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CHAPTER ONE: INTRODUCTION 

 

Why Climate Change? 

 I began my career in the outdoor industry in 2007 when I came across a job 

posting for a naturalist position. When I interviewed for the job, we took a walk in the 

nature preserve and stopped at an unusually tall cactus growing next to an oak tree. The 

interviewer asked me why I thought the cactus was so tall, and I could not fathom a 

reason, so he explained that it was competing for sunlight with the tree and by growing 

taller it could escape the tree’s shadow. Needless to say, I did not get the job. 

 What did happen, though, was a shift in my understanding of possible career 

options. I had no idea that there were jobs out there where I could learn about nature and 

play games with children to teach them about nature. I ended up getting my foot in the 

door as an office assistant at a different land reserve where, after a short while, I started 

to teach one field trip each week. I was in love with this newly discovered career field. 

Since then, I have worked as a naturalist, traveling scientist, park ranger, residential 

outdoor science school instructor, challenge course facilitator, and trail crew leader.  

 Throughout that time I was eager to learn all that I could about biology, ecology, 

geology, astronomy, chemistry, anthropology, and archaeology; if it had to do with 

connecting with nature, I wanted to know more. Every now and then, though, I would 

hear something about climate change and instead of peaking my interest, it made me 
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want to turn and run. I was intimidated by the subject because I had no understanding of 

weather or climate and it all seemed so overwhelming. I remember someone close to me 

telling me that climate change could not be real because one volcanic eruption puts more 

carbon dioxide in the sky than thousands of cars. I believed that for a long time, but now I 

know that science shows that volcanic eruptions actually have a cooling effect on global 

climate (Mathez, 2009). 

The volcano argument kept me in denial for a long time until a few years into my 

outdoor career, when I realized that as a naturalist/park ranger/environmentalist, I should 

probably know more about climate change to answer any questions that came my way. I 

was intimidated to the point of being scared—I was worried that my worldview would 

change and I wasn’t sure if I was ready for such a shift. I was ready to know the science, 

though, so I started reading. I did end up experiencing that shift in thinking that I feared, 

and it changing everything. 

I included my initial climate change research into my first campfire ranger 

program on human impact, and while I worked hard on it and the visitors received the 

information well, I felt like a fake. I had only scratched the surface of climate science—I 

felt like I knew so little that there was no way I could participate in a discussion about it 

with a visitor. This led me to do much more research, write more ranger and 

environmental education programs, take Earth sciences and climate change graduate 

classes, and eventually undertake this climate-focused graduate research project. Because 

of these experiences, I now feel I have a solid background on the topic to participate in an 

educated discussion, but the biggest thing I have learned is that there is so much more to 

learn. 
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Environmental Education Philosophy 

Much of my environmental philosophy stems from my experience as a naturalist 

and what works in my practice to connect my students with their surroundings. My 

personal experience in environmental education in California has seen two schools of 

thought: one focuses on state science standards and connecting concepts taught in the 

classroom to the real world, and the other focuses on developing observational skills and 

a personal relationship with nature. Most of my time has been spent in the former school 

of thought and for most of it my focus was on developing my group refocusing skills and 

my own content knowledge. I had a chance to work under the second school of thought 

for a year with Westminster Woods Camp and Conference Center in Occidental, 

California. During this time, I had to move away from a mental checklist of standards to 

cover and focus on having the students question and wonder about what they see, hear, 

smell, touch, and taste.  

As I moved through that school year with this program my philosophy shifted and 

I found that my environmental education philosophy moved closer to the inquiry-based 

side and away from the standards-based side. I see the value of standards-based 

environmental education because it enables students to interact with real life versions of 

concepts discussed in the classroom and read in textbooks. It also prevents teachers (our 

customers) from feeling like they are losing classroom time that can be used to raise 

standardized test scores. This immediate, short-term need for environmental education 

must be balanced with long-term goals of cultural environmentalism and sustainability. 

By also placing an importance on observation and cultivating a sense of wonder for 
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nature, students can better develop a sense of value for nature for its own sake and not as 

a commodity. 

In “Common Cause: The Case for Working With our Cultural Values,” Tom 

Crompton (2010) suggests a process to shift our culture away from the extrinsic values of 

money, power, and individual success and toward intrinsic values of community, 

affiliation with friends and family, and self-development. Intrinsic values deal with 

bigger-than-self problems and one who has them will focus on helping others and on 

problems that do not directly affect that individual (Crompton, 2010). If, as a culture, we 

shift more toward intrinsic values, then we will better be able to tackle environmental 

problems and make meaningful changes in the structure of our civilization toward a more 

sustainable way of life (Crompton, 2010).  

One of Crompton’s (2010) steps in his process toward a cultural values shift is 

using frames to more frequently activate our intrinsic values, which will in turn 

strengthen them. Frames are the cognitive structures that we use to perceive reality, 

according to Crompton (2010); they are the thoughts, images, feelings, and related ideas 

tied to any one particular word, idea, or experience. If environmental educators can help 

students build frames that strengthen their value of natural objects and systems, we can 

help them become more intrinsic in their value systems, which will in turn move our 

culture toward a more sustainable future (Crompton, 2010). 

Westminster Woods Camp and Conference Center 

 Outdoor environmental education programs, especially those that have a 

residential component where students spend one or more nights at the program site, have 

been very influential in my life and have helped me grow as a person, an educator, and an 
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environmentalist. One of these programs, Westminster Woods Camp and Conference 

Center, is located just north of the town of Occidental in Northern California. 

Westminster Woods focuses on inquiry-based education, encouraging its naturalists to 

put together lesson plans that focused on the interests and strengths of the naturalist and 

the students, and to modify the activity structure based upon what each group of teachers 

wished to focus. I struggled with this for a period before I realized that this was the 

perfect place to develop and teach a climate change lesson plan in a school setting. I 

wanted to teach children about climate, and I was teaching in a redwood forest 

ecosystem, so naturally I formulated the research question of this capstone: How can the 

relationship between climate change and the coast redwood forest be incorporated into 

fifth and sixth grade environmental education programs?  

The Greater Environmental Education Community 

 I came to this research question not only because I worked at an environmental 

education program in a redwood forest, but because there are a number of other similar 

programs also located in redwood forests that could benefit from the information. I chose 

to focus on fifth and sixth grade because there are many residential environmental 

education programs in California, as well as across the country, that focus particularly on 

these two grade levels. I did not find any previous research on teaching climate in the 

redwood setting and felt that this project would be beneficial to the greater environmental 

education community. 

Project Overview 

Now that I have discussed the personal journey that has led me to this capstone, 

this paper will transition from personal to academic. The research question, again, is, how 



6 

 

can the relationship between climate change and the coast redwood forest be incorporated 

into fifth and sixth grade environmental education programs? To answer this research 

question, scientific reports on the effects and potential effects of climate change on the 

redwood forest were studied, a lesson plan that integrates these concepts was developed 

for naturalists within and outside of Westminster Woods, and a pre- and post-

questionnaire was used to measure and analyze the success of the lesson plan. The goal 

was to develop a successful lesson plan in which students would increase their 

knowledge of climate processes and their effects on the redwood forest so that they could 

develop frames that motivated them to help. Climate change education is an increasingly 

important as we move forward into a time that requires us to make changes in 

infrastructure, policy, and each of our daily lives. Reduction of consumption of energy, 

water, goods, and transportation is essential to ensure that humans can keep living at a 

desirable quality of life. This capstone was conducted to help lead the next generation 

toward a more sustainable way of life.  

 This paper is written for environmental educators to use as a tool for teaching 

climate science to their students, and can be used partially or completely as educators see 

fit. Chapter Two will focus on basic climate science and scientific literature on climate 

change effects on redwoods being conducted by the Redwoods and Climate Change 

Initiative of the Save the Redwoods League. Chapter Three will detail the methodology 

of the research portion of this project, including an in depth discussion on the lesson plan 

and logistical considerations. The hypothesis for this project is that students will increase 

their understanding of climate change and its relationship to the redwood forest. Chapter 

Four will discuss the results and analysis of the research conducted, which showed that 



7 

 

the lesson plan was successful in increasing student knowledge of climate change and the 

redwood forest. The paper will conclude in Chapter Five, where the reader will find a 

reflection of the literature review and research project, the project limitations and need 

for further research, and plan for sharing the findings with the greater environmental 

education community. All lesson plan information, including an outline, graphics, and 

questionnaires, as well as data collected and statistical analysis, can be found in the 

Appendices of this paper. 
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CHAPTER TWO: LITERATURE REVIEW 

 

There is a wealth of research on the processes of global climate and how 

anthropogenic greenhouse gas emissions are affecting Earth’s greater systems, but there 

is still much to be learned about what the future will look like, especially for the coast 

redwood tree (Sequoia sempervirens). For readers to gain familiarity on the subject of 

climate change, this chapter will start with an overview of the carbon cycle, greenhouse 

effect, climate history, and consequences of climate change. The chapter will continue 

with general coast redwood ecology and a look at ancient climate changes in North 

America. The last section will cover current research on climate change effects on the 

coast redwood tree. The research reviewed includes historic climate variability of the 

redwood region, dendrochronology, chemical signals of climate in redwoods, impact of 

fog frequency changes, and seedling response to drought.  

The Fundamental Science of Climate Change 

Climate change and global warming are terms used by the scientific community 

when discussing the present and future effects of greenhouse gases emitted into the 

atmosphere due to human activity. The idea that more atmospheric carbon dioxide causes 

increases in global surface temperatures has been widely accepted since the 1970s 

(Zhong & Haigh, 2013). There is now solid evidence that greenhouse gases have an 

effect on long term climate, which will be discussed in the following sections; what is 
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unknown is the extent of the effects anthropogenic greenhouse gas emissions and how 

soon they will be seen (Mathez, 2009).  

The climate system is a dynamic system of physical and chemical interactions 

between Earth’s major parts: the atmosphere; the hydrosphere of Earth’s oceans; the 

biosphere of all living organisms; the cryosphere of frozen water in glaciers, terrestrial 

ice sheets, and sea ice; and the lithosphere of all the land, rocks, and magma (Mathez, 

2009). Each of these parts of the Earth move matter through a variety of cycles and 

patterns such as the rock cycle, the water cycle, and weather, which are covered regularly 

by environmental education programs. The parts also interact with each other; for 

example, the spherical shape of the Earth causes sunlight to heat the planet unevenly 

because the rays hit the equator more directly than the poles. This uneven heating creates 

wind that distributes the heat across the atmosphere and also contributes to the circulation 

of the ocean (Mathez, 2009).  

The Carbon Cycle 

Carbon moves through every one of Earth’s major components in short-term and 

long-term cycles; the atmosphere, oceans, biomass, soils, permafrost, and rocks are all 

carbon reservoirs because they store carbon and exchange it between each other in a 

multitude of ways (Riebeek, 2011). According to Mathez (2009) and Riebeek (2011), the 

process of photosynthesis is one short-term carbon exchange in which plants take in 

carbon dioxide from the atmosphere for use in the production of carbohydrate molecules. 

The carbon in the carbohydrates moves through the biosphere up food chains; some is 

stored in the bodies of organisms, some is released back into the atmosphere through 
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cellular respiration, and when organisms die they decompose and the carbon cycles into 

the soil (Mathez, 2009; Riebeek, 2011). 

The long-term carbon cycle is thought to take place over hundreds of thousands to 

millions of years and occurs between the solid Earth, the ocean, and the atmosphere 

(Mathez, 2009; Riebeek, 2011). According to Mathez (2009), as rock in mountainous 

regions weathers, the silicate and carbonate minerals in the rocks reacts with carbon 

dioxide (CO2) in the air, removing it from the atmosphere. The reaction results in 

calcium, magnesium, bicarbonate, and silica in a solution of water, which washes down 

from the mountains and eventually ends up in the ocean (Mathez, 2009). Ocean 

organisms use the calcium and bicarbonate ions to make their shells, and as they die, their 

shells layer on the ocean floor and are buried under successive layers of shells and 

sediment. Over millions of years of accumulation and pressure, the layers turn to 

limestone rock, trapping the carbon into the solid Earth—over 99.9 percent of all carbon 

on the planet is locked up in the lithosphere (Mathez, 2009). The rocks can eventually 

release their carbon back into the atmosphere through tectonic activity that lifts them to 

the surface where they can start the weathering process again (Riebeek, 2011; Mathez, 

2009). The carbon atoms easily bond with oxygen molecules (O2) to form carbon dioxide 

(CO2). If instead the rocks are buried deep within the Earth, the carbonate minerals break 

apart under the intense pressure and release carbon dioxide, which percolates out of the 

crust and into the atmosphere (Mathez, 2009). 

