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Introduction

Railroad has provided the safest form of transport for more than 150 years and is one of the

oldest forms of land transportation still in use today. Trains, with tracks and self-steering

wheels, are fundamentally safer than vehicles that are almost completely controlled by drivers

or pilots prone to human error. Accident statistics offer real insight into the differences in

safety between the main modes of human transportation. In the United States there is an

auto-accident fatality in every 100 million passenger miles [8]. Whereas, there is only one

passenger death for every three billion miles traveled by rail [9]. To frame the statistics

another way, passengers in trains were 19 times safer than passengers in cars and 6 times

safer than passengers in buses in a recent 5-year period. In fact, passenger train fatalities are

so rare that one bad accident drastically alters the statistics. For example, eliminating the

single worst U.S. passenger train accident in the twenty-first century, passengers in trains

are up to 45 times safer than those in cars [8]. Although some statistics may indicate that

air travel has surpassed rail in safety, these comparisons are misguided because they look

not at the number of passenger journeys but at the total distances traveled [9]. This means

that a single transatlantic flight and return counts the same as three months of commuting

thirty miles a day by rail. The railroad industry is proud of this safety record and looks to

new innovation and network upgrades only if they meet strict safety requirements.

Growing world populations and economies are putting new pressures on this well-established

transport system. To meet rising demand, railroad managers and engineers are looking to

increase traffic flow, either through increased speed or more numerous, longer trains. How-

ever, in the United States existing infrastructure limits the options available for improving

efficiency while maintaining current levels of safety. Although rail transport is safe, railroad

derailment remains one of the most pervasive types of rail accidents. Railroads are so safe

that most people do not consider the intricacy, and also imperfection, of the dynamic be-

havior of the railcar and wheelset down the track. Often the same, age-old systems that

give rise to vehicle stability and steering can, under abnormal or extreme conditions, cause

instability or derailment. Primarily three categories of defects can cause a derailment: rail

and track factors, equipment and loading factors, and operational factors [16]. Therefore
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this thesis looks to apply a fundamental understanding of the physical system of the railcar

and wheelset to help explain how changes in rail and wheelset geometries as well as railcar

loading can affect the stability of the railcar and train on curved and straight sections of flat

track.

Railroad transport relies on adhesive traction between wheel and rail. Adhesion, or the

tendency of dissimilar surfaces to cling to one another, is a frictional phenomenon that allows

the circular steel wheel to roll, as opposed to slide, along the track. A railway train running

along a track is one of the most complex dynamic systems in engineering and its operation

has two main features: motion in a string of vehicles, and guidance by the track [26]. In a

complete model of the dynamics of a railway vehicle, the vehicle is assembled from wheelsets,

car bodies, and intermediate structures that are all flexible and connected by components

such as springs and dampers. Each major component has six rigid body degrees of freedom

plus additional degrees of freedom representing distortion and vibration [7]. In addition, the

vehicle runs on a complex track structure with elastic and dissipative properties. The track

and wheelset have points of contact in a moving interface and therefore interactions between

wheel and rail depend on relative motion.

This entire physical system is so complex that often analytic methods fail and engineers

are left only with numerical simulation. However, simpler models that describe the mechan-

ics of various subsystems of the larger physical system can be solved exactly and used to

develop a basis for a greater physical understanding and to explore new vehicle concepts

and component designs. Within this complex physical system, it is the guidance of the train

by the interaction between fixed wheelset and track that is one of the most interesting and

unique features of railways. Unlike with other forms of transportation, guidance or direction

are the responsibility of a built-in rail infrastructure as opposed to a driver. In addition to

being a unique feature of railroads, this built-in guidance and stability system also means

that most railcar and train behavior is described by the physical and mechanical constraints

of the system. Therefore, understanding the fundamental motions of a railcar or wheelset on

rail is vital to any analysis of the safety and riding comfort of railroad cars on either curved

or straight track.

When modeling the dynamics (and stability) of the railcar or wheelset, there are a num-

ber of assumptions that can simplify the problem. First, assuming that the vehicle has a

longitudinal plane of symmetry parallel to the direction of motion on straight track makes

it possible, under certain conditions, to separate equations of motion that are symmetric

with respect to the plane of symmetry from those that are anti-symmetric. Second, these

models need not consider variations in longitudinal motion, so that the vehicle moves at a

constant speed forward. And finally, the flexibility of components can be neglected since
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in most cases the motions of interest are at low frequencies [26]. A kinematic description

deals mainly with the geometry of motion and the component-wise sum of the many forces

causing it.

Due to these assumptions, any equations derived from this kinematic analysis are neces-

sarily approximations. Therefore this thesis is not meant to give exact values for track speed

limits on curved and straight track; there are higher-level computer simulations that can give

more exact answers. Instead, this thesis is meant to apply fundamental physical principles

to a subject otherwise rooted in complex engineering mechanics. In this way I hope to help

a reader less familiar with the infrastructures of the industry understand the design choices

of railroad management and engineers. I first present the kinematic analysis of a railcar and

wheelset on curved track in order to derive expressions for maximum speed given geometric

constraints of the wheelset (see Appendix A), track, and railcar. I discuss how these design

parameters and geometries can be manipulated by the industry to increase speeds and im-

prove the flow of traffic along existing curved sections. A similar analysis follows for straight

track. Here I motivate equations of periodic motion and also derive equations of critical

speed. The final chapter again explores how changes in the parameters of these motion and

speed equations can inform track design.

We will ultimately see that optimizing both curved and straight track design for improved

flow of traffic is difficult for shared corridors, where the rails are used by freight and passenger

traffic. From the kinematic approximations we can clearly see that stabilizing the dynamics of

heavy, long, heterogeneous, and slow trains suggests solutions that restrict the running speeds

of faster, lighter, and shorter passenger trains. Understanding the fundamental physics

behind these separate dynamic issues can suggest a compromise that solves the shared-

corridor problem faced by the railroad industry today, especially within the United States.
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Chapter 1

Kinematic Analysis of the Railcar and

Wheelset on Curved Track

This chapter explores how the forces on a railcar during curving can introduce both maximum

and minimum speeds on curved sections of track. Any kinematic analysis of the wheelset and

railcar necessarily begins with a description of the geometry of a wheelset, which we have

set aside in Appendix A. The following sections show how particular features of the railroad

wheelset, namely the coning of the tread and flange, affect the dynamics of the railcar on

curved track.

All figures in this chapter are drawn as if the train is going around a left-hand curve.

1.1 Wheelset Geometry and the Role of the Conicity

In curving situations, the conicity of the wheel treads serves a similar function to the differ-

ential in an automobile [8]. In an automobile, the differential is necessary when the vehicle

turns, because it allows the driving roadwheels to rotate at different speeds. This allows

the wheel on the outside of the turning curve to roll faster (at a higher angular velocity)

than the other, allowing it to traverse the greater distance. Unlike in an automobile, whose
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differential allows the wheels to spin at different speeds, in a railcar the two wheels are fixed

to a common axle and therefore must rotate at the same speed. In this case, it is the conicity

that allows the wheel on the outside of the turn to move faster and cover the longer dis-

tance. On a gentle curve, the coned wheels maintain pure rolling motion by moving laterally

outward and adopting a radial position. In this way, the wheel on the outside of the curve

runs on a larger radius (and therefore circumference) and can travel the greater distance at

the common angular speed; whereas the wheel on the inside of the curve rolls on its smaller

radius and travels the smaller distance.

So a rigid wheelset with coned wheels maintains pure rolling motion in a gentle curve,

without flange contact, if it moves laterally outward a distance y from the center of the track

and adopts a radial position as shown in Figure 1.1.

Figure 1.1: Geometry of a coned wheelset on a gentle curve.

R

A

y

l

B

C

D

rinner router
O

center  of  the  curve

center  of  the  axle

l

Following [26], we construct two rays from the origin of the curve, O. The first passes

through the contact point of the inner wheel and rail, B, and the contact point of the outer

wheel and rail, D. The second ray lies along the central axle axis, connecting the origin of

the curve with the center of the inner wheel, A, and the center of the outer wheel, C. These

two rays form an angle at the center of the curve and give rise to similar triangles AOB and

COD. Using properties of similar triangles, we can write the relation:

rinner
R− l

=
router
R + l

where R is the radius of the curve, 2l is the track width or gauge (the lateral distance between
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the points of contact of the wheels with the rails), rinner is the radius of the wheel on the

inside of the curve at the point of contact with the rail and router is similarly the radius of

the wheel on the outside of the curve at the point of contact with the rail. If we define the

normal running radius, r to be the radius of both wheels when the wheelset is centered on

the track, then we can rewrite rinner and router in terms of the conicity of the wheelset, α,

and the lateral displacement of the wheelset, y.

rinner = r − αy

router = r + αy

By substituting these expressions for rinner and router into the similar triangles relation, we can

solve for the lateral displacement y in terms of physical parameters of the wheel rail system:

the tread conicity, α, normal wheel radius r, track gauge, 2l, and radius of curvature, R:

r − αy

R− l
=

r + αy

R + l

(r − αy)(R + l) = (r + αy)(R− l)

rR + l − αyR− αyl = rR− rl + αyR− αyl

rl − αyR = −rl + αyR

2rl = 2αyR

y =
rl

Rα
(1.1)

This equation (1.1) for the lateral displacement of a wheelset on a curve or radius R was

first derived in 1855 by Redtenbacher [23]. Application of Redtenbacher’s formula shows

that a wheelset will only be able to move outwards to achieve pure rolling if either the

radius of curvature or the flangeway clearance is sufficiently large. These geometric results

ignore the forces causing the motion. These may be analyzed using the concept of non-linear

creep that arises from the elastic distortion of the wheel and rail at the region of contact.

This more intricate model employs the study of contact mechanics, which is beyond the

scope of this work. So it is enough to know that, in practice, a wheelset can only roll around

moderate curves without flange contact and a more realistic consideration of curving requires

the analysis of the forces acting between the vehicle and the track.
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1.2 Railcar Overturning and the Role of the Flange

According to Newton’s Laws of Motion, a body in motion tends to stay in motion and a body

at rest tends to stay at rest. The property of an object that resists changes in motion is called

inertia. When a body accelerates, or changes velocity, that acceleration is accompanied by

a force according to the equation �F = m�a, where the mass of the object m is its weight W

divided by the gravitational acceleration constant, g. We tend to think of acceleration as

being a change in speed; but since velocity is a vector, any change of velocity - be it a change

in the magnitude (speed) or in the direction - requires a force. For instance, in circular motion

at constant speed, there is an acceleration radially inward toward the center of rotation due

to the changing direction of the tangential velocity. It is this centripetal acceleration (and

accompanying force) that keeps the object moving in a circular path. However, the objects

inertia resists this change and so always acts in the opposite direction of the acceleration, or

in this case radially outward from the center of the circle.

For a railcar and attached wheelset going around a curve, it is the train’s inertia that

causes instability and guidance problems such as tipping or derailment. In stable curving,

lateral forces between the wheels and the rail provide a centripetal acceleration equal to the

square tangential velocity of the train down the track, V 2, divided by the radius of the curve,

R.

ac = V 2 1

R

The centripetal, or ‘center-seeking,’ force associated with this acceleration keeps the train in

a circular, or curved path; however, the train’s inertia acts in the opposite direction of this

acceleration. Since the resistance from inertia has the same units as a force, it is commonly

(and erroneously) referred to as the centrifugal force. Often these ‘fictitious forces’ arise

from a difference in reference frames. From the viewpoint or reference frame of someone

on the ground beside the track, there appears to be no force acting outward on the railcar.

However, from the rotating reference frame of the railcar itself, the car’s inertia resists the

circular motion and the railcar experiences a push or pull similar to a force. In other words,

the centrifugal force is simply the train’s inertial resistance to the centripetal acceleration

around a curve and can be calculated using �F = m�a. For a locomotive traveling at a forward

speed V on a flat curve of radius R, the centrifugal inertial loading, as we will more aptly

call it, is given by

Finertia = ma =

�
W

g

��
V 2 1

R

�

Lateral forces between the wheels and the rail must react against the centrifugal inertial

loading to keep the train on the tracks. If the centrifugal inertial loading is excessive, the
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locomotive begins to tip. The flange of the wheel catches on the rail and the locomotive

starts to rotate. In fact, this is why the flanges are on the inside of the wheels. In sharp

curves, if the flange is on the inside, then the lateral force applied by the rail to the leading

wheelset is applied to the outer wheel and will be combined with an enhanced vertical load,

diminishing the risk of derailment. If the flanges were instead on the outside, the slightest

bit of wheel lift would slide the locomotive off the tracks. Put another way, with outside

flanges the lateral force applied by the rail is applied to the inner wheel, which has a reduced

vertical load and thus runs the risk of derailment (see Figures 1.2 and 1.4).

1.2.1 On a Flat Curve

On a flat curve the centrifugal inertial loading is trying to tip the locomotive clockwise about

the pivot point (the bottom of the right wheel). This rotation is resisted by the weight of the

locomotive (also acting through its center of gravity), which tries to rotate the locomotive

counterclockwise.

Figure 1.2: Railcar force diagram on a flat curve
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The locomotive’s weight and inertial load both exert a torque. The inertial load tries to

rotate the locomotive with a clockwise torque equal to �τinertia = �Finertia × �r, where �r is the

vector pointing from the center of mass to the pivot point. For a railcar with center of mass

at a height h above the top of the rails and located at the center of the gauge (a horizontal

distance l from either rail), the vector cross product is equal to:

τinertia = Finertiar sin(β) =

�
W

g

��
V 2 1

R

�
h

The torque from the locomotive’s weight, transferred between the outside wheel and rail via

adhesion, tries to resist the overturning torque from the centrifugal inertial loading. The

torque from the locomotive’s weight is given by

τweight = Wr sin(90◦ − β) = Wl

Tipping will occur when the torque from the inertial load is slightly larger than the torque

from the locomotive’s weight resisting the overturning torque. Since the centrifugal inertial

loading depends on the speed of the locomotive, there is a critical speed at which, all geome-

tries of the curve held constant, the overturning and resisting torques are equal. So setting

τinertia = τweight we can solve for this critical speed,

�
W

g

��
V 2 1

R

�
h = Wl

�
V 2 1

R

�
=

lg

h

Vmax =

�
gRl

h
(1.2)

In 1974, a Pennsylvania Railroad passenger train with 2 steam locomotives and 14 cars

descended a steep 1.73% grade when it overturned on a sharp 8.5-degree flat curve, with a

675-foot radius, known as Bennington Curve. The speed limit downhill was 35 mph and 30

mph on the curve [5]. However, the area was infamous for its mountainous changes in incline

and its winding curves, making it hard to precisely control speed and braking [17]. The

train, called The Red Arrow, jumped the tracks killing twenty-four onboard and critically

injuring scores of other passengers. The locomotives at the head of the train plunged down

a 92-foot embankment with 5 cars attached and another 5 of the 14 cars derailed, making it

one of the deadliest train crashes in American History (see Figure 1.3)1.

1
Photo courtesy of http://www.billspennsyphotos.com/apps/photos/album?albumid=8726232
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Figure 1.3: The crash of Pennsylvania Railroad’s Red Arrow on Bennington Curve, 1947.

The investigators concluded that excess speed caused the train to overturn on the curve.

The overturning speed was calculated to be 65 mph [5]. This Pennsylvania Railroad train’s

lead locomotive had a center of gravity h = 80 inches above the rail and was running on

normal gauge with 2l = 56.6 inches. From Equation (1.2) for the critical speed of the onset

of overturning, or the maximum safe speed for a flat curve, we find that the locomotive is

just starting to overturn at a speed of 60 mph. We see that even our rough estimation of

the critical speed from kinematic analysis explains why the train overturned at the speed of

65 mph, 5 mph over the maximum speed for a flat curve.

