S

S
 c

al
c
u
la

ti
o

n

55

APPENDIX E

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk
 w

it
h
 l

o
w

 c
o

m
p

le
x
it

y
 v

u
ln

er
ab

il
it

y

56

APPENDIX F

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk
 w

it
h
 l

o
w

 c
o

m
p

le
x
it

y
 v

u
ln

er
ab

il
it

y
 w

it
h
 C

V
S

S
 c

al
c
u
la

ti
o

n

57

APPENDIX G

A
tt

ac
k
 g

ra
p

h
 f

o
r

M
o

d
el

 N
et

w
o

rk
 w

it
h
 h

ig
h
 c

o
m

p
le

x
it

y
 v

u
ln

er
ab

il
it

y
 w

it
h
 C

V
S

S
 c

al
c
u
la

ti
o

n

58

VITA

Beth M. Anderson

EDUCATION

Post-Baccalaureate Studies in Computer Science

Eastern Washington University, Cheney, WA

January 2016- June 2016

Bachelor of Arts in Psychology

University of Puget Sound, Tacoma, WA

Graduated May 2015

• Minors in Math and Computer Science

• Coolidge Otis Chapman Honors Scholar

PROFESSIONAL EXPERIENCE

Software Engineer

RiskLens, Spokane, WA

June 2017 – Present

Computer Literacy Graduate Instructor

Eastern Washington University, Cheney, WA

September 2016 – June 2017

Software Engineer Intern

RiskLens, Spokane, WA

June 2016 – Jun 2017

Risk Analyst Intern

Global Business Analysis, Gig Harbor, WA

June 2015 - December 2015

	DETERMINING VULNERABILITY USING ATTACK GRAPHS: AN EXPANSION OF THE CURRENT FAIR MODEL
	Recommended Citation

	tmp.1531851353.pdf.nsHjo

