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Executive Summary  

 

Fisheries managers are often concerned with fish movements. Gathering information on 

how far they move, and when/where they move is important to understand fish life 

history and how they react to their environment (Thorstad et al. 2013). Examples of 

movements include, migration for reproductive events (Reishel and Bjorn 2003) and 

movements in response to environmental perturbations (Cooke et al. 2004). Also 

when/where and how far they move determines the home area they occupy which is a 

useful parameter for understanding population dynamics (Mulfeld and Marotz 2005). 

Telemetry (a method of remotely measuring movements of organisms) allows us to track 

fish movements. Equipment used in telemetry includes transmitters (tags) and receivers. 

Tags emit unique signals that are recorded by receivers.  Tags and receivers can be either 

acoustic or radio. Acoustic telemetry tags emit an acoustic (or sonic signal) that travels 

through the water and is decoded by a submersible receiver. Radio telemetry tags emit a 

radio signal that exits the water and is decoded by a receiver on land (Thorstad et al. 

2013). Often, multiple receivers are placed in a study area forming an array to passively 

detect tagged fish. The data collected from receivers is used to show timing of 

movements, distances fish moved, and areas of use by tagged fish.  

The components of this thesis are related to evaluating methodologies associated with 

understanding fish movements. Specific chapters are as follows: 1) tag implantation, 2) 

evaluation of an acoustic receiver array and 3) acoustic telemetry investigations of 

Redband Rainbow Trout (Oncorhynchus mykiss gairdneri), hereafter referred to as 
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Redband Trout in Lake Roosevelt, Washington. Each component of this thesis has its 

own associated chapter. 

Minor surgical procedures requiring anesthesia are used to implant acoustic and radio 

tags. Anesthesia is often achieved with chemicals. Chemical anesthetics have been 

extensively studied but there are restrictions (such as mandatory holding times of 21 days 

for release of fish anesthetized with the chemical Tricaine Methanesulfonate) on their use 

and time for fish to recover from anesthesia is variable, usually taking several minutes. 

(Hudson et al. 2011).  An alternative to chemical anesthetics is the use of non-pulsed 

direct current known as Low-Voltage Electro Anesthesia (LVEA). This method offers no 

restrictions and the fish recover quickly, usually within a matter of seconds or 

instantaneously as soon as the current is turned off (Hudson et al. 2011). However, this 

method has not been extensively studied on commonly tagged fish species (Rous et al. 

2015).   

In Chapter 1 I describe the methods used to collect various species of fish and expose 

them to LVEA and factors that influence voltage gradient required for anesthesia. I 

compared voltage gradients (voltage applied/spacing between electrodes) necessary to 

anesthetize fish by size among 11 species collected, within species and by scale type 

(ctenoid or comb shaped scales and cycloid or round scales). In addition, I compared 

water conductivity (a measure of water’s ability to carry an electric charge in 

µSiemens/cm) when different scaled fish were collected. 

Multiple regression indicated that scale type, fish size, species, and water conductivity 

explained 62% of the variation in the voltage gradient to anesthetize fish. Comparison 

between ctenoid and cycloid scaled fish indicated ctenoid scaled fish had higher (Kruskal 
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Wallis chi square = 118, df = 1, p < 0.0001) mean voltage gradient (0.41 V/ cm) than 

cycloid scaled fish (0.19 V/cm). Water conductivity did vary between the locations where 

cycloid scaled fish were collected (average conductivity 136 µS/cm) and when ctenoid 

scaled fish were collected (average conductivity 249 µS/cm).  There appeared to be 

interactions between water conductivity, fish species, and scale type that determined 

voltage gradient necessary to anesthetize fish. With these findings, I propose that 

agencies utilizing LVEA make data available in a repository to further refine a standard 

operating procedure on this method. I also recommend those that use this technique use 

the minimum voltage to anesthetize fish rather than starting with a fixed voltage. For this 

study I successfully anesthetized 280 fish by gradually increasing the voltage from zero 

until the fish rolled over. With this the fish did not dart quickly to one side of the 

apparatus as was seen by starting with a fixed voltage (Walston 2015). 

Evaluation of receiver limitations is required for passive acoustic telemetry studies. This 

is important to determine the effectiveness of an acoustic receiver array in a study area. 

Receivers are typically limited to only detecting the presence of tagged  fish and the 

distance the fish is from the receiver is unknown (Thorstad et al. 2013). It is necessary to 

determine receiver detection range by range testing (Kessel et al. 2014). Understanding 

detection range allows for refined interpretation of tag detections and can be used to 

arrange an array of receivers to better cover the study area (Kessel et al. 2014). 

Chapter 2 is on an evaluation of the acoustic receiver array in Lake Roosevelt and Rufus 

Woods Reservoirs. The array consists of 52 acoustic receivers in the United States 

portion of the Columbia River from 13 km downstream of Grand Coulee Dam in Rufus 

Woods’s Reservoir and upstream over the length of Lake Roosevelt to the Canadian 
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Border. The receivers in the United States are attached to an anchored buoy via a 3 m 

cable. In addition to these receivers there are 23 receivers in the Canadian portion of the 

Columbia River between the international border and the next hydroelectric dam. This 

array was used for tracking Redband Trout, which is described in detail in Chapter 3.  

This chapter details procedures to evaluate array receivers in the United States which 

were 1) stationary range testing, 2) tracks past receivers from tagged Redband Trout, and 

3) float range testing.     

The first procedure used to evaluate the array was stationary range testing.  This 

procedure was accomplished by placing a tag at three known distances from the receiver 

in four cardinal directions (N, E, S, and W) and at different depths (5m above the bottom, 

middle water column, and 5 m below the surface). Maximum distance away from the 

receiver was 500 m from previous range testing that demonstrated a sharp drop off in 

detection at distances greater than 500 m (Stroud et al. 2011). Tags were placed at three 

distances (in one third of 500 m increments) in each direction around receivers to 

understand how detection ability of receivers decreases with distance. The exception to 

this was directions where distance between the shoreline and receiver that was less than 

500 m. In these directions, I divided the distance between receiver and shore by three. 

Tags were held at each depth in each direction around the receiver. Tags were at each of 

these depths long enough for the tag to transmit 20 times. The number of detections on 

the receiver divided by tag transmissions was the detection frequency.  Detection 

frequency was incorporated into a general linear mixed model (GLMM) with distance, 

direction, and depth to produce detection range maps. Maximum detection range was the 

distance that five percent of transmissions were detected (or one out of 20 transmissions).  
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Comparisons of detection frequency were made between 10 receivers in three regions 

(lower, middle and upper) of the reservoir and depth class. These comparisons were made 

due to previous studies that noted detection issues of fish tagged in the upper reservoir. 

Comparisons between regions were further subdivided into distance groups (<165m, 165- 

330m, and 330 – 500m from receivers). The next comparisons were made by depth 

within each region by distance group. These comparisons were made since comparisons 

by depth and region among all distances was highly variable and not statistically 

different.   

Detection ability was variable across receivers in the array and by region. The effects plot 

from the GLMM indicated detection frequency was 75% at 100 m, 50 % at 300 m, and 

25 % at 500 m from receivers across the entire array.  Comparisons among regions in 

each of the distance groups showed the upper reservoir had lower detection than the 

lower reservoir at distances of 165-330 m from receivers (Kruskal Wallis Chi square = 

6.53, df= 2, p = 0.03). Depth only impacted detection in the middle reservoir (Kruskal 

Wallis chi square = 12.24, df = 2, p <0.01). Of 43 receivers, eight had a maximum 

detection range across the reservoir where they were situated.   

The second procedure used was an evaluation of receivers with telemetry data from 

tagged Redband Trout. This was accomplished by determining tracks of tagged fish. A 

track was a movement that went by at least three receivers. Receivers along a track were 

tallied for detections and misses. Receivers were ranked by percent of tracks they 

detected. In addition the proportion of fish detected by receivers was compared to 

distance from the edge of the maximum detection range to the opposite shore for 

receivers. 
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Receivers in the array appeared to effectively detect fish despite large spaces outside of 

detection range. Most receivers (26 of 43) detected more than 70% of the tracks that went 

by them. Distance from edge of detection range to opposite shoreline for receivers ranged 

from 30 to 2,000 m. Tagged fish tracks showed no pattern between distance outside 

detection range of receivers and percent of fish detected indicating fish preferentially 

move along one shoreline in some locations where receivers are placed. For example, 

there was 780 m between the edge of the maximum detection range and shoreline for a 

receiver in the lower reservoir. This receiver detected 94% (78 of 83) tracks that went 

past it. This would indicate that few fish traveled past this receiver in the area outside its 

detection range.   

The last procedure was float range testing to evaluate a gate (receivers located across 

from each other to overlap in detection range) located in swift water downstream of 

Grand Coulee Dam in Rufus Woods Reservoir. Stationary range testing could not be 

performed here due to the difficulty of staying in place at this location. This gate 

consisted of two receivers across from each other downstream of Grand Coulee Dam. 

The receivers were placed here to detect entrainment out of Lake Roosevelt and were 

placed here after float testing conducted by Stroud et al. (2011) on a receiver upstream of 

the current gate. Stroud et al. (2011) float tested this receiver by drifting a random delay 

1-3 minute random delay tag from 250 m upstream of receiver and 250 m downstream 

for a total of 75 drifts on 9 April 2011. The receiver detected this tag on 27 of 75 drifts 

(36%).  

 Rufus Woods gate receivers were evaluated by drifting a tag between them and between 

receivers and the opposite bank. In 2015 I used a tag with a 10 second time interval 
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between transmissions to determine where tags can be detected in relation to the 

receivers. In 2016 a 1-3 minute random delay tag which was the same as tags implanted 

into Redband Trout in Chapter 3 was used to determine how well a tagged fish moving 

past these receivers could be detected. 

Orientation of the receivers in the gate in Rufus Woods Reservoir likely played a role in 

the results obtained in 2015 and 2016. In 2015, the tag was detected on one of nine drifts 

on both receivers. In 2016 the tag was detected on both receivers on all 20 drifts. 

Receiver orientation in 2015 had both receivers 150 m apart and across from each other. 

In 2016 current pushed receiver buoys to different locations with one positioned 

downstream of the other.  During both tests the majority of detections occurred 

downstream of the receivers (22 of 33 in 2015, and 65 of 114 in 2016). This is likely due 

to the current that pushes on these receivers causing them to point downstream from the 

buoys they are attached to. 

Results from 2016 starkly differed from Stroud et al. (2011). In 2016 we conducted a 

total of 20 floats. These floats were initiated 400 m upstream of receivers and ended 400 

m downstream. The tag was detected on both receivers on every drift. This receiver gate 

appears to be effectively acting as a gate. However, tests conducted by Stroud et al. 

(2011) on the single receiver upstream were done in April during times of high flow. The 

2016 test was conducted during a time of low flow in late summer. It would be beneficial 

to test the receiver gate in Rufus Woods during times of high flow to better evaluate its 

effectiveness as a gate. 

Chapter three describes an acoustic telemetry study of Redband Trout in Lake Roosevelt. 

This was the final year of a study that commenced in 2013. A native population of 
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Redband Trout currently reside in Lake Roosevelt and uses tributary streams of the 

reservoir to spawn.   Here I implanted 81 acoustic tags into adult Redband Trout from 

eight tributary streams in 2015 and monitored their movements using the acoustic array I 

range tested in Chapter 2 into 2016. Redband Trout were tagged in the Sanpoil River, 

Blue and Spring Creeks (tributaries of the Spokane River Arm of the reservoir), Wilmont, 

Alder, and Hunters Creeks (tributaries of the Middle Reservoir), and Onion and Big 

Sheep Creeks (tributaries of the Upper Reservoir). The goals of this study were to 1) 

determine how Redband Trout from different tributaries utilize the reservoir, 2) if 

Redband Trout return to their tagging stream the following year (homing), and 3) the 

frequency of entrainment through Grand Coulee Dam.  

Fish were grouped by region of the reservoir (Sanpoil, Spokane River, Middle Reservoir, 

and Upper Reservoir). Acoustic detections from these fish were incorporated into a 

dynamic Brownian bridge movement model to estimate utilization of the reservoir by 

these groups of fish. The estimated utilization by each group over the course of the year 

was compared with a Mantel’s test (Spearman’s correlation) to distinguish which groups 

had similar utilization and which did not.   

Redband trout appeared to exhibit distinctive use of the reservoir. Fish from the Sanpoil, 

Spokane and Middle reservoir tributaries all made extensive use of the lower and middle 

reservoir and lower Spokane River with few fish moving up the reservoir above Gifford 

Washington. In contrast most of the fish from Upper Reservoir tributaries remained in the 

upper reservoir above Gifford. Comparisons of utilization by region showed Sanpoil and 

the Upper Reservoir were the most distinctive in utilization (r = 0.051, q = 0.025). 
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Results from comparisons of utilization distribution show similarities to genetic studies 

conducted on Lake Roosevelt Redband Trout. Previously, Small et al. (2014) analyzed 

tissue samples from Redband Trout across the reservoir. Small et al. (2014) found that 

fish from the Sanpoil River, Spokane Arm, and Middle Reservoir tributaries were most 

similar to each other with these groups being distinct from the Upper Reservoir. 

Comparisons of utilization showed a similar pattern in utilization with the exception of 

only the Sanpoil River fish being distinct from the upper reservoir tributaries. The other 

groups and the upper reservoir fish likely intermingle in the reservoir throughout the year 

and return to their spawning streams as evidenced by homing observed in this study. 

 Homing was confirmed with the use of PIT Tags and entrainment with the use of 

acoustic receivers. Streams with PIT tag arrays were the Sanpoil River, Blue Creek, 

Alder, Onion and Big Sheep Creeks. Additional streams without PIT tag arrays were 

periodically monitored with the use of a hydrophone attached to a receiver.   

In total ten Redband Trout exhibited homing the following year.  No fish were detected in 

tributaries other than the ones in which they were tagged in. This is similar to previous 

years and cumulatively 26 fish were confirmed to home with no instance of PIT tags 

being detected in streams other than ones they were tagged in.  

At the current time there is no evidence from PIT tag arrays that these Redband Trout 

stray (return to a stream other than the one they were originally from). However, PIT tag 

arrays are not present in all tributary streams of Lake Roosevelt. Therefore, it is possible 

some Redband Trout tagged between 2013-2015 fish strayed. Some (minimal) straying 

likely occurs to explain the results obtained by Small et al. (2014) that indicated the 

Sanpoil, Spokane, and Middle Reservoir tributary Redband Trout are similar to each 
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other (i.e., although each tributary has its own distinctive frequency of alleles they are all 

genetically similar to each other so they all appear on the same branch of a dendogram).  

Entrainment was confirmed if fish were detected on receivers downstream of Grand 

Coulee Dam. No entrainment into Rufus Woods Reservoir was confirmed for Redband 

Trout tagged in 2015. However, four fish were last detected on receivers just upstream of 

Grand Coulee Dam. Three of these had the majority of detections on the north receiver. 

These fish may have continued along the north shore and entrained through the third 

powerhouse of Grand Coulee Dam. This powerhouse is located on the north side of the 

dam and is the route in which the majority of fish were confirmed to have entrained 

during a previous study (LeCaire 1998). If these fish did entrain possibilities to explain 

why they were not detected on the receiver downstream of the dam include: 1) Fish were 

killed as they passed over or through the dam, mortality for fish passing through or over 

dams averages 15% (all dams large and small); 2) The tag inside the fish was damaged as 

fish passing over or through Grand Coulee experience a 100 m elevation change; 3) Fish 

that passed through the dam were damaged and susceptible to predators, and 4) The 

nearest receivers to Grand Coulee Dam are 13 km downstream and fish that did entrain 

may have resided in the river upstream of these receivers. 

The fourth fish had the majority of detections on the south receiver. It is possible this fish 

may have continued along the south shore and was pumped into Banks Lake (a storage 

reservoir for the Columbia Basin Irrigation Project) through intake pipes located at the 

southern part of Grand Coulee Dam. Here entrainment has been documented by Stober et 

al. (1976) who collected 13 species of fish in gill nets set in the feeder canal between 

Grand Coulee Dam and Banks Lake. Fish collected included Rainbow Trout, Kokanee 
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Salmon (O. nerka), Lake Whitefish (Coregonus clupeaformis), and Burbot (Lota lota). It 

would be beneficial for future telemetry studies to place a receiver in Banks Lake near 

the outflow of the feeder canal of Banks Lake to address the possibility of entrainment 

into Banks Lake.   

Entrainment was documented for Redband Trout tagged in 2013 and 2014. Between 2013 

and 2014 five Redband Trout entrained and between 2014 and 2015 three entrained over 

Grand Coulee Dam as they were detected in Rufus Woods Reservoir. Noticeable 

differences in reservoir operation were seen between these years. For example, between 

2015 and 2016 when no entrainment was observed, the lowest Lake Roosevelt was drawn 

down was 13 m below full pool. Between 2014 and 2015 the reservoir was also drawn 

down 21 m below full pool. Such drawdowns reduce the water retention time (time it 

takes water to move through the reservoir). During the month of lowest reservoir 

elevation the average water retention time was 28 days in 2015, 21 days in 2014-2015, 

and 24 days in 2013-2014. Low reservoir level and short water retention time has been 

shown to correlate with entrainment of hatchery rainbow trout below Grand Coulee dam 

(McLellan et al. 2008).  

We chose to tag post spawn Redband Trout to monitor their movements after leaving 

what was presumed to be their spawning stream. Of the 81 tagged in 2015 18 were 

detected into 2016, 22 of 60 tagged in 2014 were detected into 2015, and 15 of 51 tagged 

in 2013 were detected into 2014. Total number detected into the following year was 55 of 

192, indicating there was approximately 28.6% survival of kelts (for this study a kelt is 

defined as a post spawn Redband Trout) from one spawning season to the next spawning 

season. Kelt survival from one spawning season to the next of steelhead (ocean going 
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Rainbow Trout) is typically low. Little literature is available on the mortality of post 

spawn freshwater rainbow trout, but studies on steelhead indicate survival to the next 

spawning season in the Upper Columbia is 3-5% and upwards of 17% in Coastal streams 

(Trammell et al. 2016). Natural mortality in post spawn Rainbow Trout is typically high 

and may explain the disappearance of tagged Redband Trout.  

Angling mortality could also explain the disappearance of Redband Trout tagged from 

2013-2015. It is unlikely mortality due to fish predators is responsible for the 

disappearance of these fish as these were adult Redband Trout (average length 415 mm). 

Over the course of the three years 5 transmitters from tagged Redband Trout were 

returned by anglers. Previously, harvest rules on Lake Roosevelt did not distinguish 

between Redband Trout (with an adipose fin) and hatchery triploids (lacking an adipose 

fin) stocked in the reservoir to provide angling opportunities. From creel surveys, 

McLellan (2015) estimated 3,735 Redband Trout were harvested across Lake Roosevelt 

between 2014 and 2015. The estimated population of adult Redband Trout spawners from 

all tributaries of Lake Roosevelt was near 5,000 (McLellan 2015). With the harvest 

potentially taking a large proportion of potential spawners, harvest rules have been 

changed since the conclusion of this study and currently harvest is only allowed on 

hatchery rainbow trout.  

I recommend future acoustic telemetry studies on Lake Roosevelt include placement of 

additional receivers to understand fish movement in this system. Currently there is no 

receiver in place to detect entrainment into Banks Lake. Based on range testing I suggest 

moving a receiver in Lake Roosevelt that is performing poorly at its current location (e.g. 
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the Spring Canyon Boat Launch receiver that detected 35% of tracks) to the north end of 

Banks Lake.  