1.2.2 On a Superelevated Curve

The 1947 accident occurred on a flat curve, at a time when old infrastructure had yet to be

upgraded to allow for faster speeds and higher traffic flows. In modern industrial practice,

many tracks are designed so that rails are not flat on curves. Instead, the curve is banked so

that the outside rail on a curve is elevated higher than the inside rail. This superelevation

(or crosslevel in the US) is usually characterized by the height difference between the tops

of the rails, but can also be measured in terms of angle or cant. The relationship between
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the cant angle and superelevation height is dictated by the rail gauge according to simple

right-triangle geometry (see Figure 1.5):

sin θ =
s

2l
(1.3)

A raised outside rail rotates the train toward the inside of the curve and helps fight off

the overturning rotation toward the outside of the curve caused by the centrifugal inertial

loading (see Figure 1.4). Since some of the inertial torque is counteracted by the weight, the

railcar can traverse the curve at a higher speed before overturning. In addition to allowing

trains to travel through turns at higher maximum speeds, superelevation also helps keep the

wheel flanges from pressing the rails, minimizing friction and wear.

Figure 1.4: Railcar force diagram on a superelevated curve.
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With a superelevated track, the torque due to the inertial loading still acts around the

pivot of the contact point between the outside wheel and the rail. However, the angle

between the inertial loading force and the pivot vector, �r, has been effectively reduced by

the superelevation angle or cant angle, θ, as the car tilts in relation to the center of the
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curve.

Figure 1.5: Geometry of the forces and torque arm for a railcar on a slightly superelevated
curve.
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Given the geometry between the forces on the railcar and the torque arm from the

center of the railcar mass to the outside wheel contact point (see Figure 1.5), we can find

that the vertical distance between the pivot point and the inertial loading force is rv =

(h − l tan θ) cos θ. So the torque from the inertial loading, �τinertia = �Finertia × �r, is given by

the expression:

�τinertia = Finertiarv

= Finertia [(h− l tan θ) cos θ]

= Finertia [h cos θ − l sin θ]

=

�
W

g

��
V 2 1

R

�
[h cos θ − l sin θ]

Similarly, we can find the horizontal distance between the pivot point and the weight force

vector in terms of l, h, and θ: rh = (h − l tan θ) sin θ + l
cos θ . With this we find that the
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torque due to the weight on a superelevated curve, �τweight = �W × �r is given by:

�τweight = W

�
(h− l tan θ) sin θ +

l

cos θ

�

= W

�
h sin θ − l

�
sin2 θ

cos θ

�
+

l

cos θ

�

= W

�
h sin θ − l

cos θ
(sin2 θ − 1)

�

= W

�
h sin θ − l

cos θ
(− cos2 θ)

�

= W [h sin θ + l cos θ]

Just as in the flat curve situation, the maximum or critical speed is where the torque toward

the inside of the curve from the weight exactly counteracts the torque toward the outside of

the curve from the inertial loading. So to find an expression for the maximum speed, we set

τinertia equal to τweight:

�
W

g

��
V 2 1

R

�
[h cos θ − l sin θ] = W [h sin θ + l cos θ]

�
V 2 1

Rg

�
=

[h sin θ + l cos θ]

[h cos θ − l sin θ]

Vmax =

�
Rg[h sin θ + l cos θ]

h cos θ − l sin θ
(1.4)

It is important to note that when the cant angle θ equals zero (when there is no bank),

the maximum speed on the superelevated curve, given by Equation (1.4), reduces to the

maximum speed on a flat curve, given by Equation (1.2). Furthermore, we can show that,

given the nonzero car and rail dimensions h and 2l, this maximum speed for a banked curve is

indeed always greater than the maximum speed for a flat curve. We find that the inequality

Vmax elevated > Vmax flat simplifies to a true statement:

�
Rg[h sin θ + l cos θ]

h cos θ − l sin θ
>

�
lgR

h
[h sin θ + l cos θ]

h cos θ − l sin θ
>

l

h

h2 sin θ + hl cos θ > hl cos θ − l2 sin θ

h2 > −l2

The truth of this identity is obvious since positive numbers are always greater than negative
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numbers. Thus we can conclude that our formula for Vmax elevated indeed gives us a speed

greater than Vmax flat for any cant angle. Practically speaking, this means that railroad

companies can bank curves to allow their trains to move faster along the track. This is

desirable as it allows more efficient traffic flow along rail corridors.

Returning to the 1947 Pennsylvania Railroad derailment, investigators at the time con-

cluded that the locomotive would have safely traversed the curve at its approach speed of

65 mph had the curve been superelevated to a height of 3.5 inches [5]. Converting this su-

perelevation height to a cant angle using Equation (1.3), we get θ = 0.0619 rad or 3.55◦. We

can confirm that the Pennsylvania Railroad locomotive would not have overturned a curve

banked at this angle because Equation (1.4) yields a maximum safe speed of over 70 mph, 5

mph above the locomotive’s approach speed (given R = 675 ft, 2l = 56.6 in, and h = 6.667

ft). So we can see that, had the 675-ft curve been banked, the Pennsylvania Railroad’s Red

Arrow would not have overturned the curve and an accident in 1947 could have been avoided.

So we have shown that we can increase the maximum allowable speed for trains on curves

by increasing the superelevation. However there is a limitation to how much a curve can be

banked. Limitations on superelevation occur because banking track does not only increases

the maximum speed of the trains around a curve, but it also introduces a minimum speed.

In fact, banked curves are one example of how a train can derail by going too slowly on

certain sections of track [8]. For instance, if the railcar is made too top heavy or the outside

wheel is superelevated enough, the force of the weight will begin to tip the railcar over to

the inside of the curve at low speeds, even zero mph (see Figure 1.6).

As the weight extends over the inside wheel, the pivot point for the torque changes from

the outside wheel to the inside wheel on the curve. In this situation the roles of the two

forces and associated torques are in a sense reversed. The weight becomes the destabilizing

force trying to underturn the railcar while the centrifugal inertial loading provides a torque

toward the outside of the curve counteracting the inward-rolling tendency. Since we have

shown that the inertial loading force is proportional to V 2, if the speed of the train is too low,

the torque from the weight will overpower the torque from the weak inertial loading force

and the train will tip inward. So by using the new force and track geometries in Figure 1.7 to

derive new expressions for the torque from the inertial loading force, τinertia, and the torque

due to the railcar weight, τweight, we can solve for the minimum speed on a superelevated

curve.

The expression for the magnitude of the torque from the inertial loading force, �τinertia =
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Figure 1.6: A railcar tipping inward on a banked curve due to a high center of gravity and
extremely superelevated track.
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�Finertia × �r, toward the outside of the curve is given by:

�τinertia = Finertiarv

= Finertia [(h− l tan θ) cos θ + 2l sin θ]

= Finertia [h cos θ − l sin θ + 2l sin θ]

= Finertia [h cos θ + l sin θ]

=

�
W

g

��
V 2 1

R

�
[h cos θ + l sin θ]

And in a similar way we can find the expression for the magnitude of the torque from the

weight, �τweight = �W × �r, toward the inside of the circle:

16



Figure 1.7: Geometry of the forces and torque arm for a top-heavy railcar on a highly banked
curve.
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Finally, by setting these two torques, τinertia and τweight, equal we can find the critical, or

minimum speed that the train must travel in order for the centrifugal inertial loading to

counteract the tipping from the weight of the top-heavy train.

�
W

g

��
V 2 1

R

�
[h cos θ + l sin θ] = W

�
l

�
sin2 θ

cos θ

��

�
V 2 1

gR

�
=

l sin2 θ

cos θ [h cos θ + l sin θ]

Vmin =

�
gRl sin2 θ

cos θ [h cos θ + l sin θ]
(1.5)
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When the cant angle, θ equals zero, or in other words when there is no superelevation on

the curve, this equation for the minimum speed is also equal to zero. This corroborates the

assertion that for flat curves there is no minimum speed; this is only a phenomena that comes

as a byproduct of banking curves to allow for faster speeds. So, banked curves introduce

the necessity of having minimum speed regulations and these minimum speeds increase as

the superelevation height (or cant angle) increase. Therefore, in industrial practice there are

limits on the maximum cant allowed on curves to control the unloading of the wheels on the

outside or higher rail, especially at low speeds.

1.3 Single Wheelset Derailment on Curves

Before reaching the overturning speed, a slow, heavy freight car is far more likely to derail on

a curve by rail rollover, wide gauge, or wheel climb (see Figure 1.8) from a single wheelset.

The tendency of a wheel to derail is determined by the forces at the wheel-rail interface,

which are often complex and transient in nature. By assuming that these complicated forces

at the interface ultimately resolve componentwise into lateral forces, longitudinal forces, and

vertical forces, one can reduce the difficulty of predicting thresholds for derailment.

1.3.1 Wheel Climb

Wheel climb occurs when the wheel flange contacts the rail head and the lateral forces toward

the outside of the track are greater than the vertical forces pushing the wheelset down onto

the rail. Therefore it is natural to characterize and quantify the propensity of a given wheel

to derail by wheel climb by defining an L/V ratio, where L is the sum of the lateral forces

of the wheel against the rail and V is the sum of the vertical forces on top of the rail at a

given time (see Figure 1.9). In general, lateral wheel-rail forces are affected by centrifugal

forces on a curve, coupler forces, wheel creep forces, and track geometry, while vertical forces

are affected most directly by the loading of the railcar weight and slack and coupler impact

forces. The greater the L/V ratio, the more likely the wheel is to climb and a derailment to

occur [16].

Although L/V ratios vary with many factors such as the condition of the trucks, rails, and

wheels and the dynamic behavior of the car and suspension, there are some rough guidelines

that state which L/V ratios might cause derailment [8]. For newly manufactured wheel and

rail the L/V ratio can reach approximately 1.29 on straight track before the wheel may climb

the rail; however, for curved track instability (or wheel lift) can arise at an L/V ratio of 0.82

or greater. For worn wheel and rail, the maximum safe L/V ratio drops to about 0.75 for
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Figure 1.8: Derailment can be caused by (a) rail roll over, (b) wide gauge, or (c) wheel climb.

(a)

(b)

(c)

straight track and 0.64 for curved track (at which a poorly constrained or degraded rail may

also rollover). So we can see that the wheel-rail profile directly affects the propensity of a

wheel to climb a rail. Generally, a new contour wheel will climb a rail before a worn wheel;

conversely, worn rail is more prone to wheel climb than new rail.

It is important to note that an instantaneous spike in L/V ratio is less likely to cause

derailment than a more prolonged duration or distance of high L/V. In general, a high L/V

ratio must persist for at least 6 ft of movement in order for it to potentially cause derailment

[16].

In curving, wheel climb can occur either when the train is going too quickly or when the

train is going too slowly. In cases where the train is traveling above the maximum curving

speed, the excessive centrifugal inertial loading forces the outside wheel flange against the

rail on the outside of the curve, producing greater lateral forces. This additional lateral force
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Figure 1.9: The lateral (L) and vertical (V) forces at a wheel-rail interface.
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increases the L/V ratio and causes the wheel to climb the rail or the outside rail to overturn.

It is in the extreme cases with very high speeds that a car with a higher center of gravity

may actually tip over to the outside of the curve (see Section 1.2.2) [16].

In cases where the train is traveling below the minimum curving speed, the train produces

insufficient centrifugal inertial loading (in the lateral direction) to keep the outside wheel

flange against the outside rail head. So the L/V ratio on the outside wheel falls and the

wheel adopts a lateral position toward the inside of the curve. Because of the conicity of the

wheel tread, the inside wheel rolls with a greater rolling radius or diameter than the outside

wheel. Consequently the inside wheel tend to track ahead of the outside wheel, skewing the

handling of the truck towards the outside of the curve. At that point, any number of factors

such as rail head discontinuities or bouncing can cause the lead inside wheel to climb the

inside rail [16].

1.3.2 Wheel Lift

Wheel lift occurs, regardless of the magnitude of lateral forces, when vertical forces on the

rail tend to zero. In extreme cases, the vertical forces could actually point upward away

from the rail in which case the wheel is said to be negatively loaded. Wheel lift can occur in

situations where severe slack action occurs, severe bouncing occurs, or where harmonic roll

is induced in a vehicle [16].

In a curve, if the train is running over the critical speed, the vehicle weight shifts to the

outside wheel, reducing the vertical force on the inside wheels and potentially causing wheel
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lift on the inside. This is consistent with the scenario in which a fast train overturns on the

curve. Conversely, if the vehicle is moving too slowly, the vehicle weight shifts to the inside

wheel and wheel lift occurs on the outside.

1.4 Slack and Coupler Impact Forces

Slack is the unrestrained free movement between vehicles in a train. Most rail vehicle cou-

plings have some free slack that allows relative motion between the cars and the truck’s draft

systems also allows controlled movements between vehicles to help minimize coupler impact

force. In a normal train of coupled railcars, each car can move out (plus) or in (minus) 6

inches from their neutral position. This amounts to a total movement of 1 foot per car. For

a train of only 100 cars, the entire train can then run out or in 50 ft for a total length change,

or slack, of 100 ft [8].

When this slack runs in or out, different cars of the train move at different speeds, creating

additional in-train forces that can break a coupling or derail a train. The most significant

forces produced by slack action effects are coupler forces that are parallel to the longitudinal

axis of the rail vehicle. Slack running in adds additional train compressive forces. These

compressive coupler forces, or those forces that tend to push the vehicles in the train together,

are called buff forces. On the other hand, slack running out adds additional tension forces.

These tensile coupler forces that tend to pull the train vehicles apart are called draft forces

[16].

On a curve, too much compressive force (called buff force) can derail a train by buckling

or jackknifing cars on the outside of the curve (see Figure 1.10). When a train is compressed

on a curve, the couplings are angled, adding additional lateral forces trying to shove cars

off the outside rail. This kind of derailment most often occurs on curves at the bottom of

hills or grades. Going downhill the train is compressed because braking is concentrated at

the front of the train so that the rear cars continue to move forward due to gravity and run

in the slack. So jackknife derailments typically occur with heavy dynamic or independent

braking, emergency braking from the head end, excessive power in shoving movements, or

excessive imbalance of power between lead and helper locomotives [16]. In some cases, the

travel limits of the car couplers may result in a car being forced off the track if the curvature

is too sharp.

On the other hand, too much tension (called draft force) can cause a train to derail by

stringlining on the inside of a curve (see Figure 1.11). Stringline derailments often occurs

at slow speeds when the train is stretched by heavy power application in the front that has
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Figure 1.10: Train compression buckles or jackknives the train off the outside rail.

lateral  force  on
cars  during  buff

yet to translate through the slack to the end of the train or when brakes are applied to the

rear end so that the front of the train continues to move forward and run out the slack [16].

Stringlining forces can also cause inner rail to roll over.

Figure 1.11: Tension force derails the train on the inside rail by stringlining.

lateral  force  on
cars  during  draft

So it is clear that when handling heavy freight trains with many cars, the slack becomes

excessive and very difficult to control. So it would be logical to question why trains are

designed with so much slack between cars, since it clearly can present a derailment hazard.

Train slack serves several purposes, the foremost being that slack allows the train to be

flexible and reduces the power required to start a long heavy train. By allowing slack

between the cars, the power needed to induce motion must only overcome the static or

starting friction of each car at a time; otherwise, one would need enough power to overcome
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the starting friction of the entire train at once.

Slack action can be beneficial to train handling, especially when a train is starting from

a stopped position. For example, if a locomotive starts pulling a large number of loaded

cars from a stopped position, and the cars are in buff, slack allows the locomotive to begin

moving the train one car at a time as the slack is stretched out. This reduces the strain

on the locomotive traction motors. The same is true if a locomotive starts pushing a large

number of loaded cars that are in draft [16]

As freight trains become longer and heavier, buckling, stringlining, and other handling

problems become practical limits on the number of railcars in the train and the number

of locomotives (driving power) that could be concentrated at the front. One solution is to

distribute power by using additional locomotives in the middle or at the end of the train.

