
Bates College
SCARAB

Honors Theses Capstone Projects

Spring 5-2014

The Tropical Eigenvalue-Vector Problem from
Algebraic, Graphical, and Computational
Perspectives
Alex William Nowak
Bates College, anowak@bates.edu

Follow this and additional works at: http://scarab.bates.edu/honorstheses

This Open Access is brought to you for free and open access by the Capstone Projects at SCARAB. It has been accepted for inclusion in Honors Theses
by an authorized administrator of SCARAB. For more information, please contact batesscarab@bates.edu.

Recommended Citation
Nowak, Alex William, "The Tropical Eigenvalue-Vector Problem from Algebraic, Graphical, and Computational Perspectives" (2014).
Honors Theses. 97.
http://scarab.bates.edu/honorstheses/97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bates College: SCARAB (Scholarly Communication and Research at Bates)

https://core.ac.uk/display/230675312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scarab.bates.edu?utm_source=scarab.bates.edu%2Fhonorstheses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses?utm_source=scarab.bates.edu%2Fhonorstheses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/capstone?utm_source=scarab.bates.edu%2Fhonorstheses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses?utm_source=scarab.bates.edu%2Fhonorstheses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses/97?utm_source=scarab.bates.edu%2Fhonorstheses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:batesscarab@bates.edu

The Tropical Eigenvalue-Vector

Problem from Algebraic,

Graphical, and Computational

Perspectives

Alex Nowak

Department of Mathematics, Bates College, Lewiston,

ME 04240

The Tropical Eigenvalue-Vector Problem
from Algebraic, Graphical, and
Computational Perspectives

An Honors Thesis

Presented to

The Faculty of the Department of Mathematics

Bates College

in partial fulfillment of the requirements for the

Degree of Bachelor of Arts

by

Alex Nowak

Lewiston, Maine

March 21, 2014

Contents

Acknowledgments iv

Introduction vi

Chapter 1. Preliminaries 1

1. Structures of The Max-Plus and Min-Plus Algebras 1

2. Tropical Linear Algebra 5

3. Graph Theory 11

4. Matrix Representations of Graphs 16

5. Recurrence Relations 21

Chapter 2. Unpacking the Tropical Eigenvalue-Vector Problem 23

1. Discrete Event Systems as Motivation 23

2. The Tropical Eigenvalue Theorem 29

Chapter 3. Computing Eigenvalues and Eigenvectors of

Irreducible Matrices 38

1. Karp’s Algorithm 38

2. The Power Algorithm 51

Chapter 4. Periodicity of Reducible Matrices 64

1. The Cycle-Time Vector and the Generalized Eigenmode 64

2. Howard’s Algorithm 78

3. Extending Karp’s Algorithm 83

4. Conclusions 93

ii

CONTENTS iii

Appendix A: Sage Min-plus and Max-plus Package Descriptions 95

Min-Plus Package 96

Max-Plus Package 104

Appendix B: Sage Min-plus and Max-plus Functions 113

Bibliography 126

Acknowledgments

The extent to which I must thank those who contributed to the

completion of this project stretches far beyond these meager pages,

but I suppose I have to start somewhere.

For roughly a year now, my advisor, Professor Catherine Buell, has

perpetually refreshed my interest in tropical mathematics; has engaged

me with exciting lines of mathematical inquiry; has sat patiently, wait-

ing for me to stop staring blankly at the board in her office and learn

something, and has exhibited the utmost attention to my intellectual

development. For making the process of rolling up my sleeves and cov-

ering a board with ⊕’s and ⊗’s the best academic experience of my

life, I thank you Catherine.

Other members of the Department to whom I owe many thanks in-

clude Professor Pallavi Jayawant, who made a wonderful contribution

to my exposition of the proof of Karp’s Algorithm. Professor Adri-

ana Salerno, a master of Sage, contributed greatly to the programming

aspect of this project. Professor Chip Ross had great insights into

the writing process in our semi-weekly thesis meetings, and Professor

Meredith Greer (along with Pallavi) helped vastly with my transition

into the second half of this project by providing invaluable comments

on my first-semester talk.

iv

ACKNOWLEDGMENTS v

My fellow thesis-writers, Sean and Sara, are also owed much grati-

tude. Not only were your comments and suggestions during our meet-

ings helpful, but the encouragement displayed as I worriedly paced

about the first floor of Ladd and the grounds of the Math and Stats

Workshop did not go unnoticed. Ben, I am going to miss our late-night

commiserating over the honors process.

Last, but not least, I would like to thank those outside of the Bates

community that made this project possible. My parents who, in addi-

tion to mortgaging an obscene sum of capital on the cultivation of my

intellect, have managed to, not just throughout the process of writing

this thesis but my whole life, love me unconditionally. Without that

love, I don’t know wherefrom the drive and focus to produce this work

would have come.

Introduction

This thesis presents a language, a language that articulates an order

embedded in systems that appear to behave unmanageably. Suppose

satellites in a network relay messages to one another so that people

in Kansas can watch sumo wrestling. The act of one satellite com-

municating to another can be viewed as a discrete event. Satellite 1

prepares its message, transmits it to satellite 2, satellite 2 interprets

the message, and thus, the event ends. Furthermore, it is important

to note that each of these processes works towards a common goal:

the broadcasting of sumo wrestling for the viewing pleasure of many

grateful Kansans. When our network consists of many satellites shar-

ing messages at different rates (rates contingent upon variables such as

communication distance and the particular ability of each satellite) is

when the task of managing this system can become daunting.

Luckily, mathematicians, as they are wont to do, have an abstrac-

tion to help. We refer to the kind of setup described above as a discrete

event dynamic system, and the algebraic structure often employed to

describe these systems is the max-plus semifield, where to “add” means

to maximize, and to “multiply” means to add. That is, x “plus” y

is equivalent to max{x, y}, and x “times” y is equivalent to x + y.

The max-plus algebra comprises one half of a field of study known as

tropical mathematics. The other semifield we consider is the min-plus

algebra. As one would expect, x “plus” y is equivalent to min{x, y}

vi

INTRODUCTION vii

in the min-plus framework, while multiplication is also translated into

standard addition. We will develop more rigorously the notion of a

semifield and the algebraic properties of the max-plus and min-plus

structures in Chapter 1. Our first chapter also introduces the theory

of graphs. Graphs are structures that allow us to visualize the interac-

tions between the entities of discrete event dynamic systems. Coupled

with graph theory, tropical linear algebra, a domain where elements

from the min-plus and max-plus semifields become entries in matrices

and vectors, can further shed light on the description of discrete event

networks as they evolve over time. In fact, our central object of study

is linear algebraic. The tropical eigenvalue-vector pair is, as we will see

in Chapter 2, they key to maintaining order in networks. Recall from

introductory linear algebra that if λ ∈ R is an eigenvalue of the matrix

A with associated eigenvector v, then

Av = λv.

In Chapter 3, we will investigate algorithms for computing the

eigenvalues and associated eigenvectors of tropical matrices. Chapter

4 shall complicate the picture by showing the eigenvalue-vector pair

to not be the only means of describing stable behavior of discrete sys-

tems. A pair of vectors (η,v) known as the generalized eigenmode will

be shown to belong to a larger class of matrices than the eigenvalue-

vector pair.

The ultimate analytical goal of this transition from eigenvalues to

eigenmodes will be to evaluate the validity of using the techniques de-

scribed in Chapter 3 to compute the generalized eigenmode. More

specifically, we investigate where Karp’s Algorithm breaks down in its

INTRODUCTION viii

ability to describe the limiting behavior of discrete event dynamic sys-

tems not possessing eigenvalues, and how it can be modified to do so.

CHAPTER 1

Preliminaries

Our opening chapter does not, in any direct way, involve itself with

the tropical eigenvalue-vector problem. However, if we are to investi-

gate the problem from algebraic, graphical, and computational perspec-

tives, groundwork must be laid in these respective fields. We overview

tropical algebraic structure in the first section, and extend this struc-

ture to vectors and matrices in the second. Section 3 introduces the

theory of graphs, and our fourth section illustrates the intersection of

graph theory and tropical linear algebra. The final section introduces

an object, the recurrence relation, which will be necessary for the ap-

plication of discrete event systems introduced in Chapter 2.

1. Structures of The Max-Plus and Min-Plus Algebras

Extensive work has been done with tropical algebraic structure in

[6]. Here, we introduce the basic framework of the max-plus and min-

plus algebras, both of which fall under our umbrella of tropical math-

ematics. The former is defined in Rmax = R ∪ {−∞} under the binary

operations ⊕ and ⊗, where for a, b ∈ Rmax,

a⊕ b := max{a, b}, and

a⊗ b := a+ b.

Min-plus algebra is defined in Rmin = R∪ {∞} under the binary oper-

ations ⊕′ and ⊗; if a, b ∈ Rmin,

1

1. STRUCTURES OF THE MAX-PLUS AND MIN-PLUS ALGEBRAS 2

a⊕′ b := min{a, b}, and

a⊗ b := a+ b.

Example 1.1. Working with 2, 3 ∈ R,

3⊕ 2 := max{3, 2} = 3,

3⊕′ 2 := min{3, 2} = 2, and

3⊗ 2 :=3 + 2 = 5.

Example 1.2. Based on our intuitive understanding of infinity, it

makes sense that for any a ∈ R, a > −∞ and a <∞; thus,

a⊕−∞ = −∞⊕ a = a, and

a⊕′∞ =∞⊕′ a = a.

Examples 1.1 and 1.2 give us a basic understanding of tropical arith-

metic. However, our goal is to understand the structure of Rmax and

Rmin at a more abstract level, so we define one of modern algebra’s

seminal structures, the field.

Definition 1.1. Let R be a nonempty set, + be a binary operation

we will call addition, and × denote a second binary operation, multipli-

cation. The triple (R,+,×) is a field if all of the following conditions

hold:

(1) There exists an element 0 ∈ R such that for a ∈ R, a + 0 =

0 + a = a; we call 0 the additive identity.

1. STRUCTURES OF THE MAX-PLUS AND MIN-PLUS ALGEBRAS 3

(2) For each a ∈ R, there exists an additive inverse, −a ∈ R, such

that a+−a = −a+ a = 0.

(3) There exists an element 1 ∈ R we call the multiplicative iden-

tity (or unity); for all a ∈ R, a× 1 = 1× a = a.

(4) For each a ∈ R where a 6= 0, there exists a multiplicative

inverse (or unit), a−1, such that a× a−1 = a−1 × a = 1.

(5) The operations of addition and multiplication are associative

in R, so that for a, b, c ∈ R, (a + b) + c = a + (b + c), and

(a× b)× c = a× (b× c).

(6) Addition and multiplication are commutative in R, or a+ b =

b+ a, and a× b = b× a for a, b ∈ R.

(7) Multiplication distributes across addition; for each a, b, c ∈ R

a× (b+ c) = a× b+ a× c.

In fact, Rmax and Rmin are not fields. We will forgo the tediousness

of proving this claim, but let us see, on an informal level, how many of

the above criteria are satisfied in (Rmax,⊕,⊗) and (Rmin,⊕′,⊗).

From Example 1.2, we have that the additive identity of Rmax is

−∞, and that of Rmin is ∞. We denote these identities with ε; it will

be clear from context whether we mean ∞ or −∞. The classical ana-

logue to these additive identities is zero, and just as zero times any

number is zero, ε⊗ a = a⊗ ε = ε for all a ∈ Rmax or a ∈ Rmin.

Now consider a, b ∈ R. Since the set of real numbers is totally

ordered either a ≤ b, or a ≥ b. Hence, Rmax and Rmin cannot contain

additive inverses, as either a⊕b = a, or a⊕b = b, and either a⊕′ b = a,

or a ⊕′ b = b. In other words, a ⊕ b 6= ∞, and a ⊕′ b 6= −∞ for all

a, b ∈ R, so neither Rmax nor Rmin have additive inverses.

However, we do have a multiplicative identity. In fact, the multi-

plicative identity of both Rmax and Rmin is 0. Clearly, a⊗0 = 0⊗a = a

1. STRUCTURES OF THE MAX-PLUS AND MIN-PLUS ALGEBRAS 4

for any a ∈ R.

To identify tropical multiplicative inverses, we look to R under stan-

dard addition. For any a ∈ R, its additive inverse is−a. Since we define

tropical multiplication as standard addition, the multiplicative inverse

of a 6= ε contained in Rmax or Rmin is −a.

It is relatively easy to see that the operations ⊕ and ⊕′ are both

associative and commutative, an an expression of the form a ≤ b ≤ c

preserves its order, no matter which terms we consider first, and a ≤ b

implies b ≥ a. Moreover, since standard addition is both associative

and commutative on R, it follows that ⊗ is associative and commuta-

tive on Rmax and Rmin.

From the following numerical example in Rmax, we see that tropical

multiplication distributes across tropical addition:

4⊗ (3⊕ 7) = 4⊗ 7

= 11,

while

(4⊗ 3)⊕ (4⊗ 7) = 7⊕ 11

= 11.

Obviously, we would find similar results working in Rmin.

Under their respective additive and multiplicative operations, Rmax

and Rmin satisfy all conditions of a field, except for the existence of

additive inverses. Structures of this type are called semifields, so the

triples (Rmax,⊕,⊗) and (Rmin,⊕′,⊗) are semifields.

2. TROPICAL LINEAR ALGEBRA 5

We will now touch upon other pertinent algebraic properties of Rmax

and Rmin. First, we define the notion of idempotent operations.

Definition 1.2. We say that a binary operation, *, is idempotent

on a set R if a ∗ a = a for all a ∈ R.

The operations ⊕ and ⊕′ are idempotent in Rmax and Rmin, respec-

tively.

We conclude this section with an example that illustrates that trop-

ical algebra allows for the proverbial “freshman’s dream”, (x + y)2 =

x2 + y2.

Example 1.3. Consider the the following expressions in Rmax:

(3⊕ 2)⊗2 = 3⊗2

= 3⊗ 3

= 6,

and

3⊗2 ⊕ 2⊗2 = (3⊗ 3)⊕ (2⊗ 2)

= 6⊕ 4

= 6.

2. Tropical Linear Algebra

So that we may examine the eigenvector-value problem through a

tropical framework, we extend the algebraic properties of Rmax and

Rmin to matrices and vectors. That is, let Rn×n
max be the set of n × n

matrices with coefficients in Rmax, and let Rn×n
min be the set of n ×

n matrices with coefficients in Rmin. Why we only consider square

2. TROPICAL LINEAR ALGEBRA 6

matrices will become clear in Section 4. We endow each of these sets

with the operations of addition and multiplication. Addition is just like

matrix addition in the classical sense, but instead of component-wise

addition of the elements of each matrix, we take the component-wise

maximum or minimum. For A,B ∈ Rn×n
max and C,D ∈ Rn×n

min

[A⊕B]ij = aij ⊕ bij, and [C ⊕′ D]ij = cij ⊕′ dij.

Furthermore, let ⊗ denote matrix multiplication. The algorithm for

tropical matrix multiplication is nearly identical to the classical ana-

logue; each element of the tropical product matrix is the dot product

of the corresponding rows and columns. Symbolically speaking,

[A⊗B]ij =
n⊕
k=1

(aik ⊗ bkj) = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j)⊕ · · · ⊕ (ain ⊗ bnj),

for A,B ∈ Rn×n
max . If C,D ∈ Rn×n

min , then

[C ⊗D]ij =
n⊕
k=1

′ (cik ⊗ dkj) = (ci1 ⊗ d1j)⊕′ (ci2 ⊗ d2j)⊕′ · · · ⊕′ (cin ⊗ dnj).

We denote the multiplication of a matrix A by itself k times by A⊗k.

Let A =

 8 6

4 3

 and B =

 2 1

10 7

. Consider the following

examples of tropical matrix arithmetic using these two matrices.

2. TROPICAL LINEAR ALGEBRA 7

Example 1.4. If we let A,B ∈ R2×2
max, then 8 6

4 3

⊕
 2 1

10 7

 =

 8⊕ 2 6⊕ 1

4⊕ 10 3⊕ 7


=

 8 6

10 7

 .
Example 1.5. Now, with A,B ∈ R2×2

min , 8 6

4 3

⊕′
 2 1

10 7

 =

 8⊕′ 2 6⊕′ 1

4⊕′ 10 3⊕′ 7


=

 2 1

4 3

 .
Example 1.6. Multiplying A and B in R2×2

max we find 8 6

4 3

⊗
 2 1

10 7

 =

 (8⊗ 2)⊕ (6⊗ 10) (8⊗ 1)⊕ (6⊗ 7)

(4⊗ 2)⊕ (3⊗ 10) (4⊗ 1)⊕ (3⊗ 7)


=

 10⊕ 16 9⊕ 13

6⊕ 13 5⊕ 10


=

 16 13

13 10

 .

2. TROPICAL LINEAR ALGEBRA 8

Example 1.7. With A,B ∈ R2×2
min 8 6

4 3

⊗
 2 1

10 7

 =

 (8⊗ 2)⊕′ (6⊗ 10) (8⊗ 1)⊕′ (6⊗ 7)

(4⊗ 2)⊕′ (3⊗ 10) (4⊗ 1)⊕′ (3⊗ 7)


=

 10⊕′ 16 9⊕′ 13

6⊕′ 13 5⊕′ 10


=

 10 9

6 5

 .
Another operation to consider is scalar multiplication, which like

standard scalar multiplication, is component-wise. For r ∈ Rmax and

A ∈ Rn×n
max

[r ⊗ A]ij = r ⊗ aij.

The same holds for scalars in Rmin and matrices in Rn×n
min .

Example 1.8. Multiplication of A by the scalar 2 in the max-plus

and min-plus structures is represented simply as

2⊗

 8 6

4 3

 =

 2⊗ 8 2⊗ 6

2⊗ 4 2⊗ 3


=

 10 8

6 5

 .
The sets Rn×n

max and Rn×n
min contain additive and multiplicative identity

elements. Recall that ε denotes our additive identities in Rmax and Rmin.

(1) Additive identity in Rn×n
max and Rn×n

min : 0 =


ε ε · · · ε

ε ε · · · ε
...

...
. . .

...

ε ε · · · ε

;

2. TROPICAL LINEAR ALGEBRA 9

(2) Multiplicative identity in Rn×n
max and Rn×n

min : E =


0 ε · · · ε

ε 0 · · · ε
...

...
. . .

...

ε ε · · · 0

.

Example 1.9. Adding A (from Examples 1.4 through 1.7) to 0, we

find  8 6

4 3

⊕
 ε ε

ε ε

 =

 8⊕ ε 6⊕ ε

4⊕ ε 3⊕ ε


=

 8 6

4 3

 .
Example 1.10. Multiplying A by E yields 8 6

4 3

⊗
 0 ε

ε 0

 =

 (8⊗ 0)⊕ (6⊗ ε) (8⊗ ε)⊕ (6⊗ 0)

(4⊗ 0)⊕ (3⊗ ε) (4⊗ ε)⊕ (3⊗ 0)


=

 8 6

4 3

 .
Perhaps most important for our work in later sections is the mul-

tiplication of tropical matrices by vectors and the multiplication of

vectors by scalars, as these operations are the arithmetic essence of

the eigenvalue-vector problem. Let A ∈ Rn×n
max , B ∈ Rn×n

min , x ∈ Rn×1
max,

y ∈ Rn×1
min , r ∈ Rmax, and s ∈ Rmin. We define the multiplication of

matrices and vectors by

[A⊗ x]i =
n⊕
k=1

aik ⊗ xk, and [B ⊗ y]i =
n⊕
k=1

′bik ⊗ yk.

2. TROPICAL LINEAR ALGEBRA 10

Scalar multiplication is represented as

[r ⊗ x]i = r ⊗ xi, and [s⊗ x]i = s⊗ yi.

For the following examples, set A =

 8 6

4 3

 and x =

 2

10

.

Example 1.11. With A ∈ Rn×n
max and x ∈ Rn×1

max 8 6

4 3

⊗
 2

10

 =

 (8⊗ 2)⊕ (6⊗ 10)

(4⊗ 2)⊕ (3⊗ 10)


=

 10⊕ 16

6⊕ 13


=

 16

13

 .
Example 1.12. Working in the min-plus framework, that is, A ∈

Rn×n
min and x ∈ Rn×1

min , we find 8 6

4 3

⊗
 2

10

 =

 (8⊗ 2)⊕′ (6⊗ 10)

(4⊗ 2)⊕′ (3⊗ 10)


=

 10⊕′ 16

6⊕′ 13


=

 10

6

 .
We conclude this section with an example illustrating the intersec-

tion of matrix and scalar multiplication in expressing max-plus eigen-

vectors and values.