I plan to assist in preparing a publication encompassing all three years of data for 

submission to a peer reviewed journal. The method used to analyze this data is unique in 

that it has only been used for telemetry data on terrestrial animals. Walston et al. (2015) 

was able modify this method for telemetry data gathered on animals that have a defined 

barrier, such as the confines of a water body for fish.  The method Walston et al. (2015) 

developed is applicable to similar data collected from other fish telemetry studies and is 

likely of interest to the fisheries community. 

Maintaining this population of Redband Trout is essential for the survival of this species, 

and for the return of anadromous fish above Grand Coulee Dam. Redband Trout have 

diverse life history strategies and appear to retain anadromy even after their environment 

is altered. McLellan et al. (2015) PIT tagged Redband Trout in the Sanpoil River with 

some individuals appearing in the Columbia downstream of Rock Island Dam. These fish 

may be exhibiting the potential anadromy and if so, Lake Roosevelt Redband Trout could 

be a potential source for reestablishing the anadromous form Redband Trout above Grand 

Coulee Dam if passage is restored. 
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Chapter 1  

Low-Voltage Electroanethesia for Tag Implantation  

Abstract 

Telemetry methods are able to acquire knowledge of fish movements which are used for 

a variety of management decisions. Implanting tags for telemetry requires minor surgery 

and anesthesia. Anesthesia for tag implantation is typically achieved with chemicals. 

However, chemicals are inherently variable and have restrictions on their use. This has 

led to the use of alternative methods for achieving anesthesia such as low voltage 

electroanesthesia (LVEA). LVEA subjects fish to a continuous non- pulsed direct current 

to achieve anesthesia appropriate for tag implantation. Unlike chemicals fish are quickly 

anesthetized and recover from anesthesia instantaneously. My objectives were to subject 

several species of fish to LVEA and determine if it can bring these species to anesthesia 

appropriate for tag implantation and if the voltage gradient (volts applied/ distance 

between electrodes) varies by fish based on size, scale type, species and conductivity of 

the water. LVEA successfully anesthetized 280 individuals which comprised of 11 

species. Ctenoid scaled fish required a significantly higher voltage gradient than cycloid 

scale fish (Kruskal Wallis chi square = 118, p<0.001). Water conductivity was greater 

where ctenoid scaled fish where collected than cycloid scaled fish (p<0.0001). Multiple 

regression indicated that an interaction of fish length, scale type, water conductivity, and 

species explained 62% of variation in voltage gradient to anesthetize fish.  I suggest 

agencies that use LVEA record information while using this method and make the 

information freely available to help form a standard procedure. 
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Introduction 

Gathering information on fish life history and behavior is a crucial component of 

fisheries management. Some aspects of life history and behavior are related to movement 

(Baras 1998). These can be migration (for feeding or reproduction) or the way a fish 

reacts to its environment, which can be responses to natural or anthropogenic 

disturbances (Reishel and Bjorn 2003; Welch et al. 2009). Understanding fish movements 

provides managers with a framework on which to base management decisions (Baras 

1998; Hayden et al. 2014).  

Acquiring information on fish movements can be accomplished by telemetry studies. 

These studies involve the implantation of tags that transmit a unique signal, coupled with 

equipment that can record tag signals as a tagged fish passes by (Heupel et al. 2006). 

There are three types of tags that are often used to describe fish movement patterns. 

Passive Integrated Transponder (PIT) tags emit an individual code when exposed to a 

frequency from an underwater antenna or a hand held detector (Smyth and Nebel 2013). 

PIT tags are small (less than 25 mm) and cheap allowing for researchers to tag large 

numbers of fish (Smyth and Nebel 2013). Underwater antennas can be used to determine 

timing of return to streams. Tags detected on handheld detectors from fish captured 

during surveys can be searched in databases to determine where the fish was originally 

tagged, and when to gather information on movement.  

For studies in which an investigator would like to locate fish in open water, two options 

are available.  Radio tags actively emit a radio signal that encodes a set of numbers 

unique to the tag which can be detected and decoded by receivers placed both in and out 
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of the water (Thorstad et al. 2013). Acoustic tags also emit a signal encoded with 

information unique to the tag. Unlike radio tags the signal is only detected by receivers 

placed in the water (Thorstad et al. 2013). Both radio and acoustic tags emit signals at 

specific intervals and have predetermined battery life. Radio tags have the advantage of 

being able to track fish into small spawning streams (Paluch 2011; Thorstad et al. 2013), 

whereas acoustic tags can track fish in water deeper than radio tags are able to (Thorstad 

et al. 2013). Radio tags can be detected to maximum depth of 10 m due to how a radio 

signal moves exits the water at an angle, whereas acoustic tags can be detected at nearly 

any depth (Thorstad et al. 2013). 

Valuable information can be gathered from telemetry studies. For example, Reishel and 

Bjorn (2003) used radio tags to determine the movement of adult Chinook Salmon 

(Oncoryhnchus tshawytscha) through fish passage facilities at Bonneville Dam on their 

upstream migration to spawn. All fish were tagged at the downstream end of the dam, 

released, tracked through the fish passage facility and a short distance upstream of the 

dam. Of these 21% (26 of 122) were subsequently detected downstream of the dam. 

Reishel and Bjornn (2003) determined this behavior from radio telemetry receivers 

placed up and downstream of the dam. In addition, they also followed individual fish as 

they exited fish passage facilities to move upstream. One fish ladder exit was along an 

island upstream of the dam and 90% of tagged fish followed the shoreline of this island. 

This particular shoreline led near the spillway of the dam where a variety of factors such 

as visibility, current and temperature, may have led some fish to move downstream and 

back over the dam. Reishel and Bjorn (2003) noted salmon fallback over this dam could 

lead to an overestimate of population size since fish can be counted more than once as 
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they ascend the dam again. Reishel and Bjorn (2003) suggested the exit of the fish ladder 

be extended to the opposite shoreline from the island to potentially reduce the fallback 

behavior of salmon at this particular dam.  

Fish telemetry studies can also be used to collect data on fish movements over the entire 

lifespan of the animals in question. Currently extensive arrays of receivers used to track 

tagged fish exist in ocean environments, major lakes, reservoirs and rivers (Heuppel et al. 

2006; Welch et al. 2009; Welsh 2012). Welch et al. (2009) implanted 876 Sockeye 

Salmon (Oncorhynchus. nerka) smolts from 2004-2007 with acoustic tags in the Fraser 

River drainage of British Columbia. These tagged fish were detected on an array of 

stationary receivers in the Fraser River as well as the Pacific Ocean surrounding 

Vancouver Island. Welsh et al. (2009) used detections of these tagged fish at sea to infer 

migration patterns of smolts. Of the 876 tags used by Welsh et al. (2009), 280 of them 

had a preprogrammed sleep period, meaning tags would transmit for a predetermined 

period of time, go dormant and reactivate at a later date when the fish were on their adult 

migration back to the Fraser River. Unfortunately for Welsh et al. (2009) none of the fish 

tagged with “sleeper tags” appear to have survived their time at sea. However, the 

technology exists to track individuals over their lifetime.  

 Implantation of radio and acoustic tags involves minor surgery and requires anesthesia 

for the procedure to occur safely. The anesthesia is typically achieved with chemical 

anesthetics. Fish are placed in a chemical bath to achieve anesthesia. Fish have achieved 

the level of anesthesia required to implant tags when they lose equilibrium (are unable to 

remain upright), do not respond to external stimuli, and their opercula (gill covering) 

continue to move. The amount of time it takes the fish to reach this level of anesthesia is 
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the induction time. Once fish are anesthetized they can be placed on a moist surface 

(typically a sponge with a v notch) with the ventral side of the fish up for tag 

implantation.  During the time a fish is on this surface for implantation water with the 

chemical anesthetic flows over its gills from a tube attached to a bucket. An incision is 

made into the body cavity on the ventral side offset from the midline of the body, tag is 

inserted, and the incision is closed with sutures. After the incision is closed the fish is 

placed into water without any chemical anesthetic to come out of anesthesia. The fish is 

ready to be released when it is upright and responsive to external stimuli. The amount of 

time it takes the fish to come out of anesthesia and be releasable is the recovery time.   

Two commonly used anesthetics for tag implantation are Tricaine Methanesulfonate 

commonly known as MS-222 (Hudson et al. 2011) and clove oil derivatives such as 

AQUI-S 20E. MS-222 is a highly soluble white crystalline powder that forms a colorless 

acid when placed in water (Marking 1967). It is absorbed across the fish’s gills and 

suppresses action potentials in the central nervous system (Spath and Schweikert 1977).  

MS-222 is carcinogenic in its powdered form and is currently approved for use on fish 

that may be potentially consumed as long as they are held for at least 21 days before 

release, or on fish that cannot be harvested, such as threatened and endangered species 

(Hudson et al. 2011). Another anesthetic, AQUI-S 20E allows for immediate release of 

fish but requires the researcher to obtain a $700 investigational permit (Keep et al. 2015). 

The compound’s active ingredient is eugenol. It works similar to MS-222 by being 

absorbed through the gills and inhibiting the central nervous system (Bowker et al. 2015).  

Chemical anesthetics are useful but there are drawbacks to their use. Dosage for MS-222 

has been extensively studied for multiple species and there are well established operating 
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procedures of its use (Marking 1967; Murphy and Willis 1996). Induction times for 

chemical anesthetics can vary between 2 to 5 minutes and recovery times can vary 

between 15 and 45 minutes (Hudson et al. 2011). Variable times for induction and 

recovery coupled with lengthy holding periods prior to release have lead fisheries 

biologist to look for alternative means of fish sedation (Hudson et al. 2011; Trushenski 

and Bowker 2012). 

Low-Voltage Electroanesthesia (LVEA) is an alternative form of fish sedation that is 

becoming increasingly popular for tag implantation (Balazik et al. 2013; Keep et al. 

2015).  LVEA is the process of subjecting a fish to continuous (nonpulsed) direct current 

to immobilize it. Fish are placed in a mesh cradle between two electrodes situated in a 

cooler that are attached to a power source. Voltage is gradually increased until the fish is 

unable to remain upright. Fish remain in the water with the current during the entire time 

a tag is implanted. Direct nonpulsed electric current interferes with medullary motor 

paths which in turn inhibit spinal reflexes causing a loss of equilibrium (Henyey et al. 

2002). However, gill movement is still maintained while the fish is in the electrical field 

(Henyey et al. 2002). This is important as fish are still able to respire while in the 

electrical field.  Amperages are typically less than 100 milliamps and depending on fish 

size voltage is less than 50 volts (Hudson et al. 2011). Unlike chemical anesthetics, 

induction and recovery times are nearly instantaneous, as fish immediately become 

upright after current is turned off (Hudson et al. 2011). Additional benefits are fish 

subjected to this method can be released immediately and no investigational permit is 

required. Finally, some species of fish such as catfish are fairly resistant to chemical 
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anesthetics (Waterstrat 1999), using low voltage current for sedation may prove useful 

for these species.  

 LVEA offers some form of anesthesia during tag implantation surgeries. For example, 

Balazik et al. (2013) analyzed blood cortisol (hormone typically associated with stress) 

concentrations of Atlantic Sturgeon (Acipenser oxyrinchus) subjected to incisions and 

sutures associated with tag implantation. Cortisol concentration in fish anesthetized with 

MS-222 and LVEA were comparable to each other, and both were much lower than fish 

subjected to incisions and sutures without any anesthetic mechanism (Balazik et al. 

2013). This indicated that fish exposed to LVEA had reduced stress than those that were 

subjected incisions and sutures without an anesthetic. 

Concerns about LVEA include survival of both fish and eggs after exposure. Previously, 

most work on the effects of electricity on fish has been concerned with electrofishing 

(Dalby and MacMahon 1994). Typically pulsed direct current is used for electrofishing, 

with high frequency (Hz) being the most detrimental to fish wellbeing (Dalby and 

MacMahon 1994).  Hudson et al. (2011) used LVEA to radio tag Bull Trout (Salvelinus 

confluentus) and did not see any evidence of mortality during the time tags were active. 

The Colville Confederated Tribes acoustically tagged Rainbow Trout in 2015 and there 

was no evidence of mortality fish after tagging (Witte and Scholz 2017). There are 

concerns that as the electric current passes through fish it may cause gametes to become 

unviable. Studies on Steelhead Trout (Oncorhynchus mykiss) and Coho Salmon (O. 

kisutch) have indicated that eggs remain viable after fish are exposed to LVEA (Keep et 

al. 2015). It appears that the electrical waveform used for LVEA does not damage fish 

and is safe for use in implanting tags. 
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Despite increasing popularity, information on use of LVEA to implant tags in commonly 

tagged North American species is somewhat lacking. Previous studies have exposed 

several sturgeon species (Acipenser spp.), Rainbow Trout, Bluegill (Lepomis 

macrochirus), and Gulf coastal fishes to LVEA (Henyey et al. 2002; Balazik et al. 2013; 

Trushenski and Bowker 2012; Rous et al. 2015). The voltage gradient which is the 

voltage divided by the spacing between the electrodes necessary to achieve anesthesia has 

been reported to range from 0.25 – 0.54 V/cm (Curray and Kynard 1978; Hudson et al. 

2011). However, this voltage gradient can vary with water conductivity and between 

species of fish (Hudson et al. 2011). Water conductivity can influence the amount of 

electricity that goes into a fish compared to the electricity that dissipates in the water 

around it (Hudson et al. 2011). Size of fish and scale thickness can influence fish’s 

susceptibility to electrofishing (Emery 1984). Current literature suggests the need for 

further studies of this method of fish sedation on more species (Hudson et al. 2011; 

Trushenski and Bowker 2012; Rous et al. 2015).  

Objectives 

My objectives were to determine if LVEA is effective at bringing the fish species I tested 

to the level of anesthesia required for tag implantation and compare necessary voltage 

required for anesthesia for several species by, size, scale type, and water conductivity. 
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Methods 

I used an apparatus similar to the one described by Hudson et al. (2011). This consisted 

of a cooler with two metal electrodes attached to a BK Precision model 9110 60V/5A 

power supply (Figure 1-1). This power supply was connected to a 12 volt battery via an 

inverter to allow for use in field locations. A mesh cradle was placed between the 

electrodes that were situated in the cooler.  

Several species present in the Pacific Northwest that I exposed to LVEA were chosen due 

to their documented use in telemetry work (Table 1-1). Methods of fish collection were 

angling and boat electrofishing. Electrofishing was conducted in accordance with 

guidelines set by the American Fisheries Society and with IACUC approval (IACUC 

2016-06-01). Settings on the electrofisher were at the minimum and increased until the 

minimum current to catch fish was produced (Reynolds 1996). Settings were 30 Hz 20% 

frequency 300 volts DC at 2-3 amps. All fish were measured in total length to the nearest 

millimeter, and weighed on a portable electronic scale to the nearest gram prior to being 

placed in the LVEA apparatus.  

Once placed in the LVEA apparatus all fish were subjected to the same procedure. The 

fish was oriented head toward the positive electrode, since this orientation results in the 

quickest induction and recovery time (Rous et al. 2015). The voltage was slowly 

increased until the fish lost equilibrium. The voltage remained at this point for 30 seconds 

to ensure that the fish was not responding to external stimuli. After that time the voltage 

was recorded, the power source was turned off and fish resumed its normal state. 

 



26 
 

26 
 

 

Figure 1-1. Portable LVEA Apparatus as described in text. Consists of cooler, electrodes  

        (A), power supply (B), inverter (C), and battery (D). 
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Table 1-1.  Fish species chosen to be exposed to LVEA with scale type and reference to  

                   tagging study.* All white sturgeon were from Eastern Washington University  

                  aquatics facilities. 

 

 

 

 

 

Scale Type Species Reference to Tagging 

Ganoid *White Strugeon (Acipenser transmontanus) Robichaud et al. (2017) 

Cycloid Northern Pikeminnow  (Ptychocheilus oregenesis) Weitkamp et al. (2003) 

Cycloid Tench (Tinca tinca) Donnelly et al. 1998 

Cycloid Largescale Sucker (Catostomus macrocheilus) Baxter (2003) 

Cycloid Longnose Sucker (Catostomus catostomus) Sweet (2007) 

Cycloid Lake Trout (Salvelinus namaycush) Flavelle et al. (2002) 

Cycloid Bull Trout (Salvelinus confluentus) Muhlfeld and Marotz (2005) 

Ctenoid Largemouth Bass (Micropterus salmoides) Hanson et al. (2007) 

Ctenoid Smallmouth Bass (Micropterus dolomeiu) Cooke et al. (2004) 

Ctenoid Black Crappie (Pomoxis nigromaculatus) Petering and Johnson (1990) 

Ctenoid Walleye (Sander vitreus) Hayden et al. (2014) 
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All fish were returned to location of capture after testing.  Voltage applied between the 

electrodes was divided by the space between electrodes in cm to obtain the voltage 

gradient.  

Data Analysis   

The relationship between voltage gradient and fish length, scale type, conductivity, and 

species were analyzed by multiple regression for all fish and by species. Comparisons of 

voltage gradient between fish of different scale types and water conductivity  where 

different scaled fish were collected were made using a Kruskal-Wallis Test. Significance 

were determined with alpha = 0.05. Relationships between voltage gradient and size of 

fish by species were analyzed by linear regression. 
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Results 

 Eleven species comprised of 280 individuals were exposed to LVEA during this study 

(Table 1-2).  LVEA successfully brought all individuals to a level of anesthesia 

appropriate for tag implantation. Multiple regression indicated that length and species 

were the most important variables to explain the variation in voltage gradient among all 

species (Table 1-3). There appeared to be a distinct difference in the voltage gradient to 

anesthetize cycloid and ctenoid scaled fish. Mean voltage gradient for cycloid fish was 

0.41 v/cm (range 0.13 -0.79) which was significantly higher (Kruskal Wallis chi square = 

118 p<0.0001) than mean gradient to sedate cycloid scaled fish (mean 0.19 v/cm range 

0.06 - 0.40). However, water conductivity differed when these fish were collected (Figure 

1-2). Mean water conductivity was 136 µS/cm (range from 35 to 330 µS/cm) for cycloid 

scaled fish and 249 µS/cm (range 96 to 330 µS/cm) for ctenoid scaled fish. Mean water 

conductivity was significantly greater for ctenoid scaled fish than cycloid scaled fish 

(p<0.001). I collected Largemouth Bass a ctenoid scaled fish on Silver Lake (n = 25) and 

Tench a cycloid scaled fish (n = 4) on April 28, 2017. The voltage gradient range for 

Tench (0.20 – 0.24 v/cm) was within the range for Largemouth Bass (0.16 – 0.24 v/cm) 

on this day (conductivity = 330 µS/cm).  This indicates that scale type may not influence 

voltage gradients to sedate fish, rather conductivity may be more important.  

Range of voltage gradients somewhat differed between species but there appeared to be 

little relationship between voltage gradient and size of fish for individual species of 

cycloid fish (Figure 1-3) and individual species of ctenoid scaled fish (Figure 1-4) with 

the exception of Black Crappie and Lake Trout. 
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Table 1-2. Species collected for study by number, length, weight, and voltage gradient to    

                  achieve sedation. LKT = Lake Trout, BLT = Bull Trout, NPM= Northern  

                 Pikeminnow, LSS = Largescale Sucker, LNS = Longnose Sucker, TNC =  

                 Tench, BLC = Black Crappie, LMB = Largemouth Bass, SMB = Smallmouth  

                  Bass, WAL = Walleye, and WHS = White Sturgeon. 