However, interspersing additional locomotives is not only expensive, but causes delays and

losses in loading and unloading cars. Since slack action places a practical limit on the length

of trains, it is clear why the rail industry has turned to new ways to carry more freight per

train. Instead of adding more cars to the end of already long freight trains, many companies

are moving to the use of bi-level cars or double stacked freight containers to increase carrying

capacity (see Section 2.4 in the following chapter).
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Chapter 2

Parametric Analysis for Speeds on

Curved Track

Track that is part of the general railway system in North America is generally designated

with a track class, numbered 1 through 9, each with particular regulations concerning track

quality and maintenance, signaling, and level of traffic. Sections of rail in track classes 1-5

share both freight and passenger travel and classes 6-9 are dedicated solely to higher speed

passenger trains [16]. The higher the track class, the higher the allowable speeds; therefore

the structure and quality requirements for higher track classes are more stringent than those

for lower track classes. The operating speed limits for track classes 1-5 are specified in

49 C.F.R. 213.9 and those for track classes 6-9 are specified in 40 C.F.R 213.207. The

structural specifications for the different track classes are provided in 49 C.F.R 213-Track

Safety Standards. Table 2.1 summarizes the industry values for maximum operating speed

limits for the nine US track classes.

In the previous chapter, we derived approximate equations for the maximum speed on

both a flat and a superelevated horizontal curve of radius R, with rail gauge, 2l, and height

of the center of railcar mass over the rails, h. We found that for flat curves the maximum

speed was given by Equation (1.2):

Vmax flat =

�
gRl

h

And for a superelevated curve of cant angle, θ, the maximum speed was given by Equation

(1.4):

Vmax elevated =

�
gR[h sin θ + l cos θ]

[h cos θ − l sin θ]
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Table 2.1: Published maximum operating speed limits for US standard gauge track classes.

Freight Trains Passenger Trains
(mph) (mph)

Class 1 Track 10 15
Class 2 Track 25 30
Class 3 Track 40 60
Class 4 Track 60 80
Class 5 Track 80 90
Class 6 Track — 110
Class 7 Track — 125
Class 8 Track — 160
Class 9 Track — 200

We proved that the superelevated curve always allows a greater maximum speed than a flat

curve; however, we also showed that superelevating the rail introduced the necessity of a

minimum speed limit. The expression for this minimum speed on a superelevated curve was

given by Equation (1.5):

Vmin elevated =

�
gRl sin2 θ

cos θ[h cos θ + l sin θ]

In this chapter we will explore how these equations can help railway track designers

optimize curved sections for particular types of traffic flow. First we will look at how track

and railcar geometry affect critical curving speed, focusing on how track optimization can

be different when taking into account passenger as opposed to freight travel. We will then

discuss how the length and distribution of railcars in the train of vehicles can affect buckling

and stringlining slack effects on curves.

2.1 Radius of Curvature

The radius of railroad curves has an important bearing on construction costs and operating

costs of railroad track, and in combination with superelevation and other track geometry,

determines the maximum safe speed of a curve. Minimum curve radii for railroads are

designed to allow a certain operating speed and are constrained by the mechanical ability

of the rolling stock to adjust to the curvature. In North America, equipment for unlimited

interchange between railroad companies are built to accommodate sharp curves of radius as

little as 350-ft, but normally a 410 ft (14 degree) curve is used as a minimum. For handling
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of long freight trains, especially those with an uneven distribution of light and heavy cars, a

minimum radius of 717-ft (8 degree) is preferred [20].

For passenger trains that must keep commuters to strict timetables, operating speeds are

often much higher than those for freight traffic. Therefore curves on dedicated passenger

lines are ideally much gentler, with minimum radii of around 6500 ft for intercity express

trains operating at the US maximum passenger speed of 125 mph. For dedicated high-speed

rail lines, like those in China operating at 218 mph, the minimum curve radius can be as

high as 23,000 ft [11]. Table 2.2 summarizes the curving speeds corresponding to minimum

freight and passenger curve radii, found from Equations (1.2) and (1.4).

Table 2.2: Critical speeds on flat and superelevated (3◦) curves as a function of curve radius,
R.

Curve Radius, R Vmax flat Vmax elevated Vmin elevated

(ft) (mph) (mph) (mph)
Freight Boxcar 350 40 44 3
(h = 7.5 ft) 410 44 48 3

717 58 63 4
Passenger Car 1200 84 90 6
(h = 6 ft) 6562 196 210 15

23000 367 395 28

From the maximum curving speed equations derived in the previous chapter, it is clear

that a larger radius of curvature allows for a higher maximum allowable speed on both flat

and elevated curves increases. From Figure 2.1, we can also see that the maximum speed

on a canted curve increases at a faster rate with respect to radius than the maximum speed

for a flat curve. This means that a railcar on a curve designed with both a larger radius

and a superelevation angle can achieve speeds higher than on a curve with only one of these

designs.

From Table 2.2, it is also clear that the radius of curvature has a more significant effect

on the maximum speed (for both flat and elevated track) than it does on the minimum speed

introduced by a cant angle. Although this result will be discussed further in Section 2.3,

it is important to note that these critical speed equations show that increasing the radius

of a curve is the best design for increasing speed and traffic flow on track shared by fast

passenger and slower freight traffic. This is because both freight and passenger traffic are

optimized by increasing radius, while increasing cant angle can introduce minimum speeds

too high for slower freight trains to negotiate safely. Although increasing radius is the best

track design practice in terms of railcar kinematics, costs of extra real estate and rail can
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Figure 2.1: Maximum speed (mph) vs. Radius of curve (ft).

be prohibitive, especially in more crowded urban areas. Therefore, increasing cant angle is

often the most economical, if not the only physically practical, option left to engineers and

management hoping to increase traffic flow.

2.2 Rail Gauge

Gauge is defined in industry as the perpendicular distance between the insides of adjacent

rails measured a distance 5/8 of an inch down from the tops of the rails [16]. Standard gauge

of 56.5 inches (4’8-1/2”) is used on all track in the general North American railway system

and is used almost universally by other railway networks around the world [12]. In industrial

practice, rail is maintained so that gauge remains within strict tolerance limits. Published

U.S. standard gauge tolerance ranges for passenger and freight track classes are given in

Table 2.3 [16] with the corresponding maximum speed ranges derived from Equations (1.2)

for flat and (1.4) for superelevated track.

The strict tolerance limits given in Table 2.3 are maintained for a number of reasons.

One is that if gauge is not allowed to vary significantly, then the maximum safe speed on

the curve is roughly constant (only varying by 1 mph at most). This means that trains can

safely approach the curve at the posted speed limit as long as gauge has been maintained

to standard. If gauge widens sufficiently, a wheel can drop between the rails and cause a

derailment [16]. For a new wheelset and new rail, the gauge would need to widen by at least
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Table 2.3: Maximum speed for standard gauge tolerances for passenger and freight classes
on flat and superelevated (3◦) curves of radius R = 717 ft.

Freight (h = 7.5 ft) Passenger (h = 6 ft)
US Standard Gauge Vmax flat Vmax elevated Vmax flat Vmax elevated

Tolerance Range (in) (mph) (mph) (mph) (mph)
Class 1 Track 56.00− 58.00 58-59 63-64 65-66 70-71
Class 2 and 3 Track 56.00− 57.75 58-59 63-64 65-66 70
Class 4 and 5 Track 56.00− 57.50 58-59 63-64 65 70
Class 6, 7, and 8 Track 56.00− 57.25 — — 65 70
Class 9 Track 56.25− 57.25 — — 65 70

3.5 inches before a wheel drops between the rails; however, for worn wheel flanges, gauge

widening of as little as 2 inches could cause derailment [28]. Derailment by narrowed gauge

on curves can also occur, although it is less common. In this case, narrowed gauge can create

excessively high lateral wheel-rail forces, causing the wheel to climb the rail and then drop

off the track [16].

Despite the risk presented by wide gauge, some railways maintain their standard gauge

at the widest tolerance limit on sharp curves to reduce wheel binding. The reason for this

is clear when maximum speed is graphed as a function of rail gauge (see Figure 2.2). The

critical safe curving speed increases as rail gauge increases for both flat and curved elevated

track.

Figure 2.2: Maximum speed (mph) as a function of rail gauge, 2l (in), for flat and superele-
vated (3◦) curves of radius R = 717.
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2.2.1 Narrow Gauge

The phrase “narrow gauge railroad” is used to characterize any line of track that is system-

atically constructed with gauge narrower than the 56.5 inches of standard gauge railways. In

some countries narrow gauge is the standard, like the 42-inch gauge in Japan, New Zealand,

South Africa, and Tasmania, and the meter (39.4 in) gauge in Malaysia and Thailand [21].

Narrow gauge railroads are usually lighter and smaller in infrastructure construction, use

smaller cars and locomotives, and are built with tighter curves. In fact, the sharpest curves

tend to be on the narrowest gauge railways, where almost everything is proportionately

smaller. Narrow gauge railway can be substantially cheaper in terms of building, equipment,

and operating costs, particularly in mountainous terrain where civil engineering work is most

costly. Furthermore, the lower costs mean they often serve less populated areas where the

demand and traffic potential would not justify the cost of building a standard or broad gauge

line.

One problem for narrow gauge railways is that, although they are cheaper in initial

construction, the cost of upgrade, whether it is increasing speed or loading, removes most of

the price advantage over standard or broad gauge. Narrow gauge railways lack the physical

space and robust infrastructure to grow. Their cheap construction means that they are

engineered only for their initial traffic demands; while a standard or broad gauge railway

could more easily be upgraded to handle heavier, faster traffic. On narrow gauge, speeds

and loads hauled cannot increase, so traffic density is significantly limited.

2.2.2 Broad Gauge

The phrase “broad gauge railroad” is used to characterize a track with rail gauge greater

than the standard gauge of 56.5 inches. Russian gauge or CIS gauge (59.8 in) is the second

most widely used gauge in the world, behind U.S. standard gauge. CIS gauge spans the

whole of the former Soviet Union bloc, including the Baltic states and Mongolia. Railroads

in India adopted an even wider gauge of 66.0 inches since it was thought necessary to keep

trains stable in the face of strong monsoon winds. This broad gauge is still commonly used

in India, Pakistan, Bangladesh, Sri Lanka, Argentina and Chile [11].

Broad gauge tracks usually support greater axle loads compared to standard gauge tracks

because broad gauge construction uses heavier rails [21]. Broad gauge offers an advantage

to freight movement. In India, trains on the broadest gauge can carry standard shipping

containers double-stacked on standard flatcars, which is more economical than single contain-

ers. In contrast, standard-gauge railways in North America and elsewhere must use special

double-stack cars to lower the center of gravity and reduce the loading requirements. Broad

29



gauge also increases the maximum critical curving speed compared to standard gauge tracks,

so that heavier freight trains can run faster and therefore more efficiently. The derived max-

imum critical curving speed for sample narrow and broad gauge systems are summarized in

Table 2.4.

Table 2.4: Maximum speed for freight cars (h = 7.5 ft) on narrow, standard, and broad
world gauge systems (R = 717 ft).

Gauge Vmax flat Vmax elevated

(in) (mph) (mph)
Malaysia and Thailand Narrow Gauge 39.4 48 57
Japan Narrow Gauge 42.0 50 63
US Standard Gauge 56.5 58 63
Russia (CIS) Broad Gauge 59.8 60 65
India Broad Gauge 66.0 63 68

Broad and narrow gauge railways cannot interchange rolling stock freely with the stan-

dard gauge lines with which they link. Therefore, where there are breaks in gauge, or changes

from one gauge system to another, transfers of passengers and freight require time consuming

manual labour or substantial capital expenditure. Not having a uniform gauge throughout

a network makes it difficult to move rolling stock to where it is needed in times of peak

demand. Smaller railroad companies operating on a standard gauge can rent rolling stock

from larger companies during times of overflow, without increasing their year-round over-

head. On the other hand, broad or narrow gauge railroads must own enough rolling stock to

meet their own peak demand. This surplus equipment generates no cash flow during periods

of low demand. Therefore, it is advantageous to adopt one standard gauge throughout a

rail transport system so that interoperability of rolling stock is possible. Most new railroad

lines installed around the world now conform to U.S. standard gauge measurements. This

widespread use of standard gauge fosters competition among manufacturers of trains and

track who also benefit from economy of scale. This lowers prices and therefore reduces the

cost of new track construction.

2.3 Superelevation Angle

Chapter 1 discussed how maximum speed on a curve is the speed at which the outward

torque due to the centrifugal inertial loading counteracts the inward torque due to the

weight. Put another way, the equilibrium speed occurs when the resultant of the weight

and the centrifugal force is perpendicular to the plane of the track so that the components
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of both forces in the plane of the track are balanced [6]. We have shown that increasing the

cant angle for the curve increases the maximum speed allowed on the curve, but we have

also shown that this cant angle introduces a minimum speed limit as well. If it were possible

to operate all classes of traffic at the same speed on a curve, the ideal condition for smooth

riding and minimum rail wear would be obtained by elevating the outside rail of the curve

until equilibrium is reached. However, curved track must handle several classes of traffic

operating at various speeds. Therefore slower trains running closer to the minimum critical

curving speed load and wear the inside rail, whereas high-speed trains running close to the

maximum speed wear the outside rail. Figure 2.3 shows the maximum curving speed as a

function of cant angle while Figure 2.4 shows the minimum curving speed as a function of

cant angle.

Figure 2.3: Maximum speed (mph) as a function of superelevation angle (◦) for curves of
radius R = 717.

These graphs illustrate the optimization problem that face many track designers, partic-

ularly in the U.S. To increase traffic flow and efficiency on existing track, often the cheapest

and most efficient solution to higher speeds is to increase the elevation of the outside of the

track. However, this increased elevation presents a problem for slow freight traffic, that also

in the interest of increased efficiency, are made longer and heavier. So in summary, canting

of curved track allows for greater maximum speeds and is particularly desirable for short,

light passenger trains that must keep to tight commuting schedules. However, these same

cant angles present a problem for slower, longer, and more top-heavy freight trains because

cant introduces a minimum speed limit and excessive loading of the wheel on the outside rail.

This presents a particular challenge in designing rail corridors where freight and passenger
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Figure 2.4: Minimum speed (mph) as a function of superelevation angle (◦) for curves of
radius R = 717.

trains share track (which is a common practice in the United States).

This balance between increasing maximum curving speed and introducing minimum

speed limits becomes especially important when considering rail corridors in much of the

United States. This is because Amtrak, the U.S. passenger rail service, often rents running

rights on rail owned and maintained by freight companies for freight traffic. This means that

lighter and faster passenger trains, which would like much higher maximum curving speed

limits and can afford to maintain a high minimum speed, must run on track optimized for

slower, longer, and heavier freight traffic, which run the risk of tipping inward on highly

banked curves. To solve this optimization conflict, Amtrak’s 150-mph (214-km/h) Acela

Express is installed with a self-tilting truck and suspension system that creates its own bank

angle [19]. The Acela is able to tilt an extra 4.2 degrees so that when operating on curved

track with a superelevation of 2 inches, the Acela can speed as if it is on a track that is

raised an additional 7 in, for a total superelevation height of 9 inches [8]. From Equation

(1.4), we find that the tilting action of the Acela train (with estimated center of mass height,

h = 3 ft above the rail) allows it to traverse a curve of radius R = 717 ft with speed limit

of 95 mph (corresponding to a superelevation height of 2 in) at a speed of up to 108 mph

(corresponding to a superelevation height of 8 in).

Tilting trains can help solve the problem of shared rail between freight and passenger

services, but it is far from ideal. One reason is that sudden changes from one superelevation

to another can result in undesirable roll dynamics in a vehicle [16]. Therefore, in more open

areas where real estate is not too expensive, the first choice of most rail companies is to
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redesign curves with larger radii, since we have seen that increasing the radius increases

maximum curving speed while having little effect on the minimum operating speed.

2.4 Railcar Dimensions (Height)

So far we have analyzed three parameters related to track geometry - namely curving ra-

dius, track gauge, and cant angle - that directly affect the critical curving speed. However,

improving track design is not the only option for railroad managers and engineers who want

to increase speeds and the flow of traffic on curved sections of track. Railcar dimensions,

particularly the height of the center of mass of the railcar above the tops of the rails, also

affect the curving speed.