3. GRAPH THEORY 11

Example 1.13. Consider the fact that in Rn×n
max 8 6

4 3

⊗
 16

12

 =

 (8⊗ 16)⊕ (6⊗ 12)

(4⊗ 16)⊕ (3⊗ 12)


=

 24⊕ 18

20⊕ 15


=

 24

20


= 8⊗

 16

12

 .
The scalar 8 is an eigenvalue of the matrix

 8 6

4 3

, while

 16

12


is an eigenvector of the corresponding eigenspace. We will eventually

provide a more thorough and formal explanation of tropical eigenvalues

and vectors. To lay the foundation for such work, we introduce the

theory of graphs.

3. Graph Theory

Underlying many of the max-plus applications we will later visit are

graph theoretic concepts. Thus, we provide a brief overview of graphs

and their basic properties. For an exposition notationally consistent

with that which appears below, see [5].

Intuitively speaking, a graph is a set of points with lines connecting

some subset of those points.

Definition 1.3. A graph G is an ordered tripleG = (V (G), E(G), IG),

where V (G), is a nonempty set consisting of vertices (or nodes), E(G)

is a set, whose elements are called edges, disjoint from V (G), and IG

3. GRAPH THEORY 12

is a relation that associates with each element of E(G) an unordered

pair of elements from V (G). The set V (G) is called the vertex set of

G, and E(G) is called the edge set.

We provide examples of graphs below.

Example 1.14. Consider the graph G = ({1, 2, 3}, ∅, ∅)(pictured in

Figure 1.1). Here, we see that only the vertex set need be nonempty.

1

2 3

Figure 1.1

Example 1.15. We now look at a graph with edges. Represented in

Fig 1.2 is G = ({1, 2, 3, 4, 5}, {e1, e2, e3, . . . , e10}, IG), where IG is given

by IG(e1) = {1, 2}, IG(e2) = {1, 3}, IG(e3) = {1, 4}, IG(e4) = {1, 5},

IG(e5) = {2, 3}, IG(e6) = {2, 4}, IG(e7) = {2, 5}, IG(e8) = {3, 4},

IG(e9) = {3, 5}, and IG(e10) = {4, 5}.

3. GRAPH THEORY 13

1

5

42

3

Figure 1.2

As we stated in the introduction, we will consider applications of

tropical linear algebra to networks. From the above definition, we see

that graphs can be useful for representing networks. Each vertex is an

entity in the network, and edges establish connections between these

entities. However, we wish to develop a notion of direction in the edges

of the graphs we study. There is, in fact, such an object that formalizes

direction:

Definition 1.4. A directed graph, or digraph, is an ordered triple

D = (V (D), A(D), ID), where V (D) is a nonempty vertex set, A(D)

is a set of arcs (also called edges) disjoint from V (D), and ID is an

incidence map that associates with each arc in A(D) an ordered pair

of vertices from V (D).

We provide an example of a digraph.

3. GRAPH THEORY 14

Example 1.16. The digraph given byD = ({1, 2, 3}, {a1, a2, a3, a4, a5}, ID),

where we define ID(a1) = (1, 1), ID(a2) = (1, 3), ID(a3) = (2, 1),

ID(a4) = (3, 1), ID(a5) = (3, 2) is drawn below in Figure 1.3.

1

2 3

Figure 1.3

Imagine that the above digraph represents a railway network. We

have our stations (the nodes), names for the various lines (the arcs),

and the direction each line travels (given by our ordered pairs). To get a

better sense of the dynamics of our railway system, however, we would

want to know the distance between each station. Next, we establish

this abstract notion of distance with a special type of digraph.

Definition 1.5. We define a weighted digraph, D, as a quadruple

(V (D), A(D), ID, KD). The set V (D) contains the vertices of D, A(D)

(disjoint from V (D)) its arcs, and ID is an incidence map assigning the

arcs of A(D) to an ordered pair of vertices in V (D). Finally, KD is a

map that assigns to each arc a real number.

Example 1.17. In Figure 1.4, is the weighted directed graph D′ =

({1, 2, 3, 4, 5}, {a1, a2, a3, a4, a5, a6, a7}, ID′ , KD′). We define ID′ by ID′(a1) =

(1, 2), ID′(a2) = (1, 3), ID′(a3) = (2, 3), ID′(a4) = (2, 4), ID′(a5) =

(2, 5), ID′(a6) = (3, 5), and ID′(a7) = (4, 5), while KD′ is defined by

3. GRAPH THEORY 15

KD′(a1) = 4, KD′(a2) = 5, KD′(a3) = 3, KD′(a4) = 3, KD′(a5) = 4,

KD′(a6) = 7, KD′(a7) = 6.

1

3 2 4

5

5 4

3

3

47 6

Figure 1.4

Weighted digraphs, such as the one depicted above, will be crucial

in our exploration of the tropical eigenvalue-vector problem, but before

proceeding, we must explore some of the objects that relate a graph’s

nodes to its arcs.

Definition 1.6. A path in a digraph, D, is a concatenation of dis-

tinct edges often denoted by ρ : e1 ◦e2, . . . , ep. Note that the endpoints

of consecutive edges must match. In other words, given ek and ek+1 in

ρ, if ID(ek) = (vq−1, vq), then ID(ek+1) = (vq, vq+1). The path length,

denoted |ρ|1, is equal to the number of edges in the path. The path

weight, denoted |ρ|W , is equal to the sum of the weights of each edge

in the path. We refer to the quantity |ρ|W|ρ|1 as the average or normalized

path weight of ρ. If, for ID(e1) = (v1, v2) and ID(ep) = (vq−1, vq), we

4. MATRIX REPRESENTATIONS OF GRAPHS 16

have v1 = vq, then the path is called a circuit (or cycle) of D. We

typically denote circuits by γ.

Remark. For our purposes, arcs in digraphs are unidirectional

only.

Definition 1.7. Let D be a weighted digraph. If there is a path

from any vertex to any other vertex, then D is strongly connected.

Consider the graph given in Example 1.16. Some of the cycles of

this graph are γ1 : a1; γ2 : a2 ◦ a4; γ3 : a2 ◦ a5 ◦ a3 and γ4 : a3 ◦ a2 ◦ a5.

These cycles illustrate the fact that from any node, we can reach any

other node in D; thus, D is a strongly connected graph. Our graph

from Example 1.17, D′, is, however, not strongly connected. For in-

stance, there is no sequence that can begin at node 2 and end at node 1.

4. Matrix Representations of Graphs

First, note that, henceforth, the only graphs we encounter will be

weighted digraphs, and it should be assumed that any “graph” we refer

to is of the aforementioned type. Furthermore, we are now adopting the

convention of referring to all graphs by G; we used D in the previous

section to aid the reader in distinguishing between the variety of types

presented therein.

Representing graphs with sets and mappings is, as the previous

section illustrates, a cumbersome convention. Matrices provide us with

a more convenient means of denoting graphs with weighted, directed

edges. The translation from graph to tropical matrix is rather simple.

We represent the graph G by a matrix A, where the entry aij denotes

the weight of the arc from node j to node i. If two nodes are not

4. MATRIX REPRESENTATIONS OF GRAPHS 17

directly linked by an arc, then the corresponding matrix entry is our

tropical additive identity, ε. We may, thus, also refer to such a graph

by G(A). Let us see how such a translation works.

Example 1.18. Let G(A) be the graph pictured below.

1

2 3

1

1

4

4

6

Figure 1.5

Since G(A) has three nodes, A will be a 3 × 3 matrix. Node 1 sends

an arc of weight 1 to itself, so a11 = 1, and because there is no arc sent

from node 2 to node 1, a12 = ε. On the whole, we have

A =


1 ε 4

1 ε 6

ε 4 ε

 .
Now that we can translate between graphs and matrices, we can

also translate their properties.

4. MATRIX REPRESENTATIONS OF GRAPHS 18

Definition 1.8. A tropical matrix A is irreducible if and only

if its corresponding graph, G(A), is strongly connected. If A is not

irreducible, then it is a reducible matrix.

Suppose now we let A ∈ R3×3
min . Iterations of the form A⊗k, where

k ∈ N can actually reveal to us some important features of the graph

G(A). More specifically, the matrix entry [A⊗k]ij gives the path of least

weight of length k from node j to node i in G(A). In order to illustrate

the power of tropical matrix multiplication, we introduce the “shortest

path problem” in the next example.

Example 1.19. Suppose Fig. 1.5 is a graphical representation of

a railway network between three cities; the arc weights give the times

of travel between stations (the path from node 1 to itself is a “sight-

seeing” train around city 1). In such an application, our technique of

multiplying A by itself to find paths of least weight provides a method

for finding the quickest ways to navigate the railway system. To find

the fastest means of travel between the three cities, we calculate

A+ = A⊕′A⊗2⊕′A⊗3. We compute our multiplicative iterations below:

A⊗2 =


1 ε 4

1 ε 6

ε 4 ε

⊗


1 ε 4

1 ε 6

ε 4 ε



4. MATRIX REPRESENTATIONS OF GRAPHS 19

=


2⊕′ ε⊕′ ε ε⊕′ ε⊕′ 8 5⊕′ ε⊕′ ε

2⊕′ ε⊕′ ε ε⊕′ ε⊕′ 10 5⊕′ ε⊕′ ε

ε⊕′ 5⊕′ ε ε⊕′ ε⊕′ ε ε⊕′ 10⊕′ ε



=


2 8 5

2 10 5

5 ε 10

 ;

A⊗3 =


2 8 5

2 10 5

5 ε 10

⊗


1 ε 4

1 ε 6

ε 4 ε



=


3⊕′ 9⊕′ ε ε⊕′ ε⊕′ 9 6⊕′ 14⊕′ ε

3⊕′ 11⊕′ ε ε⊕′ ε⊕′ 9 6⊕′ 16⊕′ ε

6⊕′ ε⊕′ ε ε⊕′ ε⊕′ 14 9⊕′ ε⊕′ ε

 (1)

=


3 9 6

3 9 6

6 14 9

 .
We note some illustrative aspects of the above computations. First, we

can see from (1) just how min-plus matrix multiplication yields quickest

paths. Consider the calculation of [A⊗3]13, where we sum 6⊕′ 14⊕′ ε.

This first term, 6, represents the 3-path route by which we take the

train from city 3 to city 1 and then take the city 1 train twice. The

term 14 is another 3-path option; here, we would take the train from

city 3 to city 2, go back to city 3, and then travel up to city 1. Our

third option is infinite (a33 = ε), as there is no 1-length path from

city 3 to itself, and thus no 3-length path with a subpath going from

3 to itself. Min-plus multiplication (understood classically as summing

the various arc weights of the graph) gave us these options. Then,

4. MATRIX REPRESENTATIONS OF GRAPHS 20

the min-plus addition structure within min-plus matrix multiplication

allows us to choose the minimum path from these options. Hence,

a13 = 6⊕′ 14⊕′ ε = 6. Second, note [A⊗2]32 = ε. One can easily see by

referring to the graph in Fig. 1.5 that there is no 2-length path from

node 2 to node 3. Just as infinite values occur in our A matrix when

nodes do not directly communicate, [A⊗2]ij = ε when node i cannot be

reached from j in a path of length 2.

The above explanation of the computation of [A⊗3]13 illustrates the

necessity of finding A+ to actually solve the shortest path problem.

We found the minimum-weight path of length 3 from node 3 to node 1,

but why would we want to take the train to city 1 and then proceed to

take the same line twice in a row? We want to find the quickest paths

through the system, regardless of path length, so we employ min-plus

matrix addition to find A⊕′ A⊗2 ⊕′ A⊗3:
1 ε 4

1 ε 6

ε 4 ε

⊕′


2 8 5

2 10 5

5 ε 10

⊕′


3 9 6

3 9 6

6 14 9

 =


1 8 4

1 9 5

5 4 9

 .
In the min-plus sum of these matrices, we have a catalogue of minimum-

weight paths between the various nodes, or in the language of our ap-

plication, the quickest lines of travel amongst the various cities. Some-

thing relatively novel has occurred in the above calculation. It turns

out that the fastest means of travel between two cities is not always

the path that links them directly. For instance, to go from city 3 to

city 2 directly would take six units of time, while to travel to city 1 and

then take the train from city 1 to city 2 would only require 5. Hence,

[A⊕′ A⊗2 ⊕′ A⊗3]23 = 5.

5. RECURRENCE RELATIONS 21

While shortest path problems are themselves interesting, we intro-

duce them in Chapter 1 mainly because the tropical sum of powers

of a matrix will prove handy in our discussion of the existence and

uniqueness of tropical eigenvalues. Indeed, the following theorem will

be crucial in our proof of the Tropical Eigenvalue Theorem for irre-

ducible matrices.

Theorem 1.1. Let A ∈ Rn×n
min . If the average weight of any circuit

in G(A) is at least zero, then

A+ :=
∞⊕
k=1

′A⊗k = A⊕′ A⊗2 ⊕′ · · · ⊕′ A⊗n,

and A+ ∈ Rn×n
min .

Proof. Let nodes i, j ∈ V (G(A)) be fixed but arbitrary. If there

does not exist a path from j to i, then [A⊗k]ij = ε for all k ∈ N.

Suppose there exists a path from j to i of a length greater than n; then

this path is composed of at least one circuit and a path from j to i of

a length that is at most n. Because circuits in G(A) have nonnegative

weights,

[A+]ij ≥ min{[A⊗k]ij : k ∈ {1, 2, . . . , n}},

which implies that the minimum path weight between nodes j and i is

of a length less than or equal to n, as desired. �

5. Recurrence Relations

Many of the problems to which the theory of tropical eigenvectors

and values can be applied involve modeled systems that change over

time. One way of describing change in a system over time is with

objects known as recurrence relations, or difference equations, as they

5. RECURRENCE RELATIONS 22

are commonly known. Recurrence relations do exactly what their name

implies: they relate the current state of a model to its previous states,

the latter of which recur in the formulation. If one prefers the alternate

terminology, then difference equations can be said to show the different

states of a modeled system as it changes over time. For an exploration

of recurrence relations beyond tropical linear algebra, see Chapter 1 of

[4].

In their most basic form, linear algebraic recurrence relations use

some matrix A to describe the modeled system. Evolution of the system

is described by

Ax(k) = x(k + 1),

where x(k) represents the state of our system at time k. Thus, how

the system evolves over time is entirely dependent upon the setup of

our model in A and what we choose for our initial condition x(0).

As we shall see in the next chapter, we can model systems with

tropical matrices and their states with tropical vectors. The recurrence

relations with which we shall work take the form

A⊗ x(k) = x(k + 1).

Although the above exposition seems abstract, we will see in the

next chapter just what types of systems these equations can describe

and what exactly it means for these systems to be in a certain state.

CHAPTER 2

Unpacking the Tropical Eigenvalue-Vector

Problem

We move now into our discussion of the tropical eigenvalue-vector

problem. First, a motivation for solutions is presented. As it turns

out, tropical eigenvalues and their associated eigenvectors can help us

answer some interesting questions such as, how can we initiate a net-

work of industrial assembly so that it produces in a stable, predictable

fashion? Incorporating linear algebra, graph theory, and recurrence

relations, discrete event systems can be thought of as the max-plus

analogue to our minimum weight path problem. Section 2 will then

show how the graph theoretic nature of tropical matrices can be used

to prove the existence and uniqueness of tropical eigenvalues for ir-

reducible matrices. A characterization of eigenspaces associated with

these eigenvalues will, as a consequence of the proof, be given. Al-

though this chapter’s latter section works in the min-plus algebra, all

results translate into the max-plus framework.

1. Discrete Event Systems as Motivation

We find in Chapter 1, Section 4 that weighted digraphs can be trans-

lated into min-plus matrices and vice-versa. Obviously, the same can

be done for matrices in Rn×n
max . In fact, matrices in the max-plus space

and their associated graphs aptly describe a class of structures called

discrete event dynamic systems (DEDS), more commonly referred to as

23

1. DISCRETE EVENT SYSTEMS AS MOTIVATION 24

discrete event systems. Hence, in DEDS, we have a motivation for the

tropical eigenvector-value problem. For a thorough overview of DEDS,

see [4].

Definition 2.1. A discrete event dynamic system, or DEDS, is a

fabricated structure incorporating the resources and abilities of several

entities for the purpose of achieving a common goal.

Take the manufacturing of a bicycle as an example of a discrete

event system. The seat cannot be inserted into the frame until the

frame itself is completely constructed. Hence, we see one entity, the

stage at which we insert the seat, relying on another, the process of

assembling the frame. Each stage is essential in working towards the

overall goal: the assembly of the bicycle. Cuninghame-Green pioneered

the use of the max-plus algebra and discrete event systems in describ-

ing industrial processes [6], [7].

We consider the graph of a discrete event system. LetG = {{η1, η2, η3, η4, η5},

{a1, a2, a3, a4, a5, a6, a7}, IG, KG}. Define IG by IG(a1) = (η2, η1),

IG(a2) = (η3, η2), IG(a3) = (η5, η2), IG(a4) = (η1, η3), IG(a5) = (η3, η4),

IG(a6) = (η5, η4), and IG(a7) = (η4, η5). Define KG by KG(a1) = 5,

KG(a2) = 3, KG(a3) = 2, KG(a4) = 4, KG(a5) = 3, KG(a6) = 2, and

KG(a7) = 1.

1. DISCRETE EVENT SYSTEMS AS MOTIVATION 25

η1

η3

η2

η4

η5

4

5

3

3

1

2

2

Fig. 2.1

Each node of our graph represents an entity in the system. The directed

edges tell us how long it takes for a particular entity to communicate to

another that it may begin its process. For instance, before η1 can begin

a cycle, it must wait to hear from η2. This process of communication

requires 5 time units. Note that in defining the mappings IG and KG

we first listed all arcs that are directed towards node η1, then η2, and

so on until η5. This convention follows the matrix representation of

directed graphs. Encoded in the matrix

A =



ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


is all of the information in the graph G, and we henceforth refer to G

by G(A). Note, moreover, that A ∈ R5×5
max.

Of course, realistic systems will contain more than five entities, and

the complexity of such networks gives rise to the problem of tracking

1. DISCRETE EVENT SYSTEMS AS MOTIVATION 26

the behavior of individual nodes, whose behavior rely upon the pro-

cesses of so many others, over multiple iterations of the system. Put

another way, in order to study DEDS systematically, we must imple-

ment techniques that account for the common goal of the entities while

tracking the behavior over time of each individual entity, as it is the

former that relies upon the complex network of relationships between

each of the latter.

Recurrence relations provide us with the language necessary for ac-

complishing these goals. Recall our expression of the standard tropical

recurrence relation:

A⊗ x(k) = x(k + 1),

where x(k) represents the state of the system A at its kth iteration, and

x(k+1) relates the state one step later. In the context of discrete event

systems, we say that the vector element xi(k) represents the earliest

time at which node i can begin its kth process. We will investigate this

notion further by example.

Example 2.1. Consider the system defined by the graph in Figure

2.1. Recall A ∈ R5×5
max. Suppose we choose as our initial condition for

this system the vector x(0) = (1, ε, 0, 1, 0)ᵀ. To find when each node

will begin its first cycle, we calculate A⊗ x(0) = x(1), or

ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


⊗



1

ε

0

1

0


=



ε

3

5

3

2


.

1. DISCRETE EVENT SYSTEMS AS MOTIVATION 27

One aspect of the above computation worth noting is that xη1
(1) =

ε. This means that η1 cannot begin its process during the system’s first

cycle. To see why, we look at which nodes are “talking” to η1. From

figure 2.1, we see that node η2 is the only vertex directly related to η1.

Thus, before η1 can begin any process it must wait to hear from η2.

However, by establishing xη2
(0) = ε, we have, in effect, silenced node

η2 immediately prior to the first cycle. Furthermore, consider the fact

that xη2
(1) = 3. Looking at Figure 2.1, we find that nodes η3 and η5

are both talking to η2. Since xη3
(0) = xη5

(0) = 0, the initial condition

does not delay the activation of these two nodes, so they immediately

begin their correspondences with node η2. It takes 3 time units for η3

to communicate to η2 and 2 units for η5. By the definition of tropical

matrix multiplication, we choose the maximum of these communica-

tion times so that xη2
(1) represents the earliest time at which η2 can

begin its first process, as it must hear from both nodes before it can

begin a cycle.

We have established a systematic technique for tracking discrete

event systems as they evolve over time. However, this does us little

good if we choose our initial condition such that the system evolves

in an unstable, and even unpredictable manner. Indeed, to establish

a dynamic system that behaves predictably, we may choose as its ini-

tial condition a tropical eigenvector of the corresponding matrix. The

following example displays this point in action.