Species Median Length 

(Range) 

Median Weight 

(Range) 

Median Voltage Gradient 

(Range) 

LKT (n = 120) 425 (325 – 611) 641 (349 – 1620) 0.19 (0.06 – 0.40) 

BLT (n = 20) 349 (265 – 854) 408 (150 – 6500) 0.10 (0.07 -  0.27) 

NPM  (n = 4) 288 (285- 423) 193 (188 – 582) 0.27 (0.22 – 0.31) 

LSS (n = 22) 473 (425- 549) 1309 (728 – 1900) 0.29 (0.21 – 0.36) 

LNS (n = 3) 433 (407 – 501) 886 (790- 1720) 0.29 (0.29 – 0.35) 

TNC  (n = 5) 205 (143-359) 85 (49 – 421) 0.22 (0.20 – 0.24) 

BLC (n = 20) 200 (168 – 224) 121 (16 – 174) 0.32 (0.19 – 0.48) 

LMB (n = 25) 393 (256 – 494) 607 (280 – 2009) 0.24 (0.16 – 0.24) 

SMB (n = 28) 265 (150 – 400) 213 (128 – 864) 0.54 (0.13 – 0.79) 

WAL (n = 14) 407 (230 -  525) 551 (87 – 1099) 0.32 (0.15 -  0.38) 

WHS (n = 19) 615 (510 – 792) NA 0.24 (0.13 – 0.31) 
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Table 1-3. Comparison of linear models for predicating voltage gradient (V.cm in table)  

                  across all fish sampled.  

Model p - value R2 

V.cm ~ Fish Length < 0.0001 0.24 

V.cm ~ Fish Length + Scale Type < 0.0001 0.32 

V.cm ~ Fish Length + Scale Type + Conductivity < 0.0001 0.40 

V.cm ~ Fish Length + Scale Type + Conductivity + Species < 0.0001 0.62 
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Figure 1-2. Voltage gradients for cycloid scale fish (top) and ctenoid scaled fish (bottom)  

        compared to water conductivity. Conductivity was greater where ctenoid  

        scaled fish were captured compared to cycloid (p<0.001). 
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Figure 1-3. Scatterplots of voltage gradient by length of fish for four species of cycloid  

                   scaled fish. A) Northern Pikeminnow, B) Suckers (Large Scale and  

                   Longnose),  C) Bull Trout, and D) Lake Trout. Given with each plot are range  

        of conductivity encountered along with p-value for relationship between 

                   voltage gradient and fish length with R2. 

 

 

A) Northern Pikeminnow  

96 µS/cm 
B) Suckers (Largescale and  

Longnose) 160 µS/cm) 

C) Bull Trout 35-67 µS/cm D) Lake Trout 35 – 67 µS/cm 

p = 0.22 R2 = 0.07 

p = 0.06 R2 = 0.19 p < 0.001 R2 = 0.18 
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Figure 1-4. Scatterplots of voltage gradients by fish length for four species of ctenoid   

                   scaled fish. A) Largemouth Bass, B) Smallmouth Bass, C) Black Crappie,  

        and D) Walleye. Shown on each plot are range of conductivity encountered  

        along with p –value for relationship between voltage gradient and size of fish  

                   and R2. 

 

 

 

 

A) Largemouth Bass 330 µS/cm B) Smallmouth Bass 95-160  

µS/cm 

C) Black Crappie 600 µS/cm D) Walleye 45 – 124 µS/cm 

p = 0.10 R2 = 0.11 

p = 0.002 R2 = 0.42 p = 0.34 R2 = 0.08 

p = 0.25 R2= 0.08 
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Discussion 

LVEA is an appropriate alternative to other anesthetics for tag implantation. Fish 

immediately come out of anesthesia as soon as the power is turned off.  This method 

successfully sedated all 280 fish during this study. To my knowledge this is the first study 

to subject Northern Pikeminnow, Largescale Sucker, Lake Trout, Black Crappie, and 

Smallmouth bass to LVEA. Previous studies have shown a range of voltage gradients to 

sedate fish but these can be influenced by water conductivity and fish species. 

 Water conductivity is a confounding factor to explain the difference in voltage gradient 

applied between ctenoid and cycloid scaled fish as water conductivity was significantly 

higher for ctenoid scaled fish than cycloid scaled fish. When cycloid and ctenoid scaled 

fish were sampled from the same water body they had similar voltage gradients to be 

sedated. With the multiple regression water conductivity explained 8% of the variance in 

voltage gradient whereas species explained 22% of the variance in voltage gradient. All 

together an interaction of fish size, scale, water conductivity, and species explained 62% 

of the variation in voltage gradient. This indicates that voltage gradient is specific to the 

type of fish tagged and conditions when tagging. 

Within each species there was little relationship between size of the fish and voltage 

gradient to sedate the fish. Previous studies on electrofishing indicate that larger fish are 

more effectively captured with less electricity than smaller fish (Dalby and McMahon 

1996). The waveform used for electrofishing is pulsed DC and voltage required to sedate 

fish with LVEA that uses non-pulsed DC may not necessarily translate between these two 
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waveforms. There was an exception with relationship between voltage gradient and fish 

length. Black crappie had a significant negative relationship between voltage gradient and 

length of fish. A potential explanation for this may be related to the surface area of the 

fish because Black Crappies are saucer shaped as their length increases so does the 

surface area to absorb electricity.  

When first working with this method at Eastern Washington University in 2014, Walston 

(2015) placed fish in the LVEA apparatus and sedated them by turning on the power set 

at a specific voltage. This worked to sedate the fish although during some trials fish 

would respond by jolting to the sides of the cooler as soon as voltage was applied. The 

method used by this study is a fined tuned approach to sedate fish by individuals as the 

voltage is incrementally increased from zero. Fish do not jolt to the sides of the cooler; 

rather they stay in the field and eventually roll over when the voltage gradient has 

reached a threshold to anesthetize them.  

Future use of this methodology for tag implantation should incorporate a standard 

operating procedure. Data collected for this standard operating procedure can be obtained 

during tagging studies. Currently, The Washington State Department of Fish and 

Wildlife, Colville Confederated Tribes, and Kalispel Tribe all utilize LVEA for tagging 

of fish. I propose that during tagging studies researchers’ record several parameters while 

tagging each fish and make them available. This would be similar to the investigational 

permit used for studying AQUI-S 20E but would be free to those that are uploading data 

to it.  Data collected from these investigations would encompass several fish species and 

varying water conditions. With this data a standard operating procedure would be 

produced to make the use of LVEA a standard and effective anesthetic option. 
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Chapter 2  

Results from Range Testing Acoustic Receivers on Lake Roosevelt and Rufus 

Woods Reservoirs 

Abstract   

An array of acoustic receivers is in place on Lake Roosevelt and Rufus Woods Reservoirs 

to study the movements of important fish species. The receivers in this array cannot 

determine how far away an acoustically tagged fish is from the receiver when an acoustic 

signal is detected on a receiver. Therefore, it is important to test the range at which these 

receivers can detect tags to understand where detections are likely coming from and to 

potentially improve the array by suggesting where to put additional receivers. I evaluated 

the receiver array with three methods: 1) stationary range testing which was done with a 

known delay tag at known distances from the receiver in 4 cardinal directions and at three 

depths at each location, 2) with telemetry data from tagged Redband Trout, and 3) float 

range testing conducted in the swift water downstream of Grand Coulee Dam. In total 43 

receivers were stationary range tested. Generalized linear model indicated that detection 

frequency declined to 75% 100 m from receivers, 50% 300 m from receive and 25% 500 

m from receiver. Tracks of tagged fish indicated 26 of 44 receivers detected greater than 

70% of the fish that pass by them Float Range testing indicated the receivers below 

Grand Coulee Dam are functioning well as a gate..  
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Introduction  

Passive acoustic telemetry is a method widely used to determine movements of aquatic 

organisms (Heupple et al. 2006; Welsh et al. 2012; Kessel et al. 2014). Passive acoustic 

telemetry systems employ battery powered transmitters (tags) and receivers. A signal 

encoding information specific to a tag is sent from the tag through the water and is 

decoded by a receiver. This allows for individually tagged fish to be identified. (Welsh et 

al. 2012). Multiple receivers can be put in place throughout the study area forming an 

array to monitor movements of tagged fish (Selby et al. 2016). Researchers can use data 

from these acoustic receiver arrays to infer timing of movement and area of use by the 

species in question (Heuppel et al. 2006; Selby et al. 2016). 

Receivers are limited in the distance at which they can detect signals from tagged fish. 

The strength of an acoustic signal naturally decreases with distance (Kessel et al. 2014).  

Water quality, bottom topography, and turbulence can impact how quickly the strength of 

a signal from an acoustic tag diminishes (Heuppel et al. 2006). When a receiver detects a 

signal from a tag, it is usually unable to determine where the tag is in relation to a 

receiver (with some exceptions, e.g., HTI 3D positioning system, and Lotek MAP 

systems). All that can be determined from detections is the tag was within the detection 

range of the receiver. 

Detection range for receivers do not have an agreed upon definition in the literature 

(Kessel et al. 2014). One definition of detection range is the maximum distance that a 

receiver can detect a tag, others define it as the distance in which a certain proportion of 

transmissions are detected (Selby et al. 2016). Another definition of detection range is 
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“the relationship between detection probability and the distance between the receiver and 

tag” which can be shown graphically as a descending curve (Kessel et al. 2014).  

The probability of detecting a fish moving past a receiver can be influenced by the 

physical limitations of the receiver (detection range) or behavior of fish migrating in a 

path outside the detection range. This information can be used to understand and improve 

an array of receivers (Heupple et al. 2006; Welsh et al. 2012; Kepple et al. 2014). 

Understanding the detection ranges of receivers is crucial information that can be used to 

place receivers in a manner that allows for adequate coverage for the study question. 

Acquiring information on the detection range of receivers is accomplished by range 

testing.  

Range testing can be accomplished in different ways. One way is with stationary range 

testing where a tag with a known ping rate (emits signals at known time intervals) is 

positioned at varying distances from a receiver and at known times for each distance 

(Welsh et al. 2012). The information is downloaded and analyzed, typically as number of 

detections divided by number of transmissions from the tag over the period of time it was 

at that distance from the receiver. Another way is by drift or float testing. This is similar 

to stationary range testing but the tag drifts with wind or current past or away from the 

receiver (Kessel et al. 2014). Other authors have used detections from tagged organisms 

across a receiver array to determine their movements and noting which receivers along a 

fish’s path detects the tag and which receivers do not. This later method does not attempt 

to determine a detection range for receivers but can offer insight into where they may be 

apparent gaps in a receiver array (Kessel et al. 2014).  
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An acoustic receiver array is in place on Lake Roosevelt, a 240 km long reservoir of the 

Columbia River in Eastern Washington. Lake Roosevelt has had a history of acoustic 

telemetry to monitor fish movements. Movements of White Sturgeon (Acipenser 

transmontanus) (Howell and McLellan 2007), both hatchery and wild Kokanee Salmon 

(Oncoryhychus nerka) (McLellan et al. 2009, 2010; Scholz et al. 2011; Stroud et al. 2012, 

2013; Parsons 2014), and wild Columbia River Redband Trout (O. mykiss gairdneri) 

(Stroud et al. 2014; Walston et al. 2015; Stroud 2015; Walston 2015; Witte and Scholz 

2017).  The receiver array consists of 52 VEMCO VR2W receivers deployed from 13 km 

downstream of Grand Coulee Dam River Kilometer (RKM 953.6) to the Canadian 

Border (RKM 1,190.0). Receivers in this array typically hang three to four meters below 

the surface on a cable attached to an anchored buoy.   

In three locations receivers are arranged as a “gate” with two receivers across from each 

other to be able to detect any tags that go by the area of the gate. Two of these gates are 

within Lake Roosevelt, with one just upstream of Grand Coulee Dam at Spring Canyon 

(RKM 962.4) and the other at Hunters (RKM 1,070.0). The third is downstream of Grand 

Coulee Dam in Rufus Woods Reservoir near the mouth of the Nespelem River (RKM 

940). This later gate was set in place to detect entrainment over Grand Coulee Dam. The 

gates in Lake Roosevelt have never been range tested. The one below Grand Coulee Dam 

provides a challenge to range test with the stationary method due to current. Previously a 

receiver upstream of this gate was evaluated by float testing (Stroud et al. 2011). 

Previous range testing and analysis of fish tracks has been conducted on Lake Roosevelt 

(Stroud et al. 2012, 2013; Walston et al. 2015). These previous range tests were carried 

out in two directions (to either bank) from a receiver and in 250 meter intervals. Tags 
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were not detected beyond 500 meters from receivers. These tests provided up to four 

points around a receiver with detections at known distances which is somewhat 

inadequate to determine the relationship between detection probability and distance from 

the receiver as defined by Kessel et al. (2014). Since the time of these range tests new 

receivers have been added to the receiver array. We tested 45 of 52 receivers in the array 

with more points around each receiver and in different directions to better ascertain the 

detection ranges of the receivers in this array.  Walston et al. (2015) determined the upper 

portion of the array was not as effective as lower portion at detecting tagged fish, stating 

the quick flowing or shallow water may limit the detection range of the upper array 

receivers. With this information we planned to determine if the detection ability of 

receivers differs between regions of the reservoir.  

Objectives  

My objectives were 1) determine the detection range of receivers in the array by 

stationary range testing; 2) identify any apparent gaps in the receiver array by analyzing 

the tracks of tagged Columbia River Redband Trout in Lake Roosevelt, and 3) determine 

the performance of the receiver gate below Grand Coulee Dam by float range testing. 
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Methods 

Receivers, their location by river km, coordinate, and method(s) by which they were 

evaluated are listed in Table 2-1. Locations of receivers in the array are shown in Figure 

2-1.  

Stationary Range Testing Methods 

The first method used to evaluate receiver effectiveness was stationary range testing. A 

receiver was approached, brought on board, battery checked and coordinates recorded. 

Tests were conducted at three distances in four directions (N, E, S, and W) around each 

receiver (Figure 2-2). These distances were determined by dividing the length between 

the receiver and shoreline by three if this length was less than 500 meters. If this length 

was greater than 500 meters than the distances were 500 divided by three. For directions 

that did not go towards the shore each distance was also 500 meters divided by three. 

Distances were determined with a hand held GPS. Once the boat was at a distance an 

anchor was set to hold the boat in place at that distance.  

Once the anchor was secure a range testing tag was deployed. This tag (VEMCO V-7 

with a seven second delay) specifically made for range testing was placed on a rope five 

meters above a 10 kg anchor. This rope was lowered to the bottom and the tag was at 

three depths (five meters above the bottom, middle water column, and five meters below 

the surface) for 200 seconds at each depth. The amount of time at each depth was chosen 

since we had previously determined the seven second delay tag should be detected every 

10 seconds (due to the slight delay it takes the receiver to decode a signal) and 200 

seconds would yield 20 transmissions. After the test at one distance the anchor was 
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pulled, and the boat was moved to the next distance. This process was repeated 12 times 

around each receiver (Figure 2-2). At the conclusion of the test the receiver was 

downloaded and data stored for future analysis. We were unable to complete tests in all 

four directions around receivers in the Upper Reservoir. These receivers were Kettle 

Falls, North Gorge, Flat Creek, China Bend, Little Dalles and North Gorge. For these 

receivers we tested across to the shoreline from the receivers. 

Tagged Fish Trajectory Methods 

From 2015-2016 Redband Rainbow Trout implanted with acoustic tags in Lake 

Roosevelt were passively monitored on the receiver array. The detection histories are 

stored at Eastern Washington University in a database.  Receivers are arranged by 

reservoir kilometer in the database so I compared the receivers that detected a fish along 

its track to a list of receivers in the reservoir to determine if any receivers along a fish’s 

track did not detect it (Figure 2-3). Receivers at end points of the array in Lake Roosevelt 

(the first receiver above Grand Coulee Dam or the receiver the furthest up the Spokane 

River) were not evaluated with tagged fish detections because I cannot determine if fish 

went past these points.  

Detection ranges of receivers from stationary range testing were used in conjunction with 

tagged fish trajectory methods. The distance between the outer edges of the detection 

range to nearest shoreline was measured to the nearest 10 m in ARCMAP. The percent of 

fish detected on a receiver and distance outside of the detection range of the receiver 

were used to determine where fish are likely moving in relation to the shoreline. For 

example, if the distance to the shore from the outside of the detection range of a receiver 

is long and the proportion of fish detected on that receiver is high then it is likely fish are 
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passing by the side of the reservoir near the receiver. If the percent of fish detected on a 

receiver is low then it is likely the fish are passing by the side of the reservoir well 

outside of the detection range of the receiver. 

Float Range Testing Methods 

On two occasions the receiver gate below Grand Coulee Dam was float tested (Figure 2-

4). The first occasion was with a known delay transmitter (with a seven second delay to 

ascertain the detection range of the receivers) in 2015 and on the other occasion with a 

random 180-300 second delay transmitter (to mimic the transmitter used to tag fish) in 

2016. Tags were placed in a similar manner to those used for the stationary range testing 

and the tag was placed 5 meters below the surface. The boat was positioned 400 meters 

upstream of the receiver gate and drifted 400 meters below the gate for each drift of the 

float test. During each drift coordinates were recorded every 5 minutes to ascertain the 

path the boat was drifting. The test in 2015 was done with nine drifts (3 between 

shoreline and each receiver and between receivers) and in 2016 20 drifts were conducted 

with 10 between receivers and 10 between the north receiver and bank on account of the 

shift in receiver positions. Tests in 2016 with the random delay transmitter also used a 

VEMCO VR 100 hydrophone to record the number of transmissions from this tag. This 

was done to determine detection frequency on these receivers with this random delay 

transmitter.  
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Data Analysis 

All data from the three above categories were analyzed with the free statistical program R 

(www.r-project.org). Detection probability (number of detections on the receiver/number 

of transmissions by the tag) is plotted against distance from the receiver and analyzed by 

a generalized linear mixed model (GLMM) with individual receivers as the random 

effects. Outputs of this model were overlaid onto a map of the reservoir per receiver with 

ARCGIS 10.4. The farthest from receivers these outputs went was 500 m as that was the 

farthest we tested.  

Receivers that were tested in all direction in the main reservoir body subdivided into 

regions of the reservoir (Lower = receiver five to 13 and SP1) Middle = receiver 14 to 25; 

Upper = 26 to 35). Comparisons of detection frequency were made with a Kruskal Wallis 

Test between the regions in three distance groups (<165 m, 165-330m, and 330-500m). If 

significance was found a Dunn’s test was used to determine specific differences (Dunn 

1964). In addition comparisons of detection frequency were made between depth classes 

(bottom, middle and surface) at the aforementioned distance groups in each region. Again 

these comparisons were made with a Kruskal Wallis Test. 

Float test detection data were plotted onto a map with ARCGIS to examine tag locations 

by drift when detections occurred on receivers. Detection Frequency between the two 

receivers for the 2016 test was compared with a Kruskal Wallis Test.  

Receivers were ranked with tag fish data by proportion detected. Proportion detected and 

distance between edge of detection range and shoreline where examined to determine 

correlation. 



51 
 

51 
 

 

      Figure 2-1. Map of receiver locations with region of the main reservoir 
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Table 2-1. Receivers evaluated in this study with latitude, longitude, river kilometer and  

                  method employed for each receiver (SP= Sanpoil River, SR= Spokane River,  

                  1= stationary range testing, 2=float testing, and 3 = tagged fish trajectory,  

                 NE=Not Evaluated). Page 1 of 2. 