In Chapter 1, we showed that the car body assumes a radial position on a curve. When the

railcar is traveling at a speed over the maximum curving speed, the superelevation and other

designs of the rail may not be completely effective in balancing out the centrifugal inertial

loading created by the circular motion of the car. With this unbalanced force acting at the

center of gravity of the car body, the body will be displaced outwardly and can tilt toward

the outside of the curve [6]. From the maximum speed equations for flat and superelevated

curves, it is clear that decreasing the height of the center of mass of the car body above the

rail increases the maximum curving speed (see Figure 2.5). Because of this relationship, one

might imagine that railcar designers who want to optimize the flow of traffic would design

low, squat cars that can negotiate curves safely at a high speed. However, Figure 2.5 also

shows that the maximum curving speed function has the steepest curve and is therefore most

sensitive to changes in center of mass height at smaller values of h, or closer to the top of

the rail. This means that speed limits for short, squat cars would vary dramatically given

their loading because increasing or decreasing the center of mass by less than a foot could

result in at least a 5 mph difference in the critical speed. Although it is true that high-speed,

intercity passenger trains are designed to keep an aerodynamic and low profile, the general

trend in the freight and commuter railway industries is actually to increase the center of

mass height of the cars to avoid uncertainty in the speed limit.

A standard intermodal freight or ISO container in the United States is designed so that

it can be moved from one mode of transport, such as rail, truck, or ship, to another without

unloading and reloading contents. Lengths of these containers vary from 8 to 56 feet and

heights from 8 feet to 9 feet 6 inches [4]. So taking a standard boxcar to have a height of 8 or

8 1/2 feet, and accounting for the wheelset and truck on which the containers sit which add

additional height, the external height of a standard boxcar above the rails is approximately
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Figure 2.5: Maximum speed (mph) as a function of the railcar center of mass height (ft) for
flat and superelevated (3◦) curves of radius R = 717 ft.

15 feet [22]. Therefore, it is clear that, for a uniformly-filled car, the center of mass will be

about 7 or 7 1/2 feet above the rail, where the maximum speed for curving as a function

of center of mass height is just leveling off. In fact, this means that adding additional

height beyond the single container has little impact on the critical speed. Therefore, many

railroad companies can sacrifice only a few mph of speed for increased cargo. This has led

to a dramatic rise in the use of bi-level cars for some high-volume, slower speed passenger

services and double-stacked containers for freight.

2.4.1 Bi-level Passenger Cars

The bilevel car is a type of rail car that has two levels of passenger accommodation, as

opposed to one, increasing passenger capacity (in example cases of up to 57% per car) [24].

To keep down costs and maintain safety, the double-deck design usually includes lowering

the bottom floor to below the top level of the wheels, closer to the rails, and then adding

an upper floor above. Such a design minimizes car height. For example, a typical Amtrak

single-level passenger or Amfleet car, is 12 feet 8 inches tall relative to the top of the rail, 10

feet 6 inches wide, and 85 feet 4 inches in length. A Bombardier Amtrak Superliner bi-level

car can carry significantly more passengers but is less than 4 feet taller than the single-level

car, at 16 feet 2 inches above the top of the rail [10]. This lower design allows these cars to run

on existing track without significant infrastructure changes because they can fit under the
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already established bridges, tunnels, and power lines. This lower centre of gravity also lets

bi-level trains continue at about the same speed on curves as their single-level counterparts.

It should be mentioned that the height of the cars can limit their use on lines that use more

flimsy narrow gauge that cannot handle the increased load of two-level cars. Furthermore,

high passenger capacity can create flow and problems at train stations when much larger

numbers of passengers try to board or disembark at the same time and can cause problems

in an evacuation situation. However, the use of double-decker carriages, where feasible, can

resolve capacity problems on a railway, avoiding other options which have an associated

infrastructure cost such as longer trains (which require longer station platforms and can

introduce slack effects), more trains per hour (which the signaling or safety requirements

may not allow) or adding extra tracks besides the existing line. This means that bilevel

trains often have a lower operating cost per passenger and, in addition, may be more energy

efficient [24].

2.4.2 Double-Stacked Freight Cars

Increasing the carrying capacity of long-haul freight trains is a different optimization problem

than increasing the speed and number of trains on passenger tracks. By using double-stacked

containers railroad companies can increase freight efficiency by carrying more cargo per trip

without adding cars on the end of already lengthy trains, adding uncontrollable slack forces.

One of the advantages to using double-stacking to increasing volume of freight along a section

of track is that it requires few modifications to the rail. As long as the curves are not banked

at too great of an angle (which could cause the now heavier train’s weight to tip the railcar

over the inside rail), the only other concern for double-stacked cars is the higher center of

mass. But we have seen that the critical speed varies little once the center of mass is higher

than about 8 feet above the track (only slightly higher than the center of mass of a single

container).

The major expense of double stacking is that higher cars requires a higher clearance

above the tracks than do other forms of rail freight. So like bi-level passenger cars, which

have a floor below the wheels, double-stacking standard ISO intermodal containers requires

special suspensions and bogies. Even with these modified trucks, the height of double-stacked

freight vehicles are higher on average than bi-level passenger cars. In the extreme, double-

stack loads are permitted to reach 20 feet 3 inches above the top of the rail [2]. Another

interesting feature of the cars specially constructed for double-stack intermodal freight is

that many are articulated; or in other words share wheels between the car’s units. This can

reduces slack action on long trains and improves the ride quality for fragile cargo.
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Double-stack freight cars are most common in North America where over-rail electrifi-

cation is less widespread and there are therefore more manageable overhead clearances. In

addition, the U.S. railroad network sees some of the heaviest intermodal traffic in the world.

Heavy traffic means a more likely pay-off on large investment to raise bridges and tunnel

clearances as well as to remove other obstacles to allow greater use of double stack trains on

direct routes.

2.5 Train Length and Railcar Distribution

Parameters that do not appear in the kinematic analysis (derived in the previous chapter

from the forces on a single railcar) are the length and distribution of the vehicles in the train.

The number of railcars and their type have tremendous consequence for certain curving

situations, and although these relationships have not been mathematically derived in the

previous chapter, I would be remiss if I did not address them at least qualitatively as they

must be considered when designing curved sections of track.

Section 1.4 in the previous chapter discussed how spacing between railcars can lead

to coupler impact forces that can buckle or stringline a train in compression or tension

respectively. The occurrence and magnitude of these coupler forces depends on a number of

factors including, but not limited to, changes in grade (incline) and curvature, the difference

between braking or tractive effort by the locomotive at the front and the cars at the back of

the train, differences in braking performance between empty and loaded cars, the speed of

the train, and the length, weight, and arrangement of cars in the train [16]. This is especially

important for freight trains, which unlike passenger trains made up of chains of uniform cars,

are made up of many types of cars of different designs (including length and height) and

different loads.

Speed and length of the train affect the coupler impact forces caused by slack action.

Slower trains tend to produce higher coupler impact forces than faster trains during braking

[15]. This is because slower trains produce higher braking forces, since brake shoe friction

is higher at lower speeds. However, every vehicle in a train does not travel at the same

speed because of the running in and out of slack. Therefore, as brakes are applied from the

locomotive at the front of the train, the front end slows first and at this slower speed gains

greater braking force. This creates a speed (and braking) differential between the cars in the

front and the cars in the rear. The cars in the rear, which are moving at a faster speed, will

collide or push against the coupling of the many cars in front of them. Because the rear cars

run into the main body of the train, which is more massive in comparison, they experience
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more severe coupler impact forces [15]. So it is clear that the longer the train, the greater

the speed differential between front and back ends, the greater the mass of cars before the

cars in the back, and therefore the greater the coupler forces at the back.

Another important factor is the distribution of loaded and unloaded cars in the train of

vehicles. Not only are freight trains made up of heterogeneous car designs, the distribution

of cars in the freight train changes along long-haul routes as deliveries are made and cars

are decoupled and coupled to the train. This means that the slack dynamics of a train may

change after each stop, which can create unpredictable and difficult handling problems for

the engineer. Coupling and decoupling freight cars is a time-consuming and costly process,

so in order to decrease transfer expenses and maintain delivery schedules rail companies often

load the train with the first deliveries in the back and the cars going to the final destination

at the front of the train. However, this is not always the ideal distribution of cars. In fact,

this often means putting the loaded delivery cars at the back of the train for easy access and

empty cars being re-distributed along the system towards the front of the train. This can

cause severe slack problems on curves and inclines as a train with empty cars in the front

and loads in the rear tends to produce higher coupler impact forces than a train which loads

in the front and empties in the rear [15].

Empty cars weigh less and therefore produce higher braking ratios. Because they have

a smaller inertial resistance, empty cars have a higher deceleration rate. Therefore, if the

empty cars are in the front of the train, followed by laden cars, braking causes the empty

cars in front to reduce speed even more quickly than the loaded cars in the rear. In this

way a head-end brake application from the locomotive results in a relatively large speed

differential between the cars as the slack runs-in, resulting in higher coupler impact forces,

in some cases sufficient to cause a derailment [16]. If the train is in a curve, derailment is

even more likely because of the eccentricity of the coupler impact forces. Then the heavy

back end of the train compressed the front, there is decreased flexibility in the couplers so

they can less easily turn.

This would suggest that in best industrial practice, railroads should load any empty cars

at the very rear of the train. However, this is costly and time-consuming because loaded cars

at delivery would have to be decoupled from the middle of the train and then the train put

back together before continuing to the next stop. Because of this, many freight companies

take short-cuts that can nominally increase risk of derailment.

Not just the difference in weight between the front and ends of the train, but even the

interspersion of one empty car can cause problems with slack action. This is because empty

cars weight less and therefore have a lower vertical load, V, and a higher L/V ratio [8]. As

a result, empty cars have a greater tendency to derail by wheel climb (see Section 1.3.1).
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One long, lightly loaded or empty car between two short heavy cars in a curve can jackknife

(derail to the outside) if buff coupler forces are severe enough to force the car over the

outside rail. Whereas, a short empty car between long, loaded cars can cause the empty car

to stringline (derail to the inside) if draft coupler forces are severe enough to pull the car

over the inside rail (see Figure 2.6).

Figure 2.6: On a curve, (a) a long car between short cars can cause jackknifing, while (b) a
short car between long cars can cause stringlining.

(b)

short  car  (35’) long  car  (90’)long  car  (90’)

(a)

long  light  car short,  heavy  carshort,  heavy  car

or  locomotive

In addition to an uneven distribution of cars in the train, unbalanced or improperly

secured cargo (or lading) can affect the slack action of the train of vehicles on a curve. We

have already seen that loads with a higher center of gravity must curve at lower speeds

or risk a higher likelihood of wheel climb or lift. In addition, improperly secured lading

can shift during transit and cause undesirable vehicle dynamics which result in derailment.

Derailment usually occurs when the shifted or eccentric load is combined with dynamic train

forces such as centrifugal inertial loading or variations in track superelevation [16]. The

lighter end of the train or lighter side of the car is more likely to derail for the same reasons

that an empty car is more likely to derail - because of lower vertical wheel forces and a

higher L/V ratio. Sloshing liquids in partially filled tank cars are a good example of this

phenomena.

2.6 Best Practices for Curved Track Design

It is clear that the optimal curved track design depends on the character of the traffic along

the route. Optimizing corridors shared by both freight and passenger rail is difficult because

slower, heavier, and longer freight trains exhibit different dynamics than faster, lighter, and

38



shorter passenger trains. However, basic kinematics can inform certain general practices for

railroad managers and engineers optimizing curved track.

First, track geometry - including radius of curvature, superelevation height or cant angle,

and gauge - affects the safe speed at which a railcar can traverse a curve. In order to

increase maximum curving speed for faster, lighter commuter trains without compromising

the stability of longer, heavier, and slower freight traffic, the best practice is to redesign

track with gentler curves of larger radius. However, construction of brand new track can

be disruptive to traffic flow and extremely expensive due to infrastructure and real estate

costs. Therefore, banking of the outside rail on the curve by a small degree can increase

maximum curving speeds for passenger trains, while introducing a fairly low minimum speed

limit for freight. For even faster express passenger trains, tilting suspension systems can be

introduces to self-bank on shared corridors. In general, rail gauge is standardized across the

national network to allow for interchange of rolling stock between companies, reducing travel

time between regions and requiring less overhead and capital. Therefore, rail gauge is not a

variable in track design but is an important focus of maintenance.

In addition to track geometries, railcar height also affects critical curving speed. Although

increasing height decreases the maximum speed, beyond a certain height the effect becomes

negligible. Therefore, although the highest speeds demanded by intercity passenger rail

require low-profile railcars, most capacity and traffic flow problems on curved track are best

solved by constructing two-level cars for both commuter and long-haul freight rail.

Lastly, the length of the train and the distribution of different cars within the train affect

stability on curves. Slack forces are not a significant factor for shorter, lighter, and homoge-

neous passenger trains. However, they can present a significant problem for longer, heavier

freight trains that often carry many types of cars each with a different load. In general, these

forces are not controlled by track design but instead by close attention by railroad manage-

ment to train composition in the coupling yard. The kinematic and parametric analysis

presented in these first two chapters cautions that time-saving shortcuts such as coupling

the cars by location rather than by optimal distribution (with empties in back and loads

toward the front) can result in derailments. These derailments, which damage the cargo

being transported, the rail, and the rolling stock itself, can in the long-run be more costly

than maintaining good practice.
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Chapter 3

Kinematic Analysis of the Wheelset

on Straight Track

In Chapter 1, we saw how the basic wheelset geometry of a fixed axle, coned tread, and

flange affects the motion of the railcar on both flat and superelevated horizontal curves.

From this analysis, it is clear that on gentle curves the conicity provides the main form of

guidance. In curving, the axle can adopt a radial position and the coning allows the wheel

on the outside of the curve to travel the longer distance at the same angular speed as the

inner wheel. This chapter will discuss how the coning of the wheel treads does not just allow

trains to traverse curves; it also contributes to the motion of the railway vehicle on straight,

or tangent track. However, absent from this discussion will be the affect of flange contact.

In the previous chapter it was clear that when approaching curves at too high of a speed, the

coned wheelset adopts the radial position with maximum lateral displacement, causing the

flange to contact the rail and act as a pivot point for the railcars centrifugal inertial loading.

On straight track, common belief might suggest that the wheels are kept on the track by

the flanges; but in actuality the flanges make little contact with the track in ideal straight

running and when they do, most of the contact is sliding. The rubbing of a flange on the

track dissipates large amounts of energy, mainly as heat and noise, and if sustained would

lead to excessive wheel wear. In practice, track and wheelset are designed to minimize this

contact, so a close examination of the motion of a railway vehicle on straight track in ideal

running is focused on the affect of a tapered tread and largely ignores the geometry of the

flange [7].

As long as the wheelset is moving on a perfectly straight track with axle center coincid-

ing with the middle of the track, the movement of any un-coned or cylindrical wheel will be

similar to the movement of a coned wheel; both will roll forward indefinitely. However, if the
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wheelset gets disturbed to one side due to any problems with track, vehicle, or engineman-

ship, the un-coned wheel would provide no steering to correct for this disturbance and the

wheel would simply run off the rail in the direction of the disturbance. On the other hand,

when a coned wheel moves forward on straight track, any slight lateral displacement by an

amount y known as the tracking error will push one wheel onto a larger running radius (like

the wheel is effectively adopting a slight radial position) by a factor dictated by the conicity

of the wheel tread. The angular velocity is the same for both wheels since they are coupled

via a rigid axle, so this wheel rolling on the larger radius will cover a greater distance than

the wheel rolling on the smaller radius. This yaws the axle and introducing a tendency to

roll back toward the center of the track. The wheelset overshoots the center of the track and

is then displaced laterally the other way [26]. This result is a kinematic oscillation in both

lateral position and axle yaw as the train moves forward along the track (see Figure 3.1).

Figure 3.1: Oscillation of a coned wheelset down straight track.

