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Abstract

In recent years, ultracold atomic gases have been used as tools to study strongly-correlated

systems reminiscent of interesting systems from solid-state physics. At temperatures just

above absolute zero, particles with integer quantum spin (“bosons”) begin to congregate in

the ground state of the trapping potential. As the temperature of the system falls below

a critical temperature TC (in this experiment near 200 nK) it undergoes a phase transition

called Bose-Einstein condensation. A Bose-Einstein condensate is often described as a macro-

scopic quantum body, and with its phase coherence (analogous to an “atom laser”) it can be

used to simulate solid-state systems in a periodic potential called an optical lattice, which

resembles that experienced by electrons in the periodic Coulomb potential of a solid-state

crystal lattice. These optical lattices are formed by the interference pattern of multiple laser

beams and the associated spatially-dependent Stark shift, resulting in a periodic trapping

potential for the BEC. The lattice analogs of simple atomic structures have been widely

studied. In this thesis, we study the possibility of loading a BEC into multi-dimensional

optical lattices. The crystallography of four-beam three-dimensional optical lattices is inves-

tigated, and an apparatus is constructed to produce two- to four-beam lattice geometries.

We study the structure of the lattice through the technique of Kapitza-Dirac scattering.



Introduction

“Go back? No good at all! Go sideways? Impossible!

Go forward? Only thing to do! On we go!”

— J. R. R. Tolkien, The Hobbit

Bose-Einstein condensates (BEC) are macroscopic quantum bodies, which can be used ex-

perimentally to explore unanswered questions from quantum physics. There is a wide scope

of the types of questions we can investigate, such as wave-particle duality using atom inter-

ferometry, superfluidity, and quantum vortices. BECs have also been widely used to study

solid state crystals by creating analogous optical lattices, and this is the subject of this thesis.

Overview

• A theoretical primer about the laser cooling techniques used to create a 87Rb Bose-

Einstein condensate. This begins with a derivation of the condensation temperature

from statistical mechanics, followed by an explanation of laser cooling and evaporative

cooling techniques.

• The necessary background from solid state physics. This will be important in develop-

ing the nomenclature and notation relevant in subsequent chapters, especially relating

to the reciprocal lattice.

• A detailed analysis of optical lattices, including an introduction to Bloch waves and

Kapitza-Dirac scattering. The solution for a four-beam optical lattice with arbitrary

geometry is found, and is applied to lattices in the cubic system.

• A discussion of the experimental apparatus constructed for this thesis. In order to

create a four-beam diffraction pattern, a laser beam is split and coupled into four

1



individual fibers which are sent to the experiment. In addition to detailing the specifics

of the apparatus itself, this chapter also includes some discussion of the experimental

challenges of realizing a four-beam optical lattice.

• An account of the experimental procedure for realizing Kapitza-Dirac scattering in

an optical lattice in one-, two-, and three-dimensions. This begins with aligning the

lattice beams individually, and then iteratively optimizing the beam alignments, pulse

lengths, and detuning for good scattering.

• In concluding remarks, some of the interesting challenges not discussed in the main

text are explained, as well as an outlook of future experiments.

• Appendices include mathematica code illustrating some of the intensity and optical

lattice calculations for geometries in the cubic system.
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Chapter 1

Realizing Bose-Einstein condensation

In this thesis an 87Rb BEC is loaded into a multi-dimensional optical lattice. While the bulk

of the work on this thesis is related to optical lattice crystallography and the experimental

realization of a four-beam lattice, it would be an oversight to forgo an introduction to BEC

physics using a statistical mechanics approach, and an overview of the cooling techniques we

use in lab.

1.1 Thermodynamics of an ideal Bose system

This section introduces background from statistical thermodynamics of Bose-Einstein con-

densation, mainly following Pathria’s text [3]. The BEC phase transition elegantly follows

from applying the Bose-Einstein distribution in the low-temperature limit. The phase tran-

sition is an issue of combinatorics of indistinguishable particles [4]. There are a limited

number of ways of arranging the particles in excited states, making the ground state heavily

favored in the low-temperature limit.

In quantum statistics, there are two ways of arranging non-interacting indistinguishable

particles in thermal equilibrium, depending on the particle spins. The average occupation of

a state with energy ǫ of bosons, i.e. particles with integer-spin, is given by the Bose-Einstein

distribution,

n̄BE =
1

eβ(ǫ−µ) − 1
(1.1)

where β = 1/kBT . The chemical potential, µ, defines the change in energy when a system

accepts or loses a particle. Since there are no restrictions on the number of bosons in the

same energy state, the chemical potential is always negative, i.e. an energy state is always

3



ǫ
µ

n̄MB

n̄FD

n̄BE

Figure 1.1: Average occupation number of energy states for fermions (orange), bosons (blue),
and Maxwell-Boltzmann particles (red). At low temperatures, fermions arrange themselves
one-by-one in the lowest available energy state, so the average occupation number converges
to 1. There is no maximum occupation number for bosons, so the average occupation number
becomes infinitely large. Both distributions converge to the Maxwell-Boltzmann distribution
at high temperatures.

willing to receive an additional particle. For fermions, i.e. particles with half-integer spin,

the average occupation number is given by the Fermi-Dirac distribution,

n̄FD =
1

eβ(ǫ−µ) + 1
(1.2)

In the high-temperature limit, the denominator in both the Fermi-Dirac distribution and the

Bose-Einstein distribution become arbitrarily large. The ±1 becomes negligible, and both

reduce to the Maxwell-Boltzmann distribution, as shown in Figure 1.1.

n̄MB =
1

eβ(ǫ−µ)
(1.3)

In this limit, the density becomes low enough that classical statistics apply. No two particles

will seek a particular energy state, so the quantum statistics become irrelevant. At low tem-

peratures, however, fermions and bosons have radically different behavior. Pauli exclusion

requires n̄FD never exceed unity. Each energy state can have an occupation number of 0

or 1. For ǫ < µ, the mean occupation number tends to 1 as all particles occupy the lowest

available states. On the other hand, for a system of bosons, the chemical potential is required

to be less than all energy states (µ < all ǫ). The exclusion principle does not apply, and

as µ approaches the lowest energy state ǫ0, the occupancy of ǫ0 becomes arbitrarily high,

resulting in the formation of a BEC.
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Returning to the Bose-Einstein distribution (1.1), we find the total number of particles

in a system, which is simply the sum of the average occupation number over all states:

N =
∑

s

n̄BE =
∑

s

1

z−1eβǫ − 1
(1.4)

To simplify the following expressions, we introduce the fugacity of the gas, z = eµ/kT . For a

large trap volume V , the average occupation spectrum is nearly continuous, which calls for

changing the summation in (1.4) to integration. To do this we have to introduce the density

of states, which describes the number of available energy states at a given energy:

D(ǫ) dǫ =
2πV

h3
(2m)3/2

√
ǫ dǫ (1.5)

At this step, it is easy to miss a crucial point. Note that the density of states assigns

zero weight to the ground state, ǫ = 0. By integrating
∫

D(ǫ)n̄BE dǫ to find N , we fail to

account for the ground state, which obviously becomes a problem in the low-temperature

limit. By removing the ground state from the sum before integration, we find

N =
2πV

h3
(2m)3/2

∫

∞

0

√
ǫ

z−1eβǫ − 1
dǫ+

z

1− z
(1.6)

The last term in (1.6) is the number of particles in the ground state, N0. The number of

particles in excited states is found by subtracting the particles in the ground state:

Nexcited = N −N0 =
2πV (2mkBT )

3/2

h3

∫

∞

0

√
ǫ

z−1eβǫ − 1
dǫ (1.7)

This result can be simplified by substituting x = βǫ, and introducing the Bose-Einstein

functions, defined by

gν(z) =
1

Γ(ν)

∫

∞

0

xν−1

z−1ex − 1
dx = z +

z2

2ν
+
z3

3ν
+ ... (1.8)

where ν ∈ R. Using this result and (1.6), the occupation of the excited states is

Nexcited =
2πV (2mkBT )

3/2

h3

∫

∞

0

√
x

z−1ex − 1
dx =

g3/2(z)

λ3
V (1.9)
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where λ is the thermal de Broglie wavelength, given by

λ =
h√

2πmkBT
(1.10)

For z → 1 and ν > 1, the Bose-Einstein function reduces to the Riemann-zeta function,

ζ(ν).

lim
z→1

gν(z) = ζ(ν) =
∞
∑

n=1

n−ν (1.11)

For a non-interacting Bose-gas, µ approaches zero from the left in the low-temperature

limit. At high temperatures the chemical potential is large and negative. Consequently, the

domain of the fugacity is bounded: 0 ≤ z ≤ 1. As z approaches unity in the low-temperature

limit, the Bose-Einstein function approaches its maximum value equal to the Riemann-zeta

function:

lim
z→1

g3/2(z) = ζ

(

3

2

)

= 2.612 (1.12)

Therefore the number of particles in excited states is

Nexcited ≤ ζ

(

3

2

)(

2πmkBT

h2

)3/2

V = 2.612
V

λ3
(1.13)

while the rest of the particles occupy the ground state. For large systems, then, there is a

pile-up of particles in the ground state once the excited state occupation reaches its maximum

at a given temperature. Clearly this population is non-zero for temperatures above absolute

zero, so we always expect both phases to be present when we image the cloud.1 For fixed

values of V and N , we can find the temperature below which particles begin accumulating

in the ground state en masse, once Nexcited reaches its upper bound.

T < Tc =
h2

2πmkB

(

N

ζ
(

3
2

)

V

)2/3

(1.14)

Here, Tc is the critical temperature. Figure 1.2 shows the complementary fractions of particles

in the excited states, and of particles in the ground state.

BEC of an ultracold atomic gas is realized in 3D harmonic traps. Here we do not have a

volumetric parameter. Instead, we can relate the number of trapped atoms at criticality to

1The two “phases” are the thermal phase and the condensed phase. Because the thermal phase is hotter,
we expect a halo to appear around the much denser condensate.
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T (K)

N0/N

Tc

1

Figure 1.2: Above the condensate temperature Tc, nearly all particles occupy excited states
(blue). As the temperature drops below Tc, particles begin to occupy the ground state (red).
The population in the excited state reaches naught only at T = 0.

the trap frequency, ω0, and the critical temperature.