Example 2.2. Working with the same system as in Example 2.1,

we now fix x(0) = (5, 4, 5, 4, 1)ᵀ. Therefore, A ⊗ x(0) = x(1) can be

1. DISCRETE EVENT SYSTEMS AS MOTIVATION 28

represented as

ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


⊗



5

4

5

4

1


=



9

8

9

8

5



= 4⊗



5

4

5

4

1


.

Moreover, we have A⊗ x(1) = x(2) computed as

ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


⊗



9

8

9

8

5


=



13

12

13

12

9



= 4⊗



9

8

9

8

5


.

2. THE TROPICAL EIGENVALUE THEOREM 29

The behavior of the system in the above example relies on the scalar

4. In other words,

A⊗ x(k) = x(k + 1)

= 4⊗ x(k).

Thus, at any time k, node i can begin its kth process 4 units after its

(k − 1)th process. In more general terms, when our system behaves

such that

A⊗ x(k) =λ⊗ x(k) = x(k + 1)

it moves forward in increments of λ. Therefore, to choose an ideal initial

condition for a discrete event system, we find a tropical eigenvalue

λ ∈ R and an associated eigenvector. We will develop algorithms for

computing tropical eigenvalues and their associated eigenvectors, but

first, we explore the abstract essence of the tropical eigenvalue from a

min-plus perspective.

2. The Tropical Eigenvalue Theorem

We use the language of graph theory to develop a formal, theoreti-

cal understanding of the min-plus eigenvalue. For an exposition of the

max-plus case, see [2] and [7], the former of which more closely resem-

bles the following analysis. As it turns out, unique tropical eigenvalues

exist for irreducible matrices. However, before we can show existence

and uniqueness of tropical eigenvalues, we have a little more ground to

cover. First, we give a formal definition of the tropical eigenvalue and

eigenvector pair.

2. THE TROPICAL EIGENVALUE THEOREM 30

Definition 2.2. Let A ∈ Rn×n
min (Rn×n

max). If λ ∈ Rmin (Rmax) and

v ∈ Rn
min (Rn

max) such that v has at least one finite entry and

A⊗ v = λ⊗ v,

then λ is an eigenvalue of A with associated eigenvector v.

The first graph-theoretic feature of the tropical eigenvalue is artic-

ulated in the lemma, and its proof, below.

Lemma 2.1. Let A ∈ Rn×n
min have finite eigenvalue µ. Then a circuit

γ exists in G(A) such that

µ =
|γ|W
|γ|1

.

Proof. Let v be an eigenvector associated with µ. By definition,

v has at least one finite entry. There, thus, exists η1 ∈ V (G(A)) such

that vη1
6= ε, and [A ⊗ v]η1

is equal to a finite value. By the way

we define tropical matrix multiplication, this implies that there exists

η2 ∈ V (G(A)) such that

aη1η2
⊗ vη2

= µ⊗ vη1
,

further implying aη1η2
6= ε and vη2

6= ε. By the same logic, there exists

η3 ∈ V (G(A)) such that

aη2η3
⊗ vη3

= µ⊗ vη2
,

where aη2η3
6= ε and vη3

6= ε. Since V (G(A)) is finite, we will eventually

find a repeat node, some node ηh ∈ V (G(A)) such that

ηi = ηh, with i ∈ {1, . . . , h}. Thus, we have constructed a circuit γ of

arbitrary length ` with γ = ((η
h
, η

h+`−1
), (η

h+`−1
, η

h+`−2
), . . . , (η

h+1
, η

h
)).

2. THE TROPICAL EIGENVALUE THEOREM 31

Note η
h

= η
h+`

. Moreover,

|γ|W =
`−1⊗
k=0

aη
h+k

η
h+k+1

. (2.1)

Since we have created γ on the basis that

aη1η2
⊗ vη2

= µ⊗ vη1
,

aη2η3
⊗ vη3

= µ⊗ vη2
,

and so on, we may write

`−1⊗
k=0

(
aη

h+k
η
h+k+1

⊗ vη
h+k+1

)
= µ⊗` ⊗

`−1⊗
k=0

vη
h+k

.

We need to employ the standard algebraic operation of subtraction, so

we express the above in classical terms:

`−1∑
k=0

(
aη

h+k
η
h+k+1

+ vη
h+k+1

)
= `× µ+

`−1∑
k=0

vη
h+k

. (2.2)

Note the following:

`−1∑
k=0

vη
h+k+1

= vη
h+1

+ vη
h+2

+ · · ·+ vη
h+`+1

+ vη
h+`

`−1∑
k=0

vη
h+k

= vη
h

+ vη
h+1

+ · · ·+ vη
h+`−2

+ vη
h+`+1

.

Because ηh = ηh+`, we can see in the above expressions that

`−1∑
k=0

vη
h+k+1

=
`−1∑
k=0

vη
h+k

.

Subtracting these two terms from (2.2), we have

`−1∑
k=0

aη
h+k

η
h+k+1

= `× µ,

2. THE TROPICAL EIGENVALUE THEOREM 32

and thus,

`−1⊗
k=0

aη
h+k

η
h+k+1

= `× µ.

From (2.1), we have

|γ|W = `× µ,

and we conclude, since |γ|1 = `,

|γ|W
|γ|1

=
1

`
× `× µ = µ.

�

We know that tropical eigenvalues are average circuit weights in the

corresponding graph. We can refine this statement further and claim

that the minimal average circuit weight will always be an eigenvalue.

Before we prove this, we define some necessary terms.

Definition 2.3. Let C(A) denote the set of all circuits of a graph

G(A). Fix

λ = min
p∈C(A)

|p|W
|p|1

.

A circuit γ ∈ C(A) is critical if λ = |γ|W
|γ|1 . The critical graph of A,

GC(A) = (V C(G(A)), AC(G(A)), ICG(A), K
C
G(A)), consists of all nodes

and arcs that belong to critical circuits in G(A).

To prove that minimal average circuit weights are eigenvalues, we

also need the following lemma about critical graphs.

Lemma 2.2. Let G(A) be a graph with at least one circuit. It follows

that any circuit in GC(A) is critical.

Proof. We proceed with a proof by contradiction. Without loss of

generality, assume that the scalar λ, as it is denoted in Definition 2.3, is

2. THE TROPICAL EIGENVALUE THEOREM 33

equal to 0. Suppose there exists a circuit ρ in GC(A) of arbitrary length

|ρ|1 = `. Assume |ρ|W|ρ|1 < 0. By definition, ρ is a circuit in G(A), and

we, therefore, have a contradiction, as this would make λ = |ρ|W
|ρ|1 . Next,

assume |ρ|W|ρ|1 > 0. Note that ρ can be represented as a concatenation of

paths ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρk, and that each ρi is a subpath of a critical

circuit ci, i ∈ {1, 2, . . . , k}. There then exist subpaths ξi such that

ci = ξi ◦ ρi, i ∈ {1, 2, . . . , k}. Since ρ is a circuit of length `, we can

order the ci circuits as follows:

c1 = ξ1 ◦ ρ1 (ξ1 begins at η
h+1

, ends at η
h
; ρ1 begins at η

h
, ends at η

h+1
)

c2 = ξ2 ◦ ρ2 (ξ2 begins at η
h+2

, ends at η
h+1

; ρ2 begins at η
h+1

, ends at η
h+2

)

...

ck = ξk ◦ ρk. (ξk begins at η
h+`

, ends at η
h+`−1

; ρk begins at η
h+`−1

, ends at η
h+`

)

It follows from our indexing of nodes that the concatenation

ξk ◦ ξk−1 ◦ · · · ◦ ξ1 forms a circuit. For all i ∈ {1, 2, . . . , k}, |ci|W|ci|1 = 0,

and because |ρ|W|ρ|1 > 0, the circuit ξ = ξk ◦ ξk−1 ◦ · · · ◦ ξ1 has average

weight less than 0, producing a contradiction identical to that which

emerged when assuming |ρ|W|ρ|1 < 0. Since the average weights of circuits

in GC(A) cannot be greater than or less than λ, we conclude they all

have average weight λ, and are, therefore, critical. �

The next definition sets up our proof of minimal average circuit

weights as eigenvalues.

Definition 2.4. If we let A ∈ Rn×n
min and λ be defined as it is in

Definition 2.3, then we can define a matrix Aλ as follows:

[Aλ]ij = aij − λ.

2. THE TROPICAL EIGENVALUE THEOREM 34

We further define the matrix A+
λ by

A+
λ = Aλ ⊕′ A⊗2

λ · · · ⊕
′ · · ·A⊗nλ

Let A∗λ be defined as follows:

A∗λ = E ⊕′ A+
λ ,

where E represents our n× n min-plus multiplicative identity matrix.

Finally, before we proceed with our claim, as a matter of notation,

denote the kth column of a matrix B by [B]·k.

Lemma 2.3. Let the graph G(A) of matrix A have finite minimal

average circuit weight λ. Then the scalar λ is an eigenvalue of A, and

the column [A∗λ]·η is an eigenvector of A associated with λ for any node

η ∈ V C(G(A)).

Proof. First, note that the graphs of A and Aλ are identical, save

their arc weights. Although the arc weights of G(A) and G(Aλ) dif-

fer, they vary uniformly by an amount of λ. In other words, for all

circuits of G(A) with average weight α, there exists a corresponding

circuit in G(Aλ) with average weight α−λ. Then the minimal average

circuit weight of G(Aλ) is zero. Therefore, by Lemma 2.2, all circuits

in GC(Aλ) have weight 0, and since every node of a critical graph is

contained in a circuit, any path from a node in GC(Aλ) to itself has

weight zero. Put another way, for all η ∈ V C(A),

[A+
λ]ηη = 0. (2.3)

Recall our notation for denoting column vectors of matrices. By

Definition 2.4,

[A∗λ]·η = [E ⊕′ A+
λ]·η.

2. THE TROPICAL EIGENVALUE THEOREM 35

For cases where i 6= η, the vector entry [A∗λ]iη = ε⊕′ [A+
λ]iη, and when

i = η, [A∗λ]iη = 0⊕′ [A+
λ]iη. Therefore, from (2.3), we have

[A+
λ]·η = [A∗λ]·η, (2.4)

for all η ∈ NC(A). Next, consider the following algebraic manipulations

of our definition for A+:

A+
λ = Aλ ⊕′ A⊗2

λ ⊕
′ · · · ⊕′ A⊗nλ

= Aλ ⊕′ A⊗2
λ ⊕

′ · · · ⊕′ A⊗nλ ⊕
′ A
⊗(n+1)
λ (by Theorem 1.1)

= Aλ ⊗ (E ⊕′ Aλ ⊕′ A⊗2
λ ⊕

′ · · · ⊕′ A⊗nλ)

= Aλ ⊗ (E ⊕′ A+
λ)

= Aλ ⊗ A∗λ.

We thus make the following substitution into (2.4):

[Aλ ⊗ A∗λ]·η = [A∗λ]·η,

and it follows

Aλ ⊗ [A∗λ]·η = [A∗λ]·η,

which, after “adding” λ (recall that [Aλ]ij = [A]ij − λ) to both sides of

the above expression yields

A⊗ [A∗λ]·η = λ⊗ [A∗λ]·η.

Put into words, we have shown that for any node η in the critical graph

of A, the ηth column of Aλ is an eigenvector of A associated with the

eigenvalue λ. �

2. THE TROPICAL EIGENVALUE THEOREM 36

Notice how the above lemma indicates that so long as the minimal

average circuit weight of G(A) is finite, there must exist an eigenvalue

of A. By definition, if A is irreducible, then its minimum average cir-

cuit weight will be finite. Thus, if we narrow our gaze to irreducible

matrices, we have the existence of eigenvalues. What follows is a proof

of the fact that these eigenvalues are unique for irreducible tropical

matrices.

Let γ = ((η1 , η2), (η2 , η3), . . . , (η
`
, η

`+1
)) be an arbitrary circuit in

the strongly connected graph G(A), where |γ|1 = ` and η
`+1

= η1. It

follows that for all k ∈ {1, 2, . . . , `}, aη
k+1

η
k
6= ε. Moreover, suppose

there exists a finite eigenvalue of A, µ. Let v be an eigenvector asso-

ciated with µ. That A⊗ v = µ⊗ v implies aη
k+1

η
k
⊗ vη

k
≥ µ⊗ vη

k+1
.

We can now set up an argument similar to that made in the proof of

Lemma 2.1, whereby

`−1⊗
k=0

(
aη

k+1
η
k+2
⊗ vη

k+2

)
≥ µ⊗` ⊗

`−1⊗
k=0

vη
k+1

=⇒
`−1∑
k=0

(
aη

k+1
η
k+2
⊗ vη

k+2

)
≥ µ⊗` ⊗

`−1∑
k=0

vη
k+1

`−1∑
k=0

(aη
k+1

η
k+2

) ≥ `× µ

|γ|W ≥ `× µ

|γ|W
|γ|1|

≥ µ.

Since we chose γ arbitrarily, the above inequality must hold for the

minimal average circuit weight of G(A). Therefore, µ is less than or

equal to the minimal average circuit weight of G(A). However, from

Lemma 2.1, we have that µ must be an average circuit weight, so λ is

2. THE TROPICAL EIGENVALUE THEOREM 37

the only finite eigenvalue of the irreducible matrix A.

Suppose now that ε is an eigenvalue of A associated with eigenvector

v. By definition, v has at least one finite entry that we shall call vη.

Since A is irreducible, and we can “get to” node η from any other node

in V (G(A)), there exists a row α of A such that aαη is finite. Hence,

ε = [ε ⊗ v]α = [A ⊗ v]α ≤ aαη ⊗ vη. However, aαη and vη are finite

values, and we have a contradiction. Thus, ε cannot be an eigenvalue

of an irreducible matrix, and we have the following theorem.

The Tropical Eigenvalue Theorem for Irreducible

Matrices. Any irreducible matrix A ∈ Rn×n
min (Rn×n

max) possesses one and

only one eigenvalue. This eigenvalue, denoted λ(A) ∈ Rmin (Rmax), is a

finite number equal to the minimal (maximal) average weight of circuits

in G(A).

The above theorem is worthy of being the culmination of our chap-

ter. That an eigenvalue must exist for irreducible matrices, and that

we have a graph theoretic name for this value will be invaluable in

future computations. Next, we will look at the algorithms that dictate

these computations.

CHAPTER 3

Computing Eigenvalues and Eigenvectors of

Irreducible Matrices

Our main result in Chapter 2 is that any irreducible tropical ma-

trix possesses a unique eigenvalue. We now concern ourselves with

the computation of these eigenvalues. Two algorithms are presented:

Karp’s Algorithm and the Power Algorithm. Karp’s will be given in

the min-plus matrix algebra, but a max-plus analogue does exist; see

[2]. Similarly, there is a min-plus version of the Power Algorithm, but

our work will be restricted to the max-plus setting.

1. Karp’s Algorithm

In 1978, Richard M. Karp devised an algorithm for computing

eigenvalues of tropical matrices [8]. However, this was not the ex-

press purpose of Karp’s paper, as he wrote, entirely in graph-theoretic

terms, of computing minimum average circuit weights. We will, for

now, concern ourselves strictly with its application to strongly con-

nected graphs (graphs corresponding to irreducible matrices for which

unique eigenvalues must exist). For an overview of the algorithm as it

relates to tropical eigenvalues, see chapter 5, section 1 of [3], and for

the max-plus case, one should also consult section 1 of chapter 5 in [2].

We will detail Karp’s proof of his algorithm and work through a

couple examples of its execution; we seek to illustrate, in a manner

more detailed and instructive than currently exists in the literature,

38

1. KARP’S ALGORITHM 39

how and why this method works. But first, we outline the algorithm.

Karp’s Algorithm. Let A ∈ Rn×n
min be an irreducible matrix. To

compute the eigenvalue of A, λ, we find the minimum average circuit

weight in G(A) by the following:

(1) Choose an arbitrary j ∈ V (G(A)), and set x(0) = ej, where ej

represents the jth column of the n× n tropical identity matrix

E.

(2) Compute x(k) = A⊗ x(k − 1) for k = 1, . . . , n.

(3) Compute

λ = min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
.

The proof of the algorithm requires the following lemma.

Lemma 3.1. Let A ∈ Rn×n
min be an irreducible matrix with eigenvalue

λ = 0, j ∈ {1, . . . , n} be arbitrary, and x(k) denote [A⊗k]·j; then

min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
= 0.

Proof. Let G(A) be the graph associated with A. Because λ = 0,

the minimum average circuit weight of G(A) is zero, and, thus, there

exists a circuit γ in G(A) such that |γ|W = 0, and there cannot exist

a circuit with negative weight. By Theorem 1.1, the minimal value

of [A⊗k]υj is attained within n iterations of A⊗k. In graph theoretic

terms, because G(A) is strongly connected, there exists at least one

path from node j to any node υ, and if we let ρ denote the minimum-

weight path from j to υ; we have |ρ|1 ≤ n. Since min
k=0,...,n−1

xυ(k) = |ρ|W ,

1. KARP’S ALGORITHM 40

and xυ(n) ≥ |ρ|W ,

xυ(n)− |ρ|W = max
k=0,...,n−1

{xυ(n)− xυ(k)} ≥ 0,

and it follows from basic algebra that

max
k=0,...,n−1

{
xυ(n)− xυ(k)

n− k

}
≥ 0.

If xυ(n) = |ρ|W , then

max
k=0,...,n−1

{
xυ(n)− xυ(k)

n− k

}
= 0,

and since there are no circuits with negative average weight, it would

follow that

min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
= max

k=0,...,n−1

{
xυ(n)− xυ(k)

n− k

}
= 0.

Thus, it suffices to show that there exists a node υ such that

xυ(n) = |ρ|W . Recall |γ|W = 0, and suppose that w is a node in γ. Let

α represent the minimum weight path from j to w. Fix |α|W = a. If we

concatenate any number of walks through γ to the path α, then we still

have a minimum-weight progression of arcs from j to w. In other words,

because |γ|W = 0, for some concatenation of paths ξ = α ◦ γ ◦ · · · ◦ γ,

|ξ|W = a. We will show, by contradiction, that this implies that any

subpath of ξ, beginning at j and ending at some w′ in γ, represents the

minimum-weight path from j to w′. We provide Figure 3.1 to better

illustrate the following argument. Note that the nodes x and y are

included in γ to emphasize the fact that γ may traverse more nodes

than w and w′. Let β represent a subpath of γ beginning at w and

ending at w′, and let ζ denote the path from w′ to w over arcs in γ not

1. KARP’S ALGORITHM 41

traversed by β. Fix |β|W = b and |ζ|W = c. Since |γ|W = 0,

|γ|W = |β ◦ ζ|W

= |β|W + |ζ|W

= b+ c

= 0.

But now suppose that there exists some minimum-weight path θ

from j to w′, not a subpath of ξ, such that |θ|W = d, and d < a + b.

This implies that

d < a+ b

d+ c < a+ b+ c

d+ c < a (recall b+ c = 0).

Note that d + c represents the weight of the path θ ◦ ζ from j to

w. However, we earlier assumed that α represents a minimum-weight

path from j to w, so we cannot have a concatenation of paths distinct

from α with weight less than a. Our construction of θ contradicts this

assumption, and so we conclude that any subpath of ξ from j to w′ is a

minimum-weight path. Hence, let w′ be the (n+1)th node of a subpath

of ξ. Letting υ = w′, we have shown the existence of a node υ in G(A)

such that xυ(n) = |ρ|W , and the proof of our lemma is complete. �

1. KARP’S ALGORITHM 42

j w

w′

xy γ |β|W = b|ζ|W = c

|α|W = a

|θ|W = d

Figure 3.1

And now we may prove the validity of Karp’s Algorithm in computing

tropical eigenvalues.

Theorem 3.2. Let A ∈ Rn×n
min be an irreducible matrix with eigen-

value λ ∈ Rmin, j ∈ {1, . . . , n} be arbitrary, and x(k) denote [A⊗k]·j;

then

λ = min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
. (1)

Proof. Recall from Chapter 2 our definition of the matrix Aλ,

that is, the matrix that results from subtracting the eigenvalue of A

from each of its entries. Let Ac be similarly defined for some c ∈ R.