This periodic motion in lateral displacement and yaw of the wheelset on straight track is

known as “hunting oscillation.” This motion arises from the interaction between the adhesion

or frictional forces that accelerate the wheelset in the direction of its displacement and other

contact forces between the wheelset and rail that oppose this motion and restore the wheelset

to the center of the track [26]. These opposing contact forces require advanced contact

mechanical theory to characterize fully but we can estimate their total lateral, vertical,

and longitudinal components which we will call “inertial forces.” At low forward speeds,

the inertial forces between the coned wheelset and rail are greater in magnitude than the

adhesion forces so that oscillations in lateral displacement and yaw are damped out. However,

as the running speed of the wheelset increases the adhesion forces and inertial forces become

comparable in magnitude. At a critical speed where the adhesion forces and the inertial

forces are equal, the oscillations persist and the wheelset is said to be hunting. Above this

speed, the adhesion forces overcome the inertial forces that would return the wheelset to
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the center of the track. At these speeds the oscillations in lateral displacement and yaw are

amplified by the frictional forces so that the periodic motion of the wheelset can be violent,

damaging track and wheels and potentially causing derailment.

So the same coned geometry that provides stability for curving also helps the wheelset stay

on straight track should it be disturbed in any way. These oscillations explain the distinctive

side to side motion of trains as they rumble down a track. For low speeds they are a source

of stability and an endearing feature of rail travel; however for high speeds they can be a

dangerous source of instability. This means that the onset of amplified hunting oscillation

limits the operating speeds of steel-wheeled trains. This chapter explore the kinematics of

railroad wheelsets on straight track by first describing the periodic lateral displacement and

axle yaw motions and then by estimating the critical speed at which hunting oscillations are

amplified and the straight running motion of the railcar becomes unstable.

3.1 Kinematic Oscillation in Displacement and Yaw

A kinematic description of the lateral and angular sinusoidal motions is based on the geom-

etry of a wheelset running on straight track and therefore makes a number of simplifying

assumptions by neglecting the forces causing the motion. In the following considerations, a

single rigid wheelset (not attached to a train or truck) is modeled. The wheelset moves for-

ward at a constant speed, V , in the x direction down a straight and level track. The wheelset

never slows down since we assume there are no forces acting on it along the longitudinal or

x-axis. We also assume that the downward vertical forces on the wheelset are sufficient to

ensure that the wheels adhere to and roll along the track without slipping.

3.1.1 Lateral Displacement

We define the path of the wheel set relative to the straight track by a function y(x) where

x is the progress along the track. If initially the wheelset is centered on the railroad track

then the effective diameters of each wheel are the same and the wheelset rolls down the track

in a perfectly straight line forever. If the wheelset is a little off-center so that the effective

diameters or radii of the treads are different, then the wheelset is perturbed from its straight

path by a lateral distance, y, and starts to return to the center of the track in a curve of

radius R that is given by rearranging Redtenbacher’s formula (Equation 1.1) for a wheelset

on a gentle curve:
1

R
=

α

rl
y
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where again α is the wheelset conicity, 2l is the rail gauge, and r is the average running

radius of the centered wheelset.

We can use this equation for a curve to introduce a second order differential equation

describing the oscillating motion of the wheelset given a slight lateral (or radially-positioned)

displacement. It is a geometric fact that the second derivative of the equation of a circle with

radius R centered at a defined origin is equal to 1
R . Therefore, provided that the direction of

motion remains more or less parallel to the rails, the curvature of the path may be related

to the second derivative of y with respect to x as approximately:

����
d2 y

d x2

���� ≈
1

R

Then it follows that the trajectory along the track (see Figure 3.2) is governed by the familiar

differential equation:1

d2 y

d x2
= −α

rl
y

d2 y

d x2
+

α

rl
y = 0

If the wheelset is initially perturbed in purely the lateral direction by the maximum lateral

displacement allowed by the geometry of the wheelset and rails, yomax , then y(0) = yomax and

the solution to this differential equation is simple harmonic motion (see Figure 3.2):

y = yo cos

�
2π

λ
x

�
(3.1)

where yo is the amplitude of the lateral displacement and λ is the wavelength of the harmonic

oscillation given by Klingel’s formula, derived in 1883 [13]:

λ = 2π

�
rl

α
(3.2)

The amplitude of the wheelset oscillation, yo, is constrained by half of the standard play

between the wheelset and the track. The standard play, σs, of the wheelset can be found by

subtracting the axle width (or wheel gauge), w, and the flange thickness of both wheels, 2t,

1
It should be noted that

d2 y
d x2 is negative when y is positive and that the equation

1
R =

α
rly is not true

when y is negative (since the radius, R is defined mathematically as a positive quantity). However after the

R is eliminated in combining the two equations, the resulting equation holds for both positive and negative

y.
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Figure 3.2: Sinusoidal motion of the center of gravity of a coned wheelset.
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from the track gauge, 2l (see Figure 3.3). This yields the equation:

σs = 2l − (w + 2t)

So the amplitude of the wheelset oscillation is constrained by half of this standard play:

yomax =
1

2
σs = l − w

2
− t (3.3)

Figure 3.3: Play between the wheelset and track.
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We can look at the change in the periodicity of the oscillation in another way by intro-

ducing the wheelset speed, V , to Equation (3.2) for the oscillation wavelength. In this way,

we can find the time domain frequency of the Klingel oscillation:

f =
V

λ
=

V

2π

�
α

rl
(3.4)

This frequency of oscillation, which depends most heavily on the speed of the railcar, con-

tributes to the whole-body vibration exposure of passengers and can in extreme cases cause

discomfort or injury [18]. The following chapter explores the connection between oscillation
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frequency and the riding comfort of passengers in more detail, but here we will note that at

most safe operating speeds, the frequency of oscillation is at worst noticeable yet tolerable.

3.1.2 Axle Yaw

If the forward motion of the axle down the track is substantially parallel with the rails, the

angular displacement of the wheelset about the center of the rails, or axle yaw, θ is given by

θ =
d y

d x

Differentiating both sides with respect to the progress along the track, x, yields the expression

d θ

d x
=

d2 y

d x2
= −

�α

rl

�
y (3.5)

By again taking the derivative and substituting in for θ, it is clear that the angular deflection

also follows simple harmonic motion.

d2 θ

d x2
= −

�α

rl

� d y

d x
= −

�α

rl

�
θ

Given that the wheelset is initially perturbed only in the lateral direction so that the wheelset

is not yawed at its initial position, we have the initial condition θ(0) = 0 and the solution

to the differential equation is:

θ = θo sin

�
2π

λ
x

�
(3.6)

where θo is the amplitude of the axle yaw oscillation and λ is the wavelength of the axle yaw

oscillation. The wavelength of the axle yaw oscillation is the same as the wavelength of the

lateral displacement because both are dependent only on the geometry of the wheelset and

rail. So λ is given by Equation (3.2).

λ = 2π

�
rl

α

Just as the amplitude of the harmonic oscillation of the lateral displacement is constrained by

the standard play between the wheelset flanges and the rail, so is the maximum amplitude

of the axle yaw oscillation. From the rail and wheelset geometries (see Figure 3.4), the
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maximum yaw is given by:

θomax = sin−1

�
σs

router

�
= sin−1

�
2yomax

r + αyomax

�
(3.7)

Figure 3.4: A wheelset at maximum yaw between the rails.

srouter

So the harmonic motion of the lateral displacement and the axle yaw have the same

wavelength and different amplitudes. Furthermore, the harmonic motion of the angular

deflection or axle yaw, described by a sine curve, tends to lags behind the periodic lateral

displacement described by a cosine curve. This is because most track irregularities will shift

the wheelset laterally and only after one wheel begins to run on a larger radius is a yaw

induced. This lag between the two motions allows the wheelset system to extract energy

from its forward motion up to a certain critical speed reached when the delay between angular

deflection and lateral motion is a quarter cycle, as given by the initial conditions above. In

other words, for a 45-degree inherent phase difference between the two cycles, the point of

maximum yaw occurs as the wheelset moves through the center of the rails, defined as y = 0,

and similarly maximum lateral displacement occurs when the wheelset is not yawed, θ = 0.

So this oscillation lag corresponds to the speed of the train that causes oscillations at both

yomax and θomax . Below the critical system speed, the lag between the two motions is less

than a quarter cycle so that the motion is damped out. However, above the critical speed

the lag exceeds a quarter cycle so that the lateral motion is amplified by the yaw oscillation.

In the case of any greater phase difference, the oscillation magnitudes exceed the geometric

constraints of the wheelset and rail, causing flange contact or derailment.
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3.2 Critical Speed for the Onset of Hunting Oscillation

The critical speed for the onset of hunting oscillation can be estimated from the kinematic

description of the wheelset using two methods. First, one can estimate the adhesion or

frictional forces causing the motion or acceleration of the wheelset and the inertial forces

that oppose this motion. Hunting oscillation occurs when the adhesion forces between the

wheel and rail overcome the inertial forces opposing the oscillation, so the critical speed of

onset can be found by setting the two forces equal. We will find that this estimation of

the critical speed yields an overestimate of the onset of hunting. Second, the critical speed

can be derived from a consideration of energy. By setting the kinetic energy of the wheelset

as it rotates and translates down the track equal to the work done by the load, or weight,

on the axle, we can derive a second expression for the critical speed. We will find that this

estimation tends to underestimate the critical speed of the onset of hunting. Both derivations

are presented in this section. The following chapter will then discuss how choices in rail,

wheel, and railcar designs affect the critical speed range given by the two estimates.

3.2.1 Estimation using Inertial Forces

We define an inertial force as a force opposite in direction to an accelerating force acting on

a body and equal to the product of the accelerating force and the mass of the body. For

a railway vehicle running on straight track, the inertial force is the force that resists the

oscillating motion of the wheelset. In order to estimate the inertial forces, we assume that

the wheelset is traveling at a constant speed V =
x

t
down the track. This provides a way

to express the distance derivatives in the harmonic motion equations as time derivatives,

because
d

d t
=

d

d x
V

Then the angular acceleration of the axle in yaw can be written as

d2 θ

d t2
= −V 2

�α

rl

�
θ (3.8)

where the axle is yawing about the center of the rails. We now introduce the moment of

inertia of the wheelset about a perpendicular axis perpendicular through its center of mass,

I⊥ (see Appendix B). For any massive object, the moment of inertia is defined as the ratio of

an applied torque to the angular acceleration along a principal axis of rotation. Therefore,

I⊥ satisfies the scalar equation:

τ = I⊥
d2 θ

d t2
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The inertial torque of this rotation is given by the cross product of the distance to the axis

of rotation and the inertial force. Since the inertial force, Fi is acting perpendicular to the

rail gauge, 2l, we get the expression

τ = (2l)Fi

So for the wheelset, ignoring any gyroscopic effects, we can set the two expressions for τ

equal to relate inertial force and moment of inertia:

Fi(2l) = I⊥
d2 θ

d t2

Substituting in the angular acceleration from Equation (3.8) and solving for the inertial force

yields the expression:

Fi = −I⊥V
2
� α

2rl2

�
θ

So we have found an expression for the inertial force counteracting the oscillation. From the

mathematical expression it is clear that this inertial force is a restoring force in yaw as it

follows the familiar form of Hooke’s law for a spring with displacement in θ: F (θ) = −kθ,

where k = −I⊥V 2
�

α
2rl2

�
is a constant.

In order to estimate the critical speed, we also need an expression for the adhesion

forces setting the wheelset in periodic motion. The adhesion force can be estimated as the

maximum frictional force between one of the wheels and the rail:

Ff = µ
W

2

where W is the axle load (weight) and µ is the constant coefficient of friction between steel

and steel. Generally the coefficient of friction for dry and smooth steel-to-steel contact is

about 0.5 [7]. The effective friction coefficient for a rough surface could be much higher. The

weight of the railcar is assumed to be evenly distributed over the two wheel-rail contacts so

the load on one wheel is estimated as half of the total axle load.

Hunting occurs when the inertial forces become comparable with the adhesion forces

above a certain speed that depends on the angular deflection of the axle as well as other

parameters. By setting the expression for the magnitude of the inertial force equal to the

expression for the frictional adhesion force, Fi = Ff , we can solve for the critical speed of
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gross slippage:

I⊥V
2
� α

2rl2

�
θ = µ

W

2

V 2 = µW
rl2

I⊥α

1

θ
(3.9)

This expression yields a significant overestimate of the critical speed, because it assumes

that there is no slippage at the wheel-rail contact and because simple limiting friction is a

poor representation of the true adhesion forces. The actual adhesion forces arise from the

elastic deformations of the tread and rail in the region of contact. Therefore, a complete

analysis would have to take into account local creep forces, using the theory of rolling contact

mechanics. These complicating considerations make the calculated sinusoidal trajectory of

the wheelset, following Klingel’s formula, an idealized description of the actual motion of the

wheelset down straight track. However, during normal operation at lower speeds the true

adhesion forces are well within the limiting friction constraint. Therefore this equation can

be used as a useful first-order approximation of the upper bound on critical hunting speed.

3.2.2 Estimation using Work and Energy

We can use the fact that energy must be conserved in the kinematic solution for the hunting

problem to derive another expression for the critical speed. Assuming that the railcar moves

at a constant speed V down the track, we note that the oscillating motion of the railcar will

continue at constant amplitude as long as the gains in energy from the forward motion of

the train is exactly equal to the energy lost in work. The wheelset gains energy at zero yaw

in the form of increased rotational and translational kinetic energy. The axle load, or weight

on the wheelset, does work and loses energy at maximum yaw, when the load is physically

lowered on one side of the rail (see Figure 3.5). In this limiting case, there is assumed to be

no net energy exchange with the surroundings, so by equating the gains in kinetic energy

and the losses in energy due to work at the two extremes of the oscillating system, we can

estimate the critical speed.

In the previous estimation of critical speed from inertial forces, we used the tangential

speed, V of the wheelset down the track to express derivatives with respect to the distance

along the track, x, in terms of derivatives with respect to time, t. Similarly in this treatment,

we will use the angular velocity in yaw, ω, to express derivatives with respect to time, t, in

terms of derivatives with respect to the yaw angle, θ. We know that the angular velocity in
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yaw is given by

ω =
d θ

d t

This relation gives rise to the operator

d

d t
=

d

d θ
ω

Using this operator and the definition of ω, the angular acceleration of the axle in yaw can

be expressed as

ω
dω

d θ
= −V 2

�α

rl

�
θ

Isolating the variables and integrating both sides of the equation, we get

�
ω dω = −V 2

�α

rl

��
θ d θ

1

2
ω2 = −1

2
V 2

�α

rl

�
θ2 (3.10)

We know that the kinetic energy due to rotation will be of the formKErot =
1
2Iω

2. Therefore,

we can introduce I||, the moment of inertia of the wheelset along the parallel axis through its

center of mass (see Appendix B), to both sides of the equation above to derive an expression

for the rotational kinetic energy.

KErot =
1

2
I||ω

2 = −1

2
I||V

2
�α
rl

�
θ2 (3.11)

Now that we have derived an expression for the rotational kinetic energy of the wheelset,

we would like to find an expression for the change in translational energy of the wheelset

as it oscillates down the track. When the wheelset is at the center of the track and both

wheels are running on the same radius, r, both wheels are traveling at the same, constant

tangential velocity, V . So each wheel will have a translational kinetic energy of 1
2mV 2, where

the individual wheel treads are considered identical in terms of mass, m (and later coning,

α). So the total translational kinetic energy of the wheelset at its equilibrium position in

the oscillation is given by the sum of the kinetic energies of the two wheels, so

KEtranseq = mV2

As discussed previously, at the wheelset’s point of maximum lateral displacement in

the oscillation the two wheel treads are running on different radii. This means that each

wheel will have a different tangential velocity (although they share an angular velocity) and
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therefore each wheel will have a different kinetic energy.

We have already derived that on a curve or for a slight lateral displacement, the outer

wheel runs on a radius, router = r + αy. So the velocity of the outer wheel will be a radial

fraction of the forward velocity of the wheelset, V , defined when the wheelset is centered on

the rail and both treads are running on the same radius, r. We get the expression:

Vouter =
(r + αy)

r
V

Then the translational kinetic energy of the outer wheel is given by KEouter =
1
2mV2

outer, so

plugging in our expression for Vouter yields,

KEouter =
1

2
m

�
(r + αy)

r
V

�2

=
1

2
mV 2

�
1 + 2

αy

r
+
�αy

r

�2
�

Similarly, for the inner wheel, we previously found that the running radius is rinner = r−αy.