N ≈
(

kBT

~ω0

)3

(1.15)

This result can be derived using the thermodynamic potential [3]. From this result we can

see that increasing the critical temperature can be achieved by increasing the trap frequency.

The proportionality of N and T 3 provides a bit of insight to evaporative cooling techniques

discussed later in this chapter. We can selectively remove hotter atoms from the system

to significantly lower the temperature of the system, and we can still have large enough

populations to reach the BEC transition.

This derivation treats the system as a non-interacting Bose gas. In reality, atoms in the

BEC are weakly-interacting. This is corrected by solving a non-linear Schrödinger equation

called the Gross-Pitaevskii equation [1]:

[

~
2

2m
∇2 + V (r) + g|ψ|2

]

ψ = Eψ (1.16)

The additional term g is the coupling constant. In the Thomas-Fermi approximation, valid

for condensates with large populations, the kinetic energy term ~
2∇2/2m is neglected [5].

The wavefunction has the form

|ψ|2 = E − V (r)

g
(1.17)

Therefore the number density takes the form of the harmonic trapping potential. Therefore

when image the cloud we expect the BEC profile to be an inverted parabola. Since the cloud

is at non-zero temperature, some of the atoms form a thermal cloud that adds a Gaussian

component to the density profile.
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1.2 Creating an ultracold atomic gas

In order to reach the BEC critical temperature we use a series of optical and magnetic

trapping techniques. This section introduces the necessary background from atomic physics,

and examines the mechanical forces laser light exerts on an atom. These experimental laser

cooling techniques have been well refined, first pioneered by Steven Chu, Claude Cohen-

Tannoudji and William Phillips, who won the 1997 Nobel prize for their contributions [6].

All the cooling techniques described in this section exploit one of two forces: either (a) the

scattering force due to absorption and spontaneous emission of photons, or (b) the dipole

force arising from electric polarizability.

Atoms leaving the effusive oven are slowed first by a 1 meter long Zeeman slower and

collected in the magneto-optical trap (MOT). These techniques fall under the umbrella of

Doppler cooling, which is limited by the natural line width of the atoms Γ. The magnetic

coils are turned off in a brief optical molasses phase, which is limited by the recoil limit.

Criticality is reached using evaporative cooling techniques, first in the quadrupole magnetic

trap and finally in the optical dipole trap.

Doppler cooling exploits the velocity-dependent frequency shift of light. For a stationary

atom in its ground state, there are specific resonant frequencies of incident light that will be

absorbed by the atom, moving it to an excited energy state. The photon, approaching from

the right, delivers a momentum kick to the stationary atom, ~k, so the atom begins to drift

to the left. After a short period of time (the lifetime of the excited state of rubidium is 27 ns),

the atom reemits the photon as it relaxes to the ground state. This spontaneous emission

occurs in a random direction and causes another atom recoil. Continuously repeating this

process is called optical pumping [1].

The same effect can be achieved for an atom in motion by exploiting the Doppler shift (see

Figure 1.3). An atom moving toward a monochromatic electromagnetic wave will observe

red-detuned light, i.e. light at a higher frequency than in a rest frame.

1.2.1 The Zeeman slower

By red-detuning the light source just below resonance, a counterpropagating atom experi-

ences in its frame the resonant frequency, so it absorbs the photon and spontaneously emits

as the stationary atom does. The caveat has to do with the speed of the atom. For a given

detuning, there is only one good velocity at which the atom can absorb the photon. The

photon’s momentum kick is small, so in order to effectively cool an atom, it must be opti-

8



Figure 1.3: Photons absorbed by the atom deliver a momentum kick ~k to the atom an-
tiparallel to its motion. When the atom relaxes a photon is emitted in a random direction.
For a large number of optical pumping cycles the momentum kicks of the emitted photons
average to zero. A net slowing effect is a result of the initial momentum kick by Fscatt. This
figure is adapted from Foot [1].

cally pumped a number of times. In order to keep the red-shifted light on resonance with the

atom, the line width of the atom can be manipulated with a magnetic field via the Zeeman

effect. Assuming the direction of motion along ẑ, this frequency shift must obey

ω0 +
µB(z)

~
= ω + kv (1.18)

On the left-hand side, the resonant frequency ω0 is increased by a Zeeman shifted term,

which depends on the atomic magnetic moment, µ. On the right-hand side the incident

photon frequency is increased by the Doppler shift by kv [1]. For a quantum mechanical

development of the Zeeman effect see Griffiths [7].

The Zeeman slower was developed by William Phillips and Harold Metcalf [6, 8]. Atoms

leaving the effusive oven travel through a tapered solenoid, which produces an inhomogeneous

magnetic field. The magnetic field inside the solenoid acts to Zeeman shift the atomic

energy levels to match the laser frequency. Upon reaching the end of the slower an atom’s

temperature drops from 370 K to roughly 1 K. The goal is not to reduce the speed of the

atoms to the lower limit of the slower, only to reduce the speed enough that atoms leaving

the solenoid are caught in the magneto-optical trap.
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Figure 1.4: Atoms leaving the effusive oven enter the Zeeman slower. Over the course of
1 meter the atoms are optically pumped, and experience a net slowing force from each
scattering event. Atoms are kept on-resonance in the Zeeman slower by manipulating the
transition frequency using a tapered solenoid. The atom beam is sufficiently slowed such
that atoms become trapped in the MOT.

In actuality, this problem becomes more complicated by hyperfine atomic structure.

There are two ground hyperfine levels of rubidium, for F = 1 and F = 2. If the spon-

taneous emission leaves the atom in the F = 1 hyperfine level, the atom will not absorb any

incident photons, and remains in this “dark state” in which optical pumping is shut down.

To excite atoms out of F = 1 an additional laser, the repump laser, is added to excite atoms

from the F = 1 ground state so they can decay into the F = 2 ground state, such that

optical pumping can continue.

1.2.2 The magneto-optical trap and optical molasses

Slowed atoms leaving the Zeeman slower are collected in the magneto-optical trap (MOT).

The optical configuration requires six lasers, configured in counterpropagating pairs along

x̂, ŷ, ẑ, and a quadrupole magnetic field. The magnetic field is realized by a set of coils in

an anti-Helmholtz configuration, which creates a uniform field gradient near the trap center.

The three sub-levels of the J = 1 state, MJ = 0,±1, are Zeeman shifted to vary linearly

with position. The MOT, like the Zeeman slower, removes energy from the atoms via the

Doppler shift. For an atom displaced from the trap center along + ẑ, the MJ = −1 moves
closer to resonance for a red-detuned laser. The circularly polarized light is absorbed and

the atom experiences a force towards the trap center. The same argument is true along all

directions.

The MOT is commonly misunderstood as the simple combination of confinement provided
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Figure 1.5: Left: The six-beam orientation for the MOT require opposing beams to have
oppositely-handed circular polarization. The current in the magnetic coils must be anti-
parallel to achieve the anti-Helmholtz configuration. Right: The magnetic coils provide a
spatially-dependent Zeeman shift. Atoms further from the trap center experience a higher
shift, and become on resonant for slightly red-detuned MOT beams. As a result, they
experience a scattering force pushing them towards the center of the trap, where the magnetic
field B = 0.

by the magnetic field imposed in a region where the six lasers provide cooling. Neither of

these components, on its own, can trap the atoms. In actuality, the spatially dependent

Zeeman shift punishes atoms for moving away from the trap center by moving them on

resonance with a laser. As a result, there is a scattering force pushing the atoms towards

the trap center. A typical MOT at Bates has 3× 109 atoms at roughly 200 µK.

After the MOT reaches a steady state the magnetic coils are turned off for a brief optical

molasses phase. One pair of counterpropagating beams with oppositely-handed circular

polarizations provide a large velocity-dependent damping force to atoms with sufficiently

low velocities to begin with. This is not a trap, however, so the molasses phase is necessarily

brief. It acts to cool atoms in the MOT below the Doppler limit at constant density [9].

At the end of the molasses the repump light is turned off, which “depumps” atoms into the

F = 1 state.

Doppler-cooling techniques of two-level atoms are limited by a competitive heating mech-

anism, which can be thought of as a random walk in momentum space. The recoil limit is

the lowest temperature we can expect to achieve in the molasses phase. Intuition should

tell us that there must be a lower limit to Doppler cooling. Each absorption and sponta-

neous emission process delivers a momentum kick of magnitude ~k, so the lower limit to

the velocity ought to be on the order of the recoil velocity. Any temperature corresponding

to a smaller speed would be a peculiar result, given the photon scattering has random di-

rectionality. In the lab, temperatures after the MOT phase are actually much hotter than
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the Doppler temperature. The limit is surpassed by sub-Doppler cooling techniques in the

optical molasses.

1.3 The optical dipole force

As a prelude to a summary of the dipole trap in which the BEC phase transition occurs,

this section introduces the Lorentz oscillator model of light-atom interactions. Using this

approach we can derive the dipole potential and the scattering rate for an atom in an

classically oscillating electric field,

E = E0e
iωt (1.19)

where E0 is the complex amplitude, and ω is the light wave’s angular frequency. An atom

placed in the electric field will have an induced dipole moment p, which is related to the

electric field by the complex polarizability, α(ω):

p = α(ω)E (1.20)

The dipole force is conservative, so it can be found by determining the interaction potential.

For large oscillation frequencies (a light wave has a period on the order of 10−15 s) the

resulting interaction potential is given by a time average.

Udip =
1

2
〈p · E〉 = 1

2ǫ0c
Re(α)I (1.21)

with the laser field intensity I = 1/2ǫ0c E
2
0 .

Now we can find the scattering rate from the power absorbed by the oscillator. This

results from the out-of-phase component of the dipole oscillation, which is described by the

imaginary component of the atomic polarizability.