No. River Km Receiver Latitude Longitude Method 

1 940.0 Nespelem North 48.12717 -119.04401 2 

2 940.0 Nespelem South 48.12614 -119.04644 2 

3 944.6 Buckley Bar 48.06529 -119.01654 1 

4 948.8 Seaton’s Grove 48.03682 -118.97552 NE 

5 962.4 Spring Canyon North 47.94323 -118.95462 1 

6 962.4 Spring Canyon South 47.93779 -118.95581 1 

7 965.5 Spring Canyon 47.94493 -118.92883 1,3 

8 968.0 Spring Canyon Camp 47.94944 -118.89706 1,3 

9 971.3 Plum Point West 47.95865 -118.85766 1,3 

10 975.3 Plum Point East 47.93467 -118.82943 1,3 

11 979.3 Camel Rocks West 47.91978 -118.78762 1,3 

12 984.9 Camel Rocks East 47.90214 -118.71642 1,3 

13 989.7 Keller Ferry West 47.93152 -118.70901 1,3 

SP1 991.0 Sanpoil Buoy A 47.94882 -118.68600 1,3 

SP2 SP 1.6 Sanpoil Mouth 47.96188 -118.69256 3 

SP3 SP 6.9 Sanpoil Middle 47.99245 -118.68353 3 

SP4 SP 8.7 Sanpoil Arm Buoy B 48.01203 -118.67242 3 

SP5 SP 10.9 Sanpoil Camp 48.027 -118.669 NE 

14 989.7 Keller Ferry East 47.93843 -118.66530 1,3 

15 992.2 Hanson Harbor 47.92767 -118.61789 1,3 

16 995.4 Whitestone Creek 47.93303 -118.56144 1,3 

17 999.4 Whitestone Rock 47.90028 -118.53391 1,3 

18 1,003.4 Halverson Canyon 47.87510 -118.51991 1,3 

19 1,007.4 Burbot Creek 47.86485 -118.45594 1,3 

20 1,013.1 Hawk Creek 47.82549 -118.37244 1,3 

21 1,020.3 Seven Bays 47.86465 -118.35300 1,3 

SR1 SR 4.8 Fort Spokane 47.91607 -118.30206 1,3 

SR2 SR 11.1 McCoy’s Marina 47.94482 -118.22707 1,3 

SR3 SR 22.5 Upper Spokane River 47.87255 -118.13604 1,3 

SR4 SR 32.2 Harker Canyon 47.80176 -118.07917 1,3 

SR5 SR 41.8 Spokane Tribal BL  47.83430 -117.98350 1 

22 1,035.6 Castle Rock 47.96057 -118.35055 1,3 

23 1,053.0 Wilmont Cove 48.04183 -118.31779 1,3 
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Table 2-1 Continued. Receivers evaluated in this study with latitude, longitude, river  

                 kilometer and method employed for each receiver (SP= Sanpoil River, SR=   

                 Spokane River, 1= stationary range testing, 2=float testing, and 3 = tagged fish  

                 trajectory, NE=Not Evaluated). Page 2 of 2. 

No. River Km Receiver Latitude Longitude Method 

24 1,070.0 Hunters South 48.13592 -118.21472 1,3 

25 1,070.0 Hunters North 48.13953 -118.21772 1,3 

26 1,080.0 Bissell Island 48.26492 -118.14310 1,3 

27 1,084.3 Gifford 48.28700 -118.15438 1,3 

28 1,091.9 Mission Point 48.36045 -118.18363 1,3 

29 1,105.6 Chalk Grade 48.43502 -118.20287 1,3 

30 1,112.9 French Rocks 48.50033 -118.18298 1,3 

31 1,120.9 Rickey Point 48.54604 -118.14476 1,3 

32 1,128.2 Kettle Falls Marina 48.59976 -118.12479 1,3 

33 1,133.6 Nancy Creek 48.65200 -118.10700 1,3 

34 1,135.3 Milepost 110 48.67728 -118.03718 1,3 

35 1,149.1 Snag Cove 48.73621 -118.05446 1,3 

36 1,155.3 North Gorge 48.78020 -118.00815 1,3 

37 1,161.8 Flat Creek Eddy 48.81647 -117.97498 1,3 

38 1,169.9 China Bend 48.81942 -117.92492 1,3 

39 1,172.4 Little Dalles Eddy 48.86600 -117.87892 1,3 

40 1,179.6 Northport 48.90539 -117.80548 1,3 

41 1,185.9 Big Sheep Creek 48.93655 -117.76200 3 

42 1,191.5 Black Sand Dock 48.97353 -117.64686 3 
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Figure 2-2. Arrangement of testing locations around receivers. A) Maximum distance  

                  in each direction is 500 m. B) Distance to one shoreline is less than 500 m. 

                   C) Diagram of range testing procedure with depths tested at each location. 
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Figure 2-3. An example fish track that started on 4/01/2016 and ended on 4/06/2016.  

                   Dates indicate when detections occurred. Red X’s next to receiver denote no 

                   detection, and green checks next to receiver indicate detection. This example  

        track starts at 4/01/2016 and passed by 10 receivers. Of these receivers, seven  

                   detected the tag and three did not. 
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Figure 2-4. Layout of receivers and Nespelem Float Tests. White dots are receiver  

                  locations in 2015 and green dots are receiver locations in 2016. A) 

                  Planned drifts for 2015 were three between each receiver and adjacent  

                  shoreline, and three between receivers. B) Planned drifts for 2016 which were     

                  10 between receivers and 10 between North receiver and adjacent shoreline. 

  

 

 

 

 

 

A B 



57 
 

57 
 

Results 

Stationary Range Testing 

Forty three receivers were stationary range tested (10 in 2015, and 33 in 2016). Across 

the array predicted detection probability decreased to 75% 100 m from receiver 50% at 

300 m, and 25% 480 m from the receivers as shown by the distance effect plot from the 

GLMM (Figure 2-5.) In total there were 1,202 observations of detection frequency across 

the receivers tested. Outputs of the GLMM were used to inform detection ranges, and 

detection probability by direction summarized in Table 2-2.   

Distance from the edge of the detection range to the shoreline (right bank, and or left 

bank) was determined as was relative probability in direction around receivers. Right or 

left bank is relative to an observer facing downstream. Probability of detection with 

distance from receiver was organized into three categories based on parallel or 

perpendicular to shore. These categories were 1) probability of detection decreased the 

same with distance in parallel and perpendicular directions; 2) Probability of detection 

decreased less with distance parallel to shore and 3) probability of detection decreased 

less with distance perpendicular to shore. 

Across the array, receivers differed in their detection probability with direction.  

Detection probability was similar at different distances in all directions (n = 7 receivers), 

generally greater parallel to shore (n = 11 receivers) and generally greater perpendicular 

to shore (n = 16 receivers) for all receivers that were tested in all directions. Distance 

between edge of detection range and shoreline ranged from 30 to 2,000 meters. Of the 43 

receivers, eight had detection ranges that extend across the reservoir where they were 

situated at (Table 2-2.). 
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Figure 2-6 shows detection probabilities around four receivers. These are color coded 

around the receiver with darker shades of red showing higher detection probability. There 

are four shades of red each progressively darker with the first shade that represents 5-

24% detection probability, the next shade is 25-49%, the third shade is 50-74%, and the 

last shade is 75-100% detection probability. These same maps were made for 43 receivers 

and can be found in Appendix 1.  

Detection frequencies were compared among regions of the reservoir, by depth and 

direction within regions of the reservoir and within distance groups. Region of the 

reservoir had significant impact on detection frequency within distances of 165-330 

meters (Kruskal Wallis chi square = 6.53, df = 2, p = 0.03) The lower reservoir had 

significantly higher detection frequency than the upper reservoir at these distances (Dunn 

Test, z= 2.48, p=0.04, Figure 2-7). 

Comparisons of detection frequency from different depth class showed no difference by 

depth class in the lower reservoir and upper in distance categories (Table 2-3). Depth 

class did have an effect on detection frequency in the Middle Reservoir (Table 2-3). 

Detection frequency was greater five meters above the bottom than five meters below the 

surface (Dunn Test, z=2.47, p=0.04) and the middle water column had greater detection 

frequency than the surface (Dunn Test, z= 2.31, p=0.03) 165 meters from the receiver in 

the Middle Reservoir (Figure 2-8). Detection frequency was greater five meters above the 

bottom than five meters below the surface (Dunn Test, z=2.47, p=0.04) 165-330 m from 

receivers in the Middle Reservoir (Figure 2-9).  Detection Frequency was greater 5 m 

above the bottom (Dunn Test, z=3.41, p>0.01) than the surface 330-500 m from receivers 

in the Middle Reservoir (Figure 2-10).   



59 
 

59 
 

 

Figure 2-5. Distance effect plot of detection probability by distance from receiver in  

                   meters. Gray shading indicate 95% Confidence intervals. 
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Table 2-2. Summary of stationary range testing by receiver. Par = Parallel to Shore, Per = 

                  Perpendicular to Shore. RB = Right Bank, LB = Left Bank. * Denotes  

                  detection range across the reservoir. Page 1 of 2. 

Receiver 

No. 

Detection probability 

with distance by 

direction 

Distance to shore 

from edge of 

detection range 

Comments 

5 Par = Per 490 m Forms Gate 

6 Par > Per 410 m Forms Gate 

7 Par > Per 82 m RB 360 m LB  

8 Par = Per 270m RB 210 m LB  

9 Par > Per 780 m LB  

10 Par < Per 460 m RB  

11 Par > Per 800 LB  

12 Par < Per 540 RB  

13 Par < Per 640 LB  

SP1 Par < Per 290 LB Sanpoil Mouth 

14 Par > Per 70 m RB, 120 LB  

15 Par = Per 160 m LB  

16 Par > Per 450 m LB  

17 Par < Per 240 m LB  

19 Par > Per *  

20 Par < Per 2,000m RB  

21 Par < Per 280 m RB, 250 m LB  

SR 1 Par > Per * Spokane River 

SR 2 Par = Per 270 m LB Spokane River 

SR 3 Par =Per * Spokane River 

SR 4 Par < Per 125 m RB Spokane River 

SR 5 Par = Per * Spokane River 

22 Par < Per 54 m RB  

23 Par > Per 490 m RB  

24 Par = Per 375 m RB Forms Gate 

25 Par > Per 400 m LB Forms Gate 

26 Par < Per 277 m LB  

27 Par < Per 240 m LB  

28 Par <  Per 1,030 m LB  

29 Par < Per 900 m RB  

30 Par < Per 1,110 LB  

31 Par < Per * Rickey Point 
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Table 2-2. Continued. Summary of stationary range testing by receiver. Par = Parallel to  

                Shore, Per = Perpendicular to Shore. RB = Right Bank, LB = Left Bank. *  

                Denotes detection range across the reservoir. Perpendicular indicates receivers  

                tested in two directions. Page 2 of 2. 

Receiver No. Detection 

probability with 

distance by 

direction 

Distance to shore 

from edge of 

detection range 

Comments 

32  440 m RB Perpendicular 

33 Par < Per 840 m LB  

34 Par > Per *  

35 Par > Per 30 m RB  

36  * Perpendicular 

37  193 m RB Perpendicular 

38  586m RB Perpendicular 

39  * Perpendicular 

40  110 m LB  
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Figure 2-6. Output of detection probability from GLMM, receivers 6 and 7 have        

                   detection probability decrease the same with distance in all directions.  

        Receivers 6 and 7 have detection probability generally higher parallel than  

                   perpendicular to shore. 

5 

6 
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Figure 2-7. Boxplot of detection frequency within 165-330 m from receivers by region.  

        Detection Frequency was higher in the lower than upper region (p<0.001).  

 

Table 2-3. Comparison of Detection Frequency by Depth Class by range of distance from  

                  receivers for each region. With Kruskall-Wallis Chi Square and p-value  

                  (df=2). 

Region Range Kruskall-Wallis Chi Square p-value 

Lower < 165 m 3.75 0.15 

 165-330 m 0.65 0.72 

 330-500 m 3.68 0.16 

    

Middle < 165 m 8.12 0.02 

 165-330 m 6.12 0.04 

 330-500 m 12.24 < 0.01 

    

Upper < 165 m 6.02 0.05 

 165-330 m 2.0 0.3 

 330-500 m 0.67 0.71 

 

 

    A                                   A                                    B           

D
et

ec
ti

o
n
 F

re
q
u
en

c
y
 



64 
 

64 
 

 

Figure 2-8. Boxplot of detection in the middle reservoir within 165 m of receivers by  

                   depth class. 

 

 

Figure 2-9. Boxplot of detection frequency within the middle reservoir 165-330 m from  

                   receivers by depth class. 
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Figure 2-10. Boxplot of detection frequency in the middle reservoir within 330 to 500 m  

                     from receivers by depth class. 
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Tagged Fish Trajectories 

Tagged fish trajectories (n=404) were determined from 40 acoustically tagged Redband 

Trout. Results of the percentage of trajectories detected by receiver are given in Tables 2-

4 to 2-6.  Also provided in these tables is the distance outside of the detection range for 

each receiver  

There appears to be little trend in the proportion of fish detected on receivers (Figure 2-

11) and the distance from the edge of the detection range to shoreline. Maximum 

detection range for all receivers was 500 m from receiver. For example, Plum Point West 

(receiver 9) detected 94% of the tagged fish that went by it, even though there is 780 

meters from the edge of its detection range to the opposite shoreline (Table 2-4). Camel 

Rocks East (receiver 11) detected 37% of tagged fish that went by with 800 m between 

the edge of its detection range and opposite shoreline. There was little correlation 

between distance between edge of detection range and shoreline and the proportion of 

fish detected (Figure 2-11). Proportion of fish detected on receivers whose detection 

range extended across the reservoir ranged from 54-100%. It is important to note that the 

maximum detection range extends out to where 5% of transmissions were detected during 

stationary range tests and these fish passed by receivers over the course of four seasons. It 

is possible for fish to pass by these without being detected and that the detection range 

maybe different during seasons other than summer when our stationary range tests were 

conducted. However, comparisons across season indicated no significant difference in 

percent detected by season (Kruskal Wallis Chi Square = 3.4, df = 4, p =0.36). 
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Table 2-4. Ranking of receivers by percent of fish detected with number of tracks that  

                  passed by receivers and number detected from Spring Canyon to Seven Bays. 

 

 

 

 

 

 

Table 2-5. Ranking of receivers by proportion of fish detected with number of tracks that  

Rank Receiver No. of 

Tracks 

No. 

Detected 

% 

Detected 

Distance out of 

detection range 

1. SP4 Sanpoil Buoy B 181 175 97% NA 

2. 9 Plum Point West 83 78 94% 780m 

3. Camel Rocks East 33 28 85% 540m 

4. Spring Canyon Camp 55 46 84% 270m  RB 210m LB 

5. Halverson Canyon 20 16 80% NA 

6. 10 Plum Point East 39 31 79% 460m 

7 Seven Bays 24 19 79% 280m RB 250m LB 

8. Whitestone Creek 49 38 78% 450 m 

9. Whitestone Rock 34 26 76% 240 m 

10. SP3 Sanpoil Middle 119 87 73% NA 

11. Hanson Harbor 58 40 69% 160m 

12. Hawk Creek 21 14 67% 2,000m 

13. Sanpoil Mouth 112 67 60% NA 

14. Burbot Creek 16 9 56% Range Complete 

15. Keller Ferry East 59 32 54% 640m 

16. Keller Ferry West 88 46 52% 70m RB 120m LB 

17. Sanpoil Buoy A 107 54 50% 290m 

18. Camel Rocks West 43 16 37% 800 m 

19. Spring Canyon BL 60 21 35% 80 m RB 360 m LB 
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                  passed by receivers and number detected from Fort Spokane to Mission Point.  

Rank Receiver No. of 

Tracks 

No. 

Detected 

% 

Detected 

Distance out of 

detection range 

1. SR1 Fort Spokane 6 6 100% Range Complete 

2. SR3 Porcupine Bay 12 11 92% Range Complete 

3. SR4 Harker Canyon 12 11 92% 125m 

4. SR2 McCoy’s Marina 10 9 90% 270m 

5. 19 Hunters 10 9 90% Gate Receivers 

6. 17 Castle Rock 12 10 83% 54m 

7. 20 Bissel Island 10 8 80% 277m 

8. 21 Gifford 9 7 78% 240m 

9. 18 Wilmont Cove 8 6 75% 490m 

10. 22 Mission Point 9 1 11% 1,030m 

 

Table 2-6. Ranking of receivers by proportion of fish detected with number of tracks that    

                 passed by receivers and number detected from Chalk Grade to Canadian  

                 Border. 

Rank Receiver No. of 

Tracks 

No.Dete

cted 

% 

Detected 

Distance outside 

detection range  

1. 36 Near Border 3 3 100% NA 

2. 28 Milepost 110 17 15 88% Range Complete 

3. 27 Nancy Creek 14 12 86% 840m 

4. 23 Chalk Grade 8 5 75% 900m 

5. 24 French Rocks 8 6 75% 1,110m 

6. 34 Northport 8 6 75% 400m RB 110m LB 

7. 33 Little Dalles Eddy 10 7 70% Range Complete 

8. 31 Flat Creek Eddy 11 7 64% 193m 

9. 26 Kettle Falls 10 6 60% 440m 

10. 30 North Gorge 13 7 54% Range Complete 

11. 29 Snag Cove 14 7 50% 30m 

12. 35 Big Sheep Creek 8 3 38% NA 

13. 32 China Bend 11 4 36% 586m 
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Figure 2-11. Scatterplot of proportion of fish detected to distance outside of detection.   

                      range to shoreline. 
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Float Range Testing   

We float tested the receivers at Nespelem on 24 July 2015 with 10 second delay tag. The 

results of these tests indicated that majority of detections (22 of 33 detections) occurred 

when the transmitter was downstream of the receivers. This is likely due to the 

orientation of the receivers as we observed them not hanging straight down, but pointed 

downstream from the end of their cable at an angle due the current at this location. On 

one drift of the nine the transmitter was detected on both receivers. During the time of 

this float test the receivers were positioned directly across from each other. 

On 8 August 2016 we again float tested the receivers at Nespelem. This time with a 1-3 

minute random delay tag. A hydrophone was used to record the number of transmissions 

for each drift. Twenty drifts were conducted in total. The transmitter was detected on 

every drift by both receivers. Interestingly, the position of the receivers was different than 

the previous float test (Figure 2-12.), with one receiver moved downstream by the current 

and the other a new placement in a quiet eddy on the opposite bank upstream. Again the 

majority of detections were downstream of the receivers (65 of 114). In the previous year 

both receivers were oriented pointed downstream. In 2016 one receiver that was placed in 

the eddy was oriented pointed downward.   The detection frequency between the two 

receivers in this gate differed during this float test (Figure 2-12). 
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Figure 2-12. Layout of float range testing drifts in 2015 (left) and 2016 (right) with  

                     locations of detection by receiver along each drift. In 2016 receiver near  

                     south bank had a higher detection frequency (p<0.001). 
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Discussion 

 

As part of our range testing the farthest out we tested from the receivers was 500 m. 

Receiver detection range extended out to this distance for most receivers although 

detection probability was typically low at this distance (roughly 5-25%). Few receivers (8 

of 42) had detection ranges that extended across the reservoir. The majority of receivers 

had areas outside their detection range to the opposite shore that ranged from 30 to 2,000 

m. Receivers placed in the array are often positioned directly over the flooded river 

channel. This ensures the receiver is over the deepest water in the area, and maybe 

beneficial for detection range (Heupple et al. 2006). However, this has resulted in the 

placement of receivers close to one side of the reservoir.  In a reservoir that averages 1.2 

km in width (Stober et al. 1981) placement of receivers closer to one side of the reservoir 

can leave large areas past a receiver where transmitters cannot be detected. 

My results indicate that detection was variable by receiver and region of the reservoir.  

When comparing the detection frequency among regions the only significant difference 

between regions was 165-330 meters from the receiver between lower and upper regions. 

The lower region receivers had higher detection than the upper at these distances. The 

lower reservoir is deeper than the upper reservoir and the shallower water may lead to the 

signal attenuating more quickly due to the signal weakening after bouncing off the 

bottom.  