So the inner wheel velocity will be the radial fraction of forward velocity given by

Vinner =
(r − αy)

r
V

Thus, the kinetic energy of the inner wheel is

KEinner =
1

2
m

�
(r − αy)

r
V

�2

=
1

2
mV 2

�
1− 2

αy

r
+
�αy

r

�2
�

So the total translational kinetic energy of the wheelset at its displaced position at zero yaw

is given by the sum of the translational kinetic energies of the outer and inner wheels. So

KEtransdisp = KEouter +KEinner:

KEtransdisp =
1

2
mV 2

�
1 + 2

αy

r
+
�αy

r

�2
�
+

1

2
mV 2

�
1− 2

αy

r
+
�αy

r

�2
�

= mV 2 +m

�
V αy

r

�2

We now have expressions for the translational kinetic energy at equilibrium and the trans-
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lational kinetic energy at the displaced position. So we can calculate the increase in trans-

lational kinetic energy as ∆KEtrans = KEtransdisp −KEtranseq :

∆KEtrans = mV 2 +m

�
V αy

r

�2

−mV 2

= m

�
V αy

r

�2

So to find the total kinetic energy of the oscillating wheelset system, it would be convenient

to write the translational kinetic energy in terms of ω and θ. So from our earlier kinematic

analysis (3.5), we found that:
d θ

d x
= −

�α

rl

�
y

And multiplying both sides of the equation by the velocity, V =
d x

d t
we can get an expression

that relates the angular velocity and the tangential velocity:

d θ

d x

d x

d t
= −d x

d t

�α

rl

�
y

ωl = −V
αy

r

So plugging this into our expression for ∆KEtrans, we are left with:

∆KEtrans = m

�
V αy

r

�2

= m(ωl)2

Also noting from earlier work (Equation 3.10) that ω2 = −V 2
�α

rl

�
θ2, we can again substi-

tute into our expression for ∆KEtrans to get:

∆KEtrans = ml2ω2

= −ml2V 2
�α

rl

�
θ2 (3.12)

We want to find the total energy extracted from the forward motion of the wheelset as it

oscillates down the track. This total energy is given by the rotational kinetic energy of the

wheelset (3.11) plus the increase in translational kinetic energy (3.12). So the total kinetic
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energy of the oscillating wheelset system is given by KEtotal = KErot +∆KEtrans:

KEtotal = −1

2
I||V

2
�α

rl

�
θ2 −ml2V 2

�α

rl

�
θ2

= −1

2
V 2

�α

rl

�
θ2

�
I|| + 2ml2

�
(3.13)

Now that we have derived an expression for the total kinetic energy gained at zero yaw,

we would like to estimate the energy loss of the system due to the weight of the wheelset

(and attached railcar). In our model, this lost energy is equivalent to the work done by the

axle load when the wheelset is at maximum yaw. To understand how the load on the axle

does work we need to more precisely quantify how the axle moves in space. Until now, we

have been considering only the lateral movements of the wheelset center and yaw. However,

when the axle yaws and the points of contact between wheelset and rail move in relation to

the coned treads, the difference in radii also causes a change in the vertical height of the

wheelset above the rail. To calculate the change in vertical height of the wheelset, we can use

the conicity of the tread and the change in distance between the support points caused by

the yaw. First, from Figure 3.5 we see that at the maximum yaw of θ, the distance between

the inner and outer contact points increases to:

d =
2l

cos(θ)

Figure 3.5: Increased distance between wheel-rail contacts for a wheelset at maximum yaw.

2l 2 lcos

l

Using the second-order truncation of the Taylor series expansion: sec θ ≈ 1 + 1
2θ

2 in the

limit that θ → 0 (more commonly known as the small-angle approximation), we can rewrite
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this increased distance as:

d ≈ 2l

�
1 +

1

2
θ2
�

≈ 2l + lθ2

Then we can find an expression for the displacement of the support point from the center of

the tread for one of the wheels:

∆d =
1

2
(d− 2l) =

1

2

�
2l + lθ2 − 2l

�
=

1

2
lθ2

Then the axle load falls by a height proportional to the displacement of the contact points

on the coned tread (see Figure 3.6):

∆h = α∆d =
1

2
αlθ2

Figure 3.6: Change in axle height with maximum yaw.

h

d

Then the work done by the weight of the wheelset and railcar, W , in lowering the axle

load a distance ∆h is given by Wload = W(∆h):

Wload =
1

2
Wαlθ2 (3.14)

The work done by the axle load is the energy lost from the system. In order for the

motion of the wheelset to continue, at least an equal amount of energy must be extracted

from the forward motion of the wheelset since energy is conserved. So the critical speed is

found from the energy balance; in other words, the critical speed occurs where the magnitude

of the total kinetic energy of the oscillating wheelset (3.13) equals the work done by the axle
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load (3.14). Setting KEtotal = Wload and solving for V yields the expression:

1

2
V 2

�α

rl

�
θ2

�
I|| + 2ml2

�
=

1

2
Wαlθ2

V 2 [I|| + 2ml2]

rl
= Wl

V 2 =
Wrl2

I|| + 2ml2
(3.15)

This estimation for the maximum or critical speed on straight track is independent of

the wheel taper, but depends on the ratio of the axle load to wheel set mass. If the treads

were truly conical, independence from α would hold as described. However, in practice wear

on the wheels cause the taper to vary across the tread width, so that the value of the taper

used to determine the energy lost (or work done by the axle load) is different from that used

to calculate the kinetic energy gained; so they do not cancel out. Denoting the conicity of

the kinetic energy as k and the conicity of the work done as α, we get a more general critical

speed equation of:

V 2 =
Wαrl2

k[I|| + 2ml2]
(3.16)

where α and k are now shape factors determined by the wheel wear. This generalized result

is derived in [25] from an analysis of the system dynamics using standard control engineering

methods.

We previously hinted that this expression for the critical speed of the onset of hunting

oscillation is an underestimate of the true onset speed. This is mainly due to two assumption

of the kinematic model: the first being that the energy of the system is conserved and the

second being that we consider only a single wheelset, devoid of any suspension systems

or coupling to other axles in a truck. We modeled the energy lost at maximum yaw as

simply the work done by the lowering of the axle load, or weight. However there are many

other sources of energy loss when one considers deformations of the wheel and rail and heat

and sound energy dissipated to the surroundings. If the assumption of energy conservation

were relaxed and we could quantify these additional losses, the speed given by Equation

(3.15) would be much higher. Furthermore, the energy loss term can also be increased by

considering the wheelset as a part of a larger truck and suspension system. By including an

elastic constraint on the yaw motion of the axle, we can introduce an additional energy loss

arising from spring tension or elastic forces. This motivated the arrangement of wheelsets in

suspension frames, or bogies, to increase the constraint on the yaw motion of the wheelsets
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and to apply elastic constraints, ultimately to raise the maximum allowable speed (before

the onset of hunting).

It should be noted that the motion of a wheelset itself is more complicated than the simple

periodic motion analysis would indicate, especially when considering the many components

that couple the wheelset to the railcar. For example, the vehicle suspension applies additional

restraining forces so that at high speed, the wheelset generates additional gyroscopic torques.

These additional torques will modify the estimate of the critical speed. Furthermore, a

real railway vehicle has many more degrees of freedom than an individual wheelset and,

consequently, may have more than one critical speed; and it is by no means certain that the

lowest speed is dictated by the wheelset motion derived above.

Although the critical speed estimate from purely kinematic consideration is not exact,

the analysis is instructive because it shows why hunting oscillation, a very real and important

aspect of railway motion, occurs. We have shown that as the speed increases, the inertial

forces become comparable with the adhesion forces. This is why the critical speed depends

on the ratio of the axle load (which determines the adhesion forces) to the wheelset mass

and geometry (which determine the inertial forces). From these kinematic equations we can

also see that below a certain speed, the energy which is extracted from the forward motion

of the train is insufficient to replace the energy lost by lowering the axles. In this situation,

the periodic motion damps out and the wheelset eventually returns to its central position

along the track, assuming there is no further perturbation. However, above this critical

speed, the energy extracted by the forward motion is greater than the loss in energy and the

amplitude of oscillation builds up. In this case, only shortly after the onset of hunting, the

amplitude of oscillation will exceed the maximum possible lateral displacement constrained

by the standard play. The wheel flanges will impact the rails, potentially causing damage

to both the wheel and track, and in more serious cases causing sufficient lateral forces for

the wheel to mount the rail, derailing the car. The following chapter will use the critical

speed equations derived from kinematic approximations to explore how track and wheelset

geometric design as well as railcar loading influence hunting oscillation and the maximum

speed it imposes.

3.3 Other Straight Track Derailments

This chapter has focused on the description of wheelset hunting, or the oscillation of lateral

displacement and yaw of a wheelset down tangent track. It is also important to note that

there are other dynamics that can cause derailment on these same sections of track. The
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two most prevalent of these other instabilities, bounce and harmonic roll or rock-off, take

into account dynamics not just on the wheelset, but also on the railcar.

3.3.1 Bounce

Bounce refers to the vertical motion of a vehicle. Freight cars sit on two trucks, one on

each end, that supports the wheels, axles, and bearings. The standard truck consists of

two side frames with a bolster mounted on a spring in the middle. A train traveling on

bumpy track will bounce the freight car body up and down on the spring-mounted bolster

[8]. Bounce is induced by any number of factors, including rail and track defects, going from

a section of relatively soft roadbed to stiff roadbed (such as at a grade crossing or bridge

abutment), or excessive speed. In general, vertical perturbations from track dips and other

factors are resisted by the friction wedges of the railcar which act like shock absorbers in an

automobile. If these friction wedges wear out or the car bounces too energetically, it causes

weight transfer among the wheels that can result in wheel climb. In severe cases, the weight

on the wheel is reduced (and the L/V ratio is increased) to the point that the wheel lifts

completely off the rail. Bounce usually occurs at speeds above 40 mph [16].

3.3.2 Harmonic Roll

Harmonic roll refers to the side-to-side, resonant rocking motion of a railcar body. It most

often occurs on jointed track where the spacing of the trucks closely matches the spacing of

the joints [16]. This is because the rail joint is one of the weakest points of the track and

can flex and cause the wheel to dip. Since rail joints are staggered, the wheels dip on one

side and then the other causing the car to rock back and forth [8]. Other factors such as a

shifting load, high center of gravity, or damaged or missing car suspension components can

also cause or contribute to harmonic roll. If the motion magnifies or resonates, wheel lift

or wheel climb results because the vertical load on one wheel is lessened or in some cases is

negative (upward) [16]. Derailments caused by harmonic roll usually require several cycles of

roll before the forces and conditions are sufficient to cause the derailment. Furthermore, like

the case of a heavy and tall railcar on a highly banked curve, harmonic rock-off derailments

usually occur at low speeds, particularly between 10 and 25 mph [16]. Therefore, harmonic

roll is more problematic for freight vehicles that are also more likely to have higher centers

of gravity.
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Chapter 4

Parametric Analysis for Speed on

Straight Track

4.1 Lateral Displacement and Axle Yaw Oscillation

In the previous chapter we demonstrated that, if perturbed from a straight path, the coned

wheelset on straight track oscillates in both lateral position and axle yaw. We found that

these displacements are described, to a first approximation, as simple harmonic motion

with lateral displacement following Equation (3.1) and axle yaw, which lags behind lateral

displacement by a quarter of a cycle, following Equation (3.6):

y = yo cos

�
2π

λ
x

�

θ = θo sin

�
2π

λ
x

�

We found that the maximum amplitude of the lateral oscillation, yomax , is constrained by

half of this standard play between the wheelset and the rails according to Equation (3.3):

yomax = l − w

2
− t

and that the maximum yaw of the wheelset is related to yomax by Equation (3.7):

θomax = sin−1

�
2yomax

r + αyomax

�
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We also noted that both the lateral displacement and axle yaw oscillations had the same

periodicity, with wavelength given by Equation (3.2) and frequency given by Equation (3.4):

λ = 2π

�
rl

α

f =
V

2π

�
α

rl

From these equations for the periodic motion of the wheelset down tangent track, it is clear

that the lateral displacement and axle yaw oscillations depend on the gauge of the track, 2l,

and a number of geometric factors of the wheelset. For example, the oscillation amplitude

depends on the axle width, w, and the flange thickness, t, while the wavelength of the

oscillation depends on the average running radius of the wheels, r, and the conicity of the

treads, α. The following sections explore how some of these track and wheelset geometries

affect the lateral displacement and axle yaw oscillations for a hunting railcar. Later in the

chapter, we will explore how the critical speed of he onset of these hunting oscillations is

also affected by many of these same geometries, as well as railcar loading.

4.1.1 Rail Gauge

The US railroad network is constructed almost exclusively with 56.5 inch standard gauge. As

previously mentioned, this gauge is maintained to strict tolerance levels because constant use

or faulty installation can narrow or widen gauge, which can affect the dynamics of wheelsets

and railcars on both curved and straight track. We have seen that narrowed gauge can

exert sufficient lateral forces on a wheel to cause it to climb the rail. Although this is more

common in curving situations, the same problem can arise during hunting oscillation, when

one wheel adopts a more lateral position than the other. However, on tangent track a more

common gauge problem is wide gauge, which can increase hunting and cause rough riding

[16].

From the derived oscillation equations, it is clear that the rail gauge, 2l, factors into the

wavelength of both the lateral displacement and axle yaw oscillations. It also appears in the

calculation of standard play, which constrains the maximum amplitudes of these oscillations.

For a standard gauge wheelset, wider gauge leads to a longer wavelength (lower frequency)

but a higher amplitude of oscillation. Although lower frequencies of oscillation are often

desirable, the increase in oscillation amplitude with widened gauge is what causes rough

riding. Since the maximum lateral acceleration of the wheelset in oscillation is related to the

amplitude of that oscillation, this increased amplitude means that the laterally-oscillating
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wheelset exerts greater force on the rails as it travels back and forth along the track. These

more forceful oscillations can cause increased damage to wheel and rail, lead to instabilities,

and can be felt more severely by passengers or delicate freight. Therefore, for the stan-

dard North American interchange freight wheel, AAR1B, a maximum of 1.2 inches of gauge

widening from the standard value is allowed for a freight vehicle operating in the low-speed

range of 25 to 40 mph [28]. For higher-speed, lighter passenger trains, rail gauge widening

is even more strictly maintained.

Other Gauge Systems

Although the majority of railroad lines in America and many new lines abroad are con-

structed with standard gauge, we have seen that around the world here exist narrow and

broad gauge systems. These systems have significantly different dynamic oscillations on

tangent sections of track. In general, narrow gauge results in a lower wavelength (higher

frequency) of oscillation while a broad gauge results in a higher wavelength (see Figure 4.1).

Figure 4.1: Lateral oscillation for new wheelsets on narrow, standard, and broad rail gauge
systems.

Although the periodicity of oscillation varies across gauge systems, there is little difference

in oscillation amplitudes on narrow, standard, and broad gauge. This is because in industrial

practice, most wheelsets are constructed so that the standard play is comparable on narrow,

standard, and broad gauge. In other words, wheelsets made for narrow gauge lines have
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proportionally smaller axle widths and flange thicknesses. Similarly, wheelsets constructed

for broad gauge lines have larger axle widths and thicker flanges. Therefore, although the

rail gauge appears in the calculation for oscillation amplitude, system-specific construction

of wheelsets practically eliminates the affect of gauge on amplitude.

Since broad gauge systems then have lower oscillation frequencies at roughly the same

amplitude, broad gauge is desirable for most rail traffic. In the next section, we will see that

broad gauge also leads to higher onset speeds of straight track instabilities. This means that

broad gauge construction contributes to riding comfort and increases maximum speed limits

on tangent track. Despite this fact, broad gauge is not generally used for lighter, faster

passenger lines because of its more expensive, solid construction. For this reason, broad

gauge is still used mostly for heavy, slow freight traffic.