The Greenhouse Effect 

While the atmosphere is mostly made up of nitrogen and oxygen, these gases do 

not contribute to the warming of the planet because they are transparent to incoming solar 
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radiation and outgoing infrared radiation. Atmospheric carbon dioxide, along with water 

vapor, methane, nitrous oxide, ozone, and chlorofluorocarbons (CFCs), are known as 

greenhouse gases because they do contribute to the warming of the planet and act in a 

similar manner to the glass of a greenhouse (Mathez, 2009). In the article, “The 

Greenhouse Effect and Carbon Dioxide,” Zhong and Haigh (2013) describe how 

greenhouse gases allow solar radiation to pass through the atmosphere, with about thirty 

percent reflecting back into space by the clouds, reflective atmospheric particulates, and 

various parts of the Earth’s surface, such as snow and ice. The rest is absorbed by the 

surface, which warms and gives off heat in the form of infrared radiation. The greenhouse 

gases allow a small amount of infrared radiation to escape back to space and the rest is 

absorbed and radiated back to the surface (Mathez, 2009; Zhong & Haigh, 2013). The 

function of greenhouse gases is vital to life on this planet because it allows temperatures 

to stabilize to habitable levels. This greenhouse effect is commonly explained using a 

blanket analogy: when one uses a blanket (greenhouse gases), the blanket traps much of 

the body heat (infrared radiation), and allows some of it to escape. The trapped air around 

the body (the atmosphere) warms and keep the person’s body temperature warm and 

stable. If the blanket is too thick, too much heat can be retained and the person might feel 

too warm (increasing global temperature) and feel the need to remove the blanket.  

  Presently, the balance between incoming and outgoing energy results in a mean 

global temperature of about 15C, or 59F (Mathez, 2009). While water vapor is the most 

important greenhouse gas because it has the greatest capacity to absorb infrared radiation 

(Zhong & Haigh, 2013), its abundance in the atmosphere depends on global temperatures 

that influence evaporation, condensation, and precipitation; this cycle is known as a 
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feedback loop, which will be described in the following section. Carbon dioxide is the 

second most abundant, and therefore important, greenhouse gas (Mathez, 2009; Zhong & 

Haigh, 2013). Changes in CO2 or any greenhouse gas will cause more or less infrared 

energy to be trapped (Zhong & Haigh, 2013). When more energy is trapped, mean global 

temperature will increase until a new equilibrium between incoming and outgoing energy 

is achieved (Mathez, 2009; Zhong & Haigh, 2013). 

Climates Past and Present 

 Since detailed weather and climate data collection has only occurred in the past 

century or so, scientists turn to other resources to decipher Earth’s past climates. 

Information from core samples of Greenland and Antarctic ice sheets, deep-sea sediment 

cores, tree rings, and stalactites and stalagmites reveals a climate record of five million 

years (Mathez, 2009). These records show that temperature and atmospheric carbon 

dioxide are linked; Figure 1 shows 800,000 years of atmospheric carbon dioxide and 

temperature data from the trapped air and composition of an Antarctic ice core (“Changes 

in the Carbon Cycle,” n.d.). There are regular fluctuations in climate, with each 

temperature low corresponding to an ice age and each temperature high responding to the 

peak of a warming period (“Changes in the Carbon Cycle,” n.d.; Mathez, 2009). 

Although the climate record shows that atmospheric carbon dioxide and 

temperatures have fluctuated over time, there is great concern regarding the current levels 

of CO2. Antarctic ice core samples show that for 800,000 years CO2
 levels remained 

between 170 and 300 parts per million (ppm) until now (“Changes in the Carbon Cycle,” 

n.d.; Mathez, 2009). According to the National Aeronautics and Space Administration 

(NASA), ninety-seven percent of climate scientists agree that the warming we have seen 
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in climate over the past century is likely due to human activities (“Global Climate 

Change,” n.d.). In the past 150 years, human industrial activities, especially burning fossil 

fuels for energy, have increased atmospheric carbon dioxide from 280 ppm to over 400 

ppm (Mathez, 2009; “Global Climate Change,” n.d.). This rate of CO2 increase is causing 

a rise in temperatures that is already being measured—the most recent Intergovernmental 

Panel on Climate Change (IPCC) has stated that there is over ninety percent probability 

that the warming seen over the past fifty years is due to anthropogenic greenhouse gas 

emissions and that the rate of increase in global warming is very likely unprecedented for 

the last 10,000 years (“Global Climate Change,” n.d.). According to NASA (“Global 

Climate Change,” n.d.), Earth’s average surface temperature has increased 1.5F (0.8C) 

since 1880.  

An increase of 1.5F may not seem significant, but the consequences of 

temperature increases of just a few degrees can be widespread due to feedbacks, also 

known as forcings, that make climate more sensitive to external factors (Mathez, 2009). 

Figure 1: Antarctic ice core data showing the correlation between atmospheric carbon 

dioxide and Antarctic temperature levels from the past 800,000 years (“Changes in the 

Carbon Cycle,” n.d.). 
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In Climate Change: The Science of Global Warming and Our Energy Future, Edmond A. 

Mathez (2009) describes a feedback as what happens when a process influences itself; a 

positive feedback amplifies the effect of that process, and a negative feedback dampens 

the effect of the process. For example, albedo is the portion of solar radiation that is 

reflected back into space by objects on the surface of the planet. Arctic ice contributes to 

albedo; as global temperatures warm some of the ice will melt. In turn, there is less ice to 

reflect sunlight, causing more to be absorbed by the planet, causing further warming and 

more ice to melt. This albedo feedback accelerates the effects of warming (Mathez, 

2009). 

Atmospheric water vapor and permafrost are among other positive feedbacks that 

cause an acceleration of warming (Mathez, 2009). As the planet warms, more 

evaporation will occur and cause the amount of atmospheric water vapor to increase. 

Since it is a greenhouse gas, more atmospheric water vapor means more heat will be 

trapped on the planet which leads to further warming, more evaporation, and more 

atmospheric water vapor (Zhong & Haigh, 2013; Mathez, 2009). Permafrost is rock or 

soil that has been frozen below 0C (32F) for at least two years (Schuur et al., 2008) and 

can be tens to hundreds of meters thick or more—about twenty-five percent of the entire 

land area of the Northern Hemisphere is permafrost (Mathez, 2009). Frozen, windblown 

dust known as yedoma holds roughly half of all permafrost carbon stores; it is estimated 

that yedoma contains 500 billion metric tons (gigatons) of carbon in organic debris and 

that the rest of the non-yedoma permafrost contains another 400 gigatons of carbon 

(Mathez, 2009). As the planet warms and permafrost starts to melt it will release these 
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stores of carbon, contributing to another feedback loop that accelerates warming (Schuur 

et. al, 2008; Mathez, 2009).  

Consequences of Climate Change 

 The consequences of climate change are numerous and affect both humans and 

other species across the entire planet. Most of the warming since the 1880s has been since 

the 1970s, according to global surface temperature reconstructions, with the twenty 

warmest years since the 1980s and the ten warmest years in the last twelve years (“Global 

Climate Change,” n.d.). While it is difficult to attribute any specific weather event to 

climate change, climate science shows that weather severity will increase as global 

temperature warms (Mathez, 2009). Storms are fueled by evaporation, and as 

temperatures rise, more water is evaporated into the atmosphere. Generally, drier places 

will become drier and heat waves, fires, and droughts will take their toll; as the increased 

atmospheric water moves, condenses, and precipitates, it can create more extreme 

weather events, including more severe rainstorms, snowstorms, and hurricanes (“Global 

Climate Change,” n.d.; Mathez, 2009). These events can be catastrophic and costly as the 

winds and floods destroy lives and towns.  

Looking at the ocean, since water is slow to heat up and slow to cool down, the 

ocean has absorbed and held the majority of the heat increase; in the last 40 years, the 

ocean has absorbed 84% of the heat from global warming (“Global Climate Change,” 

n.d.). Due to the expansion of water as it warms, as well as the melting of the Greenland 

and Antarctic land ice sheets draining into the ocean, sea level has risen 17 centimeters 

(6.7 inches) in the last century (“Global Climate Change,” n.d.). Further rise can be 

disastrous for those living on islands and along coastlines as sea water inundates their 
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communities and freshwater tables, requiring millions of people to seek refuge further 

inland.  

More atmospheric carbon dioxide means more carbon dioxide is absorbed by the 

ocean, increasing its acidity—since the Industrial Revolution, ocean acidity has increased 

by about 30% (“Global Climate Change,” n.d.). Coral reefs are in jeopardy with this 

increase in ocean acidification. Coral absorbs calcium carbonate to make their skeletons, 

as snails and clams do for their shells, and with increased ocean acidity, it will be more 

difficult for these organisms to absorb the calcium carbonate (“Global Climate Change,” 

n.d.; Mathez, 2009). In addition, continued increasing acidity will cause coral skeletons 

to dissolve, which would destroy these vital habitats for many other marine organisms 

(“Global Climate Change,” n.d.). 

 Further warming of the atmosphere will increase the rate of snow melt, resulting 

in faster loss of mountain snowpack. Over the past fifty years, spring snow cover in the 

Northern Hemisphere has decreased and is melting faster, according to satellite 

observations (“Global Climate Change,” n.d.). Many communities rely on the snow pack 

lasting through the summer, and as it melts faster, there is less water available to these 

people in the dry season. Combined with more evaporation, increased snow melt will 

likely result in less water available for households, agriculture, fisheries, and ecosystems, 

which will create increased strain on human health, economies, and wildlife habitats. 

A Time for Change 

 Climate scientists have known how carbon dioxide affects climate for the past 

century (Mathez, 2009). Global climate is very likely changing due to human activity 

because burning fossil fuels releases carbon dioxide into the atmosphere from long-term 
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carbon stores. Although scientists can use climate models to show what the future might 

look like, it is currently impossible to know, with any level of certainty, how severe the 

aforementioned consequences will be or how quickly they will come. This is, in part, 

because it is unknown what future anthropogenic greenhouse emissions levels will be. 

There are many more known consequences than described here, and likely more that are 

yet to be discovered (Mathez, 2009). More research is needed to understand the 

complexity of the planet’s reactions to these changes. 

Coast Redwood Ecology 

 Coast redwood trees are currently being researched to understand the complex 

ways they react to climate fluctuations and how they will respond to today’s changing 

climate. Before looking at the research, it is necessary to start with an overview of the 

coast redwood, both past and present. According to the Save the Redwoods League 

(“Redwood Trees,” n.d.), there are three species of redwoods in the world—the coast 

redwood (Sequoia sempervirens) is the world’s tallest tree species and is found only on a 

narrow 450-mile strip of coastline from southernmost Oregon to central California. The 

giant sequoia (Sequoiadendron giganteum) is the world’s most massive tree and is found 

only in 77 scattered groves along the western slope of California’s Sierra Nevada 

mountain range, and the dawn redwood (Metasequoia glyptostroboides) is a deciduous 

tree found in south-central China and was once thought to be long-extinct (“Redwood 

Trees,” n.d.). Since the coast redwood is the focus of this paper, hereafter it will be 

referred to as “redwood.”  

The redwood can be easily identified by its great height and its deep red, 

furrowed, thick bark that peels off in thin, hair-like fibers. It can live for over 2,000 years, 
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grow more than 320 feet high, and have a trunk with over 24 feet in diameter at breast 

height, which gives it a very tall but thin appearance in comparison to other trees 

(“Redwood Trees,” n.d.). The cones measure only about an inch long and contain only 14 

to 24 seeds, though most redwood trees grow from basal sprouting off the roots of the 

parent tree (“Redwood Trees,” n.d.). 

 According to the field guide, California and Pacific Northwest Forests 

(Kricher, 1998), winters are wet, averaging a range of 35 to 100 inches of rainfall per 

year. Summers, however, are usually very dry with little to no rainfall, which contributes 

to the fire frequency of the region. Fire occurs once every 250-500 years along the coast 

to every 100-150 years more inland, and because of this, the redwood has adapted well to 

fire. It has very thick bark that lacks flammable resin, the tree is rich in tannins, which 

resist decay, and the seedlings also grow rapidly after a fire (Kricher, 1998).  

Dry summers can be a challenge to the redwoods—being such massive trees, they 

need a high amount of moisture year-round. The redwoods are able to survive the dry 

season because their narrow strip of coastal land is prone to a cool, wet fog that forms 

almost daily as cold ocean water upwells along the coast, which cools the warm air and 

condenses the water vapor (Kricher, 1998; “Redwood Trees,” n.d.). Redwood canopies 

help the trees, as well as the soil, retain the fog moisture because they block over ninety 

percent of sunlight from reaching the ground (Kricher, 1998).  

Ancient Climate Changes of North America 

The redwood was once found across much of the North American continent. 

Kricher’s (1998) field guide describes the changes over the past forty million years. 

Vegetation of North America before 40 million years ago in the Tertiary Period consisted 
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of only three major plant communities; the redwood was part of the Arcto-Tertiary 

Geoflora, a community that ranged from San Francisco east to the Atlantic and up to the 

northernmost reaches of the continent and had a warm, moist, and tropical climate 

(Kricher, 1998). About forty million years ago, at the beginning of the Oligocene Epoch, 

things became more arid, cool, and temperate and led to fewer forests and more 

grasslands (Kricher, 1998). During the Pliocene Epoch twenty million years ago, the 

Cascades, Coast Ranges, and Sierra Nevada began to uplift, blocking eastern moving 

moisture and creating today’s dry climate of the Great Plains, and then beginning two 

million years ago, glaciers carved the remaining landscapes (Kricher, 1998). All of these 

dramatic changes fractured the original Arcto-Teriary Geoflora into separate distinct 

communities, most notably the conifer domination of the west and the broad-leafed trees 

of eastern North America (Kricher, 1998). 

Climate Change and the Coast Redwood 

Current research on both past and future redwood forest climate history and 

responses is being conducted through the Redwoods and Climate Change Initiative 

(RCCI), which is a scientific collaboration between University of California, Berkeley, 

Humboldt State University, and Save the Redwoods League that began in 2009 and is 

expected to last through at least 2025 (Brown, 2013). It includes studies on both the coast 

redwood and its close relative, the giant sequoia (Sequoiadendron giganteum), and initial 

findings were reported during a three-day symposium in August, 2013 (Brown, 2013). 