Depth did not impact detection in the lower or upper reservoir but it did in the middle 

reservoir. Five meters above the bottom and middle water column typically had better 

detection than the 5 meters below the surface. Selby et al. (2016) range tested receivers in 

a saltwater environment and noted that the 5-10 meter depth class was associated with 
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significantly less detection frequency than other depths. Selby et al. (2016) cited wave 

action, and air bubbles as potential causes for increased signal attenuation at these depths. 

The bathymetry around receivers in the regions of the reservoir did vary. In the lower 

reservoir the 5 m above bottom depths tested were typically over 70 meters. In the middle 

reservoir these depths were variable, and in the upper reservoir these depth were typically 

30-40 meters. The lower reservoir locations were typically deep and the upper reservoir 

locations were typically shallow whereas the middle reservoir locations were variable. 

This variability may explain why the middle reservoir detection frequency varies by 

depth and not in the other regions.  

Tagged Fish Trajectories  

When the stationary range testing data was used in conjunction with the trajectory 

analysis it showed insight into where fish are moving in relation to these receivers. There 

was little correlation between the distance from the edge of detection range to shoreline 

and proportion of tagged fish detected on receivers. Receivers with over 700 m from the 

edge of their detection range to shoreline detected between 10 to 94% of tagged fish that 

passed by them. Receivers whose detection range extended across the reservoir detected 

between 54 to 100% of tagged fish that passed by them. The lack of a trend in proportion 

of tagged fish detected in relation to distance outside receiver detection range is likely 

driven by fish preferentially moving along certain shorelines.  I propose that those 

receivers with a high proportion of tagged fish detected (example Plum Point West) fish 

were most likely passing on the side of the reservoir closest to the receiver. An extreme 

example is the Hawk Creek receiver which detected almost 70% of fish that passed by it 

even though there is 2km of the main body of the reservoir between it and the opposite 
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shore. Receivers that detected a low proportion of fish (example Mission Point) fish were 

likely moving by the receiver near the shoreline opposite of the receiver. Reasons why 

fish move by certain areas of the reservoir are worthy of investigations on their own. 

Potentially these areas are more likely sought out by fish for food, shelter or other 

resources. Walston et al. (2014) did a similar analysis with 2014 tagged Redband Trout 

and we combined our data with this data set to capture a more complete picture of the 

receiver array in detecting this species.  

Proportions of tagged Redband Trout detected by receivers between 2014 and 2016 are 

shown in Table 8.  We see that all Spokane River receivers detected greater than 88% of 

the tracks that passed by them. Receivers that detected less than 60% of tracks that passed 

by them (with the exception of Spring Canyon Boat Launch) are located in the Upper 

Reservoir above RKM 1,084. It is important to note that the receivers in the Upper Array 

were originally put in place to track White Sturgeon. The tagged Redland Trout in this 

analysis may move differently than White Sturgeon.  

These data have implications for understanding acoustic data for tagged Redband Trout. 

For example, in the Spokane Arm four of 17 Redbands tagged in the Spokane Arm were 

never detected (Witte and Scholz 2017). The detection range of the receivers in the 

Spokane Arm (Appendix A) and the proportion of tagged fish that are detected (>87%) 

on receivers in the Spokane Arm indicate that the vast majority of tagged fish in the 



75 
 

75 
 

Table 2-7. Receivers organized by total percent of tracks detected for 2014-2016. Shown are number of tracks and    

                  percent detected for 2014-2015, and 2015-2016. (Page 1 of 2). 

Receiver Tracks 

14/15 

No. 

Detected 

14/15 

% 

Detected 

14/15 

Tracks 

15/16 

No. 

Detected 

15/16 

% 

Detected 

15/16 

Total 

Tracks 

Total 

Detected 

Total 

% 

Detected 

SR 3 29 29 100% 12 11 92% 41 40 98% 

SP 4 NA NA NA 181 175 97% 181 175 97% 

Plum Pt W 34 34 100% 83 78 94% 117 112 96% 

SR 4 29 27 93% 12 11 92% 41 38 93% 

Camel R. E 34 33 97% 33 28 85% 67 61 91% 

SR 2 27 23 85% 10 9 90% 37 32 89% 

Spring C. Camp 34 33 97% 55 46 84% 89 79 88% 

SR 1 27 23 85% 6 6 100% 33 29 88% 

Plum Pt East 34 33 97% 39 31 79% 73 64 88% 

Halverson  28 26 93% 20 16 80% 48 42 88% 

Gifford 15 14 93% 9 7 78% 24 21 88% 

French Rocks 15 14 93% 8 6 75% 23 20 87% 

Castle Rock 15 13 87% 12 10 83% 27 23 85% 

Northport 11 10 91% 8 6 75% 19 16 84% 

Seven Bays 15 13 87% 24 19 79% 39 32 82% 

Hawk Creek 28 26 93% 21 14 67% 49 40 82% 

Bissel Island 11 9 82% 10 8 80% 21 17 81% 

Whitestone R 28 24 86% 34 26 76% 62 50 81% 

Whitestone Cr 28 24 86% 49 38 78% 77 62 81% 

Burbot Creek 28 26 93% 16 9 56% 44 35 80% 

Wilmont 15 12 80% 8 6 75% 23 18 78% 

Big Sheep 15 15 100% 8 3 38% 23 18 78% 

SP 3 45 39 87% 119 87 73% 164 126 76% 

Hunters 15 10 67% 10 9 90% 25 19 76% 

Kettle Falls 15 13 87% 10 6 60% 25 19 76% 

Nancy Creek 15 10 67% 14 12 86% 29 22 76% 
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Table 2-7. Receivers organized by total percent of tracks detected between 2014-2016. Shown are number of tracks and %   

                  percent detected for 2014-2015, and 2015-2016. (Page 2 of 2).      

Receiver Tracks 

14/15 

No. 

Detected 

14/15 

% 

Detected 

14/15 

Tracks 

15/16 

No. 

Detected 

15/16 

% 

Detected 

15/16 

Total 

Tracks 

Total 

Detected 

Total 

% 

Detected 

Milepost 110 15 9 60% 17 15 88% 32 24 75% 

Hanson Harbor 28 20 71% 58 40 69% 86 60 70% 

SP 2 45 41 91% 112 67 60% 157 108 69% 

Little Dalles 15 10 67% 10 7 70% 25 17 68% 

Keller Ferry E 34 29 85% 59 32 54% 93 61 66% 

Camel R. W 34 34 100% 43 16 37% 77 50 65% 

Snag Cove 11 9 82% 14 7 50% 25 16 64% 

Chalk Grade 11 6 55% 8 6 75% 19 12 63% 

SP 1 51 44 86% 107 54 50% 158 98 62% 

Flat Creek 11 6 55% 10 7 70% 21 13 62% 

Keller Ferry W 41 32 78% 88 46 52% 129 78 60% 

Spring Cny BL 34 31 92% 60 21 35% 94 52 55% 

North Gorge 11 5 45% 13 7 54% 24 12 50% 

Mission Point 11 9 82% 9 1 11% 20 10 50% 

China Bend 11 6 55% 11 4 36% 22 10 46% 
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Spokane Arm are detected. These tagged fish that were never detected likely never left 

the Spokane Arm. If they did leave it would seem very likely that they would be detected. 

These fish that were not detected may have resided in the Spokane Arm in zones away 

from receivers. 

Float Range Testing 

The orientation of the receiver gate at Nespelem differed between 2015 and 2016 which 

played a role in the results we obtained. In 2015 the receivers were oriented directly 

across from each other approximately 150 m apart. When float tests were conducted with 

a seven second delay the tag was mostly detected downstream of the receivers. As both 

receivers were positioned in the current they were facing downstream rather than straight 

down. Therefore, the cone of detection was mostly downstream of the receivers. On only 

one drift out of nine was the tag detected by both receivers. The following year we 

obtained much more different results.  

In 2016 the placement of receivers had changed. One receiver was moved downstream 

and the other disappeared. Biologists from the Colville Confederated Tribes placed a new 

receiver on the opposite bank and just upstream of the one that still remained. This 

receiver was placed in an eddy. During twenty floats the tag was detected on all drifts by 

both receivers. It was detected more often on the receiver placed in the eddy and about 

equally upstream and downstream of the gate. Previously, Stroud et al. (2011) conducted 

float tests on a Rufus Woods receiver just upstream before the receiver gate at Nespelem 

was put in place with a V-9 transmitter. Tests by Stroud et al. (2011) were conducted 

during times of high flow in late spring and determined the single receiver may only 
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detect a tag on 36% of the drifts, whereas our tests occurred where during moderate flow 

in late summer. Currently it appears this gate is working during times of moderate flow. 

Conclusions  

Based on our assessment of the receiver array we have three suggestions. The first 

regards the placement of additional receivers. We suggest placing a receiver in between 

the ones at Spring Canyon to increase the overlap in detection range here. Another 

location to place a receiver is across from the receiver currently at the mouth of the 

Sanpoil River. Here, the current receiver detected 50% of tagged fish that went by it and 

the distance outside the detection range is 290 m to the other shore. Another receiver 

across from this one could have a detection range that encompasses the area currently out 

of range of the existing receiver. Lastly, there exists 4 receivers downstream of Grand 

Coulee to detect entrainment out of Lake Roosevelt. However, the possibility of 

entrainment out of Lake Roosevelt and into Banks Lake has never been addressed by 

acoustic telemetry. We suggest placing a receiver at the north end of Banks Lake off the 

inlet of the irrigation feeder canal to address this possibility.  Potential sources of 

additional receivers to put in these locations include receivers that are poorly detecting 

fish at their current location such as the Spring Canyon Boat Launch which detected 35% 

of tagged fish that went by it whereas adjacent receivers detected 94 and 84% of fish that 

passed by them.  

The second suggestion is additional evaluation of the acoustic array with tagged fish 

trajectories. I only looked at tags of Redband Rainbow Trout.  The upper array was put in 

place to track White Sturgeon (Howell and McLellan 2007) it would be beneficial to do 

similar analysis of these receivers with White Sturgeon tag data to determine how well 
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these receivers detect sturgeon that moved by them. Evaluating tracks of different species 

may show insight into how well the array works for detecting different species or what 

areas around receiver’s different species are likely using.  

The third suggestion is to float test the gate at Nespelem during times of increased flow. 

From 2016 tests in August this gate is working well during times of moderate flow. It 

would be beneficial to conduct tests during times of high flow to evaluate this gate.  

This range testing has given insights into understanding tracking data of tagged fish in 

Lake Roosevelt. With suggestions of additional receiver placement this array can 

continue to be a valuable tool for current and future studies. 
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Appendix A Detection Probability Maps around Receivers. 

 

 

 

       Figure A-1. Probability of detection around Spring Canyon Receivers 

. 
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Figure A-2. Probability of detection around Plum Point receivers   
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Figure A-3. Detection probability around receivers from Camel Rocks to Keller Ferry. 
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Figure A-4. Detection probability around receivers from Hanson Harbor to Whitestone  

        Rock. 
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Figure A-5. Detection probability around receivers from Burbot Creek to Seven Bays 
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Figure A-6. Detection probability around receivers for Fort Spokane, McCoy’s Marina,  

                    and Castle Rock. 
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Figure A-7. Detection probability around receivers for Porcupine Bay, Harker Canyon  

                    and Spokane Tribal Boat Launch.  

 

 

 

 

 

 

 

 

 

 

 



91 
 

91 
 

 

 

 

 

Figure A-8. Detection probability around Wilmont 
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Figure A-9. Detection probability around Hunters. 
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Figure A-10. Detection probability around Bissel Island. 
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Figure A-11. Detection probability around Gifford and Mission 

                      Point. 
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Figure A-10. Detection probability around Chalk Grade and French 

          Rocks. 
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Figure A-11. Detection probability around receivers from Rickey  

                      Point to Kettle Falls. 
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Figure A-12. Detection probability around receivers from Nancy Creek to Snag Cove. 
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Figure A-12. Detection probability around receivers from North Gorge to Little  

                      Dalles Eddy. 
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Chapter 3  
 

A description of the utilization of Lake Roosevelt by Columbia River Redband Rainbow 

Trout (Onchorhynchus mykiss var. gairdneri) tagged with acoustic transmitters in several 

spawning tributaries of Lake Roosevelt, Washington: Acoustic tag detections from April 

2015- July 2016.  
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Executive Summary       

This study acoustically tracked Columbia River Redband Trout (Oncorhynchus mykiss 

var. gairdneri) tagged in different spawning tributaries of Lake Roosevelt, to determine:   

1. The utilization distribution within Lake Roosevelt for each tributary population;   

2. If Redband Trout return to the tributary they were originally tagged (homing); and   

3. Entrainment at Grand Coulee Dam. 

Data presented in this report encompasses acoustically tagged Redband Trout detected 

from April 2015 to July 2016. In spring 2015, Redband Trout were collected in tributaries 

of Lake Roosevelt, implanted with acoustic transmitters, and released at the site of 

capture in:  

1. The Sanpoil River (enters Lake Roosevelt at Columbia River kilometer 991.0) 

where 15 Redband Trout were collected 12-13 km up the Sanpoil River from of 

this point.   

2. The Spokane River (Enters Lake Roosevelt at Columbia River kilometer 1,027.2) 

where Redband Trout were collected at:  

a. Blue Creek at Spokane River kilometer 19.2 (n=9).   

b. Spring Creek at Spokane River kilometer 44.4 (n=7).     

3. The Middle Reservoir at Columbia River kilometer (1,055.0- 1,061.2) where 

Redband Trout were collected at:  

a. Wilmont Creek at Columbia River kilometer 1,055.0 (n=8).  

b. Alder Creek at Columbia River kilometer 1,058.8 (n=2). 

c. Hunters Creek at Columbia River Kilometer 1,061.2 (n=7). 
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4. The Upper Reservoir at Columbia River kilometer (1,180.0-1,186.1). Where 

Redband Trout were collected at: 

a. Onion Creek at Columbia River kilometer 1,180.0 (n=15); and 

b. Big Sheep Creek Columbia River kilometer 1,186.1 (n=18).   

          

Fish were collected by stationary weir traps, boat electrofishing, backpack electrofishing 

and angling. Fish were anesthetized prior to implantation of VEMCO© acoustic 

transmitters. All fish were allowed to recover from surgery prior to being released at the 

location of capture. 

Eighty one fish (41 females, 21 males, and 19 unknown sex; average total length: 470 ± 

68 mm were implanted with VEMCO acoustic transmitters and released from March 17 

to June 1, 2015. Of these, 54 were detected on the Acoustic Receiver array, one was 

harvested by an angler and two were suspected to have died or expelled their tag. 

Following release, fish were detected on an acoustic receiver array consisting of 74 

VEMCO VR2W 69 kHz receivers positioned downstream of Grand Coulee Dam (RKM 

940.0) to RKM 1,257.0 downstream of Hugh Keenlyside Dam in British Columbia. For a 

complete list of receiver locations see Appendix B.   

Movements were modeled using a Dynamic Brownian Bridge Movement Model and 

utilization distribution (generation of maps showing the probability of occurrence in an 

area) modeling in the statistical software R in order to create individual trajectories and 

utilization distributions. Fish were grouped by region of the reservoir and their 

movements were compared using a Mantel’s test (Spearman’s correlation).  
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Homing was confirmed if fish PIT tags were detected on PIT tag arrays maintained by 

either the Colville Confederated Tribes, the Spokane Tribe of Indians, or Washington 

Department of Fish and Wildlife. Entrainment over Grand Coulee Dam was confirmed if 

a fish was detected on receivers located 13 km downstream of Grand Coulee Dam.   

Comparisons of utilization distributions indicated fish tagged downstream of Hunters, 

Washington (Hunters, Wilmont, Blue, Spring Creeks, and Sanpoil River), were most 

often found in the lower 100 km of the reservoir, whereas those tagged upstream of 

Kettle Falls, (Onion and Big Sheep Creeks) rarely moved into the lower 100 km of the 

reservoir. The greatest distinction between utilization distributions was found to be 

between the most geographically separated groups of Redband Trout (Sanpoil and Upper 

Reservoir).    

Overall, 10 acoustically tagged Redband Trout from 2015 were confirmed to have homed 

into their tagging stream the following year. Seven of these were from the Sanpoil River, 

one from Blue Creek and two from Big Sheep Creek. No fish detected on PIT tag arrays 

were detected in streams other than their original tagging stream. 

No fish tagged in 2015 were confirmed to have entrained over Grand Coulee Dam. 

However, four fish were last detected on one of two receivers upstream of the dam. These 

receivers are located across from each other approximately two km upstream of Grand 

Coulee Dam. One is 180 meters from the north bank, and the other is 260 meters from the 

south bank. The most likely explanation for the disappearance of these fish is they 

entrained through Grand Coulee Dam. We believe this to be the most likely explanation, 

due to a previous study by LeCaire  (1998) who determined the majority of fish that 

entrain at Grand Coulee Dam entrain through the third powerhouse (on the north side of 
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the dam). Three of the four fish were last detected at the north receiver. This receiver is 

approximately two kilometers from the third powerhouse. Since these fish were last 

detected on the north side of the river it is likely they entrained through the third 

powerhouse. After entraining through Grand Coulee Dam, transmitters may have been 

damaged, fish may have been consumed by predators (eagles or otters) or were not 

detected at downstream receivers, by either residing outside the range of receivers or by 

passing by receivers at a time of reduced detection ability by the receivers (i.e., high 

flows). One of the four was detected on the south receiver. This fish may have also 

entrained over Grand Coulee. Other possibilities to explain the disappearance of these 

fish include; 1) entrainment into Banks Lake, an irrigation storage reservoir where Stober 

et al. (1979) has documented entrainment of fish from Lake Roosevelt into Banks Lake; 

2) Fish may have expelled transmitters outside the detectible range of receivers; or 3) 

Fish experienced mortality.  

We plan to prepare a publication of Redband tracking data, collected from 2013-2016 for 

submission to a peer reviewed scientific journal. 
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Introduction 

The indigenous North American range of Rainbow Trout (Oncoryhnchus mykiss) 

encompasses an area from Southern California to Southwestern Alaska (Benke 1992). In 

this range there are five recognized varieties: Costal Rainbow Trout (O. m. var. irideus), 

Sacramento Redband Trout (O. m. var. stonei), Golden Trout (O. m. var aguabonita), 

Klamath River Redband Trout (O. m. var. newberrii), and the Columbia River Redband 

Trout (O. m. var. gairdneri) (Behnke 1992). However, this taxonomy is not completely 

agreed upon, as some authors recognize Golden Trout, as a distinct species (Lawrence et 

al. 2013). The Columbia River Redband Trout, hereafter referred to as Redband Trout, 

are endemic to the Columbia and Fraser River watersheds (Behnke 1992; Scholz and 

McLellan 2010; Scholz 2014). It is thought the Fraser and Columbia River Basins were 

connected during the last ice age, accounting for distribution of O. m. var. gairdneri in 

both drainages (McPhail and Lindsey 1986). Redband Trout were the most widely 

distributed salmonid in the Columbia River Basin, but have been lost from 34% of their 

historic distribution (Thurow et al. 1997). Currently Redband Trout are threatened by 

habitat degradation and introduced species, and are considered a species of special 

concern (Lee et al. 2012).  

Redband Trout exhibit multiple life history strategies. These include non-migratory 

(reside in the same water body their entire lives), anadromous (migrate from freshwater 

to the ocean before returning to freshwater to spawn), and three forms of potadromous 

(migrate within freshwater) life histories. Potadromous strategies are fluvial-adfluvial 

(rear in natal tributary before migrating to a river and eventually return to their natal 

tributary to spawn), lacustrine adfluvial (rear in natal tributary before migrating to a lake 
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and eventually return to natal tributary to spawn) and secondary lacustrine-adfluvial 

(occurs where fish once exhibited a fluvial life history, but due to dam construction that 

has converted the river to a reservoir, migrate to the reservoir before returning to their 

natal tributary (Northcote 1997). Redband Trout are iteroparous (spawn more than once 

in a lifetime) and are able to home back to streams of origin (Scholz and McLellan 2010).  