It is easily seen that the minimum average circuit weight of G(Ac) is

λ − c. Thus, the eigenvalue of Ac is λ − c. We seek to show that the

expression

min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
is also reduced by c. Let υ, r ∈ {1, . . . , n} such that

[A⊗2]υj = (aυ1 ⊗ a1j)⊕′ · · · ⊕′ (aυr ⊗ arj)⊕′ · · · ⊕′ (aυn ⊗ anj)

= aυr ⊗ arj,

1. KARP’S ALGORITHM 43

and, since all entries in the matrix are evenly reduced,

[A⊗2
c]υj = (aυr − c)⊗ (arj − c)

= aυr ⊗ arj − 2c.

It follows, by induction on k, that

[A⊗kc]υj = [A⊗k]υj − kc.

Hence,

xυ(n)− xυ(k)

n− k

from our A matrix, becomes

(xυ(n)− nc)− (xυ(k)− kc)
n− k

=
xυ(n)− xυ(k)− nc+ kc

n− k

=
xυ(n)− xυ(k)− c(n− k)

n− k

=
xυ(n)− xυ(k)

n− k
− c(n− k)

n− k

=
xυ(n)− xυ(k)

n− k
− c

in our Ac matrix. Naturally,

min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k
− c
}}

= min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
− c.

We could fix c = λ. By Lemma 3.1, the right side of (1) would, for

the matrix Aλ, yield zero, the eigenvalue of Aλ. Translating back to A

(adding λ to each entry of Aλ) would, as we have demonstrated above,

add λ to both sides of (1). Hence,

λ = min
i=1,...,n

{
max

k=0,...,n−1

{
xi(n)− xi(k)

n− k

}}
.

�

1. KARP’S ALGORITHM 44

The following example provides a straightforward exposition of the

algorithm.

Example 3.1. Let the irreducible matrix A ∈ Rn×n
min be defined as

A =


6 7 ε ε

1 4 ε 6

ε 2 4 5

ε ε 3 6

 .

We represent A graphically below.

1 2

3 4

6

1

4

7

2

4

3

6

6

5

Figure 3.2

Since A is irreducible, we may use Karp’s Algorithm to compute the

tropical eigenvalue. Recall that we are in min-plus, so that ε = ∞.

In this computation, we shall let j = 3 so that x(0) = (ε, ε, 0, ε)ᵀ.

Performing the second step of the algorithm, we find x(k) for k =

1. KARP’S ALGORITHM 45

1, 2, 3, 4:

x(1) = A⊗ x(0) =


6 7 ε ε

1 4 ε 6

ε 2 4 5

ε ε 3 6

⊗

ε

ε

0

ε

 =


ε

ε

4

3

 ;

x(2) = A⊗ x(1) =


6 7 ε ε

1 4 ε 6

ε 2 4 5

ε ε 3 6

⊗

ε

ε

4

3

 =


ε

9

8

7

 ;

x(3) = A⊗ x(2) =


6 7 ε ε

1 4 ε 6

ε 2 4 5

ε ε 3 6

⊗

ε

9

8

7

 =


16

13

11

11

 ;

x(4) = A⊗ x(3) =


6 7 ε ε

1 4 ε 6

ε 2 4 5

ε ε 3 6

⊗


16

13

11

11

 =


20

17

15

14

 .

Recall our discussion of minimum-weight path problems in Chapter

1, where we have that the path of minimum weight of length k from

node ` to node i in G(A) is given by [A⊗k]i`. In fact, in comput-

ing our x(k) vectors we have found [A⊗k]·j for k = 1, 2, 3, 4, so that

x(1),x(2),x(3), and x(4) represent a catalogue of all minimum paths

of lengths 1 through 4 beginning at node 3.

We next tackle the messy notation of step (3), a procedure by which,

1. KARP’S ALGORITHM 46

using our catalogue of minimum path lengths, we isolate average cir-

cuit weights and choose the minimum of these values. Consider the

difference quotients that we must maximize:

max

{
20− ε
4− 0

,
20− ε
4− 1

,
20− ε
4− 2

,
20− 16

4− 3

}
= max

{
−ε
4
,
−ε
3
,
−ε
2
,
4

1

}
= 4; (i = 1)

max

{
17− ε
4− 0

,
17− ε
4− 1

,
17− 9

4− 2
,
17− 13

4− 3

}
= max

{
−ε
4
,
−ε
3
,
6

2
,
4

1

}
= 4; (i = 2)

max

{
15− 0

4− 0
,
15− 4

4− 1
,
15− 8

4− 2
,
15− 11

4− 3

}
= max

{
15

4
,
11

3
,
7

2
,
4

1

}
= 4; (i = 3)

max

{
14− ε
4− 0

,
14− 3

4− 1
,
14− 7

4− 2
,
14− 11

4− 3

}
= max

{
−ε
4
,
11

3
,
7

2
,
3

1

}
=

11

3
. (i = 4)

Finally, we minimize these maximums to find

λ = min

{
4, 4, 4,

11

3

}
=

11

3
.

Karp’s Algorithm is perhaps best understood through an example

resembling the matrix from our statement and proof of Lemma 3.1.

Hence, we work through the algorithm again, this time computing the

eigenvalue of Aλ, where A ∈ Rn×n
min is the matrix from our previous

example.

Example 3.2. We define Aλ ∈ Rn×n
min below and its graph G(Aλ) in

Figure 3.3:

Aλ =


21

3
31

3
ε ε

−22
3

1
3

ε 21
3

ε −12
3

1
3

11
3

ε ε −2
3

21
3

 .

1. KARP’S ALGORITHM 47

1 2

3 4

21
3

−22
3

1
3

31
3

−12
3

1
3

−2
3

21
3

21
3

11
3

Figure 3.3

It is easily seen (see Theorem 3.2) that the eigenvalue of Aλ, λ
∗, is equal

to zero, but for the sake of exposition, we will detail the steps of Karp’s

Algorithm in computing λ∗. Fix j = 1, and hence, x(0) = (0, ε, ε, ε)ᵀ.

For our sequence of x(k) vectors, we have

x(1) = A⊗ x(0) =


21

3
31

3
ε ε

−22
3

1
3

ε 21
3

ε −12
3

1
3

11
3

ε ε −2
3

21
3

⊗


0

ε

ε

ε

 =


21

3

−22
3

ε

ε

 ;

x(2) = A⊗ x(1) =


21

3
31

3
ε ε

−22
3

1
3

ε 21
3

ε −12
3

1
3

11
3

ε ε −2
3

21
3

⊗


21
3

−22
3

ε

ε

 =


2
3

−21
3

−41
3

ε

 ;

1. KARP’S ALGORITHM 48

x(3) = A⊗ x(2) =


21

3
31

3
ε ε

−22
3

1
3

ε 21
3

ε −12
3

1
3

11
3

ε ε −2
3

21
3

⊗


2
3

−21
3

−41
3

ε

 =


1

−2

−4

−5

 ;

x(4) = A⊗ x(3) =


21

3
31

3
ε ε

−22
3

1
3

ε 21
3

ε −12
3

1
3

11
3

ε ε −2
3

21
3

⊗


1

−2

−4

−5

 =


11

3

−22
3

−32
3

−42
3

 .

Our difference quotients become

max

{
11

3
− 0

4− 0
,
11

3
− 21

3

4− 1
,
11

3
− 2

3

4− 2
,
11

3
− 1

4− 3

}
= max

{ 4
3

4
,
−1

3
,

2
3

2
,

1
3

1

}
=

1

3
; (i = 1)

max

{−22
3
− ε

4− 0
,
−22

3
+ 22

3

4− 1
,
−22

3
+ 21

3

4− 2
,
−22

3
+ 2

4− 3

}
= max

{
−ε
4
,
0

3
,
−1
3

2
,
−1
3

1

}
= 0; (i = 2)

max

{−32
3
− ε

4− 0
,
−32

3
− ε

4− 1
,
−32

3
+ 41

3

4− 2
,
−32

3
+ 4

4− 3

}
= max

{
−ε
4
,
−ε
3
,

2
3

2
,

1
3

1

}
=

1

3
; (i = 3)

max

{−42
3
− ε

4− 0
,
−42

3
− ε

4− 1
,
−42

3
− ε

4− 2
,
−42

3
+ 5

4− 3

}
= max

{
−ε
4
,
−ε
3
,
−ε
2
,

1
3

1

}
=

1

3
, (i = 4)

and we compute

λ∗ = min

{
1

3
, 0,

1

3
,
1

3

}
= 0.

It is with this example, one for which the tropical eigenvalue of our

matrix is zero, that we can relate the proof of Lemma 3.1 to the in-

ner workings of Karp’s Algorithm. Recall that we have set j = 1.

Hence, because λ∗ = 0, Lemma 3.1 guarantees the existence of a node

υ ∈ V (G(Aλ)) such that an n-length path from node 1 to υ attains a

minimum weight, and moreover, this path traverses a critical circuit of

1. KARP’S ALGORITHM 49

G(Aλ). In other words,

xυ(n) = min
k=0,...,n−1

xυ(k).

Karp’s Algorithm is designed to find this special node υ. To see how

the Algorithm pinpoints υ from the catalogue of minimum-weight paths

established by the x(k) vectors, let us note that in this example, υ = 2.

Consider the series of difference quotients when i = 2:

max

{−22
3
− ε

4− 0
,
−22

3
+ 22

3

4− 1
,
−22

3
+ 21

3

4− 2
,
−22

3
+ 2

4− 3

}
= max

{
−ε
4
,
0

3
,
−1
3

2
,
−1

3

1

}
= 0.

The first term over which we maximize is infinite. In general, xi(n)−xi(1)
n

is only a candidate for the eigenvalue when the critical circuit is of

length n. The second term considered is, of course, the eigenvalue 0.

Node 2 is part of the zero-weight circuit described by γ = (2, 3)◦(3, 4)◦

(4, 2), a circuit we picture below in the critical graph GC(Aλ).

2

3 4

−12
3

−2
3

21
3

Figure 3.4

Furthermore, our calculations demonstrate υ = 2 because they show

that the minimum-weight arc progression from node 1 to node 2 is a

1-length path with weight −22
3
. That |γ|W = 0 and |γ|1 = 3 implies

that the traversal of the 1-length minimum path from node 1 to node

1. KARP’S ALGORITHM 50

2, followed by a trip around the critical circuit ending at node 2 gives

us our 4-length path from 1 to 2 which attains the minimum weight.

A graphical representation of this 4-length traversal also appears in

Figure 3.5 below.

1 2

3 4

−22
3

−12
3

−2
3

21
3

Figure 3.5

Hence, we use difference quotients to find the eigenvalue. Once the

n-length path is found, we subtract off the weight of the excess path

that brought us into the critical circuit. In this case, |(2, 3)|1 = −22
3
,

so our difference is −22
3
− (−22

3
) = 0, and since we removed a 1-length

path, we divide our difference by 3. That the subsequent candidates

for maximization fail reveals why, despite the fact we are looking for

the minimum cycle mean, we maximize these terms. With
−2 2

3
−(−2 1

3
)

4−2
,

we are removing a path that is not the one of minimum average weight

from node 1 to 2. In seeking this minimum path, we want the greatest

difference between x2(4) and any x2(k), and so we maximize the can-

didates. When removing a path that strays from our critical circuit,

we will never, by Lemma 3.1, remove the shortest path from j to υ.

Karp’s Algorithm is not the most efficient method for comput-

ing tropical eigenvalues. Cataloguing every path of minimum weight

2. THE POWER ALGORITHM 51

is a cumbersome, expensive process. The next algorithm we discuss

provides a more efficient technique for solving the tropical eigenvalue-

vector problem in the irreducible case.

2. The Power Algorithm

In Section 1 of Chapter 2, discrete event dynamic systems motivated

our finding max-plus eigenvalues and associated eigenvectors. The dis-

crete processes described by digraphs and tropical matrices can, in a

sense, be controlled by solving the eigenvalue-vector problem. That is,

the system described by A ∈ Rn×n
max will evolve predictably when we al-

low it to recur according to λ ∈ Rmax and v ∈ Rn
max such that we have

A ⊗ v = λ ⊗ v. It turns out that for any irreducible tropical matrix,

there is a point at which iterations of the form A⊗k will themselves

behave predictably, and the stability of these iterations is related to

the matrix’s tropical eigenvalues and eigenvectors [2]. The Power Al-

gorithm makes use of this connection to compute tropical eigenvalues

and eigenvectors of irreducible matrices more efficiently than Karp’s.

The Power Algorithm. Let A ∈ Rn×n
max be an irreducible matrix

with eigenvalue λ and associated eigenvector v. We find λ and v by

the following:

(1) Choose an arbitrary vector x(0) ∈ Rn
max such that x(0) has at

least one finite entry.

(2) Iterate A⊗x(k) = x(k+1) (with x(0) as your initial condition)

until a k is reached such that there exist p ∈ N and c ∈ R, such

that x(k + p) = c⊗ x(k).

(3) Compute λ = c/p.

2. THE POWER ALGORITHM 52

(4) Compute v =

p⊕
j=1

(
λ⊗(p−j) ⊗ x (k + j − 1)

)
.

Before any meaningful discussion of the periodic behavior of A⊗k

iterations can occur, we require some more graph theory.

Definition 3.1. Let G be a digraph with n nodes and ηh, η` ∈

V (G). We construct an equivalence relation ∼C on V (G) by which

ηh ∼C η` if and only if there exists a circuit that traverses both ηh

and η`. The equivalence classes under ∼C are defined by Vi(G) (for

1 ≤ i ≤ q), thus producing subgraphs Gi of G such that Ei(G) =

{(ηh, η`) ∈ E(G) : ηh, η` ∈ Vi(G)}. Each Gi is called a strongly con-

nected component of G. We define the condensed graph of G(A), de-

noted G(Ã), by V (G(Ã)) = {V1(G(A)), V2(G(A)), . . . , Vq(G(A))}, and

(Vr(G(A)), Vs(G(A)) ∈ E(G(Ã)) if and only if r 6= s, and there exists

some (ηh, η`) ∈ E(G(A)) such that ηh ∈ Vr(G(A)), and η` ∈ Vs(G(A)).

Definition 3.2. We define the cyclicity of a graph G, denoted σG,

as follows:

• Let G be a strongly connected graph with n nodes. The cyclic-

ity of G is equal to the greatest common divisor of the lengths

of all circuits in G whose lengths are less than or equal to n.

• If G has one node and no directed arcs, then its cyclicity is

one.

• If G is not strongly connected, then its cyclicity is equal to

the least common multiple of the cyclicities of the strongly

connected components of G.

Definition 3.3. Let A be a matrix whose graph G(A) contains

at least one circuit. We define the cyclicity of the matrix A, denoted

σ(A), to be the cyclicity of the critical graph of A, GC(A).

2. THE POWER ALGORITHM 53

We illuminate the above definitions by way of example.

Example 3.3. Let G(A) be the strongly connected graph pictured

below in Figure 3.6 and described by

A =


ε 3 4

2 ε ε

4 ε ε

 .

1

2 3

2

43

4

Figure 3.6

The graph G(A) consists of two elementary circuits γ1 = (1, 2) ◦ (2, 1)

and γ2 = (1, 3) ◦ (3, 1), and since it is strongly connected

σG = gcd {|γ1|1, |γ2|1}

= gcd{2, 2}

= 2.

To find σ(A), we consider the critical graph GC(A), which, because

we are in Rn×n
max seeking the maximal average circuit weight, consists of

nodes 1 and 3 and and the two 4-weight arcs creating a circuit between

them. Then σ(A) = gcd{|γ2|1} = gcd{2} = 2. Notice what happens

to the cyclicity of our graph when we add another arc, forming G(A′),

so that

A′ =


2 3 4

2 ε ε

4 ε ε

 .

2. THE POWER ALGORITHM 54

1

2 3

2

2

43

4

Figure 3.7

We have a new elementary circuit γ3 = (1, 1); hence,

σG = gcd {|γ1|1, |γ2|1, |γ3|1}

= gcd{2, 2, 1}

= 1.

However, our critical graph GC(A′) remains unchanged. Therefore,

σ(A) = σ(A′) = 2,

and we see that the cyclicities of graphs and their respective matrices

need not exist in lockstep.

Example 3.4. Now we consider a graph that is not strongly con-

nected. Let G(A) be defined by the matrix

A =


ε 2 ε ε

1 ε ε ε

ε 5 6 ε

ε ε 5 ε

 .

To determine σG, we first break up our graph into its strongly connected

components. The partition of V (G(A)) under ∼C can be expressed

as the collection {V1(G(A)), V2(G(A)), V3(G(A))} = {{1, 2}, {3}, {4}}.

2. THE POWER ALGORITHM 55

This partition helps us build the strongly connected components we

illustrate in Figure 3.8:

1 2

3 4

1

2

5

6

5

1 2
1

2

G1(A)

3

6 G2(A)

4
G3(A)

V1

V2 V3
G(Ã)

Figure 3.8

2. THE POWER ALGORITHM 56

Thus,

σG = lcm
{
σG1(A), σG2(A), σG3(A)

}
= lcm {gcd{2}, gcd{1}, 1}

= lcm{2, 1, 1}

= 2.

The following theorem relates the cyclicity of a matrix to its natural

powers, and it will be given without proof.

Theorem 3.3. Let A ∈ Rn×n
max be an irreducible matrix with eigen-

value λ and cyclicity σ = σ(A). Then there exists N ∈ N such that

A⊗(k+σ) = λ⊗σ ⊗ A⊗k

for all k ≥ N .

Theorem 3.3 implies periodic behavior from natural powers of irre-

ducible matrices, and this behavior is contingent upon the cyclicity of

these matrices. The following analysis, similar to [1], will further illus-

trate the relationship between cyclicity, eigenvalues, and eigenvectors

of irreducible max-plus matrices.

Recall the matrix

A =



ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


.

2. THE POWER ALGORITHM 57

from Section 1 of Chapter 2. The following powers of A reveal aspects

of its periodicity; we have

A⊗7 =



18 29 23 14 22

22 18 27 18 26

28 24 18 24 17

22 18 27 18 26

14 25 19 10 18


; A⊗8 =



27 23 32 23 31

31 27 21 27 20

22 33 27 18 26

31 27 21 27 20

23 19 28 19 27


;

A⊗9 =



36 32 26 32 25

25 36 30 21 29

31 27 36 27 35

25 36 30 21 29

32 28 22 28 21


; A⊗10 =



30 41 35 26 34

34 30 39 30 38

40 36 30 36 29

34 30 39 30 38

26 37 31 22 30


,

and, thus, A⊗10 = 12 ⊗ A⊗7. We found previously that the max-plus

eigenvalue of A is λ = 4. In Figure 3.9, GC(A) is pictured, that is, the

graph with all nodes and arcs from G(A) contained in the circuit of

average weight 4.

η1

η3

η2

4

5

3

Fig. 3.9

2. THE POWER ALGORITHM 58

The graph GC(A) only contains one circuit, and its length is 3, so

σ(A) = gcd{3} = 3. Given this information about λ, σ(A), and powers

of A, we conclude, by Theorem 3.3, that

Ak+3 = 4⊗3 ⊗ A⊗k

for all k ≥ 7. Recalling the recurrence relation A⊗x(k) = x(k+1), we

have, when an initial condition x(0) is given and k is sufficiently large,

x(k + 3) = A⊗(k+3) ⊗ x(0)

= (4⊗3 ⊗ A⊗k)⊗ x(0)

= 4⊗3 ⊗ (A⊗k ⊗ x(0))

= 4⊗3x(k)

= 12⊗ x(k).

We will employ a general form of the above expressions to verify

the Power Algorithm’s computation of eigenvectors. Suppose that for

natural numbers k and p and c ∈ R, we have

x(k + p) = c⊗ x(k).

Fix λ = c
p
, and let

v = x(k + p− 1)⊕ (λ⊗ x(k + p− 2))⊕ · · · ⊕ (λ⊗(p−1) ⊗ x(k)).

2. THE POWER ALGORITHM 59

Then

A⊗ v = (A⊗ x(k + p− 1))⊕ (A⊗ λ⊗ x(k + p− 2))⊕ · · · ⊕ (A⊗ λ⊗(p−1) ⊗ x(k))

= (A⊗ x(k + p− 1))⊕ (λ⊗ A⊗ x(k + p− 2))⊕ · · · ⊕ (λ⊗(p−1) ⊗ A⊗ x(k))

= x(k + p)⊕ (λ⊗ x(k + p− 1))⊕ · · · ⊕ (λ⊗(p−1) ⊗ x(k + 1))

= (c⊗ x(k))⊕ (λ⊗ x(k + p− 1))⊕ · · · ⊕ (λ⊗(p−1) ⊗ x(k + 1))

= (λ⊗p ⊗ x(k))⊕ (λ⊗ x(k + p− 1))⊕ · · · ⊕ (λ⊗(p−1) ⊗ x(k + 1))

= λ⊗ ((λ⊗(p−1) ⊗ x(k))⊕ (x(k + p− 1))⊕ · · · ⊕ (λ⊗(p−2) ⊗ x(k + 1))

= λ⊗ (x(k + p− 1))⊕ (λ⊗ x(k + p− 2))⊕ · · · ⊕ (λ⊗(p−1) ⊗ x(k))

= λ⊗ v.