Pabs = 〈ṗ · E〉 =
ω

ǫ0c
Im(α)I (1.22)

If instead of a wave the electric field is considered to be a photon beam ~ω, the oscillation

can be interpreted as absorption and spontaneous emission. Therefore the scattering rate is

given by

Γsc = −
Pabs

~ω
= − 1

~ǫ0c
Im(α)I (1.23)

Now that we have explicit expressions for the dipole potential (1.21) and the scattering
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rate (1.23), we can find the frequency-dependent complex polarizability using the Lorentz

model of a classical harmonic oscillator [8], in which an electron is bound to the nucleus

and orbits with resonant frequency ω0, which corresponds to the transition frequency. A

damping force arrises from dipole radiation. The resulting polarizability is

α(ω) = 6πǫ0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
(1.24)

where Γ is the on-resonance damping rate given by

Γ =
e2ω2

0

6πǫ0mec3
(1.25)

For far-off-resonance detuning (ω − ω0 = ∆ ≫ 0) and sufficiently small intensities (1.24) is

valid. But this classical approach ignores the possibility of saturation, which can occur at

large intensities and small detuning. The excited state population becomes large, and (1.25)

is invalid.

A semiclassical approach is necessary to find the damping, in which the atom is treated

as a two-level quantum system interacting with a classical field. The damping rate Γ is

determined by the dipole matrix element between the ground state |g〉 and the excited state
|e〉 of the two-level system,

Γ =
ω3
0

3πǫ0~c3
|〈e|µ|g〉|2 (1.26)

where µ = −er is the quantum mechanical dipole operator. When the detuning is sufficiently

small, we can use the rotating wave approximation [1], and can set ω/ω0 ≈ 1. Therefore the

dipole potential and scattering rate can be simplified:

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) (1.27)

Γsc(r) =
3πc2

2~ω3
0

(

Γ

∆

)2

I(r) (1.28)

The dipole potential in (1.27) is negative for red-detuning, meaning ω < ω0. The dipole

force Fdip = −∇Udip(r) is a repulsive force, so atoms will be pushed towards the intensity

maxima.

The scattering rate is often expressed in terms of the detuning and the depth of the
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dipole potential,

~Γsc =
Γ

∆
Udip (1.29)

The trap depth should ideally be maximized to shut down inelastic scattering and trap

the atoms in a conservative potential. Detuning should be maximized—power limitations

permitting—since the scattering rate falls off as 1/∆2, while the potential trap depth falls

off only as 1/∆.

1.3.1 Evaporative cooling

In the final stages of realizing BEC, a magnetic trap is used to confine the laser cooled atoms,

which are then transferred to an optical dipole trap. In these traps, lower temperatures can

be reached with evaporative cooling. With sufficient initial atom count and density, critical-

ity is reached by allowing atoms with more kinetic energy to escape the trap.

After the optical molasses phase, the magnetic trap is turned on and ramped to around

200 G/cm, which requires a current at 32 A. This is much higher than the MOT requires,

so a different set of water-cooled coils are used for the magnetic trap. The field is snapped

on at 70 G/cm in the vertical direction, which matches the size of the atom cloud. The

field is ramped to 200 G/cm over 200 ms. Forgoing the ramp to a high gradient would

result in significant heating because the trapping region is too small. Ramping the trap to a

tight confinement does result in adiabatic heating, but the trap shape greatly increases the

density.

In a magnetic field, the potential of a dipole is

U = −µ ·B (1.30)

From this potential the magnetic force can be found:

F = µl∇B (1.31)

where µl is the projection of the magnetic moment onto the direction of the field. At

this stage, the atomic spin becomes relevant. Only one of the three spin states, MF = 1,

experiences confinement. In principle, this eliminates 1/3 of the atoms trapped in the MOT

in order to achieve colder temperatures, but experimental figures show fraction closer to 1/2

in the trapped state.
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Figure 1.6: The rf sweep forces hotter atoms located higher in the trap to spin-flip and escape
the trap. Upon rethermalization, the cloud has higher density and lower temperature.

The quadrupole magnetic coils produce a linear potential near the trap center with

dB

dx
x̂ =

dB

dy
ŷ = −1

2

dB

dz
ẑ (1.32)

The factor of 1/2 in the ẑ component originates from Maxwell’s equations, requiring that

∇B = 0. In the quadrupole magnetic trap, sub-Doppler cooling is realized by evaporatively

cooling using an radio-frequency (rf) sweep, which induces a transition between trapped and

untrapped (MF = ±1) Zeeman levels. The atoms in the trap have a Boltzmann distribution,
and hotter atoms in the trapped cloud spend more time at higher energy. Sweeping the rf

“knife” from the top down essentially lowers the trap depth, allowing these hotter atoms

to escape. While the cloud now has fewer atoms, upon rethermalization through elastic

collisions it has lower temperature and higher phase-space density [5].

The shortcoming of the quadrupole trap has to do with the field-zero at the center. While

an atom is in a region of non-zero magnetic field, its spin is well-defined, unlike at the trap

center where B = 0. For a slow atom crossing the trap center, the magnetic moment is

unable to adiabatically follow the sudden change in the magnetic field. As a result, the

atom undergoes Majorana spin-flip, and is no longer trapped. This phenomenon results

in significant losses, especially for colder clouds in which atoms spend more time at lower

potential near the zero-crossing [10].

There are several methods of eliminating Majorana losses in the quadrupole trap. In this

experiment we add an optical dipole trap, which pulls the atoms away from the zero-crossing

so their spin remains well-defined. To transfer atoms to the dipole trap, the quadrupole field

gradient is ramped adibatically down to 30 G/cm over 2 s. This is slightly less than the

gravitational field, allowing the atoms to fall into the dipole trap. The 6.0 W (λ = 1060 nm)
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tightly focused beam is aligned roughly 100 µm below the magnetic zero-crossing.

The combination of the magnetic and dipole trap has an effective potential depicted in

Figure 1.7. For x = y = 0, this is given by

U(z) = µz
dB

dz
− U0 exp

[

−2(z − z0)
2

w2
0

]

+mgz + E0 (1.33)

where U0, w0, and z0 are the trap depth, waist, and offset from the magnetic trap center (at

z = 0) of the dipole beam [10]. The term mgz is the gravitational contribution, and E0 is

the displacement between the trap minimum and the magnetic trap zero.

Figure 1.7: In the magnetic trap (a), evaporative cooling is limited by Majorana losses
because of the cusp at the zero-crossing. Transferring the atoms from the magnetic trap
into the dipole trap is done by ramping the field gradient to 30 G/cm (b) over 2 seconds,
such that it just supports against gravity. After transferring into the dipole trap, further
evaporative cooling is carried out.
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Figure 1.8: Absorption images after 15 ms time-of-flight. (i) and (ii) are thermal clouds, and
(iii) is a BEC. Note the bimodal distribution in (iii), i.e. the presence of both the thermal
halo surrounding the condensed phase. The temperature of the clouds, from left to right,
are 1800 nK, 400 nK, and < 100 nK.

At this stage, the temperature of the cloud of roughly ten billion atoms is on the order

of 10 µK. The final step towards BEC is forced evaporative cooling in the dipole trap. The

principle is the same as the evaporative cooling in the quadrupole trap. By lowering the

depth of the dipole trap, and simultaneously reducing the magnetic field gradient such that

it no longer supports against gravity, atoms with higher energy escape. BEC is reached when

the phase-space density is on the order of 1.

1 ∝ N

(

~ω̄

kBT

)3

(1.34)

For typical trap frequencies on the order of 50 Hz the condensate temperature Tc ≈ 200 nK.

Our apparatus reliably produces BEC of 87Rb with temperatures below 100 nK. The typical

atom count is on the order of 2 × 105 atoms, with densities on the order of 1013 cm−1. To

recap the cooling process:

1. Atoms leaving the effusive oven are slowed by a radiation scattering force in the Zeeman

slower. The atoms are Doppler shifted in order to keep the laser on-resonance with the

laser.

2. Atoms leaving the slower are collected in the MOT, where they are cooled by a radi-

ation scattering force towards the trap center. The magnetic field creates a spatially-

dependent Zeeman shift, such that atoms moving away from the trap center are on-

resonance with the lasers.

3. The MOT coils are turned off and the atoms undergo sub-Doppler cooling in a brief

optical molasses phase, followed by optical depumping into F = 1.
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4. The quadrupole magnetic field is snapped on and adibatically ramped to a tight con-

finement. Evaporative cooling in the magnetic trap is realized by an rf sweep that

expels higher-energy atoms. This process is limited by Majorana losses at the zero-

crossing.

5. Atoms are transferred into the dipole trap by lowering the magnetic field gradient.

Forced evaporation is realized by reducing the intensity of the dipole beam, which low-

ers the trap depth. This process achieves sufficiently high density and low temperature

for Bose-Einstein condensation to occur.

1.3.2 Imaging technique

A key component of the experimental setup is imaging system. In order to image the cloud,

an additional probe laser must be used, shown in Figure 1.9. The cloud is released from the

dipole trap and after a brief period of ballistic expansion of 15 ms the probe laser is pulsed.

This laser is on-resonance with the atoms and is absorbed, effectively destroying the BEC.

An objective lens is positioned a focal length behind the cloud, collimating the unabsorbed

light passing around the cloud. This light is focused into a CCD camera. After the cloud

has dispersed the probe laser is pulsed again. The background is subtracted from the two

images, which are then divided to produce an image of the cloud.

Figure 1.9: Optical diagram of the imaging system. An on-resonant probe beam is pulsed
and the time-of-flight image is collected in a CCD camera. A second image is required to
subtract the background and produce a final image of the cloud.
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The detection of BEC has to do with the characteristic profile of the cloud. A cloud that

has not reached sufficient temperature and density for BEC is still in the thermal regime,

and can therefore be well-fit to a Gaussian distribution. The parameters of this fit provide

information about temperature and density of the thermal cloud. For samples that have

reached the BEC phase transition, Boltzmann statistics no longer apply and the Gaussian

fit fails.

The absorption profile of a BEC has a parabolic distribution near the cloud center, as

predicted by the Thomas-Fermi approximation, in addition to a thermal halo around the

BEC. The best-fit, then, is the sum of the Gaussian distribution and an inverted parabola.