Lake Roosevelt is a 243 km reservoir formed by Grand Coulee Dam (Stober et al. 1981). 

The dam was constructed without fish ladders and has blocked anadromous fishes from 

over 1,038 km of habitat (Mullen et al. 1992). Part of mitigation for the loss of 

anadromous fishes above Grand Coulee Dam is hatchery production of Rainbow Trout. 

These efforts have increased the number of fish for harvest, but have introduced a non-

native variant of Rainbow Trout into Lake Roosevelt. Rainbow Trout stocked in Lake 

Roosevelt come from the Washington Department of Fish and Wildlife (WDFW) fish 

hatchery in Spokane, Washington. This stock, derived from 95% coastal Rainbow Trout 

(O. m. var. irideus), and 5% McCloud River Redband (O. m. var. stonei),  was obtained 

from the Cape Cod Trout Company in Massachusetts (Crawford 1979). Naturally 

spawning native populations of Redband Trout (O. m. var. gairdneri) also still exist in 

Lake Roosevelt (Small et al. 2014). A genetic analysis of Redband Trout tissue samples 

collected across the reservoir found little evidence of hatchery trout introgression into 

Redband samples (Small et al. 2014). Evidence of metapopulation structuring was found, 

with Sanpoil River, Spokane River tributaries (Blue and Spring creeks), and Middle 

Reservoir tributaries (Alder, Wilmont, and Orapaken creeks) being more similar to each 

other than those from uppermost reservoir tributaries (Small et al. 2014). Currently, 
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hatchery release of Rainbows into Lake Roosevelt consists of triploids to help ensure no 

mixing of nonnative Rainbow variants into the current Redband population.  

Several life history strategies are present in Redband Trout in the drainages that lead into 

Lake Roosevelt (Brown et al. 2013; McLellan et al. 2015). Brown et al. (2013) implanted 

125 Redband Trout with radio tags throughout the Sanpoil River Basin from 2011-2012. 

Of these 72 were classified as lacustrine adfluvial, 36 were classified as fluvial and 15 as 

resident. Interestingly, the lacustrine adfluvial fish were classified into two distinct 

groups; with 48 captured migrating into the Sanpoil River in the spring, and 24 captured 

migrating into the Sanpoil River in the fall (Brown et al. 2013). Some may still retain 

anadromy as 46 of 2,075 Redband Trout PIT tagged in the Sanpoil River between 2010 to 

2012 were subsequently detected at locations 128 to 489 km downstream of  Grand 

Coulee Dam (McLellan et al. 2015). 

Lake Roosevelt has had a history of acoustic telemetry to monitor fish movements. White 

Sturgeon (Acipenser transmontanus), and both hatchery and wild Kokanee Salmon (O. 

nerka) movements have been monitored with acoustic telemetry in this reservoir (Howell 

and McLellan 2007; McLellan et al. 2009, 2010; Scholz et al. 2011; Stroud et al. 2012, 

and 2013; Seibert et al. 2015).  From 2013 to 2016 Redband Trout movements have also 

been monitored with acoustic telemetry (Stroud et al. 2014; Stroud 2015; Walston 2015; 

Walston et al. 2015) to fill gaps in knowledge about how Redband Trout use Lake 

Roosevelt after leaving their spawning tributaries. 

How Redband Trout utilize Lake Roosevelt is of interest to managers. It is known that 

availability of zooplankton is greater in the lower 100 km of reservoir than the upper 

143km with the greatest densities occurring in the lower most 30 km (Chichosz et al. 
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1997).  Diet analysis of both hatchery and wild Rainbow in Lake Roosevelt found 

Branchiopods, primarily Daphnia spp, were the most prevalent item found in Rainbow 

Trout stomachs during Lake Roosevelt monitoring surveys between 1988 and 1998 

(Peone et al. 1990; Griffith and Scholz 1991; Thatcher et al. 1993, 1994; Cichosz et al. 

1997; Cichosz et al. 1999). How Redband Trout use Lake Roosevelt after leaving their 

spawning tributaries is not well known. It is unknown if fish from tributaries in different 

sections of the reservoir all utilize areas with the highest Daphnia concentrations, or if 

these fish utilize different sections of the reservoir. 

Entrainment of fish out of Lake Roosevelt has been documented (Stober et al. 1976; 

LeCaire 1998; McLellan et al. 2008) and reservoir operations can impact fish in Lake 

Roosevelt (McLellan et al. 2008). LeCaire (1998) used hydro acoustic survey methods to 

count fish moving through the three power houses at Grand Coulee Dam. LeCaire (1998) 

also used nets set in the forebay to determine the fish species present, and estimated 

approximately 83,000 Rainbow Trout (no distinction between hatchery and wild 

Rainbow Trout) entrained out of Lake Roosevelt over Grand Coulee Dam annually. 

McLellan et al. (2008) developed a model between reservoir operations (water retention 

time, and reservoir elevation) and hatchery Rainbow Trout success (tag return probability 

in Lake Roosevelt). Angler return of tagged rainbow trout was more likely to occur after 

shallow drawdowns than deep drawdowns (McLellan et al. 2008). Fish can also entrain 

out of Lake Roosevelt into Banks Lake via a pumping station and canal (Stober et al. 

1976).  Stober et al. (1976) reported 13 fish species that were captured in net sets in the 

Banks Lake Feeder Canal during July-September 1975.  Rainbow Trout ranked 7th in 

relative abundance of 13 species collected in these net sets.  
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Understanding the movements and entrainment of Lake Roosevelt Redband Trout is 

important to help maintain their population. Maintaining their population is essential for 

the survival of Columbia River Redband Trout, and for the potential return of 

anadromous Redband Trout upstream of Grand Coulee Dam. 

The aims of this study were to acoustically track Redband Trout, tagged in different 

spawning tributaries of Lake Roosevelt, to determine:  

1. The utilization distribution and compare these distributions spatially for each   

  tributary population;    

2. If Redband Trout return to the tributary they were originally tagged (homing); and    

3. Entrainment at Grand Coulee Dam. 
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Methods 

Study Area  

Lake Roosevelt (Figure 3-1), was created by Grand Coulee Dam at river kilometer 

(RKM) 953.6. At full pool the reservoir has a maximum depth of 122m, surface area of 

33,490 hectares, and extends to the Canadian Border at RKM 1,192.0 (Stober et al. 

1980). The reservoir serves three purposes, 1) Power production at Grand Coulee Dam, 

2) System flood control and firming power production at downstream dams via flow 

regulation, and 3) Supplies irrigation water to the United States Bureau of Reclamation’s 

Columbia Basin Project.   

Fish Collection  

From March 17 to June 1, 2015 Redband Trout were collected from tributaries of Lake 

Roosevelt. Collection methods varied by location. Boat electrofishing and angling was 

used on the Sanpoil River 12-13 km upstream of its confluence with the Columbia River. 

Angling, backpack and boat electrofishing was used at Blue Creek. Angling was used at 

the Spokane River in the vicinity of Spring Creek. In the past two years EWU has 

collected fish within Spring Creek. However, due to an historic flood in 2014 that caused 

streamflow to go subsurface upstream of the mouth we opted to angle in the Spokane 

River. Angling, backpack, and boat electrofishing was used to collect fish at the middle 

reservoir tributaries (Wilmont, Alder and Hunters Creeks). A stationary weir trap was 

used in Onion Creek to collect fish, and angling was used to collect fish at Big Sheep 

Creek. 

All Redband Trout were measured, total length (TL, mm), fork length (FL, mm), weighed 

(g), and scanned for a Passive Integrated Transponder (PIT) tag. Capture method, sex, 
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maturity, acoustic tag and PIT tag numbers were recorded. A tissue sample from a rayed 

fin was collected and stored in 95% ethanol for genetic analysis. Fish were surgically 

implanted with acoustic transmitters and PIT tags (if they did not already have one). 

Surgical Tag implantation 

All fish were anesthetized prior to acoustic tag implantation. Fish collected in the Sanpoil 

River were immobilized by low-voltage electronarcosis (Hudson et al. 2011). This 

involved a cooler, two electrodes, mesh cradle, and power source. Fish were immobilized 

by a continuous (non-pulsed) direct current. This allowed for immobilization while 

opercular movement continued during the surgical procedure. Fish collected elsewhere 

were anesthetized with AQUI-S 20E© at a concentration of 28.5 mg of eugenol/L of 

water. Once stage IV anesthesia was reached (loss of equilibrium, no response to external 

stimuli, slowed opercular movements) fish were placed on a sponge surgery table and 

gills irrigated with a 14.25 mg of eugenol/L of water solution via a tube connected to a 20 

L bucket.   

The surgical site between the pectoral and pelvic fin was cleaned with betadine (Hamms 

2005; Stroud et al. 2014) and a single incision just long enough to fit the respective size 

tag was made with a sterile single-use steel scalpel. The incision was deep enough to 

puncture the coelomic cavity, both acoustic tag and PIT tag was inserted through this 

incision, which was closed with two to four interrupted surgeons’ knots (Wagner 2000 

and 2005; Deters et al. 2010). 
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Figure 3-1. Map of Study Area depicting the locations of capture and receivers for 2015-

2016. 
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Each fish was placed into a 30x30x70cm cooler filled with fresh water from site of 

capture to recover from the anesthetic. All fish were returned to the site of capture after 

recovering from the anesthetic. Between surgeries all non-disposable equipment was 

sterilized with a CIDEX OPA (CIVCO Medical Soulutions, Kaloa, Iowa) bath and rinsed 

three times with distilled water.    

VEMCO© Acoustic transmitters in three sizes were used for tagging. These were the v-

13 (11 grams (g) in air with a tag life of 1,117 days), v-9 (4.7 g in air with a tag life of 

484 days), and the v-7 (1.6 g in air and a tag life of 395 days). Following Brown et al. 

(1999) we maintained a minimum threshold size for tagging fish at 2% of the fish’s body 

weight for each tag type (example, ≥ 550 g fish for a v-13, ≥ 235 g fish for a v-9, and ≥ 

80 g fish for a v-7). 

Acoustic Tracking and Field Data Collection  

An array of 64 Acoustic VEMCO VR-2W submersible receivers is in place on the 

Columbia River between RKM 940 and 1,256. An additional five receivers are placed in 

the inundated lower Sanpoil River, and five in the inundated lower Spokane River. The 

receivers downstream of Hunters, Washington (RKM 1,070) were downloaded and 

maintained by EWU. This maintenance occurred every two months, and included 

changing receiver batteries, buoy lights when necessary, and downloading data. The 

Spokane Tribe of Indians (STOI) maintained the receivers between Bissel Island (RKM 

1,083) and the international border. B.C. Hydro maintains a receiver array from the 

international border to Hugh Keenlyside Dam. The receivers in Lake Roosevelt are 

attached to a white can buoy that is anchored to a 136 kg weight with a permaflex cable 



113 
 

113 
 

(Figure 3-2). The receivers dangle 3 meters below the buoy on a cable separate from the 

anchor line.     

Detection Criteria 

Signal collisions and false detections, though uncommon, occur and may cause an 

inaccurate representation of the data. VEMCO© suggests all data are subjected to two 

criteria and if they fail to meet these criteria then those data should be removed from the 

dataset. 

Criteria one refers to false detections. A false detection occurs when a receiving unit 

misinterprets environmental noise as a signal from a tagged fish. As a result, the receiver 

will detect and log a tag that is not there. Each acoustic tag comes with an “error 

detection code” that is a string of extra data sent with the unique ID coded tag 

transmissions. This extra data signals that the receiver has a genuine detection. If the 

extra data is not included in the transmission, the receiver will assign it as a false 

detection and will not log the code. 

The second criterion for data refers to signal collisions. A signal collision is when two or 

more tags in the same area send a transmission at the same time. When the signals hit the 

receiver at the same time a disruption, scrambling, or mixing of signals occurs and has 

the potential to cause a receiver to log an invalid signal (Pincock 2012). The receiver may 

detect a signal similar to the type listed in criteria one, and as such, it will not be logged. 

If an invalid detection was found in the data, tag collisions were considered and the data 

were removed. 
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Figure 3-2. Typical anchor, cable, and buoy set up for acoustic receivers in Lake  

                    Roosevelt. With a depiction of tag placement within the fish. 
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Despite this, it is recommended that all logged transmissions must meet these criteria 

before acceptance (Pincock 2012). In order for the transmission to be verified, two or 

more detections had to be acquired from the same fish at the same receiver. These 

detections had to be within a reasonable amount of time between each other (<9 minutes 

based on a180 second nominal delay of the transmitter). 

Acoustic Data Analysis 

All acoustic data was downloaded from receivers and placed into a database for the 

duration of the study. Data were extracted from this database as a Microsoft Excel 

comma separated values (csv) file. This csv file was opened with the free statistical 

software R and analyzed. All analysis was done with R scripts developed by Walston et 

al. (2015).   

Movement data was analyzed by a Dynamic Brownian Bridge Movement Model 

(DBBMM) to determine utilization distribution (UD) of fish from each tagging location. 

These utilization distributions are the probabilities of a fish occupying multiple areas, and 

are overlaid onto a map of the reservoir.  The placement of receivers resulted in coarse 

locations and irregular time stamps that required the use of this state space modeling 

technique. The mathematics of this technique can be found in Horne et al. (2007). The 

method develops a trajectory (path of animal movements through an area), and 

interpolates where the animal is between locations of detection based on the amount of 

time that has passed between it being detected at those locations.   Only fish that were 

detected on multiple receivers were used in this analysis. For a description of movements 

over the course of the entire tracking period for each individual fish see Appendix B. 
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We used the “move” package in R to estimate the trajectories in the DBBMM 

(Kranstauber et al. 2012.). These trajectories include spatial and temporal data that were 

constrained to the river channel with a process developed by Walston et al. (2015). 

Without constraining the trajectory to the river channel the DBBMM would show fish 

movements overland, which is unrealistic. With constrained trajectories a map of the 

utilization distribution (UD) was constructed. A UD for each fish was created and 

averaged for each tagging location. The averaged UD for each tributary group were 

compared to each other using a Mantel’s test with the “vegan” package in R. This was 

done by converting the average UD into a data matrix. Our locations for comparison were 

the Sanpoil River, Spokane Arm (Blue Creek, Spring Creek), Middle Reservoir 

(Wilmont, Alder ,and Hunters Creeks) , and Upper Reservoir (Onion and Big Sheep 

Creeks).   

Mantel’s test is a correlation method in which dissimilarity/distance matrices are 

summarized as pairwise comparisons. This method is a correlation between entries of two 

matrices and since significance cannot be directly assessed Mantel’s test is asymptotic 

where it uses permutations of N rows and columns of the matrix (Legendre and Legendre 

1998). As a formal hypothesis test, it summarizes the strength of correspondence between 

two matrices, and tests the null hypothesis that the two matrices are unrelated (Dutilleul 

et al. 2000). Because the null hypothesis is the two matrices are different, significance 

values were reported as q or 1-p and a q-value below the significance level of 0.05 

indicated the two matrices were different. Since Mantel’s test can be biased by the 

resolution of the raster; Walston et al. (2015) tested comparisons of UD matrices of 

different tributary groups at different raster resolutions from 100 to 20,000. No difference 
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in the q value or r value was found so the native resolution of 1875 was used for 

2014/2015 data. We used this raster resolution for 2015/2016 data. 

Homing  

Homing was determined through the use of PIT tag data. PIT arrays are maintained by 

the Colville Confederated Tribes (CCT) on the Sanpoil River, on Blue and Alder Creeks 

by the Spokane Tribe of Indians (STOI), as well as Onion and Big Sheep Creeks by the 

Washington Department of Fish and Wildlife (WDFW).  

Entrainment   

Entrainment over Grand Coulee Dam was confirmed if a fish was detected on receivers 

located 13 km downstream of the dam in Rufus Woods Reservoir.  
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Results 

Fish Tagging and Tracking 

Eighty-one fish (41 females, 21 males, and 19 unknown sex; average total length: 470 ± 

68 mm) were tagged from March 17 to June 1, 2015. EWU tagged all fish in 2015 except 

the fish in the Sanpoil River, which were tagged by the CCT. For sizes, sex, and 

condition of each fish tagged see Table 3-1.  

Tag Detections  

Of the 81 fish tagged in 2015, 54 were detected on the acoustic receiver array. Of these 

54, 39 were detected on multiple receivers, and 20 were detected into 2016. Only fish 

detected on multiple receivers were used to generate UD’s for comparisons among the 

tributary groups. Summary of tag detections by each tributary group are given in Table 3-

2.   

Sanpoil River   

Fourteen of the 15 Redbands tagged in the Sanpoil River were detected on the receiver 

array. Interestingly, the one not detected on the receiver array was detected on a Colville 

Tribe maintained PIT tag array in the Sanpoil River on 4/19/2015 (four days after 

tagging). Of the 14 detected on the receiver array, two were detected at one receiver at 

the head of the Sanpoil Arm shortly after tagging, and were also detected on the same 

CCT maintained PIT tag array shortly after tagging.  The other 12 were detected on 

multiple receivers. Ten were detected into
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 Table 3-1. Lake Roosevelt Redband Tagging with Location, Date, Acoustic Tag Size, ID, Total Length (TL),  

                  Weight (WT), Sex, Condition and PIT tag for each Redband tagged in 2015.  ALD = Alder Creek, BGS Big  

                   Sheep Creek, BLU = Blue Creek, HUN = Hunters Creek, ONI = Onion Creek, SAN = Sanpoil River, SPR =  

                   Spring Creek, (Page 1 of 4).           

No. Location Date Acoustic 

Tag 

ID TL(mm) Wt(g) Sex Condition PIT 

01 SAN 4/15 v-9 58701 460 1020 M R 900226000668685 

02 SAN 4/15 v-9 58700 475 1014 U Ma 900226000668561 

03 SAN 4/15 v-9 58699 443 843 U Ma 900226000668612 

04 SAN 4/15 v-9 58694 475 1128 U I 900226000668583 

05 SAN 4/15 v-9 58693 515 1398 U I 900226000668668 

06 SAN 4/15 v-9 58697 406 707 U I 900226000668743 

07 SAN 4/15 v-9 58695 507 1230 U I 900226000668719 

08 SAN 4/15 v-9 58696 423 757 U I 900226000668542 

09 SAN 4/15 v-9 58688 386 596 U I 900226000668529 

10 SAN 4/15 v-9 58698 509 1302 U I 900226000668632 

11 SAN 4/15 v-9 58687 433 795 U I 900226000668621 

12 SAN 4/15 v-9 58690 415 740 U I 900226000668616 

13 SAN 4/15 v-9 58689 410 682 U I 900226000668523 

14 SAN 4/16 v-9 58691 490 976 F PS 900226000668627 

15 SAN 4/16 v-9 58692 508 1282 U I 900226000668658 

16 BLU 3/17 v-13 59574 480 1297 F Ma 985121013118531 

17 BLU 4/1 v-13 59572 521 1601 F Ma 985121012449156 

18 BLU 4/1 v-13 59573 483 1146 F Ma 985121012480819 

19 BLU 4/1 v-9 59576 500 1020 F Ma 985121012215234 

20 BLU 4/10 v-9 59579 520 1444 F R 985121012477354 

21 BLU 4/10 v-9 59580 430 836 M PS 985121012994994 

22 BLU 4/24 v-7 33579 362 439 M R 985121012448704 

23 BLU 5/9 v-7 33580 477 1020 F R 985121013113500 

24 BLU 5/9 v-7 33582 199 92 U U 985121012442119 

25 SPR 3/26 v-13 59571 477 914 F Ma 985121013251123 
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Table 3-1 Continued. . Lake Roosevelt Redband Tagging with Location, Date, Acoustic Tag Size, ID, Total Length (TL),  

                 Weight (WT), Sex, Condition and PIT tag for each Redband tagged in 2015.  ALD = Alder Creek, BGS Big  

                  Sheep Creek, BLU = Blue Creek, HUN = Hunters Creek, ONI = Onion Creek, SAN = Sanpoil River, SPR =  

                  Spring Creek, (Page 2 of 4).           