Thus,

v =

p⊕
j=1

(
λ⊗(p−j) ⊗ x (k + j − 1)

)
,

as is stated in step (4) of the algorithm. The next example will run

through the Power Algorithm using the above 5× 5 matrix.

Example 3.5. Since

A =



ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


is an irreducible tropical matrix, we can compute its eigenvalue λ and

an associated eigenvector v using the Power Algorithm. First, we fix

x(0) = e1 = (0, ε, ε, ε, ε)ᵀ. Second, we iterate A⊗x(k) = x(k+ 1) until

2. THE POWER ALGORITHM 60

we uncover periodicity. This requires nine iterations:

x(1) = A⊗ (0, ε, ε, ε, ε)ᵀ = (ε, ε, 4, ε, ε)ᵀ;

x(2) = A⊗ (ε, ε, 4, ε, ε)ᵀ = (ε, 7, ε, 7, ε)ᵀ;

x(3) = A⊗ (ε, 7, ε, 7, ε)ᵀ = (12, ε, ε, ε, 8)ᵀ;

x(4) = A⊗ (12, ε, ε, ε, 8)ᵀ = (ε, 10, 16, 10, ε)ᵀ;

x(5) = A⊗ (ε, 10, 16, 10, ε)ᵀ = (15, 19, ε, 19, 11)ᵀ;

x(6) = A⊗ (15, 19, ε, 19, 11)ᵀ = (24, 13, 19, 13, 20)ᵀ;

x(7) = A⊗ (24, 13, 19, 13, 20)ᵀ = (18, 22, 28, 22, 14)ᵀ;

x(8) = A⊗ (18, 22, 28, 22, 14)ᵀ = (27, 31, 22, 31, 23)ᵀ;

x(9) = A⊗ (27, 31, 22, 31, 23)ᵀ = (36, 35, 31, 25, 32)ᵀ;

Notice that x(9) = x(6 + 3) = 12 ⊗ x(6), so after our ninth iteration

in step (2), we may undertake step (3):

λ =
12

3
= 4.

Finally, we compute

v =
3⊕
j=1

(
4⊗(3−j) ⊗ x(6 + j − 1)

)
= 4⊗2 ⊗ x(6)⊕ 4⊗1 ⊗ x(7)⊕ 4⊗0 ⊗ x(8)

= 8⊗ (24, 13, 19, 13, 20)ᵀ ⊕ 4⊗ (18, 22, 28, 22, 14)ᵀ ⊕ 0⊗ (27, 31, 22, 31, 23)ᵀ

= (32, 21, 27, 21, 28)ᵀ ⊕ (22, 26, 32, 26, 18)ᵀ ⊕ (27, 31, 22, 31, 23)ᵀ

= (32, 31, 32, 31, 28)ᵀ,

2. THE POWER ALGORITHM 61

and find that, in fact,

ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


⊗



32

31

32

31

28


=



36

35

36

35

32



= 4⊗



32

31

32

31

28


.

Example 3.6. For this example, the above matrix A ∈ R5×5
max and

its corresponding graph in Figure 2.1 describe a discrete event sys-

tem. Suppose the information encoded in A and G(A) abstracts the

workings of a radio communication network. Each node represents a

tower; a weighted arc running from node j to node i (also denoted aij)

gives the time it takes, in seconds, for tower j to construct and send a

message to tower i and for tower i to receive and process the commu-

nication. Suppose, furthermore, that the network is automated so that

its operator can program each tower with a start time and the towers

will then carry out subsequent processes on their own accord. How can

we set the network “into motion” so that, without having to iterate

A ⊗ x(k) for k = 0, 1, . . . , 6, we know exactly how long it will take

to run five times? The answer lies in our solution from Example 3.5.

We found that λ = 4 is an eigenvalue of A with associated eigenvector

v = (32, 31, 32, 31, 28)ᵀ. Were we to set v = x(0), the system would

behave predictably, according to λ, and we would know exactly when

2. THE POWER ALGORITHM 62

the fifth process will end. However, this would be impractical, as de-

laying communications for 28 to 32 seconds would be a waste of time.

To derive a more practical solution, we simply find the least multiple

of 4 in v and subtract it from each element, or tropically speaking,

−28⊗ (32, 31, 32, 31, 28)ᵀ = (4, 3, 4, 3, 0)ᵀ.

Since we reduced v by a multiple of 4, the vector (4, 3, 4, 3, 0)ᵀ is still

in the eigenspace associated with λ. We verify this below:

ε 5 ε ε ε

ε ε 3 ε 2

4 ε ε ε ε

ε ε 3 ε 2

ε ε ε 1 ε


⊗



4

3

4

3

0


=



8

7

8

7

4



= 4⊗



4

3

4

3

0


.

Setting x(0) = (4, 3, 4, 3, 0)ᵀ, gives us both predictable behavior and an

efficient means of operating the network. Tower 5 will begin commu-

nicating immediately, while all other towers will be delayed by either

4 or 3 seconds. Note that it follows that

A⊗ x(5) = x(6)

= A⊗5 ⊗ x(0)

= (28, 27, 28, 27, 24)ᵀ.

2. THE POWER ALGORITHM 63

The greatest value in x(6), 28, tells us that the sixth process of nodes

in the system can begin 28 seconds after commencement. This reveals

that the fifth process will be executed in 28 seconds, and we have, thus,

solved the problem posed above.

In the Power Algorithm, we have a method for computing eigen-

values of irreducible tropical matrices, one more efficient than Karp’s.

Like with Karp’s Algorithm, we are not guaranteed a solution to the

eigenvalue-vector problem if our matrix is reducible. If a reducible ma-

trix does not possess an eigenvalue, then the Power Algorithm will not

terminate. One particularly interesting feature of Karp’s Algorithm is

that, regardless of whether its input possesses an eigenvalue, it will al-

ways terminate. Our next chapter investigates the consequences of this

aspect of Karp’s Algorithm, and whether or not we can learn anything

from running it on matrices without eigenvalues.

CHAPTER 4

Periodicity of Reducible Matrices

Even though a reducible matrix A need not possess a tropical eigen-

value, iterations of the form

A⊗ x(k) = x(k + 1), or

A⊗k ⊗ x(0) = x(k). (1)

still possess stable long-term behavior, so long as A contains finite en-

tries in each row. Matrices with at least one finite entry in every row

are called regular. This aforementioned stability is described by a pair

of finite vectors called the generalized eigenmode. Section 1 introduces

the theory underlying the eigenmode. Our analysis is restricted to

Rn×n
max . Indeed, work on the periodicity of matrices in Rn×n

min remains

absent from the literature. In Section 2, we present Howard’s Algo-

rithm, a method for computing the generalized eigenmode of reducible

systems. We explore the implementation of Karp’s Algorithm in the

reducible case in Section 3 and we save the fourth and final section for

concluding remarks.

1. The Cycle-Time Vector and the Generalized Eigenmode

Shifting our perspective slightly, consider the x(k) vectors in it-

erations like (1) to be elements in the range of a sequence mapping

k = 0, 1, 2, . . . to Rn
max. Much of the following analysis looks at the

limit of this sequence as k →∞ (see [2]).

64

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 65

Definition 4.1. Let {x(k) : k ∈ N} be a sequence in Rn
max. If for

all j ∈ {1, 2, . . . , n} the quantity

ηj = lim
k→∞

xj(k)

k

exists, then the vector η = (η1, η2, . . . , ηn)ᵀ is the cycle-time vector of

the sequence. If all elements of η have the same value, then this scalar

is called the asymptotic growth rate of the sequence.

We can show that, assuming existence, the cycle-time vector of

a sequence in Rn is unique. Essential to our proof is the following

definition.

Definition 4.2. We define the l∞-norm of a vector v ∈ Rn
max to

be the entry in v with maximal absolute value. Hence,

||v||∞ = max
i=1,...,n

|vi|.

Note that the l∞-norm of a vector in Rn
max with at least one entry

equal to ε will be infinite. Thus, the following analysis deals with wholly

finite vectors in proving uniqueness of the cycle-time vector.

Lemma 4.1. Let A ∈ Rm×n
max be a regular matrix (note A need not

be square). Then

||(A⊗ u)− (A⊗ v)||∞ ≤ ||u− v||∞,

for any u,v ∈ Rn.

Proof. Since A is a regular matrix, having at least one finite entry

in each row, and u and v are themselves finite, we know A⊗u, A⊗v ∈

Rm. We can, therefore, fix some α ∈ R such that

α = ||(A⊗ u)− (A⊗ v)||∞,

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 66

and there exists i0 ∈ {1, 2, . . . ,m} such that

α = |[(A⊗ u)− (A⊗ v)]i0| .

If we assume [(A⊗ u)− (A⊗ v)]i0 ≥ 0, then we have

α = max
j=1,...,n

(ai0j + uj)− max
l=1,...,n

(ai0l + vl). (2)

Let j0 ∈ {1, 2, . . . , n} be the value that corresponds to the maximum

attained in the first term of (2). Hence,

α = (ai0j0 + uj0)− max
l=1,...,n

(ai0l + vl).

Obviously,

(ai0j0 + vj0) ≤ max
l=1,...,n

(ai0l + vl),

so

α = (ai0j0 + uj0)− max
l=1,...,n

(ai0l + vl)

≤ (ai0j0 + uj0)− (ai0j0 + vj0).

Note that

(ai0j0 + uj0)− (ai0j0 + vj0) = uj0 − vj0 .

We have, then, that if α ≥ 0,

α ≤ uj0 − vj0

≤ max
j=0,...,n

(uj − vj)

≤ max
j=0,...,n

|uj − vj|

≤ ||uj − vj||∞.

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 67

To show the case for α ≤ 0, we need only swap the terms of (2) and

perform the same analysis. Thus, we conclude that for u,v ∈ Rn and

regular A ∈ Rm×n
max , ||(A⊗ u)− (A⊗ v)||∞ ≤ ||u− v||∞. �

Since the above proof works with an arbitrary regular matrix, and

powers of matrices with finite entries in every row will also have finite

entries in every row, it follows that for any k ≥ 0

||(A⊗k ⊗ u)− (A⊗k ⊗ v)||∞ ≤ ||u− v||∞. (3)

Hence, the l∞-distance between any two vectors from distinct sequences

(x(k))∞k=0 and (y(k))∞k=0, where x(0) = u and y(0) = v is bounded by

||u − v||∞. We employ this property of the l∞-norm, known as non-

expansiveness, to show that if a cycle-time vector of a given sequence

exists, then it is unique and exists for any finite initial condition.

Theorem 4.2. Let A ∈ Rn×n
max be a square regular matrix, and con-

sider the the sequence of vectors defined by A ⊗ x(k) = x(k + 1) with

initial condition x(0) ∈ Rn. If a cycle-time vector exists for this se-

quence, that is, there is some η ∈ Rn such that

lim
k→∞

A⊗k ⊗ x(0)

k
= η,

then this limit exists and has the same value for any initial condition

y(0) ∈ Rn.

Proof. By definition,

0 ≤
∣∣∣∣∣∣∣∣A⊗k ⊗ y(0)

k
− A⊗k ⊗ x(0)

k

∣∣∣∣∣∣∣∣
∞

≤ 1

k

∣∣∣∣A⊗k ⊗ y(0)− A⊗k ⊗ x(0)
∣∣∣∣
∞ ,

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 68

and from Lemma 4.1, we have that

1

k

∣∣∣∣A⊗k ⊗ y(0)− A⊗k ⊗ x(0)
∣∣∣∣
∞ ≤

1

k
||y(0)− x(0)||∞ ,

which implies

lim
k→∞

1

k
||y(0)− x(0)||∞ ≥ lim

k→∞

∣∣∣∣∣∣∣∣A⊗k ⊗ y(0)

k
− A⊗k ⊗ x(0)

k

∣∣∣∣∣∣∣∣
∞
≥ lim

k→∞
0

0 ≥ lim
k→∞

∣∣∣∣∣∣∣∣A⊗k ⊗ y(0)

k
− A⊗k ⊗ x(0)

k

∣∣∣∣∣∣∣∣
∞
≥ 0.

Thus,

lim
k→∞

∣∣∣∣∣∣∣∣A⊗k ⊗ y(0)

k
− A⊗k ⊗ x(0)

k

∣∣∣∣∣∣∣∣
∞

= 0,

or qualitatively speaking, the greatest difference between corresponding

entries of vectors in (x(k))∞k=0 and (y(k))∞k=0 divided by k tends to zero

as k →∞. Hence, that

lim
k→∞

A⊗k ⊗ x(0)

k
= η

implies

lim
k→∞

A⊗k ⊗ y(0)

k
= η.

�

The language of sequences was useful in proving the uniqueness

of the cycle-time vector of a recurrence relation A⊗k ⊗ x(0) = x(k).

However, now that we have shown that the value η ∈ Rn is indepen-

dent of the initial condition x(0) ∈ Rn, we can talk about cycle-time

vectors belonging to matrices, not just the particular sequences that

reveal their value. Moreover, the cycle-time vector of a regular ma-

trix A ∈ Rn×n
max is a generalized extension of the tropical eigenvalue, so

that given a tropical matrix A with eigenvalue λ ∈ R and associated

eigenvector v ∈ Rn, its cycle-time vector is η = (λ, λ, . . . , λ)ᵀ ∈ Rn.

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 69

Note that reducible matrices may have multiple eigenvalues. However,

since we have shown the cycle-time vector corresponding to sequences

of wholly finite vectors (vectors in Rn) to be unique, it follows that all

regular tropical matrices have only one eigenvalue with finite associated

eigenvectors.

Theorem 4.3. If x(k+ 1) = A⊗x(k) is a recurrence relation with

the irreducible matrix A ∈ Rn×n
max having the eigenvalue λ ∈ R, then for

all j ∈ {1, 2, . . . , n},

lim
k→∞

xj(k)

k
= λ

for any initial condition x(0) ∈ Rn.

Proof. Let v be an eigenvector associated with λ. Note that be-

cause A is irreducible, v ∈ Rn. If we fix x(0) = v,

x(k) = A⊗k ⊗ x(0)

= A⊗k ⊗ v

= λ⊗k ⊗ v

for all k ≥ 0. Thus, by an abuse of notation (+ and × denote standard

addition and multiplication), we have

lim
k→∞

xj(k)

k
= lim

k→∞

λ⊗k ⊗ vj
k

= lim
k→∞

k × λ
k

+ lim
k→∞

vj
k

= λ+ 0

= λ,

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 70

for all j ∈ {1, 2, . . . , n}. By Theorem 4.2, the cycle-time vector of A is

independent of the initial condition x(0), so we have proven the above

theorem. �

The above analysis explains why we can choose an arbitrary vector

when performing the Power Algorithm. For an irreducible matrix, the

cycle-time vector, and, thus, the eigenvalue will reveal itself in itera-

tions of A⊗ x(k) = x(k + 1), regardless of the value of x(0).

We stated earlier that the cycle-time vector extends the notion of

periodicity to matrices that may not necessarily possess an eigenvalue.

Our next definition will complete the picture for regular tropical ma-

trices by generalizing the eigenvalue-vector pair.

Definition 4.3. Let + and × denote standard addition and multi-

plication, respectively. The pair of vectors (η,v) ∈ Rn×Rn is called a

generalized eigenmode of the regular matrix A ∈ Rn×n
max if for all k ≥ 0,

A⊗ (k × η + v) = (k + 1)× η + v.

Assume that (η,v) constitute a generalized eigenmode for a regular

matrix A, and let x(0) = v in a recurrence relation. By Definition 4.3,

x(k) = k × η + v

= η⊗k ⊗ v

for all k ≥ 0. Thus, lim
k→∞

xj(k)

k
= ηj for all j ∈ {1, 2, . . . , n}, and

the cycle-time vector of A, which is uniquely determined, coincides

with the vector η in the generalized eigenmode. Therefore, just as the

eigenvalue and associated eigenspace of an irreducible tropical matrix is

unique, so too is the vector η in the generalized eigenmode of a regular

matrix (given that it exists). The vector v is not, however, uniquely

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 71

determined. In fact, given a generalized eigenmode (η,v) of A, the

pair (η, c⊗ v) also constitutes an eigenmode of A, where c ∈ R.

We verify the existence of a generalized eigenmode of any regular

matrix A ∈ Rmax, but first, we introduce a new matrix form.

Definition 4.4. Let A ∈ Rn×n
max be a regular matrix with corre-

sponding graph G(A), and let the collection {V1(G(A)), . . . , Vq(G(A))}

represent the partition formed on V (G(A)) by ∼C . Recall that ∼C
defines our strongly connected components. Define the matrix Arr, for

r ∈ {1, 2, . . . , q}, as follows:

[Arr]ij = aij

for all i, j ∈ Vr(G(A)). Note that Arr is either irreducible, or Arr =

[ε]. Furthermore, let entries in the matrix Asr, for 1 ≤ s < r ≤ q,

correspond to arcs from a node in Vr(G(A)) to a node in Vs(G(A)).

Recall that 0 stands for the additive identity in the space Rm×n
max ; that

is, [0]ij = ε for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Using these matrices, we

can rewrite A in its normal form as

A11 A12 · · · · · · A1q

0 A22 · · · · · · A2q

0 0 A33 · · · A3q

...
...

.
...

0 0 · · · 0 Aqq


.

A corresponding partition can be made on entries in the vector x(k)

from our recurrence relation. We will define new vectors xi(k) for

i ∈ {1, 2, . . . , q}, not to be confused with xi(k), by which we denote

the ith element in the vector x(k).

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 72

Definition 4.5. Let G be a digraph consisting of n vertices. Define

a binary relation on V (G) by ∼R, where for i, j ∈ {1, 2, . . . , n}, we have

j ∼R i if and only if there exists a path of any length in G from node

j to node i. Note that ∼R is not symmetric. Define the set of direct

predecessors of i by

π(i) = {j ∈ {1, . . . , n} : (j, i) ∈ E(G)}.

Let the set of predecessors of node i be

π+(i) = {j ∈ {1, . . . , n} : j ∼R i},

and let π∗(i) = π+(i) ∪ {i}.

Example 4.1 provides an illustration of Definitions 4.4 and 4.5.

Example 4.1. Consider the reducible graph G(A) shown below.

1 2

3 4

1

2

5

6

5

Figure 4.1

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 73

Its matrix

A =


ε 2 ε ε

1 ε ε ε

ε 5 6 ε

ε ε 5 ε


is already in normal form, but for the sake of exposition, we will devise

a new partition on V (G(A)). The strongly connected components of

G(A) will correspond to the following collection {V1(G(A)), V2(G(A)), V3(G(A))} =

{{4}, {3}, {1, 2}}. Hence,

A11 = [ε], A12 = [5], A13 =
[
ε ε

]
;

A22 = [6], A23 =
[
ε 5

]
; and

A33 =

 ε 2

1 ε

 .
Hence, the alternate normal form of A is

ε 5 ε ε

ε 6 ε 5

ε ε ε 2

ε ε 1 ε

 .

Consider the recurrence relation A⊗ x(k) = x(k + 1). Suppose we let

x(0) = (3, 2, ε, 4)ᵀ. It follows that

x1(0) = [4],

x2(0) = [ε], and

x3(0) =

 3

2

 .

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 74

Applying the mappings of Definition 4.5 to node 4 in G(A), we have

π(4) = {j ∈ {1, 2, 3, 4} : (j, 4) ∈ E(G(A))} = {3},

π+(4) = {j ∈ {1, 2, 3, 4} : j ∼R 4} = {1, 2, 3}, and

π∗(4) = π+(4) ∪ {4} = {1, 2, 3, 4}.

We can now give a theorem which implies the existence of the cycle-

time vector for regular tropical matrices.

Theorem 4.4. Let A ∈ Rn×n
max be a regular matrix. Consider the

recurrence relations given by

xi(k + 1) = Aii ⊗ xi(k)⊕
q⊕

j=i+1

Aij ⊗ xj(k) (4)

for i ∈ {1, 2, . . . , q}. Assume that Aqq is irreducible and that for

i ∈ {1, 2, . . . , q − 1} either Aii is irreducible or Aii = [ε]. Then there

exist finite vectors v1,v2, . . . ,vq ∈ Rn of suitable sizes and scalars

ξ1, ξ2, . . . , ξq ∈ R such that the sequences

xi(k) = vi ⊗ ξ⊗ki for i ∈ {1, . . . , q}

satisfy (4) for all k ≥ 0. The scalars ξ1, ξ2, . . . , ξq are determined by

ξi =
⊕
∈Hi

ξj ⊕ λi

where Hi = {j ∈ {1, . . . , q} : j > i, Aij 6= 0}.