The study sampled fourteen sites throughout the range of the two species; eight of those 

sites represent the full north-to-south range of the redwood species: Jedediah Smith 

Redwoods State Park, Prairie Creek Redwoods State Park, Redwood National Park, 
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Humboldt Redwoods State Park, Montgomery Woods State Natural Reserve, Samuel P. 

Taylor State Park, Big Basin Redwoods State Park, and Landels-Hill Big Creek Reserve 

(Carroll, Sillett, & Kramer, 2014). RCCI studies looked at many factors, including an 

analysis of local historic climate records, the creation of a dendrochronological record, 

isotopic chemical response signals to climate variation, fog frequency and dependency, 

and drought response.  

Historic Climate Variability and Redwood Responses 

 To understand how redwoods respond to climate variability, Healy Hamilton 

(2013) of the Marine Conservation Institute analyzed data from PRISM, the official 

climatology data sets of the United States Department of Agriculture. The United States 

is divided into grid cells of 800 meters; PRISM gathers topographically sensitive data 

from each cell and uses a complicated mathematical algorithm to fill in the data between 

data points to create continuous spatial information about weather patterns (Hamilton, 

2013). The analysis of this data was important to RCCI because global climate models 

are not fine-tuned enough to account for the regional variability of the redwood range, 

which is affected by topography, fog, and ocean upwelling (Hamilton, 2013).  

 Using climate records from the past century from all known weather data in the 

state of California, temperature and precipitation data from the years 1901 to 1980 were 

used as a baseline and means and standard deviations were calculated; 68% of all the data 

values fall within 1 standard deviation, and 95% of all the data values fall within 2 

standard deviations (Hamilton, 2013). A low standard deviation would indicate that 

redwoods are accustomed to low variability of weather, while a high standard deviation 

would indicate that the redwoods are accustomed to high variability of weather. Being 
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accustomed to high levels of variability would mean that a lot of climate change would 

be needed to push the trees outside of the variability range (Hamilton, 2013). The 

analysis, however, showed that the baseline standard deviation was low, so the trees are 

adapted to low levels of variability (Hamilton, 2013). 

Hamilton’s (2013) analysis included values for summer minimum and maximum 

temperatures, winter minimum and maximum temperatures, and annual total 

precipitation, and different graphic representations were used to create a “climate space” 

in which all of the data fell within. Looking at summer minimum temperatures, seventy 

percent of the data points from 1981 to 2010 were above the baseline value, which can be 

seen in figure 2 (Hamilton, 2013). The increase of minimum summer temperatures was 

greater than baseline over 1981-1990, even greater over 1991-2000, and even greater than 

Figure 2: Summer minimum temperature anomalies in the coast redwood range from 

1981 to 2010 as compared the 1901 to 1980 baseline (Hamilton, 2013). 
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that over 2001-2010; in other words, temperatures are continuing to increase throughout 

the range (Hamilton, 2013). In addition, Figure 2 shows more dramatic increases in the 

southern part of the redwood range (right) than the north (Hamilton, 2013).  

Hamilton (2013) then used all of the data, graphs, and maps to extrapolate what 

the climate distribution of the areas would look like under different scenarios. In the 

distribution of mean annual temperature versus annual total precipitation (Fig. 3), 

everything in the middle square is “normal” and within one standard deviation of the 

baseline mean. From this, Hamilton (2013) created a species distribution model to show 

what climate conditions coast redwoods need to survive based on where they occur today, 

Figure 3: Mean annual temperature versus annual total precipitation in the coast 

redwood range from 1901 to 2010 (Hamilton, 2013).  
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then projected the data onto a map to see where the total potential range of these 

conditions occurs, and then projected the species distribution against maps that show 

conditions of past climate extremes (Fig. 4). 

Hamilton (2013) focused on three future possible climate scenarios: drier and 

warmer, warmer, and wetter and warmer. In Figure 4, the blue color indicates the current 

redwood populations that would remain stable under the future climate extremes, the 

green shows new areas that would have the right climate conditions for redwoods to 

expand into, and the orange shows the areas that have redwoods now but, in the future 

scenario, would no longer have the right climate conditions to support them (Hamilton, 

2013). As one can see, the biggest loss of habitat would occur when there is both a 

warmer and drier climate, and when compared to a warmer climate, indicates that it is the 

Figure 4: Projections of redwood bioclimatic envelope model over three types of past 

climate extremes (Hamilton, 2013). 
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dryness that will likely have the biggest impact on redwood trees. Also, like the summer 

minimum temperatures shown in Figure 2, the southern distribution of redwoods will be 

impacted the most (Hamilton, 2013).  

This analysis shows that there is stability in the northern redwood regions and 

projects big changes in climate conditions of the southern redwood regions (Hamilton, 

2013). This is all very new information and calculated from only one hundred years of 

climate data, so it really only gives a look at what the very near future might look like. 

Over time, more climate observations, as well as further studies of other redwood factors, 

will increase the amount of data and provide researchers with a more comprehensive 

picture of the future. 

Dendrochronology 

 Dendrochronology, the dating and studying of annual rings in trees, is important 

to the study of climate because trees put on new growth rings annually, and the size and 

composition of those rings depends on surrounding environmental and climatic 

conditions at the time of wood production. Ring history is sampled from a tree without 

having to cut it down and kill it by using an increment borer, which is a hollow hand drill 

that can remove a pencil-thin section of wood from the trunk, called a tree core. These 

tree cores can be used to cross-date the ring history of a forest by recording and matching 

common patterns of rings across the population of trees (Carroll, 2013). The practice of 

cross dating was widely accepted after A.E. Douglass developed a 3,200 year tree-ring 

chronology of the giant sequoia, a species with generally easy-to-read rings. When 

Douglass attempted to develop a chronology of the coast redwood, however, his attempts 

proved to be much more complicated and unsuccessful (Carroll, Sillett, & Kramer, 2014). 
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 The decay resistant wood of both the redwood and the giant sequoia have the 

potential of providing researchers invaluable historical climate data because downed trees 

can tell their tales long after their death. Douglass’ attempts to cross-date redwoods 

failed, though, because redwoods have frequently missing or discontinuous rings, basal 

buttressing, tight rings, and spiral compression wood (Carroll, 2013). Since Douglass’ 

attempts, others have had better luck with by taking samples from higher up on the trunk, 

and a chronological fire record using the redwood was dated back to the year 1750 

(Carroll, 2013).  

 The first successful long-term cross dating study of redwoods was conducted by 

Allyson L. Carroll, Stephen C. Sillett, and Russell D. Kramer, of the Department of 

Forestry and Wildland Resources at Humboldt State University (2014). Between 2005 

and 2012, the researchers collected one to seven cores each from 76 redwoods from 

across their natural range, at varying heights and positions, with the lowest samples 

collected above basal buttressing no lower than 5 meters above ground level to avoid 

irregular growth patterns (Carroll et al., 2014). By cross dating multiple samples at 

varying heights from the same tree, the researchers were able to have a much more 

accurate account for the tree than the one-sampled studies in the past. Once each tree’s 

chronology was determined individually, it was then added to a database using significant 

marker years, which are good growing years that are thick and easy to find across 

individuals (Carroll et al., 2014).  

 The preliminary results of the study established a chronological redwood history 

as far back as the year 328, and a new oldest individual redwood has been discovered to 

be 2,520 years old (Carroll et al., 2014). Radial growth decreased significantly with 
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maximum temperatures, as well as decreased with increasing summer drought severity; 

however, radial growth increased with decreasing summer cloudiness (Carroll et al., 

2014). So, the redwoods grow less during the hottest years and the driest years, but grow 

more when there is less summer fog and clearer skies. Fire occurrences were also 

revealed, not only with apparent fire scars, but also with known histories combined with 

small rings. For example, at the Landers Hill site, there was a known fire in 1985, 

resulting in thin 1986 rings due to most of the trees’ growing energy being directed into 

rebuilding their leaf/crown areas instead of producing more wood (Carroll et al., 2014; 

Carroll, 2013). The study also revealed that while ring width declined with age, the rate 

of wood production continues to increase with age (Carroll, 2013). The geometry of 

laying wood on the outer surface makes the rings appear thinner, but in actuality the total 

volume of the wood in each ring is greater. It was previously thought that the wood 

production declined in the oldest trees, but the analysis shows that the oldest trees are 

actually growing the most and making the most wood (Carroll, 2013; Sillett, 2013).  

Another known event, El Niño, occurred in 1983. El Niño is a dramatic and rapid 

warming of ocean waters of the coast of Peru and Ecuador that occurs every several years 

and influences climate across much of the globe, bringing stormier, wetter weather events 

to North America (Mathez, 2009). The 1983 rings in all individuals across all sites were 

consistently larger, indicating that the wetter conditions brought on by that El Niño year 

caused more growth in redwoods (Carroll, 2013). Analyzing rings from years with known 

events can reveal how the trees respond to these types of events, which can then be used 

to infer earlier events in time using similar rings. 
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Making the redwood chronologies was the first step in understanding redwood 

forest environmental and climate history from the trees themselves, but the work is not 

finished yet. There is still a period of discrepancy where the chronologies need to be 

improved, which is roughly between the 1850s and the 1950s (Carroll, 2013). There is 

also a need to start analyzing downed wood to get older chronology farther back than the 

oldest living sample.  Despite this, analyzing the information through other methods, 

such as isotopic analysis, can begin and start proving to be useful in understanding 

redwood response to climate changes.  

Chemical Signals of Climate in Redwoods 

 It is common knowledge that trees take in sunlight, carbon dioxide (CO2), and 

water (H2O) during photosynthesis to store energy for later use and growth (Mathez, 

2009). What is less commonly known is the role of isotopes, which are atoms that have 

different numbers of neutrons than protons. Hazen and Trefil explain this well in their 

book, Science Matters: Achieving Science Literacy (2009). Normally, a carbon atom has 

six protons and six neutrons, so it can also be called carbon-12, but a carbon atom can 

have more than six neutrons and still be a carbon atom, because atoms are defined by the 

number of protons they contain (Hazen & Trefil, 2009). So a carbon atom with six 

protons and seven neutrons would be called carbon-13; since there are more neutrons in 

carbon-13, it weighs more than carbon-12, and would be considered “heavy” (Hazen & 

Trefil, 2009).  

 Isotopes such as carbon-13 are everywhere on the planet and atmospheric carbon 

dioxide can have carbon-12 or carbon-13 in it (Hazen & Trefil, 2009). Carbon dioxide 

with carbon-12 can be written as 12 CO2, and carbon dioxide with carbon-13 can be 
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written as 13 CO2. Plants prefer to use 12 CO2, but will use 13 CO2 when the 12 CO2 supply 

is low or they are photosynthesizing at a high rate and aren’t being too selective 

(Dawson, 2013). Todd Dawson of the University of California, Berkeley (2013), 

presented his research team’s isotopic analysis of carbon and oxygen in redwoods at the 

2013 Redwood Ecology and Climate Symposium. They chemically analyzed the wood 

within each tree ring for the presence of carbon-13, as well as the presence of oxygen-18 

from H2
18O, or heavy water (Dawson, 2013). Oxygen-18 is more prevalent in warmer 

summertime fog than in colder winter rains and snow, so its presence can indicate which 

source of water used to make that wood (Dawson, 2013). The amount of each of these 

isotopes tells the conditions of supply and demand at the time the wood was created 

(Dawson, 2013).  

 It is necessary to first explain what supply and demand means. Each redwood can 

have billions of leaves, each leaf of which can have hundreds of stomata, which are pores 

that open to allow the intake of carbon dioxide. In his presentation, Dawson (2013) 

explained that the degree that the stomata are open determines the level of supply of 

carbon dioxide, and the photosynthesizing leaf cells create the level of demand. When the 

stomata are open, they are increasing the available supply of carbon dioxide to the leaf, 

but this comes as a trade-off: when the stomata are open, the leaves are prone to losing 

more water vapor via transpiration, which means a greater loss of oxygen-18 (Dawson, 

2013). The number of carbon and oxygen isotopes transferred to the mass of a tree not 

only depends on how open the stomata are (supply), but how much and how fast the tree 

is processing these inputs (demand), and how much water loss is occurring (a direct 

correlation to supply) (Dawson, 2013).  
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Dawson’s team (2013) found that the higher you go in the tree, the isotopic 

composition of the leaves changes, but the change is only with the amount of carbon-13. 

Carbon-13 presence increases as height sampled increases, but oxygen-18 does not have 

any significant change based upon height within the tree (Dawson, 2013). These results 

suggest a change in demand when carbon-13 and oxygen-18 are found together. If it were 

a change in supply, when carbon-13 went up, oxygen-18 should have gone down, 

because the stomata would have been more open and more oxygen-18 would have been 

lost by means of water vapor transpiration (Dawson, 2013). Since carbon-13 went up and 

oxygen-18 stayed the same, it meant that there was no change in how much the stomata 

were open (Dawson, 2013). The trees photosynthesized faster as height within the tree 

increased (Dawson, 2013).  