In industrial practice the gauge of the track can be regularly maintained so that it

conforms to strict tolerance levels even under heavy usage. This means that prompt, although

costly maintenance can help reduce if not eliminate many of the instabilities due to oscillation

on straight track. Irregular gauge can also cause irregular rail head wear, which in turn

degrades the alignment and surface of the tracks. Therefore, maintaining rail gauge also

helps reduce wheel wear, which is another important focus of rail maintenance. This wheelset

wear, not unrelated to misalignment of track, will be explored more extensively in the next

section.

4.1.2 Wheel Geometries: Flange Thickness and Conicity

As trains run in service, uneven wear on the flange and wheel treads can cause substantial

changes in wheelset geometries. If a train takes curves too quickly and forces flange contact

or oscillates on straight track, over time the thickness of the flange will decrease. Worn

or defective wheel flanges can cause or contribute to a train derailment. In some cases,

flanges become sufficiently thin to allow a wheel to drop between the rails. Flange wear also

increases the play between the wheel and rail and therefore increases the maximum allowable

amplitude of lateral oscillation. This more severe hunting can lead to increased lateral wheel

rail forces, possibly causing wheel climb.

If we consider the standard North American freight wheel profile, the AAR1B, on stan-

dard gauge of 2l = 56.5 inches, new wheelsets are constructed with an axle width of w = 53.15

inches and a flange thickness of t = 1.38 inches per wheel [28]. These newly manufactured

geometries give the wheelset a standard play of σs = 0.59 inches and a corresponding max-

imum oscillation amplitude of yo = 0.295 inches, also called the flangeway clearance. This

agrees with industrial values which state an average flangeway clearance of 0.28−0.39 inches
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[26].

In service, however, running with flange contact wears the wheels and reduces the flange

thickness. Since a maximum of 0.59 inches of flange wear is allowed before wheelsets must

be decommissioned or re-profiled, a completely worn-out wheel can have a flange thickness

of as little as 0.79 inches [28]. Although this is the extreme value, most wheel flanges with

thickness of 15/16 (or 0.947) inch or less are considered condemnable [16]. This smaller

flange thickness, given no change in the rail or wheel gauge, yields a much higher standard

play of 1.77 inches. This corresponds to a flangeway clearance of 0.885 inches, more than

doubling the upper limit on the oscillation amplitude for a newly manufactured wheel (see

Table 4.1). So for a new wheelset and rails, the maximum yaw is only about 2 degrees

and the maximum lateral displacement is 0.3 inches. At the geometric limits of wear before

cancelation of service, the value of the maximum yaw and the maximum lateral displacement

triples, to a values of a little under 6 degrees and 0.9 inches respectively.

Table 4.1: Amplitude and wavelength of wheelset oscillation for new and worn AAR1B wheel
of running radius r = 18 inches on standard gauge.

Flange Thickness, t Conicity, α Amplitude, yo Wavelength, λ
(in) (in) (ft)

New Wheel 1.38 0.5 0.295 53
Worn Wheel 0.79 0.35 0.885 20

Wear affects not only the flange, but also the profile of the tread of the wheel, thereby

affecting the wheel-rail interface and potentially increasing the likelihood of a derailment

[16]. The other wheelset geometry most noticeably affected in service is the tread conicity,

or the slope between the outer and inner wheel tread radii. For new wheels, the conicity is

manufactured at a value of 1/20 or 0.05 for most railways. In service, however, the value of

the effective tread conicity increases with wear (Figure 4.2).

Figure 4.2: Effective conicity of a worn wheel profile.

r

y

effective  conicity  = r
y

62



This increase in conicity over time decreases the wavelength of the kinematic oscillations.

In fact, railroad standards allow a wheel with conicity up to 0.35 to remain in service [27].

Holding all other variables constant, this increase in conicity with wheel wear can change the

wavelength of oscillation from 53 feet to as little as 20 feet (see Table 4.1). This decreased

wavelength means more frequent back and forth oscillation of the train along the track,

which can add additional lateral stress to the rails and make for a less comfortable ride.

Considering the wear effects on wheel geometries simultaneously, we see that decreased

flange thickness increases the amplitude of oscillation while increased conicity decreases the

wavelength of oscillation. These wear effects sum to give much more rapid and violent

oscillations in lateral displacement and axle yaw for wheelsets that have seen significant

service (see Figures 4.3 and 4.4). The following section explores how the more rapid frequency

of oscillation affects passenger comfort (as well as the state of more delicate freight).

Figure 4.3: Lateral displacement oscillations for new and worn-out wheelsets.
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Figure 4.4: Axle yaw oscillation for new and worn-out wheelsets.

4.2 Riding Comfort

We have seen how changes in rail and wheelset geometries affect the oscillatory motion,

particularly the wavelength, of the railcar on tangent track. Another way of characterizing

the periodicity of the oscillation is by looking at frequency rather than wavelength. In the

previous chapter, we derived Equation (3.4) for the frequency of both the lateral displacement

and axle yaw oscillations:

f =
V

2π

�
α

rl

This frequency depends most heavily on the constant longitudinal speed, V , of the train down

the track, but is also related to the same wheel and rail geometries that affect wavelength.

Examining how these parameters affect the frequency of hunting oscillation is important

because vibrations in the railcar can be unpleasant for passengers. Therefore, measuring the

mechanical or physical vibrations can serve as a way to quantify passenger comfort, which is

also affected by more subjective environmental factors such as noise level, temperature, and

humidity [18].

Today one main standard for assessment of whole-body vibration exposure is ISO 2631

[1]. However, this standard is not a perfect quantification of rail passenger comfort because

it is not specific to railroad vehicles which often exhibit different vibrations than other forms

of transport. The vibrations in railroad vehicles are unique because passengers experience
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low overall acceleration magnitudes, because the vibrations fluctuate due to train speed and

variations in track quality, and because the peak frequencies are linked to the particular

suspension characteristics of the railway bogie [18].

Investigations have shown that the human body is most sensitive to vibrations in the

frequency range of 4 to 6 Hz (although some sensitivity remains frequencies of up to 30

Hz). A newly constructed railcar with fully-functioning suspension system generally has

vibrations in the frequency range of 0.5 to 2 Hz [18]. This is somewhat lower than the

vibrations that cause the most discomfort to passengers, so that overall vibrations in trains

are not sever. However, any defects in the railcar or wheelset that cause an increase in

oscillation frequency can potentially impact passenger comfort. It has been found that, in a

railcar, the greatest resonance peaks are in the transverse and vertical directions, where the

transverse frequencies are related to the hunting of the wheelset and the vertical frequencies

are linked to the suspension characteristics of the railway vehicle [18]. It has been found that

the vibration acceleration value is higher near the seat and these vibrations are transmitted

along mainly the vertical direction. This is why back pain is the most common complaint of

rail passengers [29]. Furthermore, due to its length, the body of the railway carriage is not

rigid and a modern steel railway vehicle may have a resonant frequency of 8 Hz or above in

the longitudinal direction.

There are several standardized methods of measurement and assessment of whole-body

vibration in moving trains specifically. One of the first attempts to provide a metric which

correlates objective vibration measurement to the subjective parameter of ride comfort (or

quality) was proposed by Sperling. Dr. Sperling found that depending upon the frequency

range, the sensitiveness of the human body is related to acceleration to which it is subjected.

Under Sperling’s comfort index system, which is still used today, the vehicle is assessed

according to the effect of mechanical vibration on the occupant according to the equation

[18] [29]:

Wz =

� nf�

i=1

W 10
zi

�1/10

(4.1)

where nf is the total number of discrete frequencies of the acceleration response of the railway

vehicle identified by Fourier analysis and Wzi is the comfort index corresponding to the ith

discrete frequency, fi in Hz. Each Wzi is given by:

Wzi =
�
aiB(f 2

i )
�3/10

(4.2)
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where ai denotes the amplitude of the peak acceleration in m/s2 of the ith and B(fi) is a

derived frequency dependent weighting factor that expresses human vibration sensitivity.

This weighting factor for a given frequency is:

B(f) = k

�
1.911f 2 + (0.25f 2)2

(1− 0.277f 2)2 + (1.563f − 0.0368f 3)2
(4.3)

where the coefficient k is different for vertical (equal to 0.588) and horizontal (equal to 0.737)

vibration components [14]. The index number given by Equations (2.1), (2.2), and (2.3) for

the frequency distribution in a railcar is then correlated to a subjective measurements of

riding comfort given in Table 4.2 [18] [14].

Table 4.2: Numerical values for various degrees of riding comfort.

Index Subjective Ride Comfort Body Fatigue Onset
1.0 Very good; barely noticeable
1.5 Almost good over 24 hours
2.0 Good, but noticeable
2.5 Nearly good; more pronounced but not unpleasant 10.0 hours
3.0 Passable; strong, irregular but still tolerable 5.0 hours
3.5 Extremely irregular and unpleasant, 2.8 hours

prolonged exposure intolerable
4.0 Able to run, but extremely unpleasant, 1.5 hours

prolonged exposure harmful
4.5+ Not able to run; dangerous 45 minutes or less

The kinematic analysis derived in the previous chapter does not take into account the

suspension characteristics of the railcar, so it cannot present a complete picture of passenger

riding comfort. From Equation (3.4), it is clear that the faster the train is moving, the higher

the frequency of hunting oscillation and therefore the more likely that these frequencies will

be within the range of human discomfort. The frequency of the oscillation in the railcar also

changes if the conicity is changed. Therefore, some high speed passenger rail routes have

adopted a conicity of 1/40 instead of the standard 1/20. However, this change in conicity, if

not accompanied by changes in track design, can cause unstable and uncomfortable resonance

between the vehicle and the track.

More sophisticated computer simulations, such as the one performed in [18], can shed

light on how frequency and riding comfort related to speed and other parameters (see Figure

4.5). From Figure 4.5, it is clear that the Sperling’s ride index value can be quite high for

freight trains, reaching up to 2.8 for a subjective ride comfort between “More pronounced
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but not unpleasant and “Strong, irregular but still tolerable [18]. This is not necessarily a

concern for most freight traffic, although can be a problem for the transport of fragile goods

and can potentially affect the alertness of the engineer and crew. For the passenger train, the

Sperling’s ride index maximum value is 2.2 and this means that the subjective ride comfort

is found between “Clearly noticeable and “More pronounced but not unpleasant.

Figure 4.5: Simulated Sperling’s ride index for a freight train (�) and a passenger train (�)
traveling at various speeds.

We conclude that it is evident that ride index as an evaluation criterion is exclusively

based on the comfort consideration of the passengers traveling in the coach. This is an

important parameter to consider when designing suspensions for passenger cars, but to apply

this criterion for the assessment of the safety of operation of general rolling stock would be

too rigid a standard. Instead, safety standards should be based on running speeds at which

these oscillations are damped out and do not cause risk of derailment from amplification.

4.3 Critical Speed of the Onset of Hunting

The previous section explored how rail and wheel geometries affect the unstable periodic

motion of the hunting wheelset down tangent track. In this section we will explore how some

of these same parameters affect the critical speed at which these oscillations are amplified.

Because hunting is a serious safety concern, the critical speed of oscillation onset is effectively

a maximum operation speed. In Chapter 3, we derived the critical speed for the onset of

hunting oscillation using two different methods: (1) estimation of inertial and frictional

forces, and (2) considerations of work and energy. We noted that Equation (3.9) for the

67



critical speed of hunting oscillation derived from (1) was likely an overestimate due to limiting

assumption of simple friction as the adhesion force:

V 2 = µW
rl2

I⊥α

1

θ

We also argued that Equation (3.15) derived from (2) was likely an underestimate due to

the limiting assumption of energy conservation:

V 2 =
Wrl2

I|| + 2ml2

In the following parametric analysis, we will use these two equations to give an upper and

lower bound for the critical speed of hunting oscillation onset. We find that these equations

do indeed bound published experimental or simulated values for different rolling stock and

rail characteristics. We will use this analysis to discuss the implications for rail and railcar

design as well as maintenance of straight track.

4.3.1 Railcar Weight and Wheel-Rail Geometries

The American Association of Railroads (AAR) sets interchange rules on freight car capacities

on US rail lies. The AAR defines and regulates a number of different types of car empty

and loaded weights. The gross rail load is defined as the maximum permissible weight of a

loaded freight car in interchange service based on the size of the wheel axle used [3]. The

tare or empty weight of a car rounded to the nearest 100 pounds is known as the light

weight. From the gross rail load and the light weight, the AAR defines the load limit or the

maximum amount of lading by weight that can be carried by a specific car. The load limit

is the difference between the gross rail load and the light weight, expressed to the nearest

100 pounds. Finally, the AAR defines a car’s capacity as the nominal amount of lading a

car can carry in 1000 pounds. The car capacity can be no more than the load limit [3]. In

general, freight cars are classified according to nominal carrying capacity from 30-125 tons.

On the US network, 100-ton capacity cars with 4 or 6 axles are the most common [16].

Table 4.3 modified from Rule 89 of the Field Manual of the AAR Interchange Rules, gives

the maximum weight on the rails allowed for certain freight car dimensions as well as the

nominal capacity while Table 4.4 gives the light weight ranges for different types of freight

cars.

Because most passenger-carrying systems do not engage in interchange service, passenger

car design, operation, and performance tend to be more specialized to a particular network
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Table 4.3: Gross weight limits for freight cars of certain dimensions.

Journal Size 4-axle (lb) 6-axle (lb) Nominal Capacity (T) Wheel Diameter (in)
41
4 × 8 103,000 154,500 — —
5× 9 142,000 213,000 — —

51
2 × 10 177,000 265,500 50 33
6× 11 220,000 330,000 70 33
61
2 × 12 263,000 394,500 100 36

61
2 × 12 286,000 429,000 100 36
7× 12 315,000 472,500 125 38

Table 4.4: Light weights of various types of freight cars.

Car Type Light Weight (T)
Boxcar 29-47
Refrigerator car 42-51
Flat car 29-41
Gondola car 33-39
Hopper car (open top) 25-32
Hopper car (covered) 21-35
Tank car 28-55

and therefore vary greatly from system to system. All passenger cars are generally designed

and maintained to the specifications of AAR Standard S-034.49 C.F.R. 238 [16]. Amtrak

cars include baggage, sleeper, dormitory, coach, lounge, dining, mail, and other types of cars.

Table 4.5 shows the wide variety of dimensions and weights for Amtrak passenger cars of

different types [16]. Amtrak trains usually consist of one or two locomotives with anywhere

from four to twenty-two cars of various types [11].

From Equations (3.9) and (3.15) for both the upper and lower bounds on the maximum

speed of the onset of hunting oscillation, it is clear that one of the most important parameters

in straight track stability is the weight on each wheelset or the axle load, W . In general,

the higher the axle load the higher the critical speed before the onset of hunting. This is

because the higher the magnitude of the axle load, the greater the frictional forces between

the wheel and rail. These higher frictional forces counteract the inertial forces or lead to

greater energy loss (see Table 4.6).

Because hunting oscillation does not occur for heavy trains until very high speeds, most

freight traffic is protected from these straight track instabilities. This is because freight cars

tend to be heavier and to already move at slower speeds. Therefore, this means that if

a car in a freight trains does experience hunting oscillation, it is often an empty car being
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Table 4.5: Dimensions and weights for various types of Amtrak cars.

Series Type Length (ft) Light Weight (lbs) Capacity (1000 lbs)
Heritage Dormitory 85 126,500 10

Lounge 85 161,600 86
Amfleet I Amcoach 85 106,000 78
Amfleet II Amlounge 85 109,600 49
Viewliner Sleeper 85 136,000 30
Superliner I Coach 85 147,500 62

Sleeper 85 155,700 44
—– Baggage 74 96,400 —
—– Mail 64 92,400 —

Table 4.6: Calculated upper and lower bounds on the critical speed of hunting oscillation for
representative 6-axle freight and passenger cars with 36-in wheels.