We image the time-of-flight, which is a momentum distribution. The information we can

access for an absorption image is only the density distribution after ballistic expansion for a

known time-of-flight. By finding the width of the Gaussian fit, we can find the thermal speed

distribution of the atoms, i.e. the momentum distribution. We can find the temperature of

the cloud using statistical mechanics. The importance of this distinction will be clear for

absorption images of atoms in an optical lattice, since the momentum distribution is the

reciprocal lattice.
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Chapter 2

Periodic crystal structures

To simulate real crystal structures in optical lattices, we first need to know something about

the crystal structure itself. The following chapter introduces some of the important nomen-

clature from solid state physics, and details the fundamental concepts that will be relevant to

optical lattice physics. The most important concept from solid state physics is the reciprocal

lattice, which is the Fourier transform of the lattice. More often than not, we have access to

information about the reciprocal lattice only, which we can use to extract the nature of the

direct lattice. This chapter roughly follows Kittel’s solid state text [11].

2.1 The crystal lattice and the basis

An ideal crystal is a periodic infinite array of identical groups of atoms. One individual

group is called the basis. Each basis is associated with a mathematical point, and the set of

all these points makes up lattice. In three dimensions, this set is defined by three translation

vectors, a1, a2, a3, such that any integral linear combination defines a translation from one

lattice site to another. I.e. at an arbitrary point r, any other point r′ must be

r = r′ + u1a1 + u2a2 + u3a3 (2.1)

where u1, u2, u3 are integers. The lattice is the set of points r
′ defined in (2.1) for all u1, u2,

u3. The set of all r
′ is contained in {T}, the direct lattice. The translation vectors define the

crystal axes. When the lattice looks identical at each site—when all points have the same

arrangement of nearest neighbors—it is said to be Bravais.

Once the translation vectors are chosen, we can consider all the atoms in the basis. A
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multi-atom basis can be mathematically expressed using the translation vectors:

rj = xja1 + yja2 + zja3 (2.2)

Here, the origin is an arbitrary lattice site, meaning 0 ≤ xj, yj, zj ≤ 1. This is a mathematical

construction, and it is not unique. Often there are multiple convenient choices for the same

structure, but it is usually simpler to minimize the number of atoms in a basis, as long as

the periodicity condition still holds. In other cases, like within the cubic system, there are

more intuitive choices for the basis vectors.

a1

a2

a′1

a′2

(a)

a1

a2

a′1

a′2

(b)

Figure 2.1: A small area of a two-dimensional lattice may be the same for two different
structures. For both (a) and (b) the choice of the basis vectors ai are not unique. While (b)
has a different structure than (a), the basis vectors chosen are the same, only in this case we
must consider a two-atom basis as well.

2.2 Three-dimensional lattices

There are fourteen different lattice types in three dimensions, which fall into one of the seven

systems in Table 2.1. Here, the focus will be on the cubic system, of which there are three

Bravais lattices, viz. simple cubic (sc), face-centered cubic (fcc), and body-centered cubic

(bcc).

The conventional bcc and fcc cells are not primitive for convenience; they contain two

and four lattice points respectively. The origin is chosen to be the corner of a cubic cell. The

second basis lattice point in a bcc in the middle of the cube at 1
2
1
2
1
2
. In the fcc lattice the

additional basis points are halfway up the three adjacent diagonals of the cube at 1
2
1
2
0, 1

2
01
2
,

and 1
2
1
2
0.

The diamond cubic crystal structure is adopted by certain elements in group 14 in their

solid forms. The diamond lattice can be considered a face-centered cubic structure with

a two-atom basis. Each atom in the face-centered cubic structure is associated with an

identical atom up the diagonal at 1
4
1
4
1
4
. Since there are four points in the conventional unit
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System Number of lattices Restrictions

Triclinic 1 a1 6= a2 6= a3
α 6= β 6= γ

Monoclinic 2 a1 6= a2 6= a3
α = γ = 90◦ 6= β

Orthorhombic 4 a1 6= a2 6= a3
α = β = γ = 90◦

Tetragonal 2 a1 = a2 6= a3
α = β = γ = 90◦

Cubic 3 a1 = a2 = a3
α = β = γ = 90◦

Trigonal 1 a1 6= a2 6= a3
α = β = γ < 120◦, 6= 90◦

Hexagonal 1 a1 = a2 6= a3
α = β = 90◦

γ = 120◦

Table 2.1: There are seven types of three-dimensional systems. a1, a2, a3 are the lengths of
the unit vectors. α, β, γ are the angles between the basis vectors, as shown for the triclinic
lattice in Figure 2.2.

Figure 2.2: The lattice vectors for the triclinic lattice. (See Table 2.1.) The coordinate
system is chosen such that a1 points along x̂, and a2 is in the xy plane.
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Figure 2.3: The three Bravais lattices in the cubic system. From left to right: sc, bcc, fcc.

cell of the fcc, the conventional diamond cell must have eight. There is no possible way to

express the diamond lattice as Bravais.

2.3 Reciprocal space

So far we have examined the lattice in real space. In solid state physics it is often advanta-

geous to examine the reciprocal lattice, which lives in momentum space, or reciprocal space.

We can use diffraction techniques to learn about the reciprocal lattice of a crystal, which

is rich with information about the geometry of the direct lattice. For wavelengths on the

order of the inter-planar distance in the crystal structure, the resulting diffraction pattern

obeys Bragg’s law, which states that the constructive interference of light reflecting from

two adjacent planes is given by

2d sin θ = nλ (2.3)

This is a useful tool for analyzing the periodicity of the lattice.

From (2.1) it is clear that the lattice has periodicity. Explicitly, the electron number

density n(r) is invariant under translations along a1, a2, a3 for integer combinations of u1,

u2, u3. This periodicity is of the form n(r+ r′) = n(r). The periodicity of the lattice is ideal

for Fourier analysis techniques. For a one-dimensional lattice with lattice constant a, we can

write n(x) as a Fourier series of plane waves:

n(x) = n0 +
∑

p>0

Cp cos(2πpx/a) + Sp sin(2πpx/a) (2.4)

where p is a positive integer, and Cp and Sp are the Fourier coefficients. In order to ensure
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Figure 2.4: Bragg diffraction occurs for plane waves hitting two adjacent planes in the lattice.
The orange segment of the lower beam path is the extra distance that light travels, which is
2d sin θ.

n(x) has the correct periodicity, we include the factor of 2π/a in the Fourier series.

n(x+ a) = n0 +
∑

p>0

Cp cos(2πpx/a+ 2πp) + Sp sin(2πpx/a+ 2πp)

= n0 +
∑

p>0

Cp cos(2πpx/a) + Sp sin(2πpx/a) (2.5)

The allowed points in the Fourier series of n(x) compose the reciprocal lattice. Note that

the distance between points in reciprocal space is the inverse of the separation in the direct

lattice. The units of the direct lattice are [length], and the units of the reciprocal lattice are

[1/length]. This argument extends to higher dimensions as well. Written in a more compact

exponential form,

n(r) =
∑

G

nG e
iG·r (2.6)

Here, G is the set of translational vectors in k-space that correspond to the allowed trans-

lations in the direct lattice. To maintain the periodicity in both the direct and reciprocal

lattices,

bi · aj = 2πδij (2.7)

where bi and ai are the reciprocal and direct lattice vectors, respectively. The basis vectors

of the reciprocal lattice are constructed from the direct lattice vectors:

b1 =
2π

a

a2 × a3

a1 · a2 × a3

;b2 =
2π

a

a3 × a1

a1 · a2 × a3

;b3 =
2π

a

a1 × a2

a1 · a2 × a3

; (2.8)
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The denominator is simply the volume of the primitive cell. It can also be shown that

the Fourier transform of the reciprocal lattice is the direct lattice. The reciprocal lattice is

mathematically described in the same way as the direct lattice:

G = v1b1 + v2b2 + v3b3 (2.9)

where, again, vi must be integers. Any crystal lattice has two lattices associated with it, and

can be described by either the direct or reciprocal lattice. All points in the reciprocal lattice

are described in Fourier space, which is conveniently also how we describe wavevectors. Any

diffraction technique provides information in momentum space, where the allowed transla-

tions are permitted momentum changes. As it turns out, a diffraction pattern of a crystal is

a map of the crystal’s reciprocal lattice.

Let us derive the reciprocal lattice of the fcc lattice. Recall the primitive translation

vectors for the fcc lattice:

a1 =
a

2
( ŷ + x̂); a2 =

a

2
( x̂+ ẑ); a3 =

a

2
( x̂+ ŷ) (2.10)

Using (2.8) we can find the reciprocal lattice vectors. The volume of the primitive cell is

V = |a1 · a2 × a3| = a3

4
.

b1 =
2π

a
(− x̂+ ŷ + ẑ); b2 =

2π

a
( x̂− ŷ + ẑ); b3 =

2π

a
( x̂+ ŷ − ẑ) (2.11)

Referring back to Table 2.1, these are the basis vectors for the body-centered cubic direct

lattice. This is a critical result, and as a consequence of the inverse Fourier transform, the

reciprocal of the bcc lattice has an fcc geometry.
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Chapter 3

Optical lattice crystallography

Intersecting laser beams interfere with each other and can form stable periodic potentials

that trap neutral atoms. The trapping mechanism is the AC Stark shift, a perturbation

introduced by an oscillating electric field [1]. The interference pattern forms an optical

lattice, in which atoms act as the analog of electrons in real crystal structures.

A Gaussian laser beam, such as the optical dipole trap discussed in Chapter 2, has an

intensity profile

I(r, z) =
2P

πw2(z)
e
−2r2

w2(z) (3.1)

where w(z) = w0

√

1 + (z/zR)2 is the 1/e2 radius, zR = πw2/λ is the Rayleigh length, and

P is the laser power [2]. The maximum intensity I0 = 2P/πw2
0. By superimposing two or

more Gaussian beams, we can realize a periodic optical potential. The simplest case is a

beam retroreflected, which forms a standing wave. This forms a one-dimensional lattice with

a half-wavelength period. The potential of the optical trap for a beam propagating along ẑ

is given by

V (r, z) = −Vlat e−2r
2/w0 sin2(kz) (3.2)

Vlat is the trap depth, and k = 2π/λ is the wavevector. Higher dimensional optical traps are

realized by interfering multiple beams. For two beams arranged orthogonally along x̂ and

ŷ, the superimposed waves create a trapping potential

V (x, y) = −Vlat
[

cos2(kx) + cos2(ky) + 2ǫ1 · ǫ2 cosφ cos(kx) cos(ky)
]

(3.3)

where k is the magnitude of the wavevector, ǫi are the polarizations unit vectors, and φ is the

time phase between the beams. The phases can be stabilized, so cosφ = 1. The third term
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Figure 3.1: 2D lattice potentials formed by two counterpropagating orthogonal beams with
various polarization overlap. For red-detuned light, atoms seek the lighter regions of the
contour plot. From left to right, the angle between ǫ1 and ǫ2 is 0

◦, 30◦, 60◦, and 90◦. In the
last case the polarizations are perfectly orthogonal and the beams are unaffected by each
other. For non-zero angles this potential resembles a square lattice with a two atom basis
[2].

accounts for the interference between the two beams, which is determined by the overlap of

their polarization vectors. If these are not orthogonal the beams interfere with each other,

resulting in checkerboard-like lattices illustrated in Figure 3.1. This has been extended to

three dimensions by adding a retroreflected beam along ẑ [2].