The differentiation between supply and demand conditions is important because 

two tree rings can appear very similar, but isotopic analysis of tree rings can reveal very 

different conditions, since there can be many variations between temperature and water 

source/availability. Dawson (2013) explained this in an example of two similar sets of 

thick rings in one tree: one would expect that there was more water available during both 

years to cause the increased growth, but isotopic analysis revealed that for one year the 

tree grew more because of warmer than average conditions, and for the other year the tree 

grew more because of wetter than average conditions. The isotopic analysis was 

compared to known PRISM climate records from 1973 to 1995 and the data sets matched 

up, which means that this method of studying isotopes can be used for the next step in 

their research: to determine what climate was like in these forests before recorded climate 

history (Dawson, 2013).   
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Impact of Changes in Summer Fog Frequency 

 The climate along the narrow coast of central California up to southern Oregon 

tends to have many cool, foggy summer days that provide moisture to what would 

otherwise be a very dry season (Kricher, 1998). In the journal article, “Climate Context 

and Ecological Implications of Summer Fog Decline in the Coast Redwood Region,” 

James A. Johnstone and Todd E. Dawson of the University of California, Berkeley 

(2010), discuss their analysis of direct hourly measurements of cloud ceiling heights, 

from 1951 to 2008, from ten Pacific coast stations from central Oregon to southern 

California measured by the National Climatic Data Center. Their work showed that fog 

frequency is greatest in northern and central California, at 40-44%, and declines below 

30% toward Oregon and southern California. The coast redwood distribution stops at 

both the northern and southern 35% fog frequency thresholds, which seems to indicate a 

correlation between fog and redwood habitat (Johnstone & Dawson, 2010). This 

correlation is supported by research by Emily Burns Limm (2009), in which she found 

that plant species across the redwood forest benefit from leaf wetting due to fog through 

additional water absorption and reduced transpiration.  

Johnstone and Dawson (2010) also concluded that summer fog frequency is 

coupled with wind-driven ocean upwelling in the area known as the California Current 

upwelling zone, where cold, nutrient rich water flows up from the deeper ocean. The cold 

water temperature cools the overlying atmosphere, which combines with other 

atmospheric conditions, allowing the condensation of atmospheric water vapor and 

resulting in the development of low-level stratocumulus clouds (Bakun, 1990; Johnstone 

& Dawson, 2010). Areas in the world where this occurs have reduced temperatures, 
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increased humidity, and a higher level of moisture retained in the land than that of the 

immediately surrounding areas (Bakun, 1990; Johnstone & Dawson, 2010). The 

frequency of summer fog days can be patchy and might seem to be irregular to a casual 

observer, but according to Johnstone and Dawson (2010), the long-term records show 

that the fog occurs regularly on inter-annual to multi-decadal time scales.  

 By comparing the relationship between fog frequency, temperature maximums, 

and sea surface temperatures from known data sets from 1951-2008, Johnstone and 

Dawson (2010) were able to then use temperature maximum and sea surface temperatures 

dating back to 1901 to determine the missing fog frequency information for those fifty 

years. Mean fog frequency from 1901 to 1925 is estimated at 56%, which is 33% above 

the level observed from 1951 to 2008 (Johnstone & Dawson, 2010). Graphically, one can 

see a downward trend in the number of fog days across the century, and statistically, the 

authors concluded that there have been moderate fog reductions since 1951 (2010).  

 How will this decrease in fog frequency affect the coast redwood? Previous 

research on redwood sap flow, leaf wetness, and ambient atmospheric vapor pressure 

deficit (VPD; a measure of the atmospheric demand for water from leaves), has shown 

that when low clouds are present, there is reduced forest VPD and reduced redwood 

transpiration, both day and night (Johnstone & Dawson, 2010; Limm, Simonin, & 

Dawson, n.d.). Johnstone and Dawson’s (2010) analysis showed that sap flow rates 

during low cloud periods were 26% of the rates observed under clear skies. Since 

redwoods are poor regulators of their own water use, they tend to leave their stomata 

open both day and night and, as a result, transpire significant quantities of water 

(Johnstone & Dawson, 2010). The low clouds reduce the atmospheric demand for water 
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from the leaves, and keep them cooler, which enables the trees to hold more water than 

they would on sunny days (Johnstone & Dawson, 2010).   

Johnstone and Dawson (2010) also note that studies on tree rings of coastal 

California pines have shown significant correlations between summer fog frequency and 

annual growth (Johnstone & Dawson, 2010). Another study on foliar uptake, which is the 

absorption of water into plants by leaves and stems, was conducted on redwoods and 

other redwood forest trees and plants to see if and how much fog they absorb. The study 

showed that most of the plants in the forest are taking in moisture through their stems and 

leaves, with redwoods averaging an over 2% increase in leaf water content (Limm, 

Simonin, & Dawson, n.d.; Limm, 2009). While more research needs to be conducted, 

current science suggests that if fog continues to decline, the redwood will likely face 

heightened water-related stress. 

Redwood Seedlings and Drought 

 Analysis of PRISM data, redwood distribution, and fog frequency have shown 

that redwoods are likely to be facing increasingly drier conditions in the near future 

(Hamilton, 2013; Carroll, 2013; Johnstone & Dawson, 2010). So what is the response of 

a redwood tree to increasingly drier conditions?  

As discussed in the previous section, atmospheric pressure demands water from 

leaves and is measured using vapor pressure deficit (VPD) (Ambrose et al., 2015; 

Johnstone & Dawson, 2010). The pressure is like a straw; the atmosphere is pulling 

moisture from the leaves and water draws up from the roots and through the tree to 

replace it (Ambrose et al., 2015; Johnstone & Dawson, 2010; Ambrose, 2013). So when 

the stomata are open to take in carbon dioxide, they allow the loss of water due to VPD, 
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but if the organism closes the stomata to combat the water loss, there is less opportunity 

to photosynthesize because there is a decreased supply of carbon dioxide (Ambrose et al., 

2015; Limm, Simonin, & Dawson, n.d.). Redwoods are poor regulators of water loss and 

tend to keep their stomata open—this can be harmful if there is not enough soil moisture 

to replace the water being drawn up the tree and can lead to embolisms, or air bubbles 

(Ambrose et al., 2015; Ambrose, 2013). These are created because the tension from the 

vacuum pressure becomes too great and tiny air bubbles form to release some of that 

pressure (Ambrose et al., 2015; Ambrose, 2013). Enough emboli in enough vessels can 

block entire sections of water conduction, and portions of the tree that are distal, or after, 

those embolisms will not get water and die (Ambrose et al., 2015; Ambrose, 2013). The 

more emboli a tree has, the more tension for the remaining working cells, causing the 

effect of the emboli to be exponential (Ambrose et al., 2015; Ambrose, 2013) 

A research team at the University of California, Berkeley, subjected redwood 

seedling to drought conditions to determine a more detailed understanding of redwood 

drought response (Ambrose et al., 2015; Ambrose, 2013). The researchers planted and 

grew seeds from each of the north, central, and south RCCI research regions; each region 

had a control group and a drought-stress treatment group, for a total of six groups, each 

with twenty seedlings. The drought treatment groups were put under six weeks of drought 

treatment followed by two weeks of post-drought recovery periods (Ambrose et al., 2015; 

Ambrose, 2013). Measurements and observations were recorded before the drought, 

during mid-drought, during severe drought, and during recovery, and temperature, 

humidity, and soil moisture were monitored throughout (Ambrose et al., 2015; Ambrose, 

2013). 
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To determine stem hydraulic function and reveal any emboli, the researchers 

(Ambrose et al., 2015; Ambrose, 2013) cut the plants at the base, put them in a 

fluorescent dye and water solution for 15-20 minutes, then cut the stem again and 

observed the cross-section using various computer imaging models to calculate out what 

percent of total conducting area that was embolized. Figure 5 shows typical binary 

computer images of both the redwood (S. sempervirens) and giant sequoia (S. 

giganteum), and as the graph shows, redwood has significantly higher amount of 

embolism than the giant sequoia: 43.9% embolized versus 16.5% embolized periods 

(Ambrose et al., 2015; Ambrose, 2013). The giant sequoia has a much more strict control 

of closing off stomata to prevent embolism than the redwood (Ambrose et al., 2015; 

Ambrose, 2013). 

Figure 5: Stem embolism effects on the coast redwood and giant sequoia after being 

subjected to a six-week drought treatment (Ambrose, 2013).  
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In addition to the experiment revealing a high rate of emboli among drought-

treated redwood saplings, the researchers found that the redwood was more susceptible to 

drought-induced die-back and mortality compared to the giant sequoia, but showed 

greater capacity to recover from stem hydraulic dysfunction, had higher growth rates 

when well-watered, and had a greater proportion of biomass allocated to the woody stems 

(Ambrose et al, 2015; Ambrose, 2013). Among the three regions of both species there 

was not any significant drought reaction variability (Ambrose et al, 2015; Ambrose, 

2013).  

According to this experiment, redwood saplings undergo severe damage under 

drought conditions, but can recover from those conditions better than their giant sequoia 

relatives (Ambrose et al, 2015; Ambrose, 2013). Like the aforementioned studies, there 

needs to be more research conducted because more questions start to arise: what will be 

the effect of longer-term drought patterns, such as over an entire summer or for multiple 

years? Is the effect on mature redwoods similar to that of saplings? What about the effect 

of drought on basal sprouts versus seedlings, since redwoods sprout much more often 

from parent roots than from seeds?  

Conclusion: The Future of the Redwood 

 Climate scientists agree that it is highly likely that humans are contributing to 

global climate change (“Global Climate Change,” n.d.; Mathez, 2009). Levels of 

atmospheric carbon dioxide are increasing at the fastest rates seen in hundreds of 

thousands of years (“Global Climate Change,” n.d.). Despite all of the negative 

implications of climate change, there is some good news: redwoods are carbon storage 

champions. One average mature redwood tree removes 1,600 tons of carbon dioxide from 
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the atmosphere, and the mass of these trees is so significant that ancient redwood forests 

store at least three times more carbon than any other forest (Herbert, 2014). They even 

help after they die. Usually, when organisms die, the decomposition process releases their 

stored carbon back into the atmosphere. The redwoods slow this process down because 

they have decay-resistant wood laden with tannins (Kricher, 1998), so even after death 

they are holding carbon back from the atmosphere (Herbert, 2014). In the face of climate 

change, these species are even more important than ever. 

Another promising piece of news is that some of the redwoods have been growing 

at a faster rate since the 1970s than ever before; speculations for this include the 

possibility that the trees are growing faster because less foggy days allow for more 

sunlight and more photosynthesis (Boxall, 2013; Brown, 2013; “Past, Present, and 

Future,” 2013). Another possibility is that the decreasing level of air pollution from North 

Coast wood processing plants is increasing the available sunlight for photosynthesis 

(Boxall, 2013). Maybe a century of wildfire suppression has a big influence, since fires 

burn branches and leaves, which forces trees to regrow their canopies instead of 

producing more wood. Without fires, there was no energy diverted, and those full 

canopies could keep making more and more wood (Boxall, 2013). Regardless, how much 

longer can these accelerated growth rates be sustained before there are consequences? 

All of the research thus far has yet to give us a clear picture as to the fate of the 

redwood. Observed weather records indicate that the climate of the redwood region is 

highly variable and that the redwood will face the most strain under future drier 

conditions, especially in the southernmost areas of distribution (Hamilton, 2013). 

Dendrochronology of the redwood gives us climate data prior to observed historical 
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records (Carroll, 2013), and isotopic analysis shows how the redwoods respond to these 

changes (Dawson, 2013). It is likely that fog frequency will continue to decrease, but it is 

unclear whether this will have a positive or negative impact on these trees (Johnstone & 

Dawson, 2010). Redwood seedlings respond negatively to drought conditions but can 

recover quickly from those effects (Ambrose et al., 2015; Ambrose, 2013); how well will 

they, or mature trees, recover from long-term and multiple years of droughts? The trees 

are growing faster than they ever have before (Boxall, 2013; Brown, 2013; Save the 

Redwoods, 2013)—will this pattern continue as time moves on, and how long is it 

sustainable? None of these studies can tell us what exactly the future regional climate will 

look like, but as the research continues, the redwoods’ response to these changes will 

only become clearer.  
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CHAPTER THREE: METHODOLOGY 

 

 This capstone is intended to provide a climate change and redwoods resource for 

environmental educators by providing a literature review on climate and redwood 

research and a lesson plan for teaching climate change in the redwood setting. The lesson 

plan focuses on teaching climate and redwoods to fifth and sixth grade students attending 

outdoor education programs and was evaluated using pre- and post-questionnaires.  

The science behind climate change is complex, and when teaching the subject to 

elementary school age children, one be mindful of the psychological impacts of learning 

about environmental crises (Thomashow, 1995). While the research portion of this paper 

goes into great scientific detail, most of it will not be included in the lesson plan because 

it is too advanced for the students. Instead, the lesson plan will focus on an introduction 

to climate science, how humans effect climate, how climate change might affect the 

redwoods, and how students can help. The lesson plan emphasizes the most basic 

concepts of changing global climate, including greenhouse effect, photosynthesis and 

carbon, the carbon cycle, the relationship between drought, redwoods, and climate, 

dendrochronology research, and anthropogenic sources of carbon dioxide. Most 

importantly, the lesson plan concludes with a discussion on how the students can reduce 

their own impact on carbon emissions, called their carbon footprints, particularly by 

reducing the amount of goods and food they buy.  
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Climate and Redwoods Lesson Plan  

Lesson Plan Logistics 

 This lesson plan will introduce basic climate concepts, the potential effects of a 

changing climate on the redwood forest, and actions students can take to help the forest. 