             

 

No. Location Date Acoustic 

Tag 

 ID TL(mm) Wt(g) Sex Condition PIT 

26 SPR 3/26 v-9 59575 534 1202 F Ma 985121012442115 

27 SPR 4/4 v-9 59577 570 1685 F Ma 985121012192019 

28 SPR 4/4 v-7 33578 348 360 U U 985121013232752 

29 SPR 4/4 v-9 59578 430 770 U U 985121013248634 

30 SPR 4/16 v-9 59581 363 558 F PS 985121012189053 

31 SPR 4/29 v-7 59582 495 1072 F PS 985121012441476 

32 WIL 4/15 v-9 59583 410 1458 M R 985121013241466 

33 WIL 4/15 v-9 59584 514 2504 F R 985121012175721 

34 WIL 4/15 v-13 59565 422 1604 U U 985121012195126 

35 WIL 4/15 v-9 59588 501 2396 M R 985121012478552 

36 WIL 4/15 v-9 59589 549 3550 F R 985121012450732 

37 WIL 5/7 v-9 59586 501 1952 F PS 985121013234701 

38 WIL 5/7 v-9 59587 519 2490 F Ma 985121012183165 

39 WIL 5/7 v-9 33587 246 138 U I 985121012449749 

40 ALD 4/10 v-9 59566 488 1060 M PS 985121012453215 

41 ALD 4/24 v-9 59585 516 1305 M R 985121012190776 

42 HUN 5/9 v-7 33585 541 1534 F R 985121012480373 

43 HUN 5/9 v-9 59590 495 1105 M R 985121013249527 

44 HUN 5/9 v-9 59591 480 1201 F R 985121013244093 

45 HUN 5/9 v-7 59594 449 800 M R 985121012498573 

46 HUN 5/9 v-7 33583 361 479 M PS 985121012502283 

47 HUN 5/9 v-7 33584 501 1270 F R 985121013232753 

48 HUN 5/9 v-9 33586 496 1214 F R 985121013249527 

49 ONI 4/30 v-9 59599 492 1148 F  PS 900226000653210 
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Table 3-1.  Continued. . Lake Roosevelt Redband Tagging with Location, Date, Acoustic Tag Size, ID, Total Length (TL),  

                   Weight (WT), Sex, Condition and PIT tag for each Redband tagged in 2015.  ALD = Alder Creek, BGS Big  

                    Sheep Creek, BLU = Blue Creek, HUN = Hunters Creek, ONI = Onion Creek, SAN = Sanpoil River, SPR =  

                    Spring Creek, (Page 3 of 4).           

No. Location Date Acoustic Tag ID TL(mm) Wt(g) Sex Condition PIT Tag Number 

50 ONI 4/30 v-7 33589 335 385 M R 900226000653216 

51 ONI 5/15 v-9 23799 490 864 M PS 900226000653110 

52 ONI 5/15 v-9 23800 515 1068 F PS 900226000653013 

53 ONI 5/19 v-9 23802 485 892 F PS 900226000653023 

54 ONI 5/19 v-9 23803 526 1977 F PS 900226000653090 

55 ONI 5/19 v-9 23801 417 703 F PS 900226000653003 

56 ONI 5/19 v-7 19060 461 825 F PS 900226000653020 

57 ONI 5/24 v-7 19061 525 1067 F PS 900226000653062 

58 ONI 5/27 v-7 19062 561 1068 F PS 900226000653222 

59 ONI 5/29 v-7 19063 446 629 F PS 900226000653131 

60 ONI 6/1 v-7 33581 465 710 F PS 900226000653112 

61 ONI 6/1 v-7 19064 439 642 F PS 900226000653219 

62 ONI 6/1 v-7 19066 461 740 F PS 900226000653168 

63 ONI 6/1 v-7 19065 461 829 F PS 900226000653016 

64 BGS 4/6 v-13 59568 551 1630 M R 900226000653189 

65 BGS 4/6 v-13 59569 521 1321 M R 900226000653052 

66 BGS 4/6 v-13 59570 562 1614 M R 900226000653002 
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  Table 3-1. Continued. . Lake Roosevelt Redband Tagging with Location, Date, Acoustic Tag Size, ID, Total Length (TL),  

                   Weight (WT), Sex, Condition and PIT tag for each Redband tagged in 2015.  ALD = Alder Creek, BGS Big  

                    Sheep Creek, BLU = Blue Creek, HUN = Hunters Creek, ONI = Onion Creek, SAN = Sanpoil River, SPR =  

                    Spring Creek, (Page 4 of 4).           
 

No. Location Date Acoustic 

Tag 

ID TL(mm) Wt(g) Sex Condition PIT Tag Number 

67 BGS 4/6 v-9 59595 489 1046 M Ma 900226000653181 

68 BGS 4/6 v-13 59567 483 1087 F Ma 900226000653045 

69 BGS 4/6 v-9 59593 585 1607 M R 900226000653097 

70 BGS 4/24 v-9 59596 517 1256 F R 900226000653041 

71 BGS 4/24 v-9 59597 528 1108 F PS 900226000653243 

72 BGS 4/24 v-9 59598 447 836 M R 900226000653109 

73 BGS 4/24 v-7 33588 312 325 M R 900226000653121 

74 BGS 5/7 v-9 59592 515 1085 F PS 900226000653224 

75 BGS 5/7 v-9 23795 530 1180 F PS 900226000136489 

76 BGS 5/7 v-9 23796 485 1032 F PS 900226000653043 

77 BGS 5/7 v-9 33591 460 1039 F PS 900226000653220 

78 BGS 5/7 v-7 33592 495 838 F PS 900226000653241 

79 BGS 5/7 v-7 33590 439 900 F PS 900226000653192 

80 BGS 5/11 v-9 23797 515 1025 M PS 900226000653122 

81 BGS 5/11 v-9 23798 453 883 M PS 900226000653140 
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Blue Creek  

Seven of the nine Redbands tagged in Blue Creek were detected on the receiver array. 

Two were only detected at one receiver. One of these, tagged on April 1, 2015 was 

detected at McCoy’s Marina in the Spokane Arm (Spokane River kilometer 11.1) on 

April 6, 2015.This fish has been continuously detected here from April 6, 2015-July 7, 

2016. This fish was suspected to have died or expelled its tag at this location. Another 

was also only detected on this same receiver on April 16, 2015. Three were detected into 

2016. 

Spring Creek  

Five of the seven Redbands tagged near Spring Creek were detected on the receiver 

array. One of the two not detected on the receiver array has been detected on a 

hydrophone approximately 1 km downstream of Little Falls Dam when EWU explored 

the Spokane River upstream of the Wynecoops Boat Launch receiver in July 2015. 

Another effort with a hydrophone was made in May 2016 and no acoustic tags were 

found in this section of the Spokane River. One was only detected at the Wynecoops Boat 

Launch receiver. Two were detected into 2016. 

Wilmont Creek  

Five of eight Redbands tagged in Wilmont Creek were detected on the receiver array. 

One was only detected at the Wilmont Receiver (100 km upstream of Grand Coulee 

Dam). The other four were detected on multiple receivers.    

One tagged on April 15th 2016 was detected moving down to the lower reservoir to Plum 

Point by May 16, 2015. It was harvested by an angler and tag was returned to EWU. One 
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tagged on April 15, 2015 moved down the reservoir to the Whitestone Rock Receiver (50 

km upstream of Grand Coulee Dam), and has been continuously detected here from June 

10, 2015 – July 7, 2016. This fish was suspected to have died or expelled its tag. 

Excluding the one suspected to have died/expelled its tag, one was detected into 2016. 

Alder Creek  

Neither fish tagged in Alder Creek was detected on the receiver array.  

Hunters Creek  

Three of seven Redband tagged in Hunter’s Creek were detected on the receiver array.  

None have been detected into 2016. One was detected at the Hunters Receiver (117 km 

upstream of Grand Coulee Dam).  None were detected into 2016 

Big Sheep Creek  

Eleven of the 18 Redbands tagged in Big Sheep Creek were detected on the receiver 

array.  Six were detected at only one receiver with four at Big Sheep Receiver in the 

United States (232 km upstream of Grand Coulee Dam) and one at Northport (227 km 

upstream of Grand Coulee Dam). Five were detected on multiple receivers. Interestingly 

one detected only at Big Sheep in the United States on May 7, 2015 was next detected 56 

km upstream of the international border in British Columbia from September 16 to 19, 

2015. Two were detected into 2016. 
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Onion Creek  

Ten of 18 Redbands tagged in Onion Creek were detected on the receiver array. Two 

were detected into 2016. Three were detected on one receiver with one at Northport, one 

at Little Dalles (219 km upstream of Grand Coulee Dam), and one at Kettle Falls.  Seven 

were detected on multiple receivers.  Two were detected into 2016. 

Tags from 2014 Detected on Receiver Array   

Seven tags from 2014 were detected into the time frame of this report. Three of these 

were only on one receiver. One tag was from Onion Creek and the other six were from 

the Sanpoil River. A summary of these can be found in Table 3-3.  

Utilization Distribution  

The following (Figures 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, and 3-9) are outputs of the Dynamic 

Brownian Bridge Movement Model overlaid onto a map of the reservoir over the entire 

tracking period. The warmer colors (red) indicate areas of high probability of occurrence 

(more likely to utilize) and cool colors (green) indicate low probability of occurrence 

(less likely to utilize), normalized between 0 and 1. 
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Table 3-2. Summary of Redband Trout Transmitter Detections by Tributary, size of tag,  

                  tag life and number of days detected since tagging. *Denotes transmitter was   

                  detected at only one receiver (Page 1 of 2). 

Tributary 

and Year 

Acoustic ID  Tag 

Size 

Transmitter 

Life (days) 

# of Days 

Detected 

Date 

Tagged 

Date of  last 

detection 

Sanpoil 

2015 
58687 v-9 484 389 4/15/2015 5/8/2016 

58688 v-9 484 354 4/15/2015 4/3/2016 

58689 v-9 484 449 4/15/2015 7/7/2016 

58690 v-9 484 346 4/15/2015 3/25/2016 

58691 v-9 484 374 4/15/2015 4/25/2016 

58692 v-9 484 264 4/15/2015 1/14/2016 

*58693 v-9 484 368 4/15/2015 4/18/2016 

58694 v-9 484 373 4/15/2015 4/22/2016 

58695 v-9 484 87 4/15/2015 7/11/2015 

58696 v-9 484 98 4/15/2015 7/22/2015 

58697 v-9 484 449 4/15/2015 7/7/2016 

*58698 v-9 484 3 4/15/2015 4/18/2015 

58699 v-9 484 369 4/15/2015 9/23/2015 

58700 v-9 484 427 4/15/2015 6/15/2016 
       
Blue 

 2015 
33579 v-7 395 314 4/24/2015 3/3/2016 

33580 v-7 395 323 5/9/2015 3/27/2016 

59572 v-13 1019 423 4/1/2015 5/28/2016 

59573 v-13 1019 21 4/1/2015 4/22/2015 

59576 v-9 484 263 4/1/2015 12/19/2015 

*59579 v-9 484 6 4/10/2015 4/16/2015 
       
Spring 

 2015 
*59571 v-13 1019 466 3/26/2015 7/4/2016 

59575 v-13 1019 41 3/26/15 5/5/2015 

*59577 v-9 484 22 4/4/2015 4/26/2015 

*59578 v-9 484 125 4/4/2015 7/7/2015 

59581 v-9 484 445 4/16/2015 7/4/2016 

59582 v-9 484 22 4/29/2015 5/21/2015 
       
Wilmont 

2015 
59565 v-13 1019 320 4/15/2015 2/29/2016 

59584 v-9 484 33 4/15/2015 5/18/2015 

*59588 v-9 484 3 4/15/2015 4/18/2015 

59589 v-9 484 31 4/15/2015 5/16/2015 
       
Hunters 

2015 
33585 v-7 395 47 5/9/2015 6/25/2015 

*33586 v-7 395 52 5/9/2015 6/30/2015 

59591 v-9 484 15 5/9/2015 5/24/2015 
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Table 3-2. Continued Summary of Redband Trout Transmitter Detections by Tributary,  

                  size of tag, tag life and number of days detected since tagging. *Denotes  

                   transmitter was detected at only one receiver (page 2 of 2). 

 

 

Table 3-3. Summary of Redband Trout Transmitter Detections for fish tagged in 2014  

                 that were detected through 2015 by Tributary, size of tag, tag life and number  

                 of days detected since tagging. *Denotes transmitter was detected at only one 

      receiver.  

Sanpoil River  

Tributary 

and Year 

Acoustic ID Tag 

Size 

Transmitter 

Life (days) 

# of Days 

Detected 

Date 

Tagged 

Date of  

last 

detection 

Onion 

2015 

19062 v-7 395 17 5/27/2015 6/13/2015 

19065 v-7 395 24 6/1/2015 6/25/2015 

19066 v-7 395 266 6/1/2015 2/22/2016 

23799 v-9 484 112 5/15/2015 9/4/2015 

23800 v-9 484 267 5/15/2015 2/6/2015 

*23801 v-9 484 3 5/19/2015 5/22/2015 

23802 v-9 484 75 5/19/2015 8/2/2015 

23803 v-9 484 8 5/19/2015 5/27/2015 

33581 v-7 395 325 6/1/2015 4/21/2016 

       

BGSC 

2015 

*23795 v-9 484 132 5/7/2015 9/16/2015 

*33590 v-7 395 334 5/7/2015 4/4/2016 

*33592 v-7 395 127 5/7/2015 9/10/2015 

59569 v-

13 

1019 107 4/6/2015 7/21/2015 

*59593 v-9 484 4 4/6/2015 4/10/2015 

59595 v-9 484 36 4/6/2015 5/11/2015 

59596 v-9 484 475 4/24/2015 8/11/2016 

59597 v-9 484 18 4/24/2015 5/11/2015 

59598 v-9 484 152 4/24/2015 9/22/2015 

Tributary 

and Year 

Acoustic ID  Tag 

Size 

Transmitter 

Life (days) 

# of Days 

Detected 

Date 

Tagged 

Date of  last 

detection 

Onion 

2014 

* 14446 v-9 484 488 5/9/2014 9/2/2015 

Sanpoil 

2014 

15253 v-9 484 407 4/18/2014 5/30/2015 

* 15254 v-9 484 484 4/18/2014 8/15/2015 

15256 v-9 484 478 4/18/2014 8/9/2015 

* 15258 v-9 484 432 4/18/2014 6/24/2015 

15259 v-9 484 484 4/18/2014 8/15/2015 

15263 v-9 484 484 4/18/2014 8/15/2015 
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Sanpoil River Redbands had areas of high utilization in the Sanpoil Arm and the reservoir 

downstream of the confluence of the Sanpoil and Columbia. Other areas of high use were 

near Seven Bays and the Spokane Arm (Figure 3-3).  

Blue Creek  

Blue Creek Redbands had areas of high use primarily in the Spokane Arm, and near 

Seven Bays (Figure 3-4).  

Spring Creek  

Spring Creek Redbands had areas of high use in the Spokane Arm and near Seven Bays 

(Figure 3-5).  

Wilmont Creek  

Wilmont Creek Redbands had areas of high use in the Reservoir below Gifford to 

Wilmont Cove, the lower Spokane Arm, and Seven Bays to Whitestone Rock and Plum 

Point to Spring Canyon (Figure 3-6).  

Hunters Creek   

Hunters Creek Redbands had areas of high use Wilmont Cove, Gifford, and Chalk Grade. 

(Figure 3-7).  

Onion Creek   

Onion Creek Redbands had areas of high use upstream of Kettle Falls and near Hunters 

and Wilmont Cove (Figure 3-8).  

Bigsheep Creek  
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Big Sheep Creek Redbands had areas of high use upstream of Kettle Falls (Figure 3-9).  

Comparisons 

We grouped the tributary tagging groups by region of the reservoir for comparisons.  This 

is because of the variable time spanning individual fish detection histories for 15 days to 

15 months and variable number of fish from each tributary that were detected on multiple 

receivers. Fish from tagging tributaries were grouped by region, and their average UD 

were converted into a data matrix, and these matrices were than compared with a 

Mantel’s test. Our groups were Sanpoil River, Spokane Arm (Blue and Spring Creek), 

Middle Reservoir (Wilmont and Hunters Creek), and Upper Reservoir (Onion and 

Bigsheep Creek). Results of these comparisons are found in Table 3-4. All groups were 

similar to each other in terms of their overlap with the exception of the Sanpoil and 

Upper Reservoir (r = 0.051, q = 0.025). These results indicate that there is little overlap in 

the utilization of the reservoir between these two groups of tagged Redbands. 

Homing  

Ten acoustically tagged Redband Trout, tagged in 2015 were confirmed to have homed 

into their tagging stream in 2016. In the Sanpoil River seven fish acoustically tagged in 

2015 migrated up the Sanpoil River past CCT maintained PIT Tag arrays between 

January 29 and April 26, 2016 (Bryan Jones Colville Confederated Tribes Fish 

andWildlife pers comm). One Redband tagged in Blue Creek was confirmed on a STOI 

maintained PIT Tag array in March 2016 (Casey Flanagan STOI pers comm) and two 

tagged in Big Sheep were caught during a WDFW Big Sheep Creek angling survey on  
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Figure 3-3. Utilization Distribution of Sanpoil River Redbands tagged in 2015. 
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   Figure 3-4. Utilization Distribution of Blue Creek Redbands tagged in 2015. 
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Figure 3-5. Utilization Distribution of Spring Creek Redbands tagged in 2015.  
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   Figure 3-6. Utilization Distribution of Wilmont Creek Redbands tagged in 2015.  
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   Figure 3-7. Utilization distribution of Hunters Creek Redbands tagged in 2015. 
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Figure 3-8. Utilization distribution of Onion Creek Redbands tagged in 2015.  
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Figure 3-9. Utilization distribution of Big Sheep Creek Redbands tagged in 2015. 
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March 30, 2016 (Charles Lee WDFW pers comm.).  All fish were adults when tagged. 

Sex, date tagged, homing location and date are given in Table 3-5.  

 Three fish displayed movements indicative of returning to their tagging location. One 

female tagged in Onion Creek resided in the reservoir near Keller for Winter 2015/2016. 

Between April 14 and April 21, 2016 this fish moved from Keller Ferry to Chalk Grade, a 

distance of approximately 115 km upstream. The last detection of this fish was at the 

Chalk Grade receiver, roughly 75 km downstream of its home stream. The transmitter 

was nearing the end of its predicted battery life. It is possible that this transmitter stopped 

working. However, the fate of this particular fish is unknown.  A female from Big Sheep 

Creek not seen on the receiver array for 2015 was detected at the Big Sheep Creek 

receiver on April 4, 2016, suggesting that it moved back to Big Sheep Creek. Finally a 

female tagged in Spring Creek was detected on the uppermost Spokane River receiver on 

January 13, 2016. It’s location of capture was in the vicinity of Spring Creek 

approximately 2.5km upstream of the uppermost Spokane River receiver. It was not 

detected on the aforementioned receiver again until May 6, 2016. These data suggest this 

fish moved in the vicinity of Spring Creek at a time appropriate for spawning.  