We will not give a full proof of Theorem 4.4. To do so would involve

the use of expressions known as inhomogenous recurrence relations, a

topic beyond the scope of our work. Verifying the theorem requires a

proof by induction that works backwards from q to 1. We will illustrate

the base case l = q, as it is rather simple. Indeed, by the definition of

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 75

our recurrence relations in (4),

xq(k + 1) = Aqq ⊗ xq(k)⊕
q⊕
j=q

Aqj ⊗ xj(k)

= xq(k + 1)

= Aqq ⊗ xq(k).

Since we assumed Aqq to be irreducible, it has a unique eigenvalue λq.

If we let ξq = λq and vq be an eigenvector associated with λq, then

xq(k) = vq ⊗ ξ⊗kq

for all k ≥ 0. For a complete proof of Theorem 4.4, see Section 3.3.1

of [2].

The following is a corollary of Theorem 4.4 that demands the exis-

tence of the cycle-time vector for all regular max-plus matrices.

Corollary 4.5. Consider the recurrence relation given by

A⊗ x(k) = x(k + 1), (5)

where A ∈ Rn×n
max is regular. There exist finite vectors η,v ∈ Rn such

that

A⊗ x(k) = A⊗ (k × η + v) = (k + 1)× η + v

for all k ≥ 0.

Proof. Using the renumbering suggested in Definition 4.4, we can

express the recurrence relation given by (5) in terms of (4). We assume

A to be regular, so that the matrices along the diagonal of the normal

form of A satisfy Theorem 4.4. Consider the following rearrangement

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 76

of the sequences of Theorem 4.4:

xi(k) = vi ⊗ ξ⊗ki (6)

= vi ⊗ k × ξi

= k × u[ξi] + vi, (7)

where u[c] denotes the scalar multiple of the tropical unit vector given

by

u[c] = c⊗ u

= c⊗ (0, 0, . . . , 0)ᵀ.

Since, by Theorem 4.4, (6) holds for all k ≥ 0, so too does (7). Hence,

the vectors η′ = (u[ξ1],u[ξ2], . . . ,u[ξq)
ᵀ and v′ = (v1,v2, . . . ,vq)

ᵀ sat-

isfy the above corollary for A in its normal form. An appropriate re-

ordering (working backwards from the partitioning of V (G(A)) under

∼C) of η′ and v′ would yield vectors η,v ∈ Rn satisfying the corollary

for A. �

By Theorem 4.2 and Corollary 4.5, for any regular tropical matrix

A ∈ Rn×n
max , there exists a generalized eigenmode (η,v) ∈ Rn ×Rn with

unique cycle-time vector η. It follows from our proof of Corollary 4.5,

that the cycle-time vector of a reducible matrix A would depend upon

the eigenvalues of the strongly connected components of G(A), as (7)

holds for all k ≥ 0. However, as our definition of the scalar ξi in The-

orem 4.4 would indicate, expressing the eigenmode of a regular matrix

A is not as simple as finding the eigenvalues and eigenspaces of each

Aii matrix and rearranging them in η and v accordingly. Each en-

try ηi depends upon the interactions between the strongly connected

1. THE CYCLE-TIME VECTOR AND THE GENERALIZED EIGENMODE 77

component to which i belongs and G(A)’s other maximal strongly con-

nected subgraphs. The mapping π∗(i) gives us a systematic method

for tracking these interactions. The convergence of ξi, λi, and π∗(i) in

determining each ηi for the cycle time vector of A is revealed by the

next theorem.

Theorem 4.6. Consider the recurrence relation A⊗x(k) = x(k+1)

(k ≥ 0) defined by the regular matrix A ∈ Rn×n
max and arbitrary initial

condition x(0) ∈ Rn. Let V1(G(A)), V2(G(A)), . . . , Vq(G(A)) be the

equivalence classes on V (G(A)) under ∼C, and let

η = lim
k→∞

A⊗k ⊗ x(0)

k

be the cycle-time vector of A. If [j] denotes the equivalence class to

which node j ∈ V (G(A)) belongs, then for all j ∈ V (G(A))

ξ[j] =
⊕
i∈π∗(j)

λ[i], and

lim
k→∞

A⊗k ⊗ x(0)

k
=
⊕
i∈π∗(j)

λ[i].

Note that our use of the [j] notation in Theorem 4.6 implies that if

node i and node j belong to the same strongly connected component

of G(A), then ηi = ηj, where η is the cycle-time vector of A. The

following example implements Theorem 4.6 to calculate the cycle-time

vector of a reducible matrix.

Example 4.2. Let G(A) be the reducible graph pictured in Figure

3.8. We will use the same indexing of the strongly connected compo-

nents as in Example 4.1. Our graph is simple enough so that each λ[i]

2. HOWARD’S ALGORITHM 78

is easily calculated:

λ[1] = λ[2] =
3

2
;

λ[3] = 6;

λ[4] = ε.

By Corollary 4.5,

ξ[1] = λ[1] ⊕ λ[2] =
3

2
⊕ 3

2
=

3

2

ξ[2] = λ[1] ⊕ λ[2] =
3

2
⊕ 3

2
=

3

2

ξ[3] = λ[1] ⊕ λ[2] ⊕ λ[3] =
3

2
⊕ 3

2
⊕ 6 = 6

ξ[4] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] =
3

2
⊕ 3

2
⊕ 6⊕ ε = 6.

We conclude that the vector η = (3
2
, 3

2
, 6, 6)ᵀ is the cycle-time vector of

A.

Hence, we have a method for finding the cycle-time vector of a

regular matrix. In the next section, we will present an algorithm that

incorporates the ideas of Theorem 4.6 into a method for computing the

generalized eigenmode of a regular matrix.

2. Howard’s Algorithm

Published in 1960, a decade before the development of the max-

plus and min-plus algebras, Ronald A. Howard’s Policy Improvement

Algorithm has since been applied outside its original context of solving

Markov decision problems to the determination of generalized eigen-

mode for tropical matrices. Before detailing Howard’s method, we

define the term policy.

2. HOWARD’S ALGORITHM 79

Definition 4.6. Let A ∈ Rn×n
max be a regular matrix and G(A) be

its corresponding graph. A policy Π is a mapping Π : V (G(A)) →

E(G(A)) that assigns an arc Πi ∈ E(G(A)) to each node i ∈ V (G(A)),

where node i is the end of arc Πi. The policy matrix, denoted AΠ,

contains the arc weights corresponding to Π(1),Π(2), . . . ,Π(n) with all

other entries equal to ε.

Note that policies are constructed so that there is exactly one finite

entry in each row of AΠ. Therefore, each node in G(AΠ) has exactly one

direct predecessor; we denote the direct predecessor of j in G(AΠ) with

πΠ(j). Howard’s Algorithm requires its inputs to be regular because

were A to contain a row with only infinite entries, we would not be

able to construct a policy for A.

Howard’s Algorithm. Let A ∈ Rn×n
max be a regular matrix with

the corresponding graph G(A), and let v = (0, 0, . . . , 0)ᵀ. We compute

the generalized eigenmode of A with the following algorithm:

(1) From G(A), construct a Π.

(2) Find a circuit γ in G(AΠ).

(3) Compute the average weight of γ and denote it by η̄γ.

(4) Choose a node in γ, say node j, and fix ηj := η̄γ; let vj keep

the value it had previously.

(5) Visit all nodes in G(AΠ) that are reachable from j. If node i

is visited in the process, set ηi := η̄γ, and compute vi from the

expression

vi = aiπΠ(i) − η̄γ + vπΠ(i).

(6) If there remain nodes that cannot be reached by j through arcs

in G(AΠ), repeat steps (2) through (5) with these nodes and

2. HOWARD’S ALGORITHM 80

their associated arcs in G(AΠ) until values of η and v are

determined.

(7) Determine the set I1 =

{
i ∈ V (G(A)) : ηi < max

(j,i)∈E(G(A))
ηj

}
.

• If I1 = ∅, compute E(Ā) = {(j, i) ∈ E(G(A)) : ηj = ηi},

and continue with step (8).

• If I1 6= ∅, determine for all i ∈ I1 the sets

E(G(A))1
i =

{
(k, i) ∈ E(G(A)) : ηk = max

(j,i)∈E(G(A))
ηj

}
,

and return to step (2), defining your new policy as

Π′i :=

(k, i) for some (k, i) ∈ E(G(A))1
i if i ∈ I1,

Πi if i /∈ I1.

(8) Determine the set I2 =

{
i ∈ V (G(A)) : vi < max

(j,i)∈E(G(Ā))
(aij + vj − ηj)

}
.

• If I2 = ∅, then the algorithm is complete, and our current

values of η and v constitute the generalized eigenmode of

A.

• If I2 6= ∅, then determine for all i ∈ I2 the sets

E(G(A))2
i =

{
(k, i) ∈ E(G(A)) : aik + vk − ηk = max

(j,i)∈E(G(Ā))
(aij + vj − ηj)

}
,

and return to step (2), defining your new policy as

Π′i :=

(k, i) for some (k, i) ∈ E(G(A))2
i if i ∈ I2,

Πi if i /∈ I2.

The method of policy improvement is much more complex than

anything we have encountered up until this point, but the following

simple example should be illuminating.

2. HOWARD’S ALGORITHM 81

Example 4.3. The regular matrix A ∈ R3×3
max is given by

A =


3 ε ε

1 ε 6

ε 2 ε

 .

1

2 3

3

1

2

6

Figure 4.2

We can see from the graph in Figure 4.1 that G(A) is reducible; node

1 cannot be reached from either node 2 or node 3. We define our first

policy Π(1) : V (G(A)) → E(G(A)) by Π1(1) = (1, 1), Π2(1) = (3, 2),

and Π3(1) = (2, 3). Thus,

AΠ(1) =


3 ε ε

ε ε 6

ε 2 ε

 .
Next, we fix γ := (1, 1), so that η̄γ := 3, and, thus, η

Π(1)
1 = 3. Further-

more, since this is our first iteration of the algorithm, v
Π(1)
1 = 0. Since

we eliminated a21 = 1 from A in defining our policy matrix, nodes

2 and 3 cannot be reached, so we reset γ := (2, 3) ◦ (3, 2). Hence,

η̄γ := η
Π(1)
2 = 4, and v

Π(1)
2 = 0. Node 3 is reached within our new γ,

2. HOWARD’S ALGORITHM 82

allowing us to set η
Π(1)
3 = 4 and to compute

v
Π(1)
3 = a32 − η̄γ + v2

= 2− 4 + 0

= −2.

We proceed to step (7) with ηΠ(1) = (3, 4, 4)ᵀ and vΠ(1) = (0, 0,−2)ᵀ.

Here, we are looking for a node i in V (G(A) such that the correspond-

ing value η
Π(1)
i is less than some entry in ηΠ(1) that corresponds to a

direct predecessor of i. We have η
Π(1)
1 < η

Π(1)
2 , η

Π(1)
3 , but neither node

2 nor node 3 is a direct predecessor of node 1. Hence, I1 = ∅, and

because η
Π(1)
2 = η

Π(1)
3 ,

E(G(Ā)) = {(2, 3), (3, 2)} .

The set I2 cannot contain node 1, as it is not traversed by an arc in

E(G(Ā)). Consider the following calculations:

a23 + v
Π(1)
2 − ηΠ(1)

3 = 6 + (−2)− 4 = 0

a32 + v
Π(1)
3 − ηΠ(1)

2 = 2 + 0− 4 = −2.

From the above expressions, it is easily seen that neither node 2 nor

node 3 belong in I2. Therefore, the algorithm is complete, and we have

found the generalized eigenmode of A to be

(η,v) = ((3, 4, 4)ᵀ, (0, 0,−2)ᵀ).

3. EXTENDING KARP’S ALGORITHM 83

We verify this with the following computation:
3 ε ε

1 ε 6

ε 2 ε

⊗


0

0

−2

 =


3

4

2



=


3

4

4

+


0

0

−2

 ,
so in fact, A⊗ (0× η + v) = 1× η + v.

3. Extending Karp’s Algorithm

We continue to explore the computation of the generalized eigen-

mode of reducible matrices through the analytical lens established in

[2]. Hence, our work will be in the max-plus algebra. However, the

purpose of this section is to extend the work of Heidergott, Olsder, and

van der Woude rather than provide mere exposition. More specifically,

we hope to shed some light on how and why Karp’s Algorithm is in-

consistent when finding the maximal average circuit weight of reducible

systems. Ultimately, we will show that Karp’s Algorithm does, in fact,

reveal information about reducible matrices and can be extended to

compute the generalized eigenmode, η.

Is there any connection between our choice of j in performing Karp’s

Algorithm on a regular, reducible matrix A and the corresponding en-

try in the cycle-time vector of A? Put another way, when does λ = ηj,

where λ is our algorithm output? If so, what are the conditions on

G(A) and A that must be satisfied? The following analysis elaborates

upon Examples 5.1.2 and 5.1.3 from Max Plus at Work, and in doing

so, attempts to answer these questions.

3. EXTENDING KARP’S ALGORITHM 84

The following three examples contain distinct graphs with impor-

tant similarities. First, note that the strongly connected components of

all three networks are identical. For reference, we may let V1(G) = {1}

and V2(G) = {2, 3, 4} represent the partition of vertices under ∼C for

each graph. Second, consider the arc weight of (1, 1), given as c ∈ R,

in each example to be a tool of experimentation. We will demonstrate

how fluctuations in the value of c alter the cycle-time vector and the

output of Karp’s Algorithm. In the first two examples, we consider the

cases when |(1, 1)|W = 1 , and |(1, 1)|W = 6. However, it is important

to note that the overarching consequences of the former case hold for

all c < 11
2

, and those of the latter for all c > 11
2

.

Example 4.4. Let A ∈ R4×4
max be defined as

A =


c 2 ε 7

ε 3 5 ε

ε 4 ε 3

ε 2 8 ε

 ,

We represent G(A) and its strongly connected components in Figure

4.1 below.

1

2 3

4

c

2

3

4

2

5

8

7

3

G(A)

3. EXTENDING KARP’S ALGORITHM 85

1

c

G1(A)

2 3

4

3

4

2

5

83

G2(A)

Figure 4.3

First, consider the case where c = 1. We will calculate the cycle-time

vector of A. Note that the equivalence classes of V (G(A)) under ∼C
are V1(G(A)) = {1} and V2(G(A)) = {2, 3, 4}. Obviously, λ[1] = 1, as

G1(A) is a one node graph with a loop of weight 1. Considering the

three elementary circuits in G2(A), we find that the maximal average

circuit weight is λ[2] = λ[3] = λ[4] = 11
2

. By Theorem 4.6, we have

ξ[1] =
⊕
i∈π∗(1)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 1⊕ 11

2
=

11

2

ξ[2] =
⊕
i∈π∗(2)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2

ξ[3] =
⊕
i∈π∗(3)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2

ξ[4] =
⊕
i∈π∗(4)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
,

and, thus, η = (11
2
, 11

2
, 11

2
, 11

2
)ᵀ, which means that our system has an

eigenvalue λ = 11
2

. When performing Karp’s Algorithm, whether or not

3. EXTENDING KARP’S ALGORITHM 86

we find the correct value for λ would depend on our choice of j. Note

that the graph’s critical circuit can be expressed as γ = (3, 4) ◦ (4, 3),

and the success of Karp’s Algorithm is contingent upon node j’s ability

to reach a node in the critcal circuit. Node 1 does not have access, so

to speak, to this circuit, as there is no path from node 1 to node 3 or

node 4. Thus, if we choose j = 1 and run Karp’s Algorithm, we find

that x(k) = (k, ε, ε, ε)ᵀ for 0 ≤ k ≤ 4. Note that as a convention, we

have ε− ε = 0 (in both the max-plus and min-plus structures). Hence,

step (3) of the algorithm yields

min

{
4− 0

4− 0
,
4− 1

4− 1
,
4− 2

4− 2
,
4− 3

4− 3

}
= min {1, 1, 1, 1} = 1; i = 1

min

{
ε− ε
4− 0

,
ε− ε
4− 1

,
ε− ε
4− 2

,
ε− ε
4− 3

}
= min {0, 0, 0, 0} = 0, i = 2, 3, 4

and λ = max{0, 1} = 1, a result equal to neither the graph’s maximal

mean circuit weight, nor an eigenvalue of A. Since nodes 2, 3, and 4

exist within the strongly connected component containing the critical

circuit, running Karp with j = 2, 3, or 4 would yield a correct result:

λ = 11
2

.

Consider the case when c = 6. Now, we have a circuit (1, 1) such

that |(1, 1)|W = 6 > 11
2

. With a change in the maximal average circuit

weight of G(A), so too changes the effectiveness of Karp’s Algorithm.

Before running Karp, we calculate the cycle-time vector of A:

ξ[1] =
⊕
i∈π∗(1)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 6⊕ 11

2
= 6;

ξ[2] =
⊕
i∈π∗(2)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
;

3. EXTENDING KARP’S ALGORITHM 87

ξ[3] =
⊕
i∈π∗(3)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
;

ξ[4] =
⊕
i∈π∗(4)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
.

Hence, the cycle-time vector of our new matrix is η = (6, 11
2
, 11

2
, 11

2
)ᵀ.

When we let c = 1, the weight of the circuit (1, 1) was absent from

our cycle-time vector because nodes 2, 3, and 4, all belonging to a

strongly connected component with maximal circuit mean greater than

|(1, 1)|W = 1, preceded node 1. For the case of c = 6, we still have

ξ1 = λ[1]⊕λ[2]⊕λ[3]⊕λ[4], but this time λ[1] = 6 attains the maximum.

Thus, we see from the contrast of results from when c = 1 to c = 6

that the values of our cycle-time vector depend upon communication

between the strongly connected components of our graph. This will be

something to consider when extending Karp’s Algorithm to compute

cycle-time vectors.

Karp’s Algorithm now “works” for all j because node 1, the vertex

over which the critical circuit traverses, can be reached from all other

nodes in G(A). We show the steps of Karp’s Algorithm for j = 1,

the case for which algorithm failed to correctly calculate the maximal

average circuit weight of G(A) when a11 = c = 1. This time we may

express our catalogue of maximum path weights as x(k) = (6k, ε, ε, ε)

for 0 ≤ k ≤ 4. Hence, step (3) appears as

min

{
24− 0

4− 0
,
24− 6

4− 1
,
24− 12

4− 2
,
24− 18

4− 3

}
= min {6, 6, 6, 6} = 6 i = 1

min

{
ε− ε
4− 0

,
ε− ε
4− 1

,
ε− ε
4− 2

,
ε− ε
4− 3

}
= min {0, 0, 0, 0} = 0, i = 2, 3, 4

3. EXTENDING KARP’S ALGORITHM 88

so that λ = max{6, 0} = 6. However, when we say Karp’s Algorithm

“works,” we mean that it successfully computes the maximal aver-

age circuit weight of G(A). From a linear algebraic standpoint, this

value tells us very little about the behavior of the recurrence relation

A⊗ x(k) = x(k+ 1) as k approaches infinity. In this sense, Karp’s Al-

gorithm fails, as it cannot reveal to us the fact that η = (6, 11
2
, 11

2
, 11

2
)ᵀ.

Example 4.5. Consider the max-plus matrix whose graph is de-

picted in Figure 4.3:

A =


c ε ε ε

3 3 5 ε

ε 4 ε 3

ε 2 8 ε

 .

1

2 3

4

c

3

3

4

2

5

83

Figure 4.4

Note that the strongly connected components of G(A) are the same

as those of the graph in Example 4.4. This graph differs from that of

Figure 4.2 because our strongly connected component V1(G(A)) now

precedes nodes in V2(G(A)), rather than vice versa. We consider how

this adjustment alters the cycle-time vector of A.

Let c = 1. It follows that λ[1] = 1, and λ[2] = λ[3] = λ[4] = 11
2

. Then

3. EXTENDING KARP’S ALGORITHM 89

by Theorem 4.6,

ξ[1] =
⊕
i∈π∗(1)

λ[i] = λ[1] = 1,

ξ[2] =
⊕
i∈π∗(2)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 1⊕ 11

2
=

11

2
,

ξ[3] =
⊕
i∈π∗(3)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 1⊕ 11

2
=

11

2
, and

ξ[4] =
⊕
i∈π∗(4)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 1⊕ 11

2
=

11

2
.