3.1 Bloch waves & Kapitza-Dirac scattering

This section investigates how turning on the optical lattice affects the atoms. This, of

course, occurs once they have reached BEC in the optical dipole trap. One of the important

parameters not yet mentioned is the pulse length of the lattice beams. In this experiment

the pulse lengths are very short; the width of the pulse in momentum space (i.e. its Fourier

width) is larger than the distance between neighboring momentum states [12]. In this regime,

the atoms are treated as stationary, and the lattice potential can be expressed in the form

V (z, t) = −V0f 2(t) sin2(kz) (3.4)

where V0 is the trap depth, and f(t) is shape of the lattice pulse. This can be treated with

the eikonal approximation for partially expanded waves [13]. Given the initial wavefunction

of the system |ψ0〉, the wavefunction shortly after the lattice is turned on is

|ψ〉 = e
−i

~

∫
V (z,t) dt = |ψ0〉 e−iV0τ/~ e−iV0τ cos(2kz)/~ (3.5)
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Figure 3.2: Bessel functions of the first type for N = 0, 2, 4. These can be fitted to the
fractional occupation of the N th eigenstate |2N~k〉.

where τ =
∫

f 2(t) dt is the integral over the pulse length. This result is often expressed in

terms of the Bessel functions of the first kind [14, 12], which are of the form

eiα cosβ =
∞
∑

n=−∞

(i)nJn(α)e
inβ (3.6)

Therefore the wavefunction is written as

|ψ〉 = |ψ0〉 e−iV0τ/2~

∞
∑

n=−∞

(i)nJn

(

V0τ

2~

)

ei2nkz (3.7)

The position space representation of momentum |g, p〉 = N eipz/~ can be used, where N is a

normalization constant. If the initial momentum is naught, the wavefunction becomes

|ψ〉 = e−iV0τ/2~

∞
∑

n=−∞

(i)nJn

(

V0τ

2~

)

|g, 2n~k〉 (3.8)

Therefore the probability of an atom being in the N th energy state (with pN = 2N~k) is

PN = J2
N(V0τ/2~) (3.9)

This result is especially interesting in the context of solid state physics. Bloch’s theorem

restricts the form of the wavefunction of electrons in a crystal lattice, and this result is also

true for atoms in an optical lattice [2]. The solution to Schrödinger equation for a periodic

potential must have the form

ψ(n)
q (z) = eiqx/~ · φ(n)

q (z) (3.10)

28



Here, n is the Bloch band index, q = ~k is the quasi-momentum, and φ
(n)
q is a function

with the same periodicity as the lattice. This means eigenfunctions must be the product

of a plane wave and a periodic function with the same periodicity as the potential. This

result comes from the requirement of invariance under translation, i.e. V (z) = V (z+ a). By

fiat, the periodic term in (3.10) can be expanded as Fourier series over the reciprocal lattice

vectors, G. This result can be found by deriving the central equation.1

A condensate is a plane wave φq(t) with quasi-momentum q. This can be written as a

superposition of Bloch states |n, q〉 by expanding in the Bloch basis:

|ψ0〉 =
∞
∑

n=0

|n, q〉〈n, q|φq〉 (3.11)

Here, 〈n, q|φq〉 = cn,q(0). If an optical lattice is suddenly turned on for a time τ , each

eigenstate evolves with its respective energy, and the condensate wavefunction evolves in

time:

|ψ〉 =
∞
∑

n=0

cn,q(0) e
iEn(q)t/~ |n, q〉 (3.12)

Bloch’s theorem applies only through the duration of the pulse. Once the periodic potential

is turned off, to find the wavefunction we must map the Bloch states back to a plane wave

basis by multiplying by the phase factor

dq(j) =
∞
∑

n=0

cn,q(0) cn,q(j) e
iEn(q)t/~ (3.13)

The wavefunction in a plane wave basis is

|ψτ 〉 =
∞
∑

n=0

dj(q)|φq+2j~k〉 (3.14)

Since the condensate begins at rest, only the even ordered energies are occupied, which is

true for Kapitza-Dirac scattering in (3.8). In other words, the population in the |2j~k〉
eigenstates oscillates with time for Kapitza-Dirac scattering. The momentum change of two

photons comes from the requirement of two beams [12]. Note that this is not the case for

a condensate with non-zero initial momentum because the wavefunction is not symmetric.

In this case, Bragg scattering can occur. For near-resonant light and sufficiently short pulse

1For a rigorous derivation of the wave equation of an electron in a periodic potential see Kittel [11].
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lengths of two or more lattice beams, we see Kapitza-Dirac scattering when we image the

BEC. The time-of-flight imaging is a momentum distribution. Therefore Kapitza-Dirac

scattering contains information about the reciprocal lattice.

3.2 Four-beam optical lattices

Periodic interference patterns with four-beam geometries have been well developed for re-

search relating to optical photonics. The methods for finding a specific structure are well-

known, and the main results are summarized here. The endgame of the mathematical devel-

opment is to determine how a four-beam geometry produces a specific time-of-flight image.

There are many parameters to consider in addition to the orientation of the beams; viz. the

polarizations and intensities of the individual beams.

The analysis of a 3D four-beam geometry becomes overwhelming in any conventional

coordinate system. It is convenient to develop a set of orthonormal triads for each normalized

propagation vector, ki. Following Toader [15], letRi = ki×ẑ,Ui = Ri×ki, andUi×Ri = ki.

If for the chosen cartesian reference frame (x̂, ŷ, ẑ) the beam propagates along ẑ, then by

convention let Ri = x̂. The polarization vector, ǫi, in this beam coordinate system is a

linear combination of Ri and Ui, parameterized by a rotation angle about ki, letting Ui be

the azimuthal origin.

Determining the geometry of the intensity pattern of interfering laser light has been ex-

tensively explored for creating photonic crystals [16, 17]. The approach to optical lattice

geometry is identical, but the existing apparatus turns out to be the limiting factor in realiz-

ing some of these lattices. The wave design for producing any of the fourteen Bravais lattice

geometries can be found with the following approach, beginning with the trapping potential

of four interfering non-coplanar beams. Each of these beams has the same wavelength λ,

and the jth beam produces a plane wave of the form

Ej = Eje
ikj ·rǫj (3.15)

where Ej is the real amplitude, ǫj is the normalized polarization of the wave, and kj is the

normalized wavevector,

kj =
2π

λ
(lj,mj, nj) (3.16)

where lj,mj, nj are projections of the wavevector to a common coordinate system. The
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resulting intensity of the four-beam interference is

I =
4
∑

j=1

E2
j + 2

∑

i<j

EiEjǫij cos[(ki − kj) · r] (3.17)

where ǫij = |ǫi · ǫj|. We need only examine the interaction of three arbitrarily chosen

cross-terms from (3.17), as the other interactions are inherently determined by the chosen

interactions. From the interactions between the first beam E1 and the other three beams,

the interference pattern has maxima when

cos[(k1 − k2) · r] = cos(k1 − k3) · r = cos(k1 − k4) · r = 1 (3.18)

For simplicity, consider the first term in (3.18). Using (3.16) for the wavevector, the argument

of the cosine is

(k1 − k2) · r =
2π

λ
[(l1 − l2) x̂+ (m1 −m2) ŷ + (n1 − n2) ẑ] · r (3.19)

Let l12 = l1 − l2, and similarly for m and n. Since the cosine is required to equal 1, the

argument must be 2πp, where p is an integer.

2π

λ
[l12 x+m12 y + n12 z] = 2πp

l12 x+m12 y + n12 z = pλ (3.20)

The same is true for the second and third terms in (3.18), and these are a system of equations:

l12x+m12y + n12z = p1λ,

l13x+m13y + n13z = p2λ,

l14x+m14y + n14z = p3λ (3.21)

Note that the integers need not be the same for this condition to be true, so each is given an

index, and pi = 0,±1,±2, ... Cramer’s rule is used to find x, y, z. This technique expresses
the solution by replacing one of the columns in the determinant of the coefficient matrix

with the vector on the right, (p1, p2, p3). This is true for an arbitrary number of unknowns,
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as long as the solution is unique.
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(3.22)

This solution determines the locations of maximum interference between any four laser

beams. Put in terms of an optical lattice, this determines the locations at which atoms

will be trapped for red-detuned light. Changing pj in each equation in (3.21) by 1, then,

determines a translation from one optical lattice site to another. Hence, this solution defines

the basis of the optical lattice. From (3.22), the basis vectors are determined:
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This is the general solution for the interference of four plane waves, from which we can

learn a few things about the nature of the optical lattice. The basis vectors are determined

only by the geometry of the four wave vectors and their wavelength. Consequently, when we

are after structures with multi-atom bases, we should find the nature of the basis is irrelevant

to the beam geometry. For example, the geometry of the face-centered cubic optical lattice

and the diamond lattice turn out to be identical, only they require different polarizations

and power ratios to form the correct basis.