It is written to take place during Westminster Woods’ all-day redwood hike, which lasts 

approximately six hours. The property consists of 200 acres of coast redwood forest 

situated approximately ten miles from the Pacific Ocean. Much of the land lies on a 

slope, with numerous hiking trails that switchback up the slope and connect together by 

way of a dirt road near the top of the hill.  

The plant community is dominated by redwood trees, but Douglas fir also grows 

up into the canopy, and the understory consists primarily of tan oak, madrone, and 

California bay laurel. The redwoods provide a heavily shaded forest floor in which few 

shrubs and forbs grow; this moist environment is ideal for the ferns, fungus, banana 

slugs, and lichens which are common in the forest. The bottom of the property flattens 

out, providing room for a grass play field, buildings, and parking areas. Dutch Bill Creek 

flows adjacent to the flat area and, if teachers should choose to add the lesson to the 

schedule, provides an ideal setting for teaching stream ecology.  

Groups of students are led by teacher naturalists, or simply “naturalists.” Each 

naturalist has a group of ten to fifteen students, though the lesson plan can be modified 

for use by other organizations for groups of up to twenty-five students. Naturalists at 

Westminster Woods can choose any route on the property to take their group, and will 

carry supplies to facilitate all the activities outlined in the lesson plan. The groups will 

also carry adequate food to sustain students and adults during the day, and water bottles 
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can be refilled at three water stations along the trail. Students should be reminded after 

breakfast to each bring a backpack, a full water bottle, and their Westminster Woods 

journal with them on the hike. 

Prior to the start of the lesson plan, all trail groups will gather in a meeting room 

and participate in a food chain lesson and skit to prepare them to think scientifically 

during the day. Groups will then split up, divide food supplies to be carried by everyone 

in backpacks, and have one last restroom break. At this point, the lesson plan will start, 

and naturalists will have five and a half to six hours to complete the activities. The lesson 

plan includes discussions and activities that are meant to take place at different stops 

along the hike. As in any environmental education day, more frequent movement to more 

places might be necessary to keep students active and engaged, students should be 

consistently given positive feedback for active participation, and food should be provided 

frequently during the day to maintain high energy levels. 

 To provide a quantitative measure of learning, students will complete a 

questionnaire prior to participating in discussions and activities, and then complete the 

same questionnaire at the end of the all-day hike. The questionnaire is designed to cover 

the major concepts of the lesson plan; each individual’s pre-test and post-test scores will 

be compared and all scores statistically analyzed to determine the effectiveness of the 

lessons and student understanding of the major concepts. While this chapter will discuss 

the lesson plan in detail, an outline version can be found in Appendix A, which includes a 

list of supplies necessary for the day. The original questionnaire is located in Appendix B 

and a revised version is in Appendix C. Printable graphics needed to conduct the lesson 

plan can be found in Appendix D.  



41 

 

Objectives 

 Objectives of the lesson plan are as follows: 

 Students will understand the carbon cycle and greenhouse effect. 

 Students will understand how a warming atmosphere will affect the water 

cycle, causing many dry places to become drier and many wet places to get 

wetter. 

 Students will know that scientists are currently researching how redwood trees 

have responded to past climate changes. 

 Students will connect global climate to anthropogenic carbon emissions. 

 Students will commit to at least two new ways to reduce their carbon footprints 

and start them upon arriving back at home. 

Lesson Plan Introduction 

 Naturalists can introduce the topic of the day as global warming and climate 

change, but should make sure to have the students fill out the pre-questionnaire prior to 

any teaching of climate concepts so that their answers only reflect knowledge of the topic 

prior to their visit. Students should be reassured that they will not be graded on their 

answers, and that the purpose of the questionnaire is to see how much they already know 

about what they will be learning about during the hike. Students should work on the 

questionnaire quietly and alone and be given as much time as they need to complete it, 

which will likely be ten minutes or less. Once finished, naturalists will collect the sheets, 

ensuring that the students have all filled out the identification information and circled 

“pre-test,” and then will ask the students to discuss in partners the following question as 
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they walk to their next stop: what do you think the difference is between weather and 

climate?  

Prior to reaching the next teaching spot there should be a group discussion on 

weather and climate, including the formal definitions for the terms. Weather, according to 

Mathez, is “the conditions at any one time at any one place—temperature, precipitation, 

humidity, wind, atmospheric pressure, and cloudiness” (2009, p. 255). Climate is “the 

average weather for a particular region for a significant period of time, typically several 

years” (Mathez, 2009, p. 248). To transition to the next section on the greenhouse effect, 

naturalists should tell the students that weather and climate patterns are influenced by 

how much of the sun’s energy reaches the surface of the Earth and how much of it can 

escape back out to space. 

The Greenhouse Effect 

 The purpose of this next section is to have students understand what the 

greenhouse effect is and how it is important to life on Earth. Naturalists should ask 

students if they have any idea what “greenhouse effect” means and support them in their 

thought processes. Then, two volunteers should be chosen to be actors in a play about the 

greenhouse effect, preferably students that are more inclined to be silly and entertaining 

for the rest of the group. The actors will play the roles of “Jenny” and her dog, “Fido,” 

and will act out each line of the story that the naturalist reads.  

 “Jenny and her dog, Fido, are playing fetch at the dog park on a sunny day. Fido 

is a young and really hyper puppy. They play fetch for a while, but then they both start to 

get tired. They get into the car to go home. Jenny realizes she forgot to buy apples for the 

fruit salad she is making for her friend’s birthday party. Jenny drives the car to the 
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supermarket, parks the car in a sunny spot, and rolls the windows up so crazy Fido can’t 

run away. Jenny goes into the store and picks her apples. She runs into a neighbor and 

gets distracted” (naturalist enlists a third volunteer). “Meanwhile, it doesn’t look like 

Fido is doing too well in the hot car. Jenny suddenly remembers Fido! She leaves the 

apples and runs to the car. Fido is lying down on the seat and panting really hard. Jenny 

opens the door and walks Fido to the shade. She gives him water and apologizes.” 

 After the skit, the naturalist should ask the audience what happened to Fido and 

why, using a dry erase board and marker to draw a car and illustrate how sunlight energy 

can pass through glass, but once it hits the interior surfaces of the car it converts to heat 

energy, which cannot pass back through the glass to escape the car. More and more 

sunlight comes in and changes to heat, making the inside of the car become hotter and 

hotter. A greenhouse can then be drawn to explain why the phenomenon is called 

“greenhouse effect.”  

Most importantly, naturalists should be sure to draw the Earth with a thin 

atmosphere around it, explaining that greenhouse gases, such as carbon dioxide, do the 

same thing as the car/greenhouse glass: they allow the sunlight to reach the Earth’s 

surface and prevent some of the heat from escaping back into space. These greenhouse 

gases are vital to life on this planet, and without them, it would be too cold for anything 

to live (Mathez, 2009). To transition to the next place, students should find a new partner 

and discuss how they think carbon dioxide gets into the atmosphere. 

Photosynthesis and Carbon 

 This section focuses on reviewing photosynthesis and a simple version of cellular 

respiration, which are concepts that students will likely already be familiar with from 
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science lessons at their home school. At the next stop on the hike, the naturalist will ask 

some students to share with the group what they discussed during the transition with their 

partners.  

The naturalist will then ask the group about photosynthesis and what components 

are needed for plants to produce their own food, what the food is that they produce, and 

what gas plants give off into the air. As students give the answers for water, carbon 

dioxide, energy from the sun, sugar/glucose, and oxygen, the naturalist will write their 

answers on the dry erase board as a chemical equation: 6H2O + 6CO2 + energy (from 

sun) = C6H12O6 + 6O2. Then, the naturalist will remind them that animals use cellular 

respiration to process the energy they eat, and it is the reverse of the photosynthesis 

equation. Under the equation on the board, the naturalist will ask the students what 

animals/humans eat (sugar like glucose), what they breathe (oxygen), and what they 

breathe out (carbon dioxide and water vapor). If students do not come up with exhaling 

water vapor, the naturalist can remind them of seeing their breath on a cold day, or 

breathe into a plastic baggie to show the exhalation of water. As students answer, the 

naturalist can write the chemical equation for cellular respiration: C6H12O6 +6O2 = 6H2O 

+ 6CO2 + energy (that is used to live and given off as heat).  

The naturalist can also draw lines from the components of the photosynthesis 

equation to the components of the cellular respiration equation to show that the equations 

contain the same components and that they are the reverse of each other. Once the 

concept is reviewed, the naturalist can circle all the “C”s and explain that carbon is 

almost everywhere on Earth, including in rocks, and that fossil fuels like coal, oil, and 

natural gas are made from microscopic organisms that were buried under sediment 
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millions of years ago (Mathez, 2009). To transition to the next stop, the naturalist should 

have the students choose a new partner and discuss, while walking, what other places on 

the planet carbon might be stored. 

The Carbon Cycle 

  Please Pass the Carbon (n.d.) is a game from the Massachusetts Department of 

Elementary & Secondary Education website that is intended to illustrate the major types 

of carbon sinks on the planet where carbon is stored, and to show how carbon moves 

among the sinks, at different rates, in the carbon cycle. Once arriving at the new stop, the 

naturalist will have each student find three items each, roughly the size of their fists, such 

as pinecones, rocks, sticks, etc. The next step is to set up the game, which should be done 

quickly so as to not lose students’ attention. Sitting in a circle, students will be assigned 

the following roles, and the naturalist will give them “nametags” of tape or stickers that 

indicate their role. It might be beneficial to make nametags prior to the start of the day. 

The following roles are to be assigned in clockwise order: atmosphere, plants, animals, 

humans, soil, ocean, a second ocean, fossil fuels, underground rocks, and a second 

underground rocks (“Please Pass the Carbon,” n.d.). If there are more than ten students, 

assign more ocean and underground rock roles, or even one other atmosphere, making 

sure to keep them in the order listed above. Making more ocean and underground rock 

students shows that these are the biggest carbon sinks (“Please Pass the Carbon,” n.d.). 

 For the first round that illustrates the short-term carbon cycle, the students 

representing rocks and fossil fuels should stand outside of the circle—the naturalist will 

have each remaining student pass one “carbon” to their left in this order: atmosphere to 

plants to animals to humans to soil to ocean to atmosphere (“Please Pass the Carbon,” 
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n.d.). If the group has demonstrated a high level of understanding, the naturalist can ask 

them how the carbon would actually move from each sink to the next, otherwise, the 

naturalist can explain each transition. Atmosphere gives plants carbon dioxide to make 

glucose; animals eat plants and the carbon inside of them; humans eat the animals; 

humans die, or make scat, or fingernail clippings, or hair falls off and decomposes in the 

soil; soil erodes into the ocean; ocean currents circulate carbon to other parts of the 

ocean; ocean algae takes in carbon dioxide, dies, and layers on the ocean floor to make 

fossil fuels; fossil fuels are trapped in between underground rocks; and rocks get uplifted, 

break apart, and release carbon into the atmosphere as carbon dioxide. Once this is 

explained, have everyone pass one “carbon” again to their left, and then once more. The 

naturalist will then ask how many “carbons” each person has, which should still be three, 

and point out that this is a balanced system. 

 For round two, the naturalist will explain that sometimes there are trades between 

sinks—where the ocean and atmosphere meet, they exchange carbon—this is illustrated 

by having an ocean student and atmosphere student trade one “carbon” for one “carbon” 

(“Please Pass the Carbon,” n.d.). Plants and soil can trade because plants die and 

decompose carbon into the soil, and soil gives off carbon dioxide that plants can use for 

photosynthesis. A three way exchange can take place between atmosphere, animals, and 

plants because animals eat plants, breathe out carbon dioxide into the atmosphere, and 

plants take in carbon dioxide from the atmosphere. The round should conclude by 

pointing out that everything is still in balance and that passing the “carbon” in the full 

circle or by trading shows how carbon cycles daily on the planet, but that some carbon 

movement can take thousands to millions of years (“Please Pass the Carbon,” n.d.). 
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 In round three, the rock and fossil fuel students will take their places back in the 

circle. Everyone will pass one “carbon” again to their left, and the naturalist will explain 

how it takes millions of years for algae to build up on the bottom of the ocean to create 

fossil fuels like coal, oil, and natural gas (Mathez, 2009). It also takes millions of years 

for plate tectonics to uplift underground rocks above the surface, where they will take 

many more years to erode and break apart (Mathez, 2009). This is the carbon cycle over 

the long-term, and the naturalist can ask the students: is everything still in balance? 

 Round four will illustrate how humans are causing an imbalance in the carbon 

cycle. The naturalist will explain that humans burn fossil fuels to generate energy to 

power cars, planes, trains, and ships to transport people and goods—this releases carbon 

dioxide from fossil fuels to the atmosphere (Mathez, 2009; Zhong & Haigh, 2013). The 

naturalist will have the “human” student take one “carbon” from “fossil fuels” and give it 

directly to the “atmosphere.” Then, the naturalist will explain that electricity for homes 

and factories is generated by burning fossil fuels, too, which also releases carbon into the 

atmosphere, and will have the “human” take one “carbon” from “fossil fuels” and give it 

to the “atmosphere” (“Please Pass the Carbon,” n.d.). Then the group will be asked: is the 

system still in balance? Are humans having an effect on the carbon cycle? Carbon from 

fossil fuels is part of the long-term carbon cycle, but humans are moving that carbon into 

the short-term cycle (Mathez, 2009).  