Vcritical

Lower Bound (mph) Upper Bound (mph)
Freight Boxcar Wempty = 120000 lbs 11 178

Wgross = 65750 lbs 26 416
Passenger Coach Wempty = 17667 lbs 14 215

Wgross = 30667 lbs 18 284

transported to another part of the network. We have discussed previously how not all cars in

a freight train are loaded and how an uneven distribution of empty and loaded cars can have

some effect on the train’s dynamic behavior. Discussion of slack effects on curves stressed

the importance of managing the location of empty cars due to their lower L/V ratios and

higher chance of derailment. This analysis of straight track reinforces the importance of

trying to load cars evenly and keeping the empty cars to the back of the train, since they

are the most likely to exhibit unstable oscillation on stretches of tangent track.

Truck-hunting is particularly severe for high-speed passenger trains that also tend to

be lighter than their laden freight counterparts. As a result, limiting hunting oscillation

presents a critical design concern for passenger rail lines. Most passenger equipment today is

designed for operating speeds of at least 110 mph, which for the lighter-weight vehicles can

be dangerously close to the critical speed for the onset of hunting instability given by the

derived kinematic equations. For this reason all cars on all trains operating above 125 mph

in the United States have sensors that sound an alarm if truck-hunting occurs [8]. For many

years, classic hunting oscillation limited steel-wheeled trains to operation speeds of about

140 mph (for heavy cars). The design of new suspension systems, which are neglected in the
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kinematic derivations, have more recently permitted speeds exceeding 180 mph [26].

The consideration of axle load as a major factor determining the maximum safe operating

speed on tangent track becomes particularly important when one realizes that the other

parameters in the equation for the critical hunting speed, such as wheel tread radius, coning

and rail gauge, are not usually considered variables in the design of railcars and straight

track sections. The following two short sections look at how discrete industry values of

wheel diameter and rail gauge affect the maximum speed equation at varying values of axle

load.

Wheel Diameter

Diesel-electric locomotives are generally equipped with 40 or 42-inch wheels. Wheel sizes for

freight cars vary with the type of rolling stock, but generally have values of 33, 36 (most

common), or 38 inches (see Table 4.3). Mainline passenger cars typically also have 36-inch

wheels although some commuter lines use diameters as low as 28 inches [16]. The affect of

these different wheelset radii on the onset speed of hunting oscillation is not immediately

obvious, since radius appears both in the numerator and in the denominator (in the moments

of inertia of the wheelset) of both the upper and lower bound critical speed equations. We

find that the numerator relationship dominates so that larger wheel diameters allow higher

speeds before the onset of instability (see Figures 4.6 and 4.7).

Figure 4.6: Upper bound on the critical speed of hunting oscillation as a function of axle
load for wheels of different average wheel diameters.
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Figure 4.7: Lower bound on the critical speed of hunting oscillation as a function of axle
load for wheels of different average wheel diameters.

Rail Gauge

The United States and much of the world maintain their track at a standard gauge of 56.5

inches. US industrial standards often allow no more than an inch of deviation before lowering

the track classification and requiring lower speeds until repairs. Other gauge systems exist

throughout the world, such as the narrow meter gauge (39.4 in) in south Asia and the 66.0-

inch broad gauge in India. In general, narrow gauge decreases and wider gauge increases

both the upper and lower limit on the maximum safe speed before hunting oscillation (see

Figures 4.8 and 4.9).
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Figure 4.8: Upper bound on the critical speed of hunting oscillation as a function of axle
load for a wheel (r = 18 in) on different world gauges.

Figure 4.9: Lower bound on the critical speed of hunting oscillation as a function of axle
load for a wheel (r = 18 in) on different world gauges.

4.3.2 Oscillation Angle and Coning

The upper limit of the critical speed of hunting oscillation was derived from approximations

of inertial and frictional forces and therefore takes into account the axle yaw, θ, and the wheel
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tread conicity, alpha. Therefore, this equation can account for changes in the periodic motion

of the wheelset, particularly those induced by severe wheel wear 1. We have already shown

that as wheels wear over time, flange thickness decreases and effective conicity increases,

contributing to oscillations of higher frequency and amplitude in both lateral displacement

and yaw. We have shown that a new wheel has a conicity of 0.05 and a maximum axle yaw

of 2 degrees, while a worn wheel has a conicity of 0.35 and a maximum yaw of 6 degrees.

Figure 4.10 shows the upper bound for the critical speed of the onset of hunting oscillation

as a function of axle load in pounds for a new and a worn-out wheel. We can see that for any

railcar weight, the speed at which hunting instability occurs is drastically reduced for worn

wheels compared to new ones. So not only does wear of the wheel profile affect the amplitude

and periodicity of the oscillation, but also causes oscillation at much lower operating speeds.

Figure 4.10: Upper bound on the critical speed of hunting oscillation as a function of axle
load for new and worn wheels (r = 18 in).

New wheels give upper bounds for hunting instability that are not restrictive for even

the fastest passenger travel (125 mph) in the United States. But when considering speed

limits for straight sections of track, railroad companies must consider all of the trains and

wheelsets in service. This means that companies are often forced to balance increased speed,

yielding more efficient traffic flow and revenue, and costly maintenance regiments. Often the

cost of re-profiling or buying new wheels may be more expensive than the money lost from

lower speeds.

1
If the wear profile is known, the more refined Equation (3.16) derived from energy considerations in [25]

can be used to show the affects of wheel wear on the lower bound of the critical speed.
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4.4 Best Practices for Straight Track Design

Truck hunting refers to the oscillatory yawing of the vehicle trucks between the rails. Truck

hunting increases lateral wheel-rail forces and can result in derailment by wheel climb and

other instabilities. Therefore a major concern of tangent track construction is the operating

speed at which wheelset oscillations remain damped out. In practice, truck hunting generally

involves empty or lightly loaded cars, train speeds above 45 mph, dry rail, tangent or near-

tangent track, roller bearing wheel sets, worn wheel treads, and good quality track [16].

We have shown that the periodic motion (in lateral displacement and axle yaw) of truck

hunting is more pronounced, in both amplitude and frequency, when there is greater standard

play between the wheelset and the rails. In other words, hunting oscillation is more violent

when the track gauge is significantly wider than the wheel gauge, or axle width. This

greater standard play can often be attributed to wheel wear that reduces flange thickness or

to defects in track alignment leading to wider gauge. Both of these factors can be reduced

with more stringent maintenance and enforcement of tolerance limits. However, re-profiling

wheelsets and replacing rail that has widened beyond tolerance limits are both expensive

and disruptive to the rail system. Therefore, many railroad companies must balance the

gains in safety from constant maintenance and minor repairs with maintaining profits and

delivery schedules.

Maximum safe operating speeds on tangent sections of track are dictated by the critical

speed of the onset of these hunting oscillations. The most important factor for this critical

speed is the value of the axle load, or weight from the railcar on each individual wheelset.

The heavier the car, the faster it can go before hunting instabilities occur. This means that

faster, lighter passenger cars and empty freight cars are the most likely to exhibit hunting

and potentially derail. This re-emphasizes the importance of managing the distribution of

cars in freight trains (and passenger trains to a lesser extent).

Unlike with curved track, for which rail managers and engineers can vary curve radius and

cant angle to increase maximum operating speeds, maximum stable speeds on straight track

are less dependent on the strict geometries of the railcar, wheelset, and track. Therefore the

kinematic approach to wheelset and railcar dynamics on straight track reveals fewer tips for

increasing traffic flow. This is because the derivations presented do not consider the wheelset

as a part of an overall truck and suspension system, which has been designed to help damp

out these oscillations and allow faster speeds. What this kinematic approach does reveal,

however, is the importance of industrial management and strict maintenance schedules.
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Conclusion

Railroad systems throughout the world are facing pressures to increase efficiency and traffic

flow. In the United States, this desire to increase the speed and number of trains on existing

track is complicated by a number of factors, including the age of existing infrastructure, the

inability to expand rail lines into nearby real estate, and the lack of lines dedicated to only

passenger or only freight traffic. This work has attempted to consider these challenges in

the context of the physical constraints inherent in the train-track system and to offer insight

into how the US can optimize their existing network while maintaining their reputation of

safety.

This thesis presents critical speed derivations and kinematic descriptions of motions and

instabilities on curved and straight track using fundamental physical principles. Chapter

1 derived the maximum safe speed before overturning on a flat or superelevated curve and

discussed other possible single-wheelset or slack-action derailments. Chapter 3 presented

the periodic motion equations of a hunting wheelset in lateral displacement and axle yaw

and derived an upper and lower bound on the critical speed of the onset of these unstable

hunting oscillations. The equations derived in Chapters 1 and 3 are not meant to be accurate

predictors of speed limits on these respective sections of track; instead, they are meant to

show how the critical speed of a railcar or wheelset depends on certain geometric factors.

Chapters 2 and 4 presented my analysis of the parameters that affect these maximum

safe operating speeds on curved and straight track respectively. In this way, I demonstrated

how basic kinematics could illustrate some of the problems faced by railroad managers and

engineers optimizing both curved and straight sections of level track. In particular, it is

clear that the optimal track design depends on the character of the traffic along the route.

Optimizing corridors shared by both freight and passenger rail is difficult because slower,

heavier, and longer freight trains exhibit different dynamics than faster, lighter, and shorter

passenger trains. I showed that heavy, slow freight trains often have more trouble in curving

situations while hunting oscillations on straight track are more likely to present a problem

for lighter, faster passenger cars.

For curved track, I showed that the best practice for increasing speed for all traffic was
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to make the curve gentler (increase the radius). This approach allowed passenger trains to

traverse the curve more quickly without adversely affecting the slower, heavier freight traffic.

In fact, gentler curves could also help to reduce slack-related derailments such as jackknifing

or stringlining in long freight trains. I also discussed why the rail industry often uses the

easier and cheaper approach of banking curves and how this can present problems for the

slowest, top-heavy freight trains as it introduces a minimum curving speed. This minimum

speed for freight traffic also illustrated the importance of loading and distribution of cars

within the train. Taking these into account, I concluded that coupling empty cars only at

the very rear of the train was the best case for curving stability, but that this could be costly

in time and labor and thus is not always a profit-maximizing business practice.

In comparison to curved track, it is clear that on straight track the geometries of the

track, wheelset, and railcar cannot be manipulated as freely to reduce instabilities. Instead,

oscillations must often be counteracted with suspension systems that are not included in the

first-order kinematic approximation and therefore beyond the scope of this work. Therefore,

this analysis yields fewer suggestions for safely increasing the maximum speed on tangent

track. However, it does illustrate the importance of strict management and maintenance

of rail and rolling stock. It is clear that track irregularities, such as gauge widening, can

cause more forceful oscillations while wear on the wheelset during service can increase the

frequency and amplitude of hunting oscillation as well as decrease the critical speed at which

these instabilities occur. Therefore, understanding the dynamics of a railcar and wheelset on

straight track does reinforce the lesson that scheduling and paying for regular maintenance,

although sometimes disruptive to delivery of goods or passengers, is one of the best ways to

prevent dangerous and even more costly derailments in the future.
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Appendix A

Basic Geometry of the Wheelset

Each railroad wheelset consists of two steel wheels fixed to a common axle, so that each

wheel rotates with a common angular velocity and there is a constant distance between the

two wheels. Each wheel is flanged to provide guidance along the rail. The wheel treads are

slightly coned to reduce the rubbing of the flange on the rail and to ease the motion of the

vehicle on curves. The fixed axle, flange, and coned tread all contribute to the behavior of

the rail and wheelset as a dynamical system.

Alignment of a basic railway wheelset on straight track.

rails

axle

sleeper

wheel centrally
placed on rail

coning of wheel tread

flanges

Coning

It is not known when the coning of the wheel treads was first introduced, but it was a

well-established practice by the early 1820s. Nowadays wheel treads are manufactured with

a taper or conicity, α, of 1/20 (or 1/40 for higher speed lines). This conicity is defined
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as the slope of the tread in the horizontal direction perpendicular to the track. Coning is

instrumental in the behavior and stability of the wheelset on both curved and straight track.

Flanges

The main function of the flange is the prevention of derailment, especially on sharp curves,

switches, or crossings. Flanged rail wheels existed as early as the 17th century, however it

was not until the 1820s when the location and play of the flange with respect to the rail began

to be standardized. Initially there was debate over whether the flange should be positioned

on the inside, outside, or even both sides of the wheel and there was little to no play allowed

between the wheel flange and rail so that trains ran with constant flange-rail contact [7]. In

the early 1830s flangeway clearance opened to reduce lateral forces between wheel and rail

so that nowadays there is a lateral clearance, or play, of about 7 − 10 mm. It is now also

well established that flanges should be located on the inside of the wheel tread and rail to

increase stability on both curved and straight track.

Alignment of a basic railway wheelset on curved track.

rails

axle

sleeper

inner wheel on
smaller circumference

coning of wheel tread

flanges

outer wheel on
larger circumference
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Appendix B

Wheelset Moment of Inertia Approximations

The moment of inertia of a composite body is equal to the sum of the moments of its

individual pieces, so we can consider the moments of inertia of the axle and wheels separately

and then sum them according to: Iwheelset = Iaxle+2Iwheel. We will approximate the moment

of inertia of each of the wheels (ignoring the geometries of the flange and coning) and the

axle as solid cylinders with specified radii and widths.

First we consider the moment of inertia about an the axis parallel to the width of the

wheels and axle through the center of mass of the wheelset, I||. This moment of inertia is

used in the calculation of the rotational kinetic energy of the wheelset as it rolls forward

along the track.

rw
ra

ww

wa

parallel  axis  through  the
center  of  mass  of  the  wheelset

Due to inherent symmetry, we know that the moment of inertia of each of the two wheels

will be the same. Since each wheel has a mass mw and a radius rw, the moment of inertia

of a wheel is given by

Iwheel ≈
1

2
mwr

2
w
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Similarly, for the axle of mass ma and smaller radius ra, the moment of inertia is

Iaxle ≈
1

2
mar

2
a

Therefore the total moment of inertia of the wheelset is given by the sum

I|| ≈
1

2

�
mar

2
a

�
+mwr

2
w

Next we consider the moment of inertia about the perpendicular axis through the center

of mass of the wheelset, I⊥. This moment of inertia is used in the expression for the inertial

force resisting the yawing motion of the axle during hunting oscillation.

rw
ra

ww

wa

perpendicular  axis  through  
center  of  mass  of  wheelset

First we consider the moment of inertia of one of the wheels with mass mw, radius rw,

and width ww. Again symmetry dictates that the moment of inertia of each of the two wheels

will be the same. The center of mass of each wheel is a distance
ww

2
+

wa

2
from the axis of

rotation, so we must use the parallel axis theorem. So approximating the moment of inertia

of the wheel as the moment of inertia of a solid cylinder about a translated perpendicular

axis, we get

Iwheel ≈
1

4
mwr

2
w +

1

3
mww

2
w +mw

�
1

2
(ww + wa)

�2

Next we consider the moment of inertia for the axle of massma, radius ra, and width wa. The

perpendicular axis passes through the center of mass of the axle, so there is no translation

term. So the moment of inertia is simply

Iaxle ≈
1

4
mar

2
a +

1

3
maw

2
a

So the total inertia of the wheelset is the sum of the moments of inertia of the two wheels
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and the moment of inertia of the axle, so

I⊥ ≈ 1

2
mwr

2
w +

2

3
mww

2
w +

1

2
mw (ww + wa)

2 +
1

4
mar

2
a +

1

3
maw

2
a

For a North American standard freight wheel profile, AAR1B, we have the following

values for the necessary geometries to find numerical approximations for a new wheelset on

standard gauge:

• The weight of the wheelset is about 2200 lbs, with 900 lbs (27.973 slug) in each wheel

and the remaining 400 lbs (12.432 slug) in the axle.

• The standard wheel has running radius of 18 inches (1.5 ft) and a tread width of 5.25

inches (0.4375 ft).

• The axle has a radius of approximately 5.5 inches (0.458 ft) and a length of 53.15 inches

(4.429 ft)

With these values we find that the moment of inertia of the wheelset about an axis parallel

to its length and through its center of mass is I|| ≈ 64 slug · ft2 and the moment of inertia of

the wheelset about the perpendicular axis through its center of mass is I⊥ ≈ 448 slug · ft2.
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