Using this result we can develop the optical lattice geometry of a selection of crystal

structures discussed in Chapter 3. In principle, the beam geometry for any of the four-

teen Bravais lattices in Table 2.1 can be determined, as demonstrated by Cai [16]. Here we

summarize some of the results from these simulations, namely the cubic system. While the
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Table 3.1

k1 k2 k3 k4

sc (1, 1, 1) (-1, 1, 1) (1, -1, 1) (1, 1, -1)

fcc (3, 3, 3) (1, 1, 5) (5, 1, 1) (1, 5, 1)

bcc (1, 1, 1) (1, -1, -1) (-1, 1, -1) (-1, -1, 1)

diamond (0, -2, -1) (2, 0, 1) (0, 2, -1) (-2, 0, 1)
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Figure 3.3: Left: an ideal cubic diamond crystal. This has the same geometry as the fcc
lattice, but with a two atom basis. The second atom in the diamond basis is represented by
a green lattice site here. Right: a computer model of the diamond optical lattice generated
by a four-beam interference pattern. The mathematica code can be found in Appendix A.

mathematical calculations are not carried out here, the results are confirmed by simulating

the intensity pattern in the Appendix. By working backwards from ∆ in (3.22), the wavevec-

tors of each beam, k1,k2,k3,k4, are found. The four wavevectors for the cubic system are

tabulated in Table 3.1.

The Bravais lattice vectors are determined only by the geometric relationship of the four

laser beams. The beam polarizations and amplitudes determine the basis of the optical

lattice [18]. Optimizing these beam parameters has to do with reaching uniform contrast,

i.e. the contribution of each beam is the same as the other three. This ensures the lattice

will truly be a four-beam lattice. To optimize the amplitudes, the ratio of each pair of beams

must contribute equally to the contrast. For polarizations, the orientations are optimized to

maximize the contrast.
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The four-beam geometry for the cubic diamond lattice is found following Toader [15].

The calculations for polarization and amplitude optimization are confirmed by generating

a contour plot of the four-beam geometry, shown in Figure 3.3. The optimized amplitudes

for the beam geometry listed in Table 3.1 are {E1, E2, E3, E4} = {A,B,B,B} where A/B =

1/
√
17 . The polarizations are parameterized by a rotation of Ui about ki. For the diamond

lattice these are {θ1, θ2, θ3, θ4} = {350.4◦, 244.3◦, 105.7◦, 16.1◦}.2

2This analysis is a summary of the results of Cai [16] and Toader [15]. These approaches are surprisingly
different, especially with respect to distinguishing between the direct and reciprocal lattices. Since the
diamond is an fcc lattice with a two atom basis, we expect the diamond beam geometry to be the same as
the fcc lattice; however, it is instead identical to the bcc beam geometry.
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Chapter 4

Kapitza-Dirac scattering in a

multi-dimensional optical lattice

A majority of the experimental work done for this project was the construction of the optical

apparatus for the lattice beams. A four-beam optical lattice is realized by an apparatus that

splits one beam to four. The incoming beam is produced by a titanium sapphire laser.

Ideally, this apparatus would be constructed to produce each beam with stable intensity,

and a precisely known linear polarization. In addition, we would like to be able to have

active control over these parameters. This thesis sacrifices some of these precise controls for

more practical solutions. After a summary of the relevant optics background, this chapter

includes an overview of optical apparatus and some of the troubleshooting of the experimental

implementation. In conclusion, some scattering images of multi-dimensional lattices are

included.

4.1 One-to-four optical apparatus

The source of the lattice beams is a SolsTiS titanium sapphire (Ti:sapph) laser, which is

a widely tunable, continuous wave narrow line width laser. The typical wavelength range

available with the SolsTiS is roughly 670 nm to >1000 nm. The maximum output power is

5.6 Watts at 780 nm. Various optical elements are added to the sealed laser cavity to limit

the number of oscillating cavity modes. The mechanical design of the laser ensures relatively

high stability, but additional electronic servo locking systems reduce the laser rms linewidth

to < 50 kHz. These elements, viz. a birefringent filter (BFR), a locking inter-cavity étalon,

and cavity length PZT.
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The laser wavelength can be tuned by rotating the BFR, which is used only for coarse

adjustments. Extremely narrow linewidth is realized by adjusting the inter-cavity thin étalon

spacing. Typically the output is single mode, but to eliminate any possibility of mode

hopping the étalon has electronic servo locking, which locks to the nearest longitudinal mode.

Once this is locked, even finer control over the cavity length is achieved with a long-throw

PZT-mounted mirror. The narrowest possible linewidth is realized by a high stability, high

finesse, reference cavity, to which the Ti:sapph is locked. These elements are responsible for

the sub-50 kHz laser linewidth. All laser elements are controlled by computer via Ethernet

connection. This, in principle, enables us to manipulate the wavelength of the Ti:sapph

remotely. With finesse of this caliber, we are able to tune the wavelength of the lattice

beams to within one ten-thousandth of a nanometer. This precision is extremely important

when installing the lattice beams at the experiment, as described later in this chapter.

About 30 mW of Ti:sapph power is coupled to a polarization maintaining fiber and

delivered to the experiment, where it is collimated and split four ways. The output power is

typically 20 mW, which is more than adequate. The input power is controlled by an acousto-

optic modulator. A zero-order one-half wave plate controls the polarization orientation

such that the output polarization does not drift significantly, as this causes massive power

fluctuations in the four lattice beams at the experiment.

The collimated Ti:sapph beam (spot size roughly 1 mm) moves through a series of po-

larizing beam splitters and four beam paths are focused into individual fibers sent to the

experiment. The intensity ratio of the beamsplitters are determined by zero-order half-wave

plates preceding each cube. Intensity control is passively achieved for three lattice beams,

and the intensity of the fourth special beam is set up for potential servo control, described

later on in this section. The optical diagram is shown in Figure 4.1.

Before coupling, each beam passes through a zero-order half-wave plate, which is mounted

on a rotation stage cage mount. This allows for passive control over the polarization before

it is coupled. The beam is then focused into the fiber launcher with an aspherical lens. The

ideal focal length is found using

f =
πD(MFD)

4λ
(4.1)

where D is the beam diameter, and MFD is the mode field diameter of the fiber. (MFD =

4.9µm at 780 nm.) The closest commercially available focal length is 7.50 mm. The fiber

launcher is mounted in a z-translation stage cage mount to optimize the distance from the

aspherical lens. In this setup, any x, y adjustments are made with the mirror mounts alone,

which speeds up the coupling process. The coupling efficiency for all beams is well over 50%,
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Figure 4.1: A simplified diagram of the optical apparatus. Light from the Ti:sapph input
fiber (bottom left) is collimated and split four-ways to be sent to the experiment. All λ/2
wave plates are mounted on rotation stages such that the light transmitted through each
PBS can be varied. Beam I is the “special” beam, which is set up to support intensity servo
control by sending negative feedback to the AOM with a pick-off optic and a high-speed
photodetector. Not included in this diagram is the focusing and fiber coupling apparatus for
each of the four beams, which is shown in Figure 4.2.

which is more than adequate for this type of experiment.

The beams are focused into polarization maintaining (PM) fibers. These have stress

birefringence that forces light polarized along the orthogonal axes of the fiber to travel at

different speeds. The output polarization is determined by how much light is projected onto

each axis. The next section outlines polarization stabilization techniques, but “polarization

maintaining” fiber is an extremely misleading title, as this is one of the biggest experimental

challenges here.

On the output of the fiber the beam is collimated and sent to the experiment. The

collimating aspherical lens has a slightly shorter focal length (f = 6.44 mm) than the coupling

lens to increase the spot size to roughly 1.6 mm. The fiber launcher and collimating lens

are mounted in an adjustable-length 1/2 inch lens tube, attached to a threaded kinematic

mirror mount, as shown in Figure 4.3. The mount can be translated along the horizontal

or vertical direction once the mount is roughly in place. The adjustable-length lens tube is

intended to control the angular orientation of the fiber launcher, which should—in principle—

provide mechanical control over output polarization. The collimation apparatus in Figure

4.3 is mounted on 1/2 inch post which provides tip-tilt control for coarse alignment. This is

mounted to a 16 inch post which is clamped to the optical table.
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Figure 4.2: A rendering of the cage-mounted fiber coupling apparatus. From front to back:
a zero-order half-wave plate mounted in a rotation stage; an aspherical lens of focal length
7.5 mm mounted in an adapter and cage plate; the fiber launcher mounted in a z-translation
stage. Not shown is an additional cage plate which is needed to mount the cage system to
the optical breadboard. This is a 30 mm cage system suitable for 1 inch optics, and the
length of the cage rods is 4 inches. Source: Thorlabs, Inc.

4.2 Polarization maintenance

The crucial parameters of this experiment are the intensities and polarizations of each beam.

Specifically, the ratios of the four individual beam intensities, and the polarization angles

with respect to Ui. One of the tricky experimental limitations is ensuring the polarization

of each beam hits the “good” axis of the fiber. If the polarization is not aligned with this

axis when coupled into a polarization maintaining (PM) fiber, the output polarization will

rotate. This is obviously an issue given the specificity of the polarization angles found in the

previous chapter.

Rectifying this process is not simple. This phenomenon arrises in two different ways.

First, the fiber delivering the Ti:sapph light to the one-to-four setup must have the correct

orientation. The second is the polarization orientations of the beams at the experiment itself.

A PM fiber induces a difference in the speed of light along the perpendicular axes (the fast

axis and the slow axis). If the output polarization rotates upon reaching the first PBS, the

transmission ratio will fluctuate and the power along each path will change. For a perfectly
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Figure 4.3: 3D rendering of the collimation apparatus. Inside the adjustable-length lens
tube, the fiber launcher and the 0.5 inch lens adapter are held fixed a focal length apart.
The lens tube is free to rotate about the threaded mirror mount, and can be fixed in place
by the external retaining ring. Source: Thorlabs, Inc.

linearly polarized beam an angle θ from the fiber launcher’s slow axis, the output power is

limited by the extinction ratio:

ER ≤ 10 log10(tan
2 θ) (4.2)

In order to achieve reasonable extinction ratios—above 20 dB—the misalignment can be

no more than 6◦. For extinction ratios above 30 dB it must be within 1.8◦ [19]. The

extinction ratio describes the loss through the fiber, but this accompanies a rotating output

polarization that causes large fluctuations between transmission and reflection in a PBS. So

polarization stability to even within ±1◦ is a tall order without any automated servo control.
At best, the PM fibers limit the polarization output from wandering more than ±6◦, so the
20 dB extinction ratio is within reach. This problem is rectified by adding a half-wave plate

preceding the focusing lens. The PM fiber is truly “polarization maintaining” when the

half-wave plate changes the polarization such that all light travels along the slow axis of the

fiber. The heart of this challenge is determining whether the input polarization is aligned

within such a small range of the slow axis.
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An additional polarization-related issue arrises at the experiment. The polarization can

be set to any angle by adding a half-wave plate, but in this experiment we attempt to

achieve this mechanically. This is done by allowing the fiber launcher and collimating lens to

rotate together, such that the orientation of the slow axis is free to rotate around k without

distorting the spot size. The lens tube containing the collimation optics is fixed to a mount

with a washer. Unfortunately, this all becomes a moot point if the orientation of the wave

plate prior to the focusing lens is not at the correct angle, as this results in somewhat random

fluctuations in the output polarization.