To transition to the next place, the naturalist will have the students recall the 

greenhouse effect and how carbon dioxide is a greenhouse gas that keeps the planet 

warm. The naturalist will then tell them to walk and talk with a new partner, discussing 
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what they think will happen to Earth’s temperature if carbon dioxide is released faster 

into the atmosphere. 

Drought, Redwoods, and Carbon Dioxide 

 In the new teaching spot, the group should share their answers to the transition 

question, which provides set up for defining the term, “global warming.” The naturalist 

will explain that more carbon dioxide in the atmosphere will cause an increase in global 

temperature, but different places might experience the warming differently. Using the dry 

erase board, the naturalist will draw an ocean that connects to a beach and some 

mountains, and then ask students the following questions: 

 Remember the water cycle? What is the word for when water heats up and rises 

into the atmosphere as a gas (evaporation)? 

 If Earth’s temperature gets warmer, will more or less water evaporate from the 

ocean (more)?  

 Will this mean there will be more or less water in the atmosphere (more)?  

 When the extra water in the atmosphere moves to other places and rains or snows 

down, will these be bigger or smaller storms (bigger) (“Global Climate Change,” 

n.d.; Mathez, 2009)?  

 So can global warming mean colder, wetter weather in some places (yes) 

(“Global Climate Change,” n.d.; Mathez, 2009)?  

The naturalist will then explain that this is why scientists use the term “climate change” 

now instead of global warming, since not everywhere will experience an increase in 

average temperatures. 
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 Using the drought map graphic (see Appendix D), the naturalist will explain that 

some places in the country are experiencing more dryness, and some are experiencing 

more wetness, with California currently experiencing the worst drought on record (since 

the late 1800s) (US Drought Monitor, 2015). The naturalist will then lead a discussion of 

local drought effects by asking the students, “What will happen to these giant redwood 

trees if there is less water?” During the discussion, the naturalist will let the students 

know that scientists are currently researching the effects of climate change on redwoods, 

and these scientists were surprised to find out that the redwoods are actually growing at 

faster rates now than ever before (Boxall, 2013; Brown, 2013; Save the Redwoods, 

2013). Some reasons could be that the warmer weather means less foggy days, which 

expose the trees to more sunlight, or maybe the higher amount of atmospheric carbon 

dioxide means the trees can photosynthesize more quickly (Boxall, 2013; Brown, 2013; 

Save the Redwoods, 2013). The point here is that research is being conducted right now 

on the climate and redwood relationship, and although climate science shows that 

humans are contributing to climate change, the extent of the effects of the change is 

largely unknown (“Global Climate Change,” n.d.). 

 Wood cookie analysis activity. Students will each be given a redwood branch 

cross sections, known as wood cookies or tree cookies, and the naturalist will prompt the 

students to discuss what the rings mean on the wood cookie, what the thicker and thinner 

widths indicate, and what the black or brown spots on them are (fire scars) (Carroll et al., 

2014). The naturalist can even have the students count backwards to a fire scar to 

calculate the year that the fire occurred.  
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Students will be told that one way scientists are learning about how redwoods 

might react to climate change is by studying how they reacted to climate changes in the 

past. The study of tree rings is called dendrochronology, and scientists can not only learn 

how old a tree is or when a fire was, but also when the last drought was and how the tree 

responded to it. They can even figure out how old historic wood buildings are by 

comparing the rings of living trees to the rings in the logs of the building, as long as the 

buildings were made from nearby trees. At this point, students will be shown the tree ring 

sample timeline (Appendix D), in which tree rings can be lined up to determine when the 

tree was cut down to make the building, followed by the photo of tree cores (Appendix 

D) and an explanation about how cores are taken using hollow drills to avoid cutting and 

killing a whole tree (Carroll et al., 2014).  

As part of recent redwood dendrochronology research, there is now a timeline of 

redwood history that dates back to the year 328 (Carroll et al., 2014). Now that this 

history is recorded, scientists will analyze it to understand how redwoods changed during 

past climate changes. What is known now, though, is that ancient redwoods do a great job 

of removing carbon dioxide from the atmosphere—ancient redwood forests process three 

times more carbon dioxide than any other forest (Herbert, 2014). To transition to the next 

place, the naturalist should point out that the trees cannot take in all the extra carbon 

dioxide that humans are emitting into the atmosphere, and that the students can all help 

by doing less things that use energy from fossil fuels, like using less electricity and less 

gasoline in vehicles. While hiking to the next place, students should discuss in partners 

how they can use less electricity and gas. 

Closure and Commitment 
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 This section focuses on empowering students to reduce their carbon footprints 

when they return home. The naturalist will start by explaining that a person’s carbon 

footprint is how much carbon they contribute to the atmosphere with their lifestyle. He 

can ask the group which person would have a bigger carbon footprint: the person that 

rides in a car to school every day or the person that rides a bike to school every day? 

Would a person that leaves the computer, television, and lights on in the house all day 

have a bigger or smaller carbon footprint than someone that turns things off when not 

using them? 

 The naturalist will then lead the group in a brainstorming session on ways to 

reduce their carbon footprints, and will start by having students open their journals to two 

blank pages that face each other. At the top of the left page they should write the label, 

“Things I already do to reduce my carbon footprint,” and label the right page, “New 

things I can do to reduce my carbon footprint.” Students will likely give ways that they 

can avoid riding in vehicles, but the naturalist should try to steer them more toward ways 

they can reduce their electricity use. The naturalist should explain again that most 

electricity for buildings comes from power plants, which burn fossil fuels to get the 

energy, which releases carbon into the atmosphere. A fun fact to share with the students 

that helps to put electricity use in perspective is about the video game console, Xbox 

One. The naturalist can ask if anyone has, or know anyone that has, and Xbox One at 

home. There is a feature where one can walk into a room and say “Xbox on” and it will 

turn on. This means it is always on and using electricity to listen for someone to tell it to 

do something—nearly half the electricity used by the game console is during this standby 

mode (Delforge, 2014).. If everyone who bought an Xbox 360 upgrades to an Xbox One 
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and doesn’t change the settings, it will cost the Xbox owners $400 million a year in 

electricity bills and consume as much electricity as a large, 750-megawatt power plant 

produces in an entire year (Delforge, 2014).! To prevent the waste of energy, all Xbox 

One owners need to do is turn of the voice control option in the settings, or simply unplug 

the unit when not in use (Delforge, 2014).  

 Once the discussion on transportation and electricity starts to slow somewhat, the 

naturalist should show students the U.S. Greenhouse Gas Emissions pie chart (Appendix 

D) and explain that all the things they talked about fell into the Electricity and 

Transportation sections, but their answers really only addressed part of the Transportation 

section (“Sources of Greenhouse Gas Emissions,” n.d.). He should ask, “What other 

reasons do vehicles use gas—especially trucks, trains, airplanes, and ships? What do big 

semi-trucks transport?” This will lead into a discussion of consuming goods, and how 

buying less goods will enable them to tackle the rest of the Transportation section, as well 

as the Industry section. The naturalist can use a water bottle as an example of how raw 

materials are harvested, transported, manufactured into goods, transported again, and 

sold; all of these steps contribute carbon into the atmosphere. The group should be led to 

answer that they can reduce their carbon footprints by buying less stuff, fixing broken 

things, buying used goods at secondhand stores, etc. Once the conversation slows, the 

naturalist will have the students circle the things on the right-side list that they commit to 

doing once they get home. 

 Closing ceremony. To celebrate the students’ learning and commitments, the 

naturalist will tell them that Westminster Woods has a special ceremony to tell the 

redwoods that they want to help them keep carbon in the atmosphere at lower levels. To 
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become part of the Carbon Warrior Club, students can rub soot from a burned tree onto 

their face and say one of their commitments out loud to the forest. If possible, the 

naturalist should plan the route so that this stop along the hike has a burned tree with 

soot, or she can carry a few pieces of charcoal wood in his pack. 

Final Logistics 

 After the ceremony, the group should walk to another place close to camp, but not 

all the way back to camp to avoid distractions from groups of other students. Naturalists 

should then give the students the questionnaire and make sure they fill out the 

identification section, especially circling the words, “post-test.” Students should have as 

much time as they need to fill out their questionnaire, which will, like the pre-

questionnaire, likely be approximately ten minutes. To ensure that students write 

thoughtful and complete answers, naturalists should not dismiss each student as they 

finish. Instead, as typical at Westminster Woods, the group can circle up and share a few 

words in a closing debrief.  

Proposed Data Analysis 

 The hypothesis for this project is that students will increase their understanding of 

climate change and its relationship to the redwood forest. Quantitative data for this 

project will be collected through the pre- and post-lesson questionnaires, and scores of 

each individual will be compared to determine if there is an increase in understanding. 

This data will be analyzed by determining the mean change in test scores among 

individual trail groups, as well as the mean of the entire project population. Comparisons 

will be made between the two different versions of the questionnaire to see if there is a 
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measurable amount of success between the two versions. Comparison of naturalist mean 

group score changes will also occur to see if there is any difference to note. 

 Statistical significance of the change in test scores will be analyzed using a t-test, 

in which the pre- and post-test values are paired. The null hypothesis is that the post-test 

scores will not be significantly higher than the pre-test scores. The t-test analysis will 

determine whether the null hypothesis will be accepted or rejected.   

Conclusion 

 The described lesson plan and its accompanying questionnaire will be used to 

teach climate change to fifth and sixth grade students participating in a multi-day, 

residential outdoor and environmental education program at Westminster Woods Camp 

and Conference Center. The lessons focus on teaching the fundamental principles of 

climate change, current research on climate change impacts on the redwood forest, and 

how students can apply this knowledge to reduce their consumption of goods. The 

hypothesis for this project is that students will increase their understanding of climate 

change and its relationship to the redwood forest. To measure the amount of learning 

among students, each will fill out a pre- and post-questionnaire to compare their 

knowledge of the topic before and after participating the lesson plan activities. These 

scores will be analyzed by comparing mean changes in paired scores among naturalist 

groups and as a whole population. A paired two-sample t-test will also be calculated to 

determine if there is a statistically significant increase in individual test scores. 
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CHAPTER FOUR: RESULTS 

 

More evidence is suggesting that current climate changes are directly linked to 

anthropogenic sources (Mathez, 2009; “Global Climate Change,” n.d.). Because of this, it 

is increasingly important to teach students about climate change and how human use of 

fossil fuels for energy affects global climate. The goal of this project is for students to 

understand the relationships between climate change, the coast redwood forest, and their 

own consumption of goods and energy. The objectives of the lesson plan are the 

following: 

 Students will understand the carbon cycle and greenhouse effect. 

 Students will understand how a warming atmosphere will affect the water 

cycle, causing many dry places to become drier and many wet places to get 

wetter. 

 Students will know that scientists are currently researching how redwood trees 

have responded to past climate changes. 

 Students will connect global climate to anthropogenic carbon emissions. 

 Students will commit to at least two new ways to reduce their carbon 

footprints and start them upon arriving back at home. 

Having students learn about climate change through dendrochronology is a great 

way for them to connect through past understanding. The dendrochronology research 
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described in Chapter Two is a concept fifth and sixth grade students can understand 

because they have already learned about tree rings. Many of the students that participated 

in this project were easily able to build on their past knowledge of tree rings to 

understand that scientists are using those rings to learn about redwood climate response 

(Carroll, 2013). 

Ninety-nine students were taught the lesson plan in Chapter Three and learning 

was measured by having students complete a questionnaire before and after participating 

in the activities. The hypothesis for this project is that students will increase their 

understanding of climate change and its relationship to the redwood forest. Analysis of 

the data showed that there was an overall mean increase of 31 percentage points among 

the entire population, and all t-tests calculated showed that the increases in questionnaire 

scores were a direct result of the lesson plan.  

Questionnaires: Versions One and Two 

The questionnaire was designed to directly measure student knowledge of each 

key concept in the lesson plan: greenhouse effect, photosynthesis and carbon, the carbon 

cycle, the relationship between drought, redwoods, and carbon dioxide, and steps an 

individual can take to reduce one’s carbon footprint. Some questions required a short 

answer so that students could not guess and achieve a perfect score. There are also some 

multiple choice questions so that concept learning can be measured in a less time 

consuming fashion.  Version one of the questionnaire can be found in Appendix B, and 

asks the following questions: 

1. What does “greenhouse effect” mean?  

2.  What greenhouse gas is the biggest concern for climate change? 
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3. Will more greenhouse gases make the planet’s average temperature warmer or 

cooler?  

Circle one: WARMER COOLER 

4. Do scientists think climate change will make the redwood forest wetter or 

drier? 

Circle one: WETTER DRIER 

5. What can scientists learn from studying redwood tree rings?  

6. Is the Earth’s climate changing because of humans?  

Circle one: YES  NO 

7. Name two major ways humans are adding greenhouse gases into the 

atmosphere. 

8. Name 2 OR MORE things you will do at home to reduce your carbon 

footprint. 

The questionnaire was revised after peer review suggestions that the multiple 

choice questions should include an option to circle “I don’t know.” In this way, student 

guessing would become less of a factor and the measurement of learning could be more 

accurate. In addition, after three groups of students participated in the project it was 

apparent that question seven was confusing. To clarify the question for future students, it 

was revised from a short answer question to a multiple choice question that asked 

students to circle ways in which humans add greenhouse gases to the atmosphere. 

Version two of the questionnaire can be found in Appendix C of this paper, and the 

questions are as follows:  

1. What does “greenhouse effect” mean?  
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2. What greenhouse gas is the biggest concern for climate change? 

3. Will more greenhouse gases make the planet’s average temperature warmer or 

cooler? 