Thus, η = (1, 11
2
, 11

2
, 11

2
)ᵀ. Although λ[i] > λ[1] for i = 2, 3, 4, the second

equivalence class of vertices under ∼C , seen as a strongly connected

component of G(A), has no influence over node one. In other words,

nodes 2, 3, and 4 are not predecessors of node 1, so the value of the

critical circuit in G2(A) does not affect the value of η1. However, now

all nodes are predecessors of the critical circuit (3, 4) ◦ (4, 3), so Karp’s

Algorithm returns λ = 11
2

for all possible choices of j. To answer our

motivating question, Karp’s Algorithm has, once again, failed to satisfy

λ = ηj for j = 1, 2, 3, 4.

We shall now consider the case when c = 6. Consequently, λ[1] = 6,

and λ[2] = λ[3] = λ[4] = 11
2

, and

ξ[1] =
⊕
i∈π∗(1)

λ[i] = λ[1] = 6,

ξ[2] =
⊕
i∈π∗(2)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 6⊕ 11

2
= 6,

ξ[3] =
⊕
i∈π∗(3)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 6⊕ 11

2
= 6, and

ξ[4] =
⊕
i∈π∗(4)

λ[i] = λ[1] ⊕ λ[2] ⊕ λ[3] ⊕ λ[4] = 6⊕ 11

2
= 6.

3. EXTENDING KARP’S ALGORITHM 90

The matrix now has a max-plus eigenvalue of λ = 6. However, since

node 1 cannot be reached by any vertex other than itself, j = 1 is

the only case where Karp’s Algorithm correctly computes the value of

ηj. For j = 2, 3, and 4, the output is 11
2

, as the circuit (3, 4) ◦ (4, 3) is

the critical circuit in G2(A), and there is no path from this component

into G1(A). Once again, Karp’s Algorithm has failed to fully reveal the

cycle-time vector due to the nature of communication between strongly

connected components.

Example 4.6. In our final example, we let the condensed graph

of G(A) be empty. That is, G(A) consists of only strongly connected

components with no communication between them. The graph of

A =


c ε ε ε

ε 3 5 ε

ε 4 ε 3

ε 2 8 ε


is pictured in the figure below.

1

2 3

4

c

3

4

2

5

83

Figure 4.4

3. EXTENDING KARP’S ALGORITHM 91

Note that, for this example, c will be treated as an arbitrary, finite

value. Silencing communication between the strongly connected com-

ponents of our graph has ensured that for each node in G(A), the corre-

sponding entry in the cycle-time vector of A will be the average weight

of the critical circuit in its respective strongly connected component.

Indeed,

ξ[1] =
⊕
i∈π∗(1)

λ[i] = λ[1] = c,

ξ[2] =
⊕
i∈π∗(2)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
,

ξ[3] =
⊕
i∈π∗(3)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
, and

ξ[4] =
⊕
i∈π∗(4)

λ[i] = λ[2] ⊕ λ[3] ⊕ λ[4] =
11

2
.

For all c ∈ R, the cycle-time vector of A attains the value (c, 11
2
, 11

2
, 11

2
)ᵀ.

Moreover, if we run Karp’s Algorithm with j = 1, we find that, as

was the case in Example 4.4, node 1 cannot reach any other, so the

only circuit the algorithm can track is the loop of length 1 and weight

c. Hence, λ = c = η1. Fixing j to 2, 3, or 4 and executing the

algorithm will yield λ = 11
2

= ηj. This is because, with node j as

our basis of operations, Karp’s Algorithm will never even consider the

circuit (1, 1) as a candidate for the critical circuit. Thus, the only

circuits that remain relevant are those traversing nodes of V2(G(A)),

and the algorithm will find the maximum average circuit weight of this

subgraph to be 11
2

. We, therefore, conclude that it is the absence of

a condensed graph of G(A) that allows Karp’s Algorithm to find the

correct values of ηj for j = 1, 2, 3, 4.

3. EXTENDING KARP’S ALGORITHM 92

That Karp’s Algorithm requires a graph to have no condensed affil-

iate in order to properly compute the individual entries of η indicates

that, in it’s original form, it is an impractical method for computing

the cycle-time vector of a regular max-plus matrix. However, we can

use this notion of limited workability to extend the algorithm.

An Extension of Karp’s Algorithm. Consider the regular

matrix A ∈ Rn×n
max and its corresponding graph G(A) = {V (G(A)), E(G(A)), IG, KG}.

Let η represent the cycle-time vector of A. The following steps compute

the vector η.

(1) Establish a partition on V (G(A)) under ∼C, so that its equiv-

alence classes are V1(G(A), V2(G(A)), . . . , Vq(G(A)). If for all

`, p ∈ V (G(A)), ` ∼c p, proceed with Karp’s Algorithm to pro-

duce ηj = λ for all j ∈ {1, 2, . . . , n}. Otherwise, proceed to

step (2).

(2) Using Karp’s Algorithm, compute λ[i], the maximal average

circuit weight of Gi(A), for i ∈ {1, 2, . . . , q}.

(3) Compute ηj =
⊕
i∈π∗(j)

λ[i] for j ∈ {1, 2, . . . , n}, so that η =

(η1, η2, . . . , ηn)ᵀ.

The construction of this proposed algorithm, using a formal lan-

guage such as Python, remains an open problem. To create such an

algorithm, we would employ Tarjan’s depth-first search technique for

identifying strongly connected components. Depth-first search tech-

niques could also be employed to find the predecessors of a given node

outside its equivalence class under ∼C (this is, in essence, the problem

of constructing a condensed graph) [9].

4. CONCLUSIONS 93

4. Conclusions

Throughout our work, we hope to have shown that tropical linear

algebra and graph theory are utterly insoluble. We first saw this fact in

Chapter 1, where analyzing the paths of a weighted digraph motivated

the computation of min-plus matrix powers. It became even more ap-

parent in Chapter 2, where without the graph-theoretic infrastructure

embedded in tropical matrices, we could not have proven the existence

and uniqueness of eigenvalues for irreducible matrices (The Tropical

Eigenvalue Theorem).

With the inextricability of graph theory and linear algebra being

our analytical impetus, Karp’s Algorithm became a natural object of

study. The computations for carrying out Karp on a tropical matrix

(or a digraph depending upon your perspective) are linear algebraic in

nature. However, as we saw in Chapter 3, to understand fully what it

is these computations are working towards, seeking out a node in the

graph that is contained in a critical circuit, we require a graph theoretic

approach.

Indeed, through our graph theoretic analysis of Karp’s Algorithm

we were able to find its shortcomings when computing entries of the

cycle-time vector for regular, reducible max-plus matrices. As was

revealed in Theorem 4.6, the values of entries in the vector η hinge

upon communication between the strongly connected components of

the matrix’s corresponding digraph. Howard’s method of policy cor-

rection, with its construction of the sets I1 and I2, cleverly takes this

fact into account when calculating the generalized eigenmode. With

regard to Karp, if the basis of operations established by our choice of j

does not reach a graph’s critical circuit, or can only reach a critical cir-

cuit whose constituent nodes are not predecessors of another strongly

4. CONCLUSIONS 94

connected component, the output of the algorithm is relatively use-

less. However, we saw that in the special case of a reducible matrix

whose corresponding condensed graph was empty that, given a starting

position j, Karp’s Algorithm yielded λ = ηj, the jth entry in the cycle-

time vector. We can take advantage of this fact to construct a method

that uses Karp’s Algorithm to compute the maximal average circuit

weight of the strongly connected components of a graph. Then, having

established these components with a depth-first search, we track the

interactions between components in the condensed graph, and use this

information to compute the various entries of η. The translation of this

algorithm into a formal language remains an open problem. Another

matter worth investigating is the viability of describing periodicity of

min-plus matrices with the cycle-time vector.

Appendix A: Sage Min-plus and Max-plus

Package Descriptions

The following packages were constructed for experimental purposes.

In order to carry out our analyses of Karp’s Algorithm and the Power

Algorithm, these methods had to be run and rerun, so as to see how

adjustments to the properties of input matrices would alter outputs.

Some of these functions contain commands that, despite making overall

performance less efficient, we found experimentally beneficial. Details

about such instances can be found in the descriptions of individual

functions below.

We chose to develop our code in Sage, an open-source platform, due

to the current absence of tropical linear algebra tools. Currently, Sage

does include max-plus and min-plus semirings [10], but its source code

does not permit elements of a semiring (rings only) to be matrix entries.

We had originally hoped to alter the source code so that linear algebra

could be performed in the spaces Rn×n
max and Rn×n

min , but the development

of this project’s more theoretical aspects posed too many temporal

constraints. Constructing tropical linear algebra in Sage is a project

we plan to carry out in the coming semester.

To circumvent Sage’s lack of tropical infrastructure, we chose to

treat Python lists within lists as matrix objects. For example, the

95

MIN-PLUS PACKAGE 96

matrix

A =

 a b

c d


would appear in our functions as [[a, b], [c, d]]. Vectors are simply lists,

so we would represent the vector x = (x1, x2)ᵀ by [x1, x2]. The Python

string ‘id’ serves as our additive identity in both packages. This lack of

infrastructure lead to some inefficiencies, and since these functions are

cumulative (for example, our function for computing tropical dot prod-

ucts is incorporated into our matrix multiplication function), inefficien-

cies propagate throughout the package. Certainly, the development of

a Sage matrix package that permits semiring entries would remedy such

inefficiencies. Another improvement that could be made is the incorpo-

ration of the min-plus and max-plus packages into one tropical package,

perhaps through optional function parameters. What follows is a cat-

alogue of our functions, including their descriptions , specifications of

the parameters inputted, and examples of their execution.

Min-Plus Package

minplus_addition(a, *b)

Description: Returns the min-plus sum of any finite number of elements in

Rmin. This function is part of the foundation of our package. The parameter

*b is stored as a tuple which we then convert to a list so that we have a

mutable Python object. The function goes through a series of conditionals

to determine which parameters, if any, are our additive identity. If a ==

‘id’, then it is ignored. If *b contains the additive identity, then the list.pop()

method is used to eliminate all such occurrences. Eventually, we consider only

MIN-PLUS PACKAGE 97

finite entries, over which we use Python’s built-in min() function. Of course,

if all entries are infinite, then the function returns ‘id’.

Parameters:

a - A semiring element

*b - Any number of semiring elements

Example:

minplus_addition (17, ’id’)

17

minplus_addition (17, ’id’, 4, ’id’)

4

tropical_multiplication(a, *b)

Description: The multiplication function forms the other half of our pack-

age’s foundation. As with addition, this function receives any finite number

of Rmin elements. Conditionals search for the additive identity, and if it is at

all present, our output is ’id’. Otherwise, Python’s built-in sum() function

“multiplies” finite entries.

Parameters:

a - A semiring element

*b - Any number of semiring elements

Example:

tropical_multiplication (7,’id’ ,2)

’id’

tropical_multiplication (7,2)

MIN-PLUS PACKAGE 98

9

minplus_list_addition(A, B)

Description: Returns the min-plus sum of two matrices. The function

begins with two conditionals that make sure our matrix inputs are of equal

dimension. Using Python’s len() function, we test the length of the outer

list to make sure each matrix has the same number of rows. Then, we verify

that the length of the first list entries within the outer lists match in length.

In this regard, the function is limited in that it only makes certain that the

dimensions of the first columns of each matrix match. Using nested for loops,

the function iterates over each matrix row, constructing an empty list for

each row of input A. The next for loop iterates over each element within the

matrix rows and appends the min-plus sum of corresponding elements to the

aforementioned empty list. These altered lists then become the rows of the

output matrix.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

B - A matrix with semiring elements inputted as a list of lists

Example:

minplus_list_addition ([[23, ’id’, 4], [-4, 5, -6], [2, 3, -1]],

[[6, 7, 3], [1, 10, ’id’], [1, 8, 6]])

[[6, 7, 3], [-4, 5, -6], [1, 3, -1]]

minplus_dot_product(x, y)

Description: This function returns the min-plus dot product of two vectors.

First, a conditional checks to makes sure the vectors are of equal dimension.

Next, a for loop iterates over a list of integers equal in length to the input

MIN-PLUS PACKAGE 99

vectors to perform min-plus multiplication on corresponding elements. After

each min-plus product is appended to a list called “dot product”, a for loop

takes the min-plus sum of the “dot product” list.

Parameters:

x - A vector with semiring elements

y - A vector with semiring elements

Example:

minplus_dot_product ([13, 8, 4], [14, 16, ’id’])

24

list_transpose(A)

Description: This function plays a crucial role in our matrix multiplication

functions. A for loop establishes empty lists that will be the new rows of Aᵀ.

A second for loop appends the element A[i][j] to the position A[j][i] in our new

lists of lists.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

Example:

list_transpose ([[1, 2, 3], [’id’, 3, 5]])

[[1, ’id’], [2, 3], [3, 5]]

minplus_list_multiplication(A, B)

Description: Returns the min-plus product of two matrices. A conditional

is given to make sure that the number of columns in the first entry equals

the number of rows in the second entry. A second conditional performs mul-

tiplication for the special case where B is a matrix with one column. Refining

our package would include altering this function so that it could accept vector

MIN-PLUS PACKAGE 100

entries, rather than treating one-column matrices and vectors as different ob-

jects. In both cases, where len(B) == 1 and len(B)>1, the function proceeds

to take the min-plus dot product of the rows of A with the column(s) of B

and appends these products to lists that are then appended to yet another

list. Note that for the third conditional, when B has more than one column,

the transpose of B is taken. The resulting object is a list of lists with entries

in Rmin.

Parameters:

A - A matrix with semiring elements inputted as a list of lists.

B - A matrix with semiring elements inputted as a list of lists

Example:

minplus_list_multiplication ([[1, ’id’, 4], [’id’, 2, 1]],

[[4, 7], [2, ’id’], [8, ’id’]])

[[5, 8], [4, ’id’]]

A_to_the_k(A, k)

Description: Returns the matrix A raised to the power of k. The function

begins with a conditional that makes sure the matrix is square. Then, we

assign i to the integer 1 and assign A i to the input value A. Within a while

loop, the function performs min-plus matrix multiplication on A and A i, and

then assigns i to i+1. The loop repeats until it runs with i:=k.

Parameters:

A - A square matrix with semiring elements inputted as a list of

lists

k - A positive integer

Example:

A_to_the_k ([[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]], 4)

MIN-PLUS PACKAGE 101

[[8, 7, 7, 8], [11, 10, 10, 11], [11, 8, 10, 9], [10, 7, 9, 8]]

A_list_power_list(A, k):

Description: This function is designed solely for experimentation. It does

not actually return any value, but rather prints a list of positive integer powers

of a min-plus matrix A. This can be especially useful in studying the Power

Algorithm. First, the matrix A is printed. Then, the variable i is assigned

to the integer 2; a while loop prints powers of A and assigns i to the next

greatest integer value until i:=k.

Parameters:

A - a square matrix with semiring elements inputted as a list of

lists.

k - a positive integer.

Example:

A_list_power_list ([[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]], 8)

1: [[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]]

2: [[4, 3, 3, 6], [7, 6, 6, 8], [9, 4, 6, 5], [10, 3, 5, 4]]

3: [[7, 4, 6, 5], [10, 7, 9, 8], [8, 7, 7, 10], [7, 6, 6, 9]]

4: [[8, 7, 7, 8], [11, 10, 10, 11], [11, 8, 10, 9], [10, 7, 9, 8]]

5: [[11, 8, 10, 9], [14, 11, 13, 12], [12, 11, 11, 12], [11, 10, 10, 11]]

6: [[12, 11, 11, 12], [15, 14, 14, 15], [15, 12, 14, 13], [14, 11, 13, 12]]

7: [[15, 12, 14, 13], [18, 15, 17, 16], [16, 15, 15, 16], [15, 14, 14, 15]]

8: [[16, 15, 15, 16], [19, 18, 18, 19], [19, 16, 18, 17], [18, 15, 17, 16]]

A_plus(A)

Description: Returns the A+ matrix described in Section 4, Chapter 1. It

includes a conditional to make the the input is a square matrix. Then the

function appends k iterations of the A to the k() function to a list. Using a

while loop, the function then performs min-plus matrix addition over the list

of matrix powers.

MIN-PLUS PACKAGE 102

Parameters:

A - A square matrix with semiring elements inputted as a list of

lists.

Example:

A_plus ([[4, 3, 1], [2, 4, 0], [1, ’id’, 3]])

[[2, 3, 1], [1, 4, 0], [1, 4, 2]]

Karps_Algorithm(A, j)

Description: Returns the max-plus eigenvalue of an irreducible matrix. A

need not be irreducible for the algorithm to run. In fact, we designed the

function with this in mind, knowing that the crux of our analysis would be

seeing where, how, and why spectral methods of irreducible systems break

down in the reducible case. Moreover, what is perhaps unique about this

version of the function is that it gives a print-out of the various steps of the

algorithm. This feature was included to aide the aforementioned analysis.

The first loop constructs the appropriate canonical vector, given the user’s

choice of j. Another for loop proceeds to build a list of the x(k) vectors using

min-plus matrix multiplication. A list of these vectors is printed out, for the

user’s convenience. Then, step (3) of Karp’s Algorithm is performed, with the

various difference quotients being printed along the way. Special consideration

had to be given to ‘id’ here, as our tropical multiplication() function does not

take into account the fact that ε− ε = 0. The maximum is taken among the

difference quotients, and the minimum of these maximums is returned as the

function’s output.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

j - An integer representing the starting node for the algorithm

Example:

MIN-PLUS PACKAGE 103

Karps_Algorithm ([[4, 3, 4], [2, 4, 3], [1, 3, 3]], 3)

[[[’id’], [’id’], [0]], [[4], [3], [3]], [[6], [6], [5]], [[9], [8], [7]]]

(9 - id) / 3

(9 - 4) / 2

(9 - 6) / 1

(8 - id) / 3

(8 - 3) / 2

(8 - 6) / 1

(7 - 0) / 3

(7 - 3) / 2

(7 - 5) / 1

7/3

Eigenspace(A, lmda)

Description: Returns a min-plus eigenvector of the matrix A associated

with the eigenvalue lmda. Note that we use lmda because lambda is recognized

by Python as an expression form. The process employed by this function is,

essentially, the algorithm given in Section 1, Chapter 5 of [3] for computing

the tropical eigenspace of a given eigenvector. First, a for loop computes the

Aλ matrix by performing min-plus multiplication with each element of A and

-lmda. We then use our A plus() function to calculate A+
λ , and a for loop looks

for columns in the transpose of A+
λ , for which the diagonal entry is 0. These

columns form the eigenspace associated with lmbda, and they are printed out

before the function returns a single eigenvector as output.

MAX-PLUS PACKAGE 104

Parameters:

A - A matrix with semiring elements inputted as a list of lists

lmda - An eigenvalue of A

Example:

Eigenspace ([[4, 3, 4], [2, 4, 3], [1, 3, 3]], 7/3)

[[[0], [2/3], [4/3]] , [[-2/3], [0], [2/3]] , [[-4/3], [-2/3], [0]]]

[[0], [2/3], [4/3]]

Max-Plus Package

maxplus_addition(a, *b)

Description: This function is part of the foundation of our package. It

computes the max-plus sum of any finite number of elements in Rmax. The

parameter *b is stored as a tuple which we then convert to a list so that

we have a mutable Python object. The function goes through a series of

conditionals to determine which parameters, if any, are our additive identity.

If a == ‘id’, then it is ignored. If *b contains the additive identity, then

the list.pop() method is used to eliminate all such occurrences. Eventually,

we consider only finite entries, over which we use Python’s built-in max()

function. Of course, if all entries are infinite, then the function returns ‘id’.

Parameters:

a - A semiring element

*b - Any number of semiring elements

Example:

maxplus_addition (17, ’id’)

17

MAX-PLUS PACKAGE 105

maxplus_addition (17, ’id’, 4, ’id’)

17

tropical_multiplication(a, *b)

Description: The multiplication function forms the other half of our pack-

age’s foundation. As with addition, this function receives any finite number

of Rmin elements. Conditionals search for the additive identity, and if it is at

all present, our output is ’id’. Otherwise, Python’s built-in sum() function

“multiplies” finite entries.