Effectively solving this problem involves complicated servo control that monitors the

extinction ratio and the orientation of the wave plate. An efficient method for finding the

good orientation of the wave plate involves monitoring the birefringence of the output beam.

In order to optimize the angle the output light must be collimated and pass through a

polarizing optic (we use a PBS), and the transmitted power is measured and the signal is

displayed on an oscilloscope. At a random polarization angle the signal fluctuates over a

period on the order of tens of seconds, depending on the length of the fiber. Removing the

polarizing optic confirms the fluctuations are a result of changes in the output polarization

and not just background fluctuations, e.g. drift in the Ti:sapph power, poor coupling, etc.

With the optic back in place, the output signal is monitored while the fiber is perturbed.

We have found the most effective method is to coil the fiber and heat a section of it by

holding it in hand. This “squeeze test” will result in a remarkably clean periodic oscillation

in the output signal, which is caused by the built-in birefringence in the PM fiber. The

optimal orientation of the input half-wave plate is found iteratively using this method. At

the optimal angle the input light travels along only the slow axis of the fiber and the squeeze

test has minimal effect.

While this method is effective to a good degree, it is neither time-efficient nor can it reach

the precision of automated processes. If highly determined polarizations are experimentally

required, these are certainly worth-while investments. With larger time allowance, this thesis

would explore some type of servo control for the beam polarizations. The most viable solution

would be managing the polarization after it is collimated at the experiment using a series of

polarizers and negative feedback to manage the transmission power. This approach would

abandon the use of overly ambitious PM fibers. The main limitation in this case would

be space; adding more optical elements after collimation can be bulky, and airspace at the

experiment is valuable.
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4.3 Experimental synopsis

The geometry of the beam orientations is limited by preexisting lab infrastructure, making

the realization of any specific lattice geometry unrealistic. Optical access to the science

chamber is restricted to a range of angles below roughly 20◦ from horizontal. Even so, the

four-beam geometry roughly resembles the fcc geometry.

Aligning the lattice is done in three stages. The first is by estimating the alignment such

that it is roughly positioned at the center of the chamber, which in this experiment conve-

niently corresponds to the location of the MOT. The Ti:sapph is tuned so it is on-resonance

with the F = 2 → F ′ = 3 transition (λ = 780.2462 nm). We can determine whether the

lattice beam is positioned correctly by fine tuning the mirror mount and monitoring pertur-

bations in the image of the MOT. Slight perturbations can be seen if the laser is slightly

detuned, and if the Ti:sapph is on-resonance the MOT will be completely destroyed by the

lattice beam.

After a beam is aligned such that it destroys a MOT, we switch to a MOT generated

with the magnetic trap coils. The MOT coils can provide a magnetic field of only 15 G/cm,

so next we can repeat this procedure for a MOT with tighter confinement of 200 G/cm,

ramped up from 75 G/cm. Aligning the beams with the center of the tightly-confined MOT

should ensure the beam will be aligned with the location of the condensate to within 100

µm, the distance the atoms are displaced when they are loaded into the dipole trap. Since

the spot size of each lattice beam is ∼ 1.6 mm, we expect this to be trivial once the beam

is aligned with the tightly confined MOT.

The next step is pulsing the lattice once the cloud becomes critical in the dipole trap.

At this stage the light is no longer on-resonance, as the atoms have been depumped to

F = 1 before the loading into the magnetic trap. By trial-and-error the beam orientation is

finely adjusted such that perturbations in the BEC are maximized. (For frequencies close to

resonance this should result in smaller clouds.) Without systematic control over the power

ratios of the beams, these are passively tuned by adjusting half-wave plates in the one-to-four

apparatus such that the output power of each beam is roughly equal. Each beam has 5 – 10

mW.

Once the beams are aligned with the BEC we can start looking for scattering in the TOF

by pulsing multiple beams. To lower the scattering rate the Ti:sapph is detuned further to

780.260 nm. To start, we optimize the pulse length for each pair of beams. These produce

two-beam one-dimensional optical lattices, so the BEC splits into multiple collinear clouds

along ki − kj in momentum space. At an average output power of 6 mW in each beam,
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Figure 4.4: Kapitza-Dirac scattering in a two beam optical lattice pulsed for 1 µs. Both
beams had 2 mW of power.

the pulse lengths needed to see well-populated higher order clouds is 2 µs. There is a clear

lower limit to experimentally possible pulse durations at roughly 1 µs, which results from a

sluggish response in the AOM.1 This is an easy issue to work around by detuning further

from resonance. This lowers the scattering rate so the pulse duration can be longer. In this

one-dimensional case, the separation between lattice orders 2vrect, or

d =
2 ~k tTOF

m
(4.3)

where m is the mass of rubidium. Typical TOF lengths tTOF = 15 ms. Since the imaging

axis is not orthogonal to the lattice, we see the projection of this separation, d cos θ.

Adding a third lattice beam increases the complexity of the TOF image. For three beams,

the BEC splits into coplanar clouds. The orientation of the plane is determined by two of the

three ki − kj combinations, as discussed in Chapter 4. Again, the pulse length is optimized

around 2 µs to see well-populated higher orders.

Figure 4.5: Kapitza-Dirac scattering in a three-beam optical lattice. Two of the three lattice
beams are common to both lattices. Both lattices are pulsed for 1 µs.

1This limit is due to the speed of sound of phonon propagation in the AOM crystal.
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Some absorption images are taken for a four-beam optical lattice, but it is difficult to

interpret a three-dimensional image along only one imaging axis, as shown in Figure 4.6. For

three beams we see a plane projected onto the imaging axis, so some of the image is more

in focus and this is what is interpreted as depth. A cloud expanding in three dimensions

is too complex to fully understand without two or more images of the TOF. These can

be projected in two dimensions and then divided themselves to render a three-dimensional

absorption plot.

Figure 4.6: A four-beam three-dimensional optical lattice pulsed for 1 µs. The cloud is
clearly moving in all directions, making this a difficult image to fully understand.

4.4 Outlook & improvements

At the onset of this thesis, the preliminary goal was to load the BEC into an optical lattice

in the diamond configuration. The first half of the project was mostly computational simula-

tions of interference patterns for various beam geometries. Once the solution for a lattice of

this complexity was found, it became clear that this requires precise control over too many

parameters to be experimentally realistic. We revised the experimental goal to seeing some

arbitrary four-beam optical lattice, with some type of control over the beam polarization

states.

Once the one-to-four optical apparatus was completed and we began aligning the lattice

beams with the experiment we ran into problems with on-resonant light leaking through

the zeroth order of an AOM from an atom interferometry experiment. This had not been

a problem until the Ti:sapph was tuned to resonance to align our lattice beams with the

MOT. The BEC machine would stop producing condensates after working well for the first

half hour of operation. This symptom seemed like it was related to the quadrupole trap,

potentially as a result of some unwanted electrical connections. Fortunately, the root of the

problem was discovered and resolved in time to spend a few days loading the optical lattice;
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however, we were not able to observe the effect of the polarization states. Especially after

the effort to stabilize polarizations, this is an interesting parameter that would be worth

investigating.

Another obvious next step is working towards understanding the real-space geometry of

this optical lattice. An ideal follow up project would be simulating the beam geometry to

get an understanding of the scattering images. This requires only passive knowledge of the

lattice beam powers, and a rough estimation of the polarization state. The optical apparatus

is also set up to have active servo control on one of the four lattice beams, though this was

not included in this experiment.2

2The zeroth order must be the coupled beam, as the diffracted orders have a different frequency and will
not work for pulsed scattering.

44



Appendices

45



Appendix A

Diamond cubic lattice

Λ = 1;

k = 4;

xhat = 81, 0, 0<;

yhat = 80, 1, 0<;

zhat = 80, 0, 1<;

r@x_, y_, z_D := 8x, y, z<;

Diamond cubic wavevectors

k0 = Normalize@80, -2, -1 <D;

k1 = Normalize@82, 0, 1<D;

k2 = Normalize@80, 2, -1<D;

k3 = Normalize@8-2, 0, 1<D;

Norm@k0 - k1D �� N

Norm@k0 - k2D �� N

Norm@k0 - k3D �� N

Norm@k1 - k2D �� N

Norm@k1 - k3D �� N

Norm@k2 - k3D �� N

1.54919

1.78885

1.54919

1.54919

1.78885

1.54919
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3D plot of propagation vectors without polarizations. Arrows pointing back-

wards...

ParametricPlot3D@88k1< * u, 8k2< * u, 8k3< * u, 8k4< * u<, 8u, 0, 1<D �. Line ® Arrow

-0.5

0.0

0.5

-0.5

0.0

0.5

-0.4

-0.2

0.0

0.2

0.4

Define k, R, U triads, and a 3D plot confirming orthogonality...

R0 = Normalize@k0�zhatD;

R1 = Normalize@k1�zhatD;

R2 = Normalize@k2�zhatD;

R3 = Normalize@k3�zhatD;

U0 = Normalize@R0�k0D;

U1 = Normalize@R1�k1D;

U2 = Normalize@R2�k2D;

U3 = Normalize@R3�k3D;

ParametricPlot3D@8U2, k2, R2< * u, 8u, 0, .5<D �. Line ® Arrow
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Polarization vectors defined as a rotation from the U vector about k. Angles

found by Toader (see bibliography)...

e0 = RotationMatrix@350.4 Degree, k0D.U0;

e1 = RotationMatrix@244.3 Degree, k1D.U1;

e2 = RotationMatrix@105.7 Degree, k2D.U2;

e3 = RotationMatrix@16.1 Degree, k3D.U3;

Define 4 beams, Etotal, and the Intensity . . .