Circle one:  WARMER  COOLER I DON’T KNOW 

4. Do scientists think climate change will make the redwood forest wetter or 

drier? 

Circle one:    WETTER   DRIER I DON’T KNOW 

5. What can scientists learn from studying redwood tree rings?  

6. Is the Earth’s climate changing because of humans?  

Circle one:   YES  NO   I DON’T KNOW 

7. Below are some things that humans do. Circle those activities that add 

greenhouse gases to the atmosphere (Note: we breathe doing all these things, 

so don’t count breathing). 

I DON’T KNOW  DRIVING CARS PLAYING SOCCER 

WATCHING TV  HIKING  BUYING STUFF 

READING  RIDING BIKES  PLAY VIDEO GAMES 

8. Name 2 OR MORE things you will do at home to reduce your carbon 

footprint. 

Student questionnaires were scored out of a total of eleven points, with questions 

one, seven, and eight carrying more weight than the less detailed ones. Points were 

consistent between each questionnaire version, and the answer key can be found in 

Appendix E. Questions one, seven, and eight were each worth two points each, and 

questions two, three, four, five, and six each were worth one point.  
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Student and Naturalist Participation 

This project was implemented in April and May of 2015. A total of ninety-nine 

students from five different schools participated in this research project; fifty-six were in 

fifth grade and forty-three were in sixth grade. Five naturalists participated: two 

naturalists only taught the lesson plan to one group each, two naturalists taught to two 

groups each, and one naturalist taught to three groups, which equals a total of nine 

groups. These groups ranged from nine to thirteen students; five groups consisted of fifth 

grade students and four consisted of sixth grade students. 

Other naturalists were interested in participating in the project; some declined due 

to a lack of personal time necessary to prepare and others used portions of the lesson plan 

in their teachings. Data collected and analyzed in these results is only from those 

naturalists that were able to complete the entire project with a group of students.  

Data Analysis 

Score Changes: Means and Percentage Point Increases 

A spreadsheet of the data collected can be found in Appendix F, which includes 

participant totals, pre- and post-scores, individual score changes, mean score changes for 

each trail group, and mean score changes for the entire population. Since the goal of the 

project was for students to increase their knowledge on the topics, it was important to 

keep each student’s pre- and post-scores paired together for all analyses. Percentage 

points were calculated according to this example: one student scored 2 points on the pre-

test and 9 points on the post-test. The 7 point difference divided by 11 equals a gain of 64 

percentage points, increasing her grade from 18% to 82%.  
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For all ninety-nine students, the data showed a mean 3.44 point mean increase, 

out of 11 points, in pre- and post-test scores, which is an increase of 31 percentage points. 

Conversely, the average post-score was only 6.68 points/62 percentage points, which 

would equate to a D grade. Of all the students, there was only one that had a decrease in 

score (-0.5 point decrease); of the other 98 students, the lowest change was 0%, and the 

highest change was 91%. Nine students had a 0% change in score, which means that 91% 

of the students increased their scores. Since the hypothesis for this project is that students 

will increase their understanding of climate change and its relationship to the redwood 

forest, the statistics shows that this lesson plan supports the hypothesis.  

There were three groups, with a total of thirty students, which were given the first 

version of the questionnaire before it was revised. The three groups overall had a mean 

2.97 point increase, or 27 percentage points. In comparison, there were six groups, with a 

total of sixty-nine students, which were given version two of the questionnaire. These 

groups had a mean increase of 3.65 points, or 33 percentage points. It seems likely that 

this difference between the two versions is directly related to the changes in the 

questionnaire. Another explanation could be that three of the naturalists had groups 

during the use of both questionnaire versions—it is possible that the scores in their 

subsequent groups were higher because the naturalists were more familiar and 

comfortable with the lesson plan when they used version two.  

Looking into individual naturalists further, Naturalists A, B, and C all conducted 

the lesson plan more than once, and all had used both versions of the questionnaire. 

Naturalist A had a 3.70 point/34% increase with Group 1, 4.71 point/43% increase with 

Group 6, and 5.83 point/53% increase with Group 9. Naturalist B had a 3.73 point/34% 
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increase with Group 2 and a 3.29 point/30% increase with Group 7. Naturalist C had a 

1.22 point/11% increase with Group 3 and a 1.70 point/15% increase with Group 5. 

Naturalist A had an increasing trend in mean group score over time among the three 

groups she taught, as did Naturalist C, but this does not seem to be the case for Naturalist 

B. Another possibility for the increasing trend among Naturalist A’s groups is that 

Naturalist A is the author of this paper. Researching the climate and redwoods 

connections, writing the lesson plan and questionnaires, and a personal desire to see this 

project succeed are all likely factors for the increasing trend in the scores of Naturalist 

A’s groups.  

T-Test Analysis 

 Data was also analyzed to determine if the increase in test scores was statistically 

significant using one-tailed, two-sample t-tests, which can be found in Appendix G. Since 

there were two different questionnaire versions, three t-tests were calculated: one for the 

entire population of all ninety-nine students, one for the thirty students that were tested 

with questionnaire version one, and one for the sixty-nine students that were tested with 

version two. All three t-tests kept student pre- and post-scores paired together, and the 

null hypotheses of all three tests were that the post-test scores were not statistically 

different than the pre-test scores.    

 All three tests showed that the one-tail p-values fell so far on the edges of the 

distribution that, when rounded to four decimal points, they came out to 0.0000. This 

shows that the probability that the null hypothesis is true is close to 0%, so the null 

hypothesis can be rejected. This means that there is a statistically significant difference 

between pre- and post-scores among all student scores, all version one scores, and all 
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version two scores. According to the t-test, it is nearly impossible for the increase in 

scores to merely be a coincidence. The t-test supports the hypothesis that lesson plan 

improved student knowledge of climate change and redwoods. 

Conclusion 

Climate change is an increasingly important topic for students of all ages to learn, 

and the concepts, such as dendrochronology, are well within fifth and sixth grade 

students’ ability to grasp. The goal of this project was for students to increase their 

knowledge about climate change, understand how scientists are currently researching 

redwood responses to climate, and explore ways to decrease their personal carbon 

emissions. According to the data analysis, the mean difference between pre- and post-

questionnaire scores was a 31 percentage point increase. The t-test showed that the 

difference was statistically significant and that the increase in scores can be attributed to 

the activities in the lesson plan. The data shows that this project was successful—as a 

result of this project, these students will be better prepared to understand more advanced 

climate change concepts in future school lessons.  
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CHAPTER FIVE: CONCLUSION 

 

Climate change is a complex concept that involves the interaction between 

multiple Earth systems, and while there is great understanding of these interactions, there 

is still much to be learned to predict with any certainty what the future will look like. 

Current research is being conducted by the Redwoods and Climate Change Initiative and 

has already revealed a greater understanding of the interactions between climate and 

redwood trees. Understanding these interactions is important for educators teaching in 

redwood forests so that they can be confident in teaching climate change to their students. 

While more research in teaching the climate and redwoods relationship is needed, this 

research paper will aid educators in this task as it is shared among them and the greater 

environmental education community.  

Climate and Redwoods Literature 

 By understanding the fundamentals of climate, including the carbon cycle, 

greenhouse effect, the fluctuation of past climates, and the consequences of climate 

change, one can form educated decisions in how to live a more environmentally 

conscious lifestyle. This foundation also helps one to comprehend current research on the 

relationship between climate change and the redwood forest. This research has shown 

that the future climate of the redwood distribution can go one of three ways: warmer and 

drier, warmer, or warmer and wetter (Hamilton, 2013). In all three of these scenarios, a 
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decrease in distribution is predicted, but a warmer and drier future is the most detrimental 

because it will likely cause the greatest amount of distribution contraction (Hamilton, 

2013). 

 The research also shows a dendrochronology record dating back to 328 A.D., 

revealing that redwood trees grow faster the older they become, which can provide a 

slower rate of acceleration of atmospheric carbon dioxide as the trees sequester more of 

the greenhouse gas, and that the trees also grow faster when there is greater water 

availability (Carroll et al., 2014). An analysis of carbon and oxygen isotopes within the 

tree ring chronologies is currently being conducted to determine the precise reasons for 

faster and slower growth rates, including temperature and water availability changes, 

which will be used to develop a deeper understanding of redwood responses to past 

climate changes (Dawson, 2013).  

 Changes in water variability, especially from fog, will have an impact on redwood 

trees. Analysis of weather data over the past one hundred years has shown a decrease in 

the number of summer days that experience fog in the region (Johnstone & Dawson, 

2010). Redwood trees and many other plants in the ecosystem rely on this fog to sustain 

them throughout the otherwise dry summer months because of the increased water 

availability and the effect fog in reducing transpiration (Limm, Simonin, & Dawson, n.d.; 

Limm, 2009). Experiments on redwood seedlings has revealed that the species has a low 

drought tolerance, which causes stem embolisms that cut off transport of water to whole 

sections of a tree (Ambrose et al, 2015; Ambrose, 2013). Even though drought will have 

a largely negative effect, if the trees experience short term droughts, then they have a 

great capacity to recover from these embolisms (Ambrose et al, 2015; Ambrose, 2013). 
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 Another positive result from the studies in the literature review is that redwood 

trees are growing at faster rates than ever before (Boxall, 2013; Brown, 2013; “Past, 

Present, and Future,” 2013). A number of explanations could be accountable for this, but 

regardless of the reason, faster growth rates equal greater carbon sequestration, which is 

promising as atmospheric carbon dioxide levels continue to rise (“Global Climate 

Change,” n.d.). 

Teaching Climate and Redwoods 

 The importance of understanding the fundamental concepts of climate change 

cannot be stressed enough, because it allows one to be able to think critically about 

human interactions with this planet. This foundation also allows one to make sense of the 

deeper climate concepts covered in the literature review, which revealed that there are 

systems within systems that all interact with each other and the greater Earth systems.  

 In teaching to elementary age students, though, one must be aware of the 

psychological impacts of learning about environmental crises at a young age 

(Thomashow, 1995). More detailed information can be taught as they advance in school, 

but in fifth and sixth grade, climate change concepts should be limited to basic processes 

and focus on achievable solutions. These students, however, can develop their intrinsic 

values by being empowered to make changes in their lives to help reduce their carbon 

footprints. 

 Because of this, the lesson plan of this project focused on the fundamentals of 

climate change and used dendrochronology to connect students with the current climate 

and redwoods research. Overall, the project was successful in achieving the goal of 

increasing student knowledge of climate change and the redwood forest. A mean increase 
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of 31 percentage points and a statistically significant paired t-test analysis showed that 

student scores increased as a direct result of participation in the lesson plan activities. 

Because of peer recommendation and to clarify student confusion, the questionnaire was 

revised part way through the study and had a positive result: students that tested with 

version two had a mean percentage point increase 6 points higher than those that tested 

with version one.   

Limitations and Recommendations 

 Although the data shows success in increasing student knowledge of the topic, the 

mean post-score was only 62%, which equates to a D grade. It is possible that the lesson 

plan has too much information to be conveyed in the allotted time frame, so teaching the 

lessons over two days could result in more success and higher post-scores. Another 

option would be to remove the carbon cycle section so that more time could be devoted to 

the other sections. There are other limitations for this study as well: the lesson plan does 

not factor in is the different academic levels of student groups, and it can also make use 

of more teaching strategies that engage different learning styles. The latter can be 

addressed on an individual naturalist basis, however, as each of them becomes more 

familiar and comfortable with the material. 

 It is recommended that further analysis be conducted to provide a broader picture 

of the implications of this research project. Continued and measured use of the lesson 

plan with more students and naturalists at Westminster Woods could give a better 

measure of the success of the lesson plan and also reveal if naturalists’ groups’ scores 

improve with naturalist comfort with the material over time. Additionally, the true 

strength of the lesson plan could be revealed by conducting this research at other outdoor 
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environmental education schools. It would also be useful to survey the participating 

naturalists for feedback on ways to improve the lesson plan—what works and what 

doesn’t. Re-testing the students at school a month or two later would also reveal they 

retained any of the information after a period of time. In revisions to the lesson plan, it 

would be very beneficial to use the lesson plan to address concepts in the Next 

Generation Science Standards so that the activities align with current teaching pedagogy.  

 It was not possible to conduct a formal naturalist training of the lesson plan, but it 

would likely have been very beneficial for them to participate in a run through of all the 

activities. For this research, staff hours were not available, so training on the activities 

was rushed and mostly left to individual naturalists to read and learn the lesson plan on 

their own. It is likely that this limitation would be echoed in other environmental 

education programs as financial resources are generally limited within this field. 

Personal Reflection 

 It is now time to circle back to my own experience as a researcher. Working on 

this capstone has taught me the importance of focus—not only focus on the work in 

general, but also how crucial it is to narrow the focus of a project into something 

manageable. While I feel I need to be an expert in everything about climate change and 

redwood trees, the reality is that I am not a climatologist, nor am I working on a doctoral 

degree. It took me some time, but I was able to narrow the focus to a scope that was not 

only manageable for me to complete, but also manageable for other environmental 

educators to digest. I am proud of the work I have done to complete this capstone, and am 

excited that it can serve to be beneficial for the greater environmental education 

community, especially for those teaching in redwood forests. I plan to share it with the 
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network of environmental educators through my own personal networks as well as 

professional networks such as the National Park Service and the Association for 

Environmental and Outdoor Education, which is the California state affiliate of the North 

American Association of Environmental Educators.  