Parameters:

a - A semiring element

*b - Any number of semiring elements

Example:

tropical_multiplication (7,’id’ ,2)

’id’

tropical_multiplication (7,2)

9

maxplus_list_addition(A, B)

Description: Returns the max-plus sum of two matrices. The function

begins with two conditionals that make sure our matrix inputs are of equal

dimension. Using Python’s len() function, we test the length of the outer

list to make sure each matrix has the same number of rows. Then, we verify

that the length of the first list entries within the outer lists match in length.

In this regard, the function is limited in that it only makes certain that the

MAX-PLUS PACKAGE 106

dimensions of the first columns of each matrix match. Using nested for loops,

the function iterates over each matrix row, constructing an empty list for

each row of input A. The next for loop iterates over each element within the

matrix rows and appends the max-plus sum of corresponding elements to the

aforementioned empty list. These altered lists then become the rows of the

output matrix.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

B - A matrix with semiring elements inputted as a list of lists

Example:

maxplus_list_addition ([[23, ’id’, 4], [-4, 5, -6], [2, 3, -1]],

[[6, 7, 3], [1, 10, ’id’], [1, 8, 6]])

[[23, 7, 4], [1, 10, -6], [2, 8, 6]]

maxplus_dot_product(x, y)

Description: This function returns the min-plus dot product of two vectors.

First, a conditional checks to makes sure the vectors are of equal dimension.

Next, a for loop iterates over a list of integers equal in length to the input

vectors to perform max-plus multiplication on corresponding elements. After

each max-plus product is appended to a list called “dot product”, a for loop

takes the max-plus sum of the “dot product” list.

Parameters:

x - A vector with semiring elements

y - A vector with semiring elements

Example:

maxplus_dot_product ([13, 8, 4], [14, 16, ’id’])

MAX-PLUS PACKAGE 107

27

list_transpose(A)

Description: This function plays a crucial role in our matrix multiplication

functions. A for loop establishes empty lists that will be the new rows of Aᵀ.

A second for loop appends the element A[i][j] to the position A[j][i] in our new

lists of lists.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

Example:

list_transpose ([[1, 2, 3], [’id’, 3, 5]])

[[1, ’id’], [2, 3], [3, 5]]

maxplus_list_multiplication(A, B)

Description: Returns the max-plus product of two matrices. A conditional

is given to make sure that the number of columns in the first entry equals the

number of rows in the second entry. A second conditional performs multipli-

cation for the special case where B is a matrix with one column. Refining

our package would include altering this function so that it could accept vector

entries, rather than treating one-column matrices and vectors as different ob-

jects. In both cases, where len(B) == 1 and len(B)>1, the function proceeds

to take the max-plus dot product of the rows of A with the column(s) of B

and appends these products to lists that are then appended to yet another

list. Note that for the third conditional, when B has more than one column,

the transpose of B is taken. The resulting object is a list of lists with entries

in Rmax.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

MAX-PLUS PACKAGE 108

B - A matrix with semiring elements inputted as a list of lists

Example:

maxplus_list_multiplication ([[1, ’id’, 4], [’id’, 2, 1]],

[[4, 7], [2, ’id’], [8, ’id’]])

[[12, 8], [9, ’id’]]

A_to_the_k(A, k)

Description: Returns the matrix A raised to the power of k. The function

begins with a conditional that makes sure the matrix is square. Then, we

assign i to the integer 1 and assign A i to the input value A. Within a while

loop, the function performs max-plus matrix multiplication on A and A i, and

then assigns i to i+1. The loop repeats until it runs with i:=k.

Parameters:

A - A square matrix with semiring elements inputted as a list of

lists

k - A positive integer

Example:

A_to_the_k ([[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]], 4)

[[32, 24, 26, 28], [31, 27, 31, 33], [28, 27, 31, 33], [30, 30, 34, 36]]

A_list_powers(A, k):

Description: This function is designed solely for experimentation. It does

not actually return any value, but rather prints a list of positive integer powers

of a max-plus matrix A. This can be especially useful in studying the Power

Algorithm. First, the matrix A is printed. Then, the variable i is assigned

to the integer 2; a while loop prints powers of A and assigns i to the next

greatest integer value until i:=k.

Parameters:

MAX-PLUS PACKAGE 109

A - a square matrix with semiring elements inputted as a list of

lists.

k - a positive integer.

Example:

A_list_powers ([[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]], 8)

1 : [[8, 0, 2, 1], [7, 3, 3, 6], [4, 5, 5, 6], [3, 3, 7, 9]]

2 : [[16, 8, 10, 10], [15, 9, 13, 15], [12, 10, 13, 15], [12, 12, 16, 18]]

3 : [[24, 16, 18, 19], [23, 18, 22, 24], [20, 18, 22, 24], [21, 21, 25, 27]]

4 : [[32, 24, 26, 28], [31, 27, 31, 33], [28, 27, 31, 33], [30, 30, 34, 36]]

5 : [[40, 32, 35, 37], [39, 36, 40, 42], [36, 36, 40, 42], [39, 39, 43, 45]]

6 : [[48, 40, 44, 46], [47, 45, 49, 51], [45, 45, 49, 51], [48, 48, 52, 54]]

7 : [[56, 49, 53, 55], [55, 54, 58, 60], [54, 54, 58, 60], [57, 57, 61, 63]]

8 : [[64, 58, 62, 64], [63, 63, 67, 69], [63, 63, 67, 69], [66, 66, 70, 72]]

A_plus(A)

Description: Returns the A+ matrix described in Section 4, Chapter 1. It

includes a conditional to make the the input is a square matrix. Then the

function appends k iterations of the A to the k() function to a list. Using a

while loop, the function then performs max-plus matrix addition over the list

of matrix powers.

Parameters:

A - a matrix with semiring elements inputted as a list of lists.

Example:

MAX-PLUS PACKAGE 110

A_plus ([[4, 3, 1], [2, 4, 0], [1, ’id’, 3]])

[[12, 11, 9], [10, 12, 8], [9, 8, 9]]

Karps_Algorithm(A, j)

Description: Returns the max-plus eigenvalue of an irreducible matrix. A

need not be irreducible for the algorithm to run. In fact, we designed the

function with this in mind, knowing that the crux of our analysis would be

seeing where, how, and why spectral methods of irreducible systems break

down in the reducible case. Moreover, what is perhaps unique about this

version of the function is that it gives a print-out of the various steps of the

algorithm. This feature was included to aide the aforementioned analysis.

The first loop constructs the appropriate canonical vector, given the user’s

choice of j. Another for loop proceeds to build a list of the x(k) vectors using

max-plus matrix multiplication. A list of these vectors is printed out, for the

user’s convenience. Then, step (3) of Karp’s Algorithm is performed, with the

various difference quotients being printed along the way. Special consideration

had to be given to ‘id’ here, as our tropical multiplication() function does not

take into account the fact that ε − ε = 0. The minimum is taken among the

difference quotients, and the maximum of these minimums is returned as the

function’s output.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

j - An integer representing the starting node for the algorithm

Example:

Karps_Algorithm ([[4, 3, 4], [2, 4, 3], [1, 3, 3]], 3)

(12 - id) / 3

MAX-PLUS PACKAGE 111

(12 - 4) / 2

(12 - 8) / 1

(11 - id) / 3

(11 - 3) / 2

(11 - 7) / 1

(10 - 0) / 3

(10 - 3) / 2

(10 - 6) / 1

4

Eigenspace(A, lmda)

Description: Returns a max-plus eigenvector of the matrix A associated

with the eigenvalue lmda. Note that we use lmda because lambda is recognized

by Python as an expression form. The process employed by this function is,

essentially, the algorithm given in Section 1, Chapter 5 of [3] for computing the

eigenspace of a given eigenvector. First, a for loop computes the Aλ matrix

by performing max-plus multiplication with each element of A and -lmda.

We then use our A plus() function to calculate A+
λ , and a for loop looks for

columns in the transpose of A+
λ , for which the diagonal entry is 0. These

columns form the eigenspace associated with lmbda, and they are printed out

before the function returns a single eigenvector as output.

Parameters:

A - A matrix with semiring elements inputted as a list of lists

lmda - An eigenvalue of A

Example:

MAX-PLUS PACKAGE 112

Eigenspace ([[4, 3, 4], [2, 4, 3], [1, 3, 3]], 4)

[[[0], [-1], [0]], [[-2], [0], [-1]]]

[[0], [-1], [0]]

Appendix B: Sage Min-plus and Max-plus

Functions

Min-Plus Program Package

Below is a printout of the code that comprises the packages described

in the above Appendix.

1def minplus_addition(a, *b):

2 blist = list(b)

3 if a == ’id’ and ’id’ in blist:

4 for i in blist:

5 if i == ’id’:

6 blist.remove(’id’)

7 if not blist:

8 return ’id’

9 else:

10 return min(blist)

11 elif a == ’id’ and ’id’ not in blist:

12 return min(blist)

13 elif a != ’id’ and ’id’ in blist:

14 for j in blist:

15 if j == ’id’:

16 blist.remove(’id’)

17 if not blist:

18 return a

113

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 114

19 else:

20 return min(a, min(blist))

21 else:

22 return min(a, min(blist))

1def tropical_multiplication(a, *b):

2 if a == ’id’:

3 return ’id’

4 elif ’id’ in b:

5 return ’id’

6 else:

7 return sum(b, a)

1def minplus_list_addition(A, B):

2 if len(A) != len(B):

3 print "Error: Your matrices must be of equal dimension."

4 elif len(A[0]) != len(B[0]):

5 print "Error: Your matrices must be of equal dimension."

6 else:

7 sumlist = []

8 for i in range(len(A)):

9 c_i = []

10 for j in range(len(A[0])):

11 c_i.append(minplus_addition(A[i][j], B[i][j]))

12 sumlist.append(c_i)

13 return sumlist

1def minplus_dot_product(x, y):

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 115

2 if len(x) != len(y):

3 print "Error: The vectors you enter must have the.."

4 "... same number of entries."

5 else:

6 xdy =[]

7 for i in range(len(x)):

8 xdy_i = tropical_multiplication(x[i], y[i])

9 xdy.append(xdy_i)

10 dot_product = xdy[0]

11 for j in range(1, len(xdy)):

12 dot_product = minplus_addition(dot_product , xdy[j])

13 return dot_product

1def list_transpose(A):

2 A_transpose = []

3 for i in range(len(A[0])):

4 At_i = []

5 for j in range(len(A)):

6 At_i.append(A[j][i])

7 A_transpose.append(At_i)

8 return A_transpose

1def minplus_list_multiplication(A, B):

2 if len(A[0]) != len(B):

3 print "Error: The number of columns in your first entry ..."

4 "... must equal the number of rows in your second."

5 elif len(B) == 1:

6 prodlist = []

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 116

7 c_list = []

8 for k in range(len(A)):

9 c_list.append(minplus_dot_product(A[k], B[0]))

10 prodlist.append(c_list)

11 return prodlist

12 else:

13 Bt = list_transpose(B)

14 prodlist = []

15 for i in range(len(A)):

16 c_i = []

17 for j in range(len(B[0])):

18 c_i.append(minplus_dot_product(A[i], Bt[j]))

19 prodlist.append(c_i)

20 return prodlist

1def A_to_the_k(A, k):

2 i = 1

3 A_i = A

4 while i < k:

5 A_i = minplus_list_multiplication(A, A_i)

6 i += 1

7 return A_i

1def A_list_powers(A, k):

2 print A

3 i = 1

4 A_i = A

5 while i < k:

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 117

6 A_i = minplus_list_multiplication(A, A_i)

7 print A_i

8 i += 1

1def A_plus(A):

2 if len(A) != len(A[0]):

3 print "Error: This function only accepts square matrices."

4 else:

5 A_list = []

6 for i in range(1, (len(A)+1)):

7 A_i = A_to_the_k(A, i)

8 A_list.append(A_i)

9 j = 1

10 aplus = A_list [0]

11 while j <= ((len(A) -1)):

12 aplus = minplus_list_addition(A_list[j], aplus)

13 j += 1

14 return aplus

1def Karps_Algorithm(A, j):

2 n = len(A)

3 x_0 = []

4 catalogue = []

5 for l in range(1, n+1):

6 if l == j:

7 x_0.append (0)

8 else:

9 x_0.append(’id’)

10 catalogue.append(list_transpose ([x_0]))

11 for k in range(1, n+1):

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 118

12 x_k = minplus_list_multiplication(A, catalogue[k-1])

13 catalogue.append(x_k)

14 print catalogue , ’\n’

15 candidates = []

16 for i in range(n):

17 m_i = []

18 for k in range(n):

19 print ’(’, catalogue[n][i][0], ’-’, catalogue[k][i][0], ’)’, ’/’, n-k

20 if catalogue[n][i][0] != ’id’ and catalogue[k][i][0] != ’id’:

21 m_i.append ((catalogue[n][i][0]- catalogue[k][i][0])/(n-k))

22 elif catalogue[n][i][0] == ’id’ and catalogue[k][i][0] == ’id’:

23 m_i.append (0)

24 print ’\n’

25 if m_i:

26 candidates.append(max(m_i))

27 if candidates:

28 eigvlu = min(candidates)

29 return eigvlu

1def Eigenspace(A, lmda):

2 Alambda = []

3 for i in range(len(A)):

4 Alambda_i = []

5 for j in range(len(A)):

6 Alambda_i.append(tropical_multiplication(A[i][j], -lmda))

7 Alambda.append(Alambda_i)

8 Aplus = A_plus(Alambda)

9 eigenspace = []

10 for k in range(len(A)):

11 if Aplus[k][k] == 0:

12 a_k = list_transpose ([Aplus[k]])

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 119

13 eigenspace.append(a_k)

14 print eigenspace

15 return eigenspace [0]

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 120

Max-Plus Program Package
1

2def maxplus_addition(a, *b):

3 blist = list(b)

4 if a == ’id’ and ’id’ in blist:

5 for i in blist:

6 if i == ’id’:

7 blist.remove(’id’)

8 if blist == []:

9 return ’id’

10 else:

11 return max(blist)

12 elif a == ’id’ and ’id’ not in blist:

13 return max(blist)

14 elif a != ’id’ and ’id’ in blist:

15 for j in blist:

16 if j == ’id’:

17 blist.remove(’id’)

18 if blist == []:

19 return a

20 else:

21 return max(a, max(blist))

22 else:

23 return max(a, max(blist))

1def tropical_multiplication(a, *b):

2 if a == ’id’:

3 return ’id’

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 121

4 elif ’id’ in b:

5 return ’id’

6 else:

7 return sum(b, a)

1def maxplus_list_addition(A, B):

2 if len(A) != len(B):

3 print "Error: Your matrices must be of equal dimension."

4 elif len(A[0]) != len(B[0]):

5 print "Error: Your matrices must be of equal dimension."

6 else:

7 sumlist = []

8 for i in range(len(A)):

9 c_i = []

10 for j in range(len(A[0])):

11 c_i.append(maxplus_addition(A[i][j], B[i][j]))

12 sumlist.append(c_i)

13 return sumlist

1

2def maxplus_dot_product(x, y):

3 if len(x) != len(y):

4 print "Error: The vectors you enter must have the.."

5 "... same number of entries."

6 else:

7 xdy =[]

8 for i in range(len(x)):

9 xdy_i = tropical_multiplication(x[i], y[i])

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 122

10 xdy.append(xdy_i)

11 dot_product = xdy[0]

12 for j in range(1, len(xdy)):

13 dot_product = maxplus_addition(dot_product , xdy[j])

14 return dot_product

1def list_transpose(A):

2 A_transpose = []

3 for i in range(len(A[0])):

4 At_i = []

5 for j in range(len(A)):

6 At_i.append(A[j][i])

7 A_transpose.append(At_i)

8 return A_transpose

1def maxplus_list_multiplication(A, B):

2 if len(A[0]) != len(B):

3 print "Error: The number of columns in your first entry ..."

4 "... must equal the number of rows in your second."

5 elif len(B) == 1:

6 prodlist = []

7 c_list = []

8 for k in range(len(A)):

9 c_list.append(maxplus_dot_product(A[k], B[0]))

10 prodlist.append(c_list)

11 return prodlist

12 else:

13 Bt = list_transpose(B)

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 123

14 prodlist = []

15 for i in range(len(A)):

16 c_i = []

17 for j in range(len(B[0])):

18 c_i.append(maxplus_dot_product(A[i], Bt[j]))

19 prodlist.append(c_i)

20 return prodlist

1def A_to_the_k(A, k):

2 i = 1

3 A_i = A

4 while i < k:

5 A_i = maxplus_list_multiplication(A, A_i)

6 i += 1

7 return A_i

1def A_list_powers(A, k):

2 print 1, ’:’, A, ’\n’

3 i = 2

4 A_i = A

5 while i <= k:

6 A_i = maxplus_list_multiplication(A, A_i)

7 print i, ’:’, A_i , ’\n’

8 i += 1

1

2def A_plus(A):

3 if len(A) != len(A[0]):

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 124

4 print "Error: This function only accepts square matrices."

5 else:

6 A_list = []

7 for i in range(1, (len(A)+1)):

8 A_i = A_to_the_k(A, i)

9 A_list.append(A_i)

10 j = 1

11 aplus = A_list [0]

12 while j <= ((len(A) -1)):

13 aplus = maxplus_list_addition(A_list[j], aplus)

14 j += 1

15 return aplus

1def Karps_Algorithm(A, j):

2 n = len(A)

3 x_0 = []

4 catalogue = []

5 for l in range(1, n+1):

6 if l == j:

7 x_0.append (0)

8 else:

9 x_0.append(’id’)

10 catalogue.append(list_transpose ([x_0]))

11 for k in range(1, n+1):

12 x_k = maxplus_list_multiplication(A, catalogue[k-1])

13 catalogue.append(x_k)

14 candidates = []

15 for i in range(n):

16 m_i = []

17 for k in range(n):

18 print ’(’, catalogue[n][i][0], ’-’, catalogue[k][i][0], ’)’, ’/’, n-k

APPENDIX B: SAGE MIN-PLUS AND MAX-PLUS FUNCTIONS 125

19 if catalogue[n][i][0] != ’id’ and catalogue[k][i][0] != ’id’:

20 m_i.append ((catalogue[n][i][0]- catalogue[k][i][0])/(n-k))

21 elif catalogue[n][i][0] == ’id’ and catalogue[k][i][0] == ’id’:

22 m_i.append (0)

23 print ’\n’

24 if m_i:

25 candidates.append(min(m_i))

26 if candidates:

27 eigvlu = max(candidates)

28 return eigvlu

1def Eigenspace(A, lmda):

2 Alambda = []

3 for i in range(len(A)):

4 Alambda_i = []

5 for j in range(len(A)):

6 Alambda_i.append(tropical_multiplication(A[i][j], -lmda))

7 Alambda.append(Alambda_i)

8 Aplus = A_plus(Alambda)

9 eigenspace = []

10 for k in range(len(A)):

11 if Aplus[k][k] == 0:

12 a_k = list_transpose ([Aplus[k]])

13 eigenspace.append(a_k)

14 print eigenspace

15 return eigenspace [0]

Bibliography

[1] Anne Spalding, Min-Plus Algebra and Graph Domination, PhD dissertation,

University of Colorado at Denver, 1998.

[2] Bernd Heidergott, Geert Jan Olsder, and Jacob van der Woude, Max Plus at

Work: Modeling and Analysis of Synchronized Systems, Princeton University

Press, Princeton, 2006.

[3] Diane Maclagan and Bernd Sturmfels, Introduction to Tropical Geometry, Uni-

versity of Warwick, 2009.

[4] Francois Baccelli, Guy Cohen, Gert Jan Olsder, and Jean-Pierre Quadrat, Syn-

chronization and Linearity: An Algebra For Discrete Event Systems, Wiley,

Hoboken, 1992.

[5] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer,

New York, 2012.

[6] R. A. Cuninghame-Green, Minimax Algebra, Springer-Verlag, Berlin, 1979.

[7] R. A. Cuninghame-Green, “Describing Industrial Processes with Interference

and Approximating Their Steady-State Behaviour,” OR 13 (1962), 95–100.

[8] Richard M. Karp, “A Characterization of the Minimum Cycle Mean in a Di-

graph,” Discrete Mathematics 23 (1978), 309–311.

[9] Robert Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM

Journal on Computing 1 (1972), 146–160.

[10] Travis Scrimshaw, “Tropical Semirings,” Sage Mathematics Software,

28 Apr. 2013.

[11] William A. Stein et al, Sage Mathematics Software, (Version 6.1.1), 2014.

126

	Bates College
	SCARAB
	Spring 5-2014

	The Tropical Eigenvalue-Vector Problem from Algebraic, Graphical, and Computational Perspectives
	Alex William Nowak
	Recommended Citation

	tmp.1398954498.pdf._1Nrp