Beam0@x_, y_, z_, E1_D := E1 Exp@I k k0 . r@x, y, zDD e0

Beam1@x_, y_, z_, E2_D := E2 Exp@I k k1 . r@x, y, zDD e1

Beam2@x_, y_, z_, E3_D := E3 Exp@I k k2 . r@x, y, zDD e2

Beam3@x_, y_, z_, E4_D := E4 Exp@I k k3 . r@x, y, zDD e3

Etot@x_, y_, z_, E1_, E2_, E3_, E4_D :=

Beam0@x, y, z, E1D + Beam1@x, y, z, E2D + Beam2@x, y, z, E3D + Beam3@x, y, z, E4D;

Intensity@x_, y_, z_, E1_, E2_, E3_, E4_D :=

Conjugate@Etot@x, y, z, E1, E2, E3, E4DD.Etot@x, y, z, E1, E2, E3, E4D

Intensity@x, y, z, 1, 1, 1, 1D �� ComplexExpand �� Simplify �� Chop
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-0.000217007 CosB
16 x

5

F + 0.000920631 CosB
16 y

5

F +

1. CosB
8 x - 4 z

5

F
2

+ 0.344188 CosB
8 x - 4 z

5

F CosB
8 y - 4 z

5

F + 1. CosB
8 y - 4 z

5

F
2

+

0.343073 CosB
8 y - 4 z

5

F CosB
4 H2 x + zL

5

F + 1. CosB
4 H2 x + zL

5

F
2

+

1.41447 CosB
8 x - 4 z

5

F CosB
4 H2 y + zL

5

F - 1.41411 CosB
4 H2 x + zL

5

F CosB
4 H2 y + zL

5

F +

1. CosB
4 H2 y + zL

5

F
2

+ 1. SinB
8 x - 4 z

5

F
2

- 0.344188 SinB
8 x - 4 z

5

F SinB
8 y - 4 z

5

F +

1. SinB
8 y - 4 z

5

F
2

+ 0.343073 SinB
8 y - 4 z

5

F SinB
4 H2 x + zL

5

F +

1. SinB
4 H2 x + zL

5

F
2

+ 1.41447 SinB
8 x - 4 z

5

F SinB
4 H2 y + zL

5

F +

1.41411 SinB
4 H2 x + zL

5

F SinB
4 H2 y + zL

5

F + 1. SinB
4 H2 y + zL

5

F
2

% �� N

-0.000217007 Cos@7.15542 xD + 0.000920631 Cos@7.15542 yD + 1. Cos@0.447214 H8. x - 4. zLD2 +
0.344188 Cos@0.447214 H8. x - 4. zLD Cos@0.447214 H8. y - 4. zLD +
1. Cos@0.447214 H8. y - 4. zLD2 + 0.343073 Cos@0.447214 H8. y - 4. zLD Cos@1.78885 H2. x + zLD +
1. Cos@1.78885 H2. x + zLD2 + 1.41447 Cos@0.447214 H8. x - 4. zLD Cos@1.78885 H2. y + zLD -
1.41411 Cos@1.78885 H2. x + zLD Cos@1.78885 H2. y + zLD + 1. Cos@1.78885 H2. y + zLD2 +
1. Sin@0.447214 H8. x - 4. zLD2 - 0.344188 Sin@0.447214 H8. x - 4. zLD Sin@0.447214 H8. y - 4. zLD +
1. Sin@0.447214 H8. y - 4. zLD2 + 0.343073 Sin@0.447214 H8. y - 4. zLD Sin@1.78885 H2. x + zLD +
1. Sin@1.78885 H2. x + zLD2 + 1.41447 Sin@0.447214 H8. x - 4. zLD Sin@1.78885 H2. y + zLD +
1.41411 Sin@1.78885 H2. x + zLD Sin@1.78885 H2. y + zLD + 1. Sin@1.78885 H2. y + zLD2

Some contour plots in the x-y plane...

ContourPlot@Intensity@x, y, .375, 1 � Sqrt@17D, 1, 1, 1D,

8x, -2, 2<, 8y, -2, 2<, Mesh ® Full, ColorFunction ® "GrayTones"D
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graph1 = ContourPlot@Intensity@x, y, 0, 1, 1, 1, 1D,

8x, 0, 3<, 8y, 0, 3<, Mesh ® Full, ColorFunction ® "GrayTones"D;

graph2 = ContourPlot@Intensity@x, y, 1 � 4, 1, 1, 1, 1D, 8x, 0, 3<,

8y, 0, 3<, Mesh ® Full, ColorFunction ® "GrayTones"D;

graph3 = ContourPlot@Intensity@x, y, 1 � 2, 1, 1, 1, 1D, 8x, 0, 3<,

8y, 0, 3<, Mesh ® Full, ColorFunction ® "GrayTones"D;

graph4 = ContourPlot@Intensity@x, y, 3 � 4, 1, 1, 1, 1D, 8x, 0, 3<,

8y, 0, 3<, Mesh ® Full, ColorFunction ® "GrayTones"D;

GraphicsGrid@88graph1, graph2<, 8graph3, graph4<<D
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g = 1.7;

3D contour plot of interference pattern. The table speeds up the calculation

by a factor of 10. Contour size chosen for the clearest visual

the diamond lattice geometry.

ack = Table@Intensity@xi, yi, zi, 1 � Sqrt@17D, 1, 1, 1D,

8xi, -g, g, .1<, 8yi, -g, g, .1<, 8zi, -g, g, .1<D;

ListContourPlot3D@ack, Contours ® 82.2<, PlotRange ® 880, 20<, 80, 20<, 88, 30<<D
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Appendix B

Body-centered cubic lattice

Λ = 1;

k = 4;

xhat = 81, 0, 0<;

yhat = 80, 1, 0<;

zhat = 80, 0, 1<;

r@x_, y_, z_D := 8x, y, z<;

Body-centered cubic wavevectors & polarizations...

k1 = 81, 1, 1<;

k2 = 81, -1, -1<;

k3 = 8-1, 1, -1<;

k4 = 8-1, -1, 1<;

e1 = 8.816497, -.408248, -.408248<;

e2 = 8.816497, .408248, .408248<;

e3 = 80, .707107, .707107<;

e4 = e3;

3D plot of propagation vectors without polarizations. Arrows pointing back-

wards...

ParametricPlot3D@88k1< * u, 8k2< * u, 8k3< * u, 8k4< * u<, 8u, 0, 1<D �. Line ® Arrow
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k1 = Normalize@k1D;

k2 = Normalize@k2D;

k3 = Normalize@k3D;

k4 = Normalize@k4D;
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Define field for each of the four beams, the total E field, and the intensity...

Beam1@x_, y_, z_, E1_D := E1 Exp@I k k1 . r@x, y, zDD e1

Beam2@x_, y_, z_, E2_D := E2 Exp@I k k2 . r@x, y, zDD e2

Beam3@x_, y_, z_, E3_D := E3 Exp@I k k3 . r@x, y, zDD e3

Beam4@x_, y_, z_, E4_D := E4 Exp@I k k4 . r@x, y, zDD e4

Etot@x_, y_, z_, E1_, E2_, E3_, E4_D :=

Beam1@x, y, z, E1D + Beam2@x, y, z, E2D + Beam3@x, y, z, E3D + Beam4@x, y, z, E4D;

Intensity@x_, y_, z_, E1_, E2_, E3_, E4_D :=

Conjugate@Etot@x, y, z, E1, E2, E3, E4DD.Etot@x, y, z, E1, E2, E3, E4D

Intensity@x, y, z, 1, 1, 1, 1D �� ComplexExpand �� Simplify �� Chop
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0.634075 Cos@3.0792 Hx - 1. yLD + 0.599128 Cos@3.0792 Hx - 1. zLD + 0.762418 Cos@3.0792 Hy - 1. zLD +
0.9998 Cos@2.3094 Hx + y + zLD2 + 1.49691 Cos@2.3094 Hx + y + zLD Cos@0.7698 H5. x + y + zLD +
0.907213 Cos@0.7698 H5. x + y + zLD2 + 0.634075 Cos@1.5396 H3. x + 3. y + zLD +
1.85778 Cos@2.3094 Hx + y + zLD Cos@0.7698 Hx + 5. y + zLD + 1.00016 Cos@0.7698 Hx + 5. y + zLD2 +
0.599128 Cos@1.5396 H3. x + y + 3. zLD + 1.85817 Cos@2.3094 Hx + y + zLD Cos@0.7698 Hx + y + 5. zLD +
1.00001 Cos@0.7698 Hx + y + 5. zLD2 + 0.762418 Cos@1.5396 Hx + 3. Hy + zLLD +
0.9998 Sin@2.3094 Hx + y + zLD2 + 1.49691 Sin@2.3094 Hx + y + zLD Sin@0.7698 H5. x + y + zLD +
0.907213 Sin@0.7698 H5. x + y + zLD2 + 1.85778 Sin@2.3094 Hx + y + zLD Sin@0.7698 Hx + 5. y + zLD +
1.26815 Sin@0.7698 H5. x + y + zLD Sin@0.7698 Hx + 5. y + zLD +
1.00016 Sin@0.7698 Hx + 5. y + zLD2 + 1.85817 Sin@2.3094 Hx + y + zLD Sin@0.7698 Hx + y + 5. zLD +
1.19826 Sin@0.7698 H5. x + y + zLD Sin@0.7698 Hx + y + 5. zLD +
1.52484 Sin@0.7698 Hx + 5. y + zLD Sin@0.7698 Hx + y + 5. zLD + 1.00001 Sin@0.7698 Hx + y + 5. zLD2

3D contour plot of the interference pattern. The amplitudes are not optimized,

resulting in distorted contours...

g = 2;

ack =

Table@Intensity@xi, yi, zi, 1, 2, 1, 2D, 8xi, -g, g, .1<, 8yi, -g, g, .1<, 8zi, -g, g, .1<D;

ListContourPlot3D@ack, Contours ® 814<, PlotRange ® 880, 20<, 80, 20<, 80, 20<<D

ListContourPlot3D@ack, Contours ® 822<, PlotRange ® 880, 20<, 80, 20<, 80, 20<<D
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