As I finish this capstone and graduate program, I find myself re-learning what I 

learned when I finished my Bachelor of Arts in Anthropology—an academic degree does 

not make me an expert in my field, but shows that I have progressed as a student, 

researcher, and educator. This capstone directly aligns with Hamline University School 

of Education’s Conceptual Framework because by writing it, I hope to promote positive 

change in the environmental education community. It provides a resource for educators 

that might be intimidated by the topic of climate change, like I was, but value lifelong 

learning and strive to become better in their teaching practice. The process of 

development, implementation, and composition of this capstone has allowed me a deeper 

understanding of a topic of which I am so passionate, the ability to inquire and reflect on 

my own teaching practice, and an opportunity for greater contribution to my community 

of educators.  
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Appendix A: Climate and Redwoods Lesson Plan 
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Climate Change Curriculum for 

Westminster Woods 5th and 6th Grade Environmental Education 

Dorea Martin—Hamline University 

April and May, 2015 

NOTE: More detailed explanation of these activities can be found in Chapter Three. 

Objectives 

 Students will understand the carbon cycle and greenhouse effect. 

 Students will understand how a warming atmosphere will affect the water cycle, 

causing many dry places to become drier and many wet places to get wetter. 

 Students will know that scientists are currently researching how redwood trees 

have responded to past climate changes. 

 Students will connect global climate to anthropogenic carbon emissions. 

 Students will commit to at least two new ways to reduce their carbon footprints 

and start them upon arriving back at home. 

Supplies needed:  

Whiteboard and marker, tape or blank stickers, wood cookie for each student, magnifying 

lenses for each student (optional), drought map, tree ring sample timeline, tree core 

photos, drought map, U.S. greenhouse gas emissions pie chart, 2 questionnaires for each 

student, pencil for each student, and Westminster Woods journals or one blank piece of 

paper each. 

Trail logistics needed:  

 Stop 4—Carbon Cycle needs to have three hand held objects available for each 

student (rocks/sticks/pinecones/etc.), or bring items for the activity. 
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 Stop 6—Closure and Commitment needs to have a burned tree or log, or naturalist 

can bring burned wood pieces. 

Stop 1: Introduction 

 Today we are going to focus on global warming and climate change and what it 

means for the redwood forest.  

 GIVE STUDENTS 10 MINUTES TO FILL OUT QUESTIONNAIRE 

 Some people are confused about what those terms mean, but 97% of climate 

scientists agree that humans are having an effect on Earth’s climate. 

 Transition: Partner students and have them discuss what the difference is between 

weather and climate. 

Stop 2: Greenhouse Effect 

 Have students share difference between weather and climate with the group. 

o Weather: “The conditions at any one time at any one place—temperature, 

precipitation, humidity, wind, atmospheric pressure, and cloudiness” 

(Mathez, 2009, p. 255). 

o Climate: The average weather for a particular region for a significant 

period of time, typically several years (Mathez, 2009, p. 248). 

 Weather and climate are influenced by how much of the sun’s energy reaches the 

surface of the Earth and how much can escape back to space (Mathez, 2009). 

 Ask: Who has an idea of what “greenhouse effect means?” 

ACTIVITY—SKIT 
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 Have two student volunteers come up and act out the following story (after each 

line, pause so they can act it out): 

o Jenny and her dog Fido are playing fetch at the dog park on a sunny day.  

o Fido is a really young, rambunctious puppy. 

o They get in the car to go home. 

o Jenny realizes she forgot to buy apples for the fruit salad she is making for 

her friend’s birthday party. 

o Jenny drives to the store, parks the car in a sunny spot, and rolls the 

windows up so crazy Fido can’t run away. 

o Jenny goes into the store and picks her apples. 

o Meanwhile, Fido is in the car in the sun; he’s hot, but ok. 

o Jenny runs into a neighbor and gets distracted. 

o It’s been awhile, and Fido isn’t doing so well. 

o Jenny suddenly remembers Fido! 

o She leaves the apples and runs out to the car. 

o Fido is lying down on the seat and panting really hard. 

o Jenny opens the door and walks Fido to the shade. 

o She gives him water and apologizes. 

 Applause! Ask audience to explain what happened to Fido. 

 Use a whiteboard to draw a car and show that sunlight can pass through the glass, 

but as it hits the seats, dashboard, etc., it changes to heat energy and cannot 

escape through the glass. More and more energy is trapped inside, making it 

hotter and hotter. Erase board. 



73 

 

 Draw Earth and atmosphere layer around it.  

o Have the group explain to you how greenhouse gases in the atmosphere 

are like the glass—they hold in the heat. These gases are very important—

without them, the planet would be too cold for any life to survive. 

 Carbon dioxide is an important greenhouse gas.  

 Transition: Find a new partner and discuss: How does carbon dioxide get into the 

atmosphere?  

Stop 3: Photosynthesis and Carbon 

 Have group share how carbon dioxide gets into atmosphere. 

 Review photosynthesis (use whiteboard). 

o Ask audience for inputs of photosynthesis and write them on board. 

 H2O + CO2 + energy (from sun)  C6H12O6 (glucose) + O2 

o Remind them that cellular respiration is the same equation in reverse—

animals eat the glucose and breathe oxygen, and breathe out water vapor 

and carbon dioxide. 

 C6H12O6 (glucose) + O2  H2O + CO2 + energy (heat) 

o When we burn a piece of paper, it goes through combustion, which the 

same thing as cellular respiration—the heat from the fire breaks apart the 

glucose molecule’s bonds and releases CO2 and H2O.  

 Circle the C’s and explain that the carbon is almost everywhere on Earth, 

including rocks. 
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o Fossil fuels like coal, oil, and natural gas are made from microscopic algae 

were buried under sediment millions of years ago.  

 Transition: Tell students to think about other places on Earth were carbon is 

stored. 

Stop 4: Carbon Cycle 

ACTIVITY: PASS THE CARBON 

 Have each student find three items to represent carbon. Can be rocks, pinecones, 

sticks, etc., but something at least as big as an acorn. 

 Sit in circle. Tell students they are going to represent carbon sinks, or places that 

carbon is stored. Assign the following parts in order going clockwise, and use 

tape or blank stickers to give students “nametags” of the roles they represent: 

o Atmosphere, plants, animals, humans, soil, ocean, a second ocean, fossil 

fuels, underground rocks, and a second underground rocks. (If more than 

ten students, assign more ocean and underground rock roles, or even one 

other atmosphere, making sure to keep them in the order listed above. 

Making more ocean and underground rock students shows that these are 

the biggest carbon sinks.) 

 Round 1—Have rocks and fossil fuels stand outside the circle. Each remaining 

person passes one carbon to the left in this order: atmosphere to plants to animals 

to humans to soil to ocean to atmosphere. Have students explain how the carbon 

gets passed in real life, or explain it to them. 
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 Round 2—Sometimes “trades” are made between sinks—animals with plants 

(animals eat carbon from plants and plants use carbon the animals breathe out), 

atmosphere to ocean (exchange CO2 where they come in contact).  

 Explain that rounds 1 and 2 happen on a daily basis and are called the short term 

carbon cycle and things are naturally balanced. 

 Round 3—long term carbon cycle—Explain that small amounts of carbon are 

being cycled underground over hundreds of millions of years. Have fossil fuels 

and rocks sit in the circle (between ocean and atmosphere) and have everyone 

make one trade to the right. Things are still in balance. 

 Round 4— 

o Explain that humans burn fossil fuels in cars, planes, trains, and ships and 

carbon dioxide is released into atmosphere. 

 Have the human take carbon from fossil fuels and give it to 

atmosphere.  

o Explain that humans burn fossil fuels for electricity. (Fossil fuels main source 

of electricity in this country). 

 Have human take another carbon from fossil fuels and give it to 

atmosphere. 

 What is happening? Humans are accelerating release of long-term carbon 

stores and causing the carbon cycle to become imbalanced. 

 Transition: Remember the greenhouse effect? In partners, have students discuss: 

What will happen to Earth’s temperature as we release more carbon dioxide into 

the atmosphere? 
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Stop 5: Drought, Redwoods, and Carbon Dioxide 

 Have group share: More carbon dioxide will cause warming around the world.  

 Ask: In the water cycle, what happens when water, like the ocean, heats up? 

Evaporation. 

 Ask: If there is more water in the atmosphere, will it stay there forever, or fall 

somewhere else? 

o Global warming means the dry places will get drier, and the wet places 

will get bigger storms and floods. 

o This is why we now call it climate change instead of global warming. 

o Show drought map and explain that California is experiencing the worst 

drought on record (records since late 1800s). 

 What will happen to the redwood trees if there is less water? Discuss. 

 Scientists thought that drought would be really bad for redwoods, but research 

shows that trees are growing more now than ever before. 

o Possible reasons: 

 Drought means less fog, which gives trees more sunlight. 

 Maybe more CO2 available means more photosynthesis. 

ACTIVITY: WOOD COOKIE ANALYSIS 

 Scientists are studying redwood tree rings to find out how past climate changes 

have an effect on redwood trees. 

 Pass out wood cookies to each student and have them make observations. 

o Discuss observations as group. 



77 

 

o Point out that scientists can use tree rings to learn forest fire history, 

climate history, how trees respond to droughts and other changes, and they 

can even figure out how old buildings are. 

o Show tree ring sample timeline. 

 Scientists don’t want to cut all the trees down to examine the rings, so they use a 

tree corer instead. 

o Show photo of tree cores and explain that they use a hollow drill to get 

the core. 

o In 2005, scientists started collecting redwood cores all across their range 

to get a complete redwood history. 

 Scientists have a redwood history all the way back to the year 328. 

The Ancient Roman Empire was still around then! 

 Let them know that scientists are still researching how climate change will affect 

the redwoods. 

o Scientists are currently analyzing the tree cores to find out how the trees 

responded to changes in the past to see how they will respond in the 

future. 

 We know that redwoods are doing a great job of removing carbon dioxide 

from the atmosphere—ancient redwood forests take in three times more 

carbon dioxide than any other forest! 

o The trees can’t take in all the extra carbon dioxide humans are putting into 

the atmosphere. We need to help them by burning less fossil fuels, which 

means using less electricity and gas for cars. 
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 Transition: As we walk to the next place, think about how you can use less 

electricity and gas. 

Stop 6: Closure and Commitment—in a spot with a burned tree with soot on it 

 Explain that a person’s carbon footprint is how much carbon dioxide they 

contribute to the atmosphere with their lifestyle 

 What can we do to make less carbon dioxide go into the atmosphere? Obviously, 

we have to breathe. But there are lots of things we can do that will reduce carbon 

emissions. 

 Have group open up to two blank pages in their journal that face each other (or 

use a piece of paper and fold it in half). 

o Title one side “Things I already do to reduce my carbon footprint.” 

o Title other side “New things I can do to reduce my carbon footprint.” 

o As a group, share things they can do to reduce their electricity 

consumption. 

o Crazy fact—Who has an Xbox One? There is a feature where you can 

walk into the room and say “Xbox on” and it will turn on. This means it is 

always on and using electricity, just waiting for someone to tell it to do 

something. If everyone with an Xbox 360 upgrades to an Xbox One and 

doesn’t change the settings, it will cost the country $400 million a year! 

(This information can be found at the NRDC website at 

http://www.nrdc.org/energy/game-consoles/) (Delforge, 2014). 

 To fix it, either unplug it or go to the settings to turn off the voice 

control option. 

http://www.nrdc.org/energy/game-consoles/
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o Show U.S. Greenhouse Gas Emissions pie chart 

 Explain that they just figured out how to reduce the electricity part 

of the chart. 

 We can also reduce carbon emissions from the Industry and 

Transportation sections by buying less stuff, like food, clothes, 

video games, and toys. Use a water bottle as an example: It takes 

energy to make the bottle and then more energy to transport it in 

trucks and trains to where you go to buy it. 

 Have students brainstorm ways to use less stuff and record their 

ideas in their journals (thrift stores, fixing broken items, using 

things longer, borrowing things, and hand-me-downs). 

o Have students circle two things they will start doing when they get home. 

 Do a closing ceremony—celebrate their commitments by having students use 

charcoal (carbon not completely burned off) as face paint.  

o “We have a special ceremony here at Westminster Woods to tell the 

redwoods that you want to help them reduce the amount of carbon dioxide 

that goes into the atmosphere.” 

o “As you put on your mark of the carbon, say one commitment out loud to 

the forest.” 

Stop 7: GIVE STUDENTS TEN MINUTES TO FILL OUT QUESTIONNAIRE 
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Appendix B: Questionnaire Version One 
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Appendix C: Questionnaire Version Two
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Appendix D: Lesson Plan Graphics
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(((US Drought Monitor, 2015). 
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Allyson Carroll, Humboldt State University (Carroll, 2013). 
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Allyson Carroll, Humboldt State University (Carroll, 2013).  
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Electricity = generation of electricity from power plants. Approximately 67% of our electricity comes from 

burning fossil fuels, mostly coal and natural gas. 

Commercial and Residential = includes using gas to heat and emissions from trash sent to landfill 

Transportation = emissions primarily come from burning fossil fuel for our cars, trucks, ships, trains, and 

planes. 

Agriculture = emissions are primarily from livestock such as cows, agricultural soils, and rice production. 

(Sources of Greenhouse Gas Emissions, n.d.).
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Appendix E: Questionnaire Answer Key
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Appendix F: Research Project Data 
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Appendix G: T-Test
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