Entrainment  

During the time frame presented in this report (April 2015-July 8 2016) no Redband 

Trout tagged in 2015 were confirmed to have entrained over Grand Coulee Dam. Despite 

this four fish tagged in 2015 had their last detections on receivers upstream of Grand 

Coulee dam. One tagged at Spring Creek was last detected on 21 May 2015. It was 

detected twice on both receivers. A fish tagged in the Sanpoil was last detected 21 times 

on the North receiver and 5 times on the South receiver on 14 January 2016. A fish from 
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the Sanpoil River was last detected on 3 April 2016 on the North receiver upstream of 

Grand Coulee Dam. Another fish from the Sanpoil was last detected on the North 

receiver upstream of Grand Coulee on 22 April 2016. 
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Table 3-4. Mantels Statistic r and q- value for each group comparison. Number of fish 

per group are Sanpoil (n=12), Spokane Arm (n=9), Middle Reservoir (n=6), and Upper 

Reservoir (n=12). 

Comparison Mantel’s Statistic 

r 

q-value 

Sanpoil / Spokane Arm 0.350 0.999 

Sanpoil / Middle Reservoir 0.726 0.999 

Sanpoil / Upper Reservoir 0.051 0.025 

Spokane Arm / Middle Reservoir 0.263 0.999 

Spokane Arm / Upper Reservoir 0.232 0.875 

Middle Reservoir / Upper 

Reservoir 

0.938 0.998 

 

Table 3-5. Redband Trout confirmed to have homed back to their stream of tagging 

during the following year from PIT tag array data. 

Sex Date Tagged Homing Location Date Homed 

Unknown 4/15/2015 Sanpoil 2/28/2016 

Unknown 4/15/2015 Sanpoil 1/29/2016 

Unknown 4/15/2015 Sanpoil 3/21/2016 

Unknown 4/15/2015 Sanpoil 3/25/2016 

Unknown 4/15/2015 Sanpoil 3/22/2016 

Female 4/15/2015 Sanpoil 4/26/2016 

Unknown 4/15/2015 Sanpoil 3/20/2016 

Female 4/24/2015 Big Sheep Creek 3/30/2016 

Male 4/24/2015 Big Sheep Creek 3/30/2016 

Male 4/24/2015 Blue Creek 4/26/2016 
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Discussion 

Tag Detection History 

In 2015/2016 54 of 81 transmitters were detected on the receiver array. Twenty seven 

transmitters from Redbands tagged in 2015 were never detected on the receiver array. 

Two fish, one 246 mm from Wilmont Creek, and one 199 mm from Blue Creek were 

never detected after tagging. It is possible these may have been residents of the stream 

they were tagged in, and never left. Six transmitters from Onion Creek and seven from 

Big Sheep Creek were never detected. Previously, Walston et al. (2015) noted the 

receiver array upstream of Kettle Falls was not as adept at detecting transmitters as the 

lower part of the array. Upstream of Kettle Falls the environment is more riverine than 

the lower reservoir. The fast moving water coupled with the shallower depths in this area 

likely reduces the range that receivers can detected tags and make it more likely for 

tagged fish to swim by receivers without being detected. In the previous years of this 

study there has also been transmitters never detected on the receiver array. In 2014/2015, 

22 of 60 transmitters were never detected on the receiver array (Walston et al. 2015) and 

in 2013/2014, 13 of 51 transmitters were never detected (Stroud et al. 2014).  

Of the Redband Trout tagged in 2015 and detected on the acoustic receiver array, 18 had 

a detection history that extended into 2016.  Walston et al. (2015) reported 13 Redbands 

tagged in 2014 having a detection history extending into the following year, and Stroud et 

al. (2014) reported 15 Redbands tagged in 2013 being detected into the following year. 

Both the transmitters that were never detected and the few transmitters being detected 

into the following year leads us to wonder what could have happened to cause the 

disappearance of those Redband Trout. 
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Mortality, either natural or angling may be responsible for the disappearance of tagged 

Redband Trout. The average size of Redband Trout tagged in 2015 was 470 mm (TL). At 

this size these fish would too large for most piscivorous fish in the reservoir such as 

Burbot (Lota lota), Smallmouth Bass (Micropterus dolomeiu), and Walleye (Sander 

vitreus). Eagles and River Otter (Lontra canadensis) are present around the reservoir, and 

may occasionally take large trout. Angling appears to be a major source of mortality in 

wild adult Redband Trout. From 2012-2014 it was estimated that 3,735 Redband Trout 

were harvested across Lake Roosevelt (McLellan 2015). Of these 3,500 were from the 

lower 80 km of the Reservoir (McLellan 2015). Across the whole reservoir estimated 

population of adult Redband Trout spawners is around 5,000 (McLellan 2015). 

Previously the harvest rules on Rainbow Trout in Lake Roosevelt consisted of a daily 

limit of 5 with two over 20 inches and did not distinguish between hatchery rainbows and 

wild Redband Trout with an intact adipose fin (WDFW 2016). The Washington Fish and 

Wildlife commission voted in 2016 to change the rules to only allow for retention of 

hatchery rainbow without adipose fin and require anglers to release all wild trout in the 

reservoir downstream of the Little Dalles (WDFW 2016).  

Several acoustic transmitters from Redband Trout tagged in 2013-2015 have been 

returned by anglers. Two acoustic transmitters from 2015 have been returned by anglers, 

and three acoustic transmitters from fish in 2014 were returned (Walston et al. 2015). No 

Redband Trout tagged from 2013 to 2015 were marked with an external tag (example 

floy tag). It is possible that anglers did not see acoustic tags in the body cavity as they 

frequently fillet their fish at cleaning stations adjacent to boat launches. Thus the number 
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of Redband Trout with acoustic tags caught by anglers could be far more than what was 

reported.  

Redband Trout tagged in the Sanpoil River had the longest detection histories of any 

other tributary group. Of the 18 tagged in 2015 and detected into 2016, 10 were from the 

Sanpoil River. In the previous two years 9 of the 13 tagged in 2014 and detected into 

2015, and 8 of the 15 tagged in 2013 and detected into 2014 were from the Sanpoil River. 

This may be related to the number of receivers in the lower reservoir. The lower 48 km of 

reservoir and the Sanpoil Arm have 21 of the 48 receivers in the 240 km long reservoir.  

Another difference is during 2014 and 2015 fish in the Sanpoil River were sedated with 

electronarcosis prior to tag implantation whereas fish in other tributaries were sedated 

with the chemical anesthetic AQUIS-20E. Fish sedated with chemicals may be sluggish 

for a short time after release even after the observer has deemed them recovered and may 

not be adept at evading predators as the side effects of the anesthetic wear off (Marking 

and Meyer 1985). However, in 2013 Sanpoil Redband Trout were also sedated with 

AQUIS-20E and had the greatest number of individuals detected into the following year.  

Utilization Distribution   

Utilization between fish tagged in the lower three regions of the reservoir (Sanpoil, 

Spokane Arm, and Middle Reservoir) had high overlap, whereas utilization between the 

Sanpoil and Upper Reservoir had low overlap. This was similar to observations of 

Redband Trout tagged in 2013 and 2014 (Walston et al. 2015;Table 3-6). In addition 

these data are in agreement with findings from Small et al. (2014) who found that 

Redband populations are most strongly distinguished at the regional level of the 

Reservoir, with the greatest differences occurring between the Sanpoil River and the 
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Upper Reservoir, whereas the Sanpoil, Spokane Arm and Middle Reservoirs were 

relatively similar to each other. 

It appears the Redband Trout in the Upper Reservoir rarely move down into the lower 

regions of the reservoir. However, these data should be interpreted with caution since 

only one Big Sheep Creek fish detected on multiple receivers was detected into 2016. If 

more fish were detected into 2016 than we would have more confidence in determining 

utilization of these Upper Reservoir group of Redband Trout.  

From three years of tagging, it seems Redband Trout in Lake Roosevelt infrequently use 

Canadian waters. Out of the 192 Redband Trout tagged over the three year course of this 

study five were detected in British Columbia. Interestingly, one tagged in Blue Creek in 

2013 was detected in British Columbia, the other four were from the Upper Reservoir 

with one from Onion Creek in 2014, another from Onion Creek in 2015, and two from 

Big Sheep Creek in 2015. In 2015/2016 large spans of time (>80 days) occurred between 

when fish were last detected in the United States and when they were first detected in 

British Columbia. Therefore, no meaningful UD’s could be generated. This is because the 

Dynamic Brownian Bridge Movement Model’s ability to infer where the fish is between 

detections decreases as amount of time between detections increases. Of the three 

detected in British Columbia in 2015 two were detected on one receiver and one was on 

two receivers in British Columbia. B.C. Hydro maintains 21 receivers in the Columbia 

between Hugh Keenlyside dam and the International Border. It is likely these receivers 

are subjected to the same reduced detection ranges as ones in the Columbia between 

Kettle Falls and Northport, owing to fast moving shallow water. 
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Homing  

Lake Roosevelt Redband Trout appear to home back to the stream of capture. In 2016 no 

Redband Trout returned to streams other than the one in which they were tagged, in. 

Although the number of fish confirmed to have homed or potentially homed was low 

(n=13 out of 81). It is possible that Redband Trout in Lake Roosevelt may not spawn 

every year as seen with rainbow trout elsewhere (Torvik 2013).   

In previous years of this study Redband Trout also homed to their tagging stream. Five 

tagged in the Sanpoil in 2013 returned to the Sanpoil, and six tagged in 2014 returned 

there in 2015. One tagged in Alder in 2013 homed in 2014, and three tagged in Big Sheep 

in 2013 homed in 2014. Also an acoustically tagged Redband from Blue Creek in 2013 

was recaptured in Blue Creek on April 1, 2015 (B. Witte, pers obs.).  In total 26 

acoustically tagged Redband Trout were confirmed to home back to the stream they were 

tagged in, with no instances of acoustically tagged Redbands entering streams where they 

were not tagged in.  

Interestingly, two fish confirmed to home back to their tagging streams in 2016 had 

moved from locations upstream of their tagging stream. A Sanpoil River fish that had 

after moving to the upper Columbia. This fish moved downstream on the Columbia 170 

km over the course of 14 days to the mouth of the Sanpoil before being detected on a PIT 

tag array upstream of the Sanpoil mouth. A Blue Creek fish quickly moved 20 km down 

the Spokane River in March from Harker Canyon to the mouth of Blue Creek before 

being detected on a PIT tag Array in Blue Creek. These results add to the evidence of the 

strong tendency for Lake Roosevelt Redband Trout to home.  
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Table 3-6. Comparison of Utilization Distributions by years. Data from 2013/2014 and  

                  2014/2015 was provided by Walston et al. (2015). Spokane = Blue and Spring  

                  Creek, Middle Reservoir = Wilmont and Hunters Creek, Upper Reservoir =  

                  Big Sheep and Onion Creeks. 

UD1 UD2 Mantel statistic r q-value 

2013/2014 Overall Comparisons 

Sanpoil Spokane 0.789 0.999 

Sanpoil Alder 0.789 0.998 

Sanpoil Big Sheep 0.045 0.020 

Spokane Alder 1.000 0.999 

Spokane Big Sheep 0.622 0.999 

Alder Big Sheep 0.632 0.999 

2014/2015 Overall Comparisons 

Sanpoil Spokane 0.910 0.999 

Sanpoil Alder/Wilmont 0.973 0.999 

Sanpoil Big Sheep/Onion 0.064 0.019 

Spokane Alder/Wilmont 0.836 0.999 

Spokane Big Sheep/Onion 0.617 0.998 

Alder/Wilmont Big Sheep/Onion 0.584 0.998 

2015/2016 Overall Comparisons 

Sanpoil Spokane  0.350 0.999 

Sanpoil Middle Reservoir 0.726 0.999 

Sanpoil Upper Reservoir 0.051 0.025 

Spokane Middle Reservoir 0.263 0.999 

Spokane Upper Reservoir 0.232 0.875 

Middle Reservoir Upper Reservoir 0.938 0.998 
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Small et al. (2014) determined that each tributary population of Redband Trout in Lake 

Roosevelt was genetically distinctive from one another, although there was evidence of 

metapopulation structuring, with fish from the Sanpoil, Spokane, and middle reservoir 

tributaries belonging to one metapopulation while those from the upper reservoir (in Big 

Sheep and Onion Creeks) belonging to a second metapopulation. Tracking data indicated 

that although the only significant difference between the utilization distributions was 

between the Sanpoil River and the upper reservoir tributaries, utilization distributions of 

Sanpoil, Spokane and middle reservoir tributaries were similar to each other and were 

distinctly different from the upper reservoir tributaries.   

Entrainment 

No Redband Trout tagged in 2015 were confirmed to have entrained. Four fish may have 

possibly entrained. Three of the four last detected near Grand Coulee dam had all or the 

majority of their last detections on the north receiver. If they did entrain it may have been 

through the third powerhouse, located on the north side of Grand Coulee dam and where 

most entrainment through the dam occurs (LeCaire et al. 1998). During all years of the 

study a total of eight Redband Trout have been confirmed to have entrained. In addition 

11 other acoustically tagged fish have their last know detections at receivers 

approximately two km upstream of Grand Coulee Dam. 

There are several possibilities to explain the disappearance of these Redband Trout last 

detected above Grand Coulee Dam. The first is entrainment over the dam where the fish 

resided in the river below the dam and does not pass by the receivers located 13 km 

downstream or passes by these receivers at a time of reduced detection ability. Between 

2013 and 2016, 11 Redband Trout were last detected at one of two receivers 
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approximately two kilometers upstream of Grand Coulee Dam. Three were last detected 

on the southern receiver, five were detected on both receivers and three were last detected 

on the northern receiver. LeCaire (1998) demonstrated the majority of entrainment 

through Grand Coulee Dam occurs through the third powerhouse on the north side of the 

dam. Fish last detected on the north receiver may have continued to swim downstream 

along the north bank and eventually entrain. Fish detected on both receivers may have 

also entrained.  

A second possibility is entrainment into Banks Lake an irrigation storage reservoir of the 

Columbia Basin irrigation project which receives water from a pumping station at Grand 

Coulee Dam (Stober et al. 1976). Stober et al. (1976) had difficulties when sampling the 

Banks Lake Feeder Canal with gill nets for fish that entrain from Lake Roosevelt due the 

various amounts of flow encountered. From July-September 1975, Stober et al. (1976) 

captured 188 fish in 285 hours of net tests in the Banks Lake Feeder Canal and only 

presented a list of fish encountered by relative abundance. Rainbow Trout were 

encountered in these net sets, although they ranked 7th in relative abundance out of 13 

fish species encountered. These are the only data collected on entrainment of fish from 

Lake Roosevelt into Banks Lake.   

The intake for this feeder canal is located on the south bank of the river and has 12 four 

meter diameter pipes that are located 30 meters under the surface when the reservoir is at 

full pool (Johnson et al. 2005). Of the 11 Redband Trout that were last detected near 

Grand Coulee during the three years of our current study; seven were last detected 

between April 3 and August 30. Water is pumped into Banks Lake each year from 

March-October to accommodate irrigation needs of the Columbia Basin Project. 
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Therefore, it is possible these fish entrained into Banks Lake. This possibility appeared to 

be overlooked during the previous years of this study (Stroud et al. 2014, Walston et al. 

2015). We do not mean to imply this is the best explanation for the disappearance of 

these tagged Redband Trout, but it should be taken in consideration with the other 

possibilities.   Future studies with acoustic telemetry on this reservoir must address these 

possibilities for fish that are last detected above Grand Coulee Dam. Perhaps with 

acoustic telemetry surveys downstream of Grand Coulee Dam, and the installation of an 

acoustic receiver at the upper end of Banks Lake. 

Future Directions on Lake Roosevelt Redband Trout   

Important information regarding Redband Trout in Lake Roosevelt has been gathered 

from this acoustic telemetry study. This study has spanned three years, and has implanted 

tags into 192 Redbands from eight tributary streams. What was generally found across 

the three years were; 1) adult Redband Trout appeared to be subjected to high mortality 

in Lake Roosevelt; 2) All groups had individuals move in the lower Reservoir, but Upper 

Reservoir fish appeared to have very little overlap in areas of the reservoir utilized with 

fish from the Sanpoil River; 3) Redbands strongly homed back to their stream of tagging; 

and 4) Entrainment of adult Redband Trout does occur over Grand Coulee Dam. In 

addition more Redbands were last detected shortly upstream of Grand Coulee Dam (n 

=11) than were confirmed to have entrained over it (n = 8).  

We plan to prepare a publication encompassing all three years of data for submission into 

a peer reviewed journal. The method used to analyze this data is unique in that it has only 

been used for telemetry data on terrestrial animals. Walston et al. (2015) was able modify 

this method for telemetry data gathered on animals that have a defined barrier, such as the 
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confines of a waterbody for fish.  The method Walston et al. (2015) developed is 

applicable to similar data collected from other fish telemetry studies and is likely of 

interest to the fisheries community. 

Maintaining this population of Redband Trout is essential for the survival of Columbia 

River Redband Trout, and for the return of anadromous fish above Grand Coulee Dam. 

Redband Trout have diverse life history strategies and appear to retain anadromy even 

after their environment is altered. McLellan et al. (2015) PIT tagged Redband Trout in 

the Sanpoil River with some individuals appearing in the Columbia downstream of Rock 

Island Dam. These fish may be exhibiting anadromy and if so, Lake Roosevelt Redband 

Trout could be a potential source for reestablishing the anadromous form of Columbia 

River Redband Trout above Grand Coulee Dam.  
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Appendix B 

The following describes range of movements for each individual fish used in the analysis 

of this report. This appendix is organized by tagging location with a description of each 

fish’s movements followed by a figure with the range of movements for a group of fish. 

All places referenced in the text can be found on Figure B-1 and on figures 

accompanying descriptions of fish movements. These movements are compared to 

previous years of this study.  
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Figure B-1. Map depicting locations on Lake Roosevelt in the following section. 
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Sanpoil River  

Movements for Sanpoil _1 (unknown sex, 433 mm, tagged 4/15/2015), Sanpoil_2 

(unknown sex, 386 mm, tagged 4/15/2015), and Sanpoil_3 (unknown sex 410 mm tagged 

4/15/2015), are described in the following three paragraphs with range of movements 

presented in Figure B-2. 

Sanpoil_1 was first detected 10 days after tagging near the head of the Sanpoil Arm; it 

resided in the Sanpoil Arm until leaving on 5/12/2015. It then reentered the arm the same 

day where it remained until 6/8/2015. It then moved upriver to Halverson Canyon by 

6/12/2015 and subsequently moved downstream reentering the Sanpoil Arm on 7/1/2015. 

It exited the Sanpoil Arm on 7/12/2015 and moved upriver again to Halverson Canyon by 

7/13/2015. It resided here until 7/18/2015, and moved downstream to Camel Rocks by 

8/28/2015. It then reentered the Sanpoil Arm on 9/7/2015. It then exited the Sanpoil Arm 

for the final time on 9/18/2015. It was detected between Keller Ferry and Whitestone 

Creek until 9/24/2015. It was continuously detected at Hanson Harbor from 9/24/2015-

12/8/2015.  Its PIT tag was detected on a Colville Tribe maintained PIT tag array on 

3/22/2016 in the Sanpoil River main stem. It was last detected at Hanson Harbor on 

5/8/2016. 

Sanpoil_2 was first detected seven days after tagging near the head of the Sanpoil Arm; it 

remained in the Sanpoil Arm until leaving on 6/2/2015. It then reentered on 6/5/2015 and 

exited again on 6/11/2015 moving upriver to Whitestone Rock by 6/13/2015, and 

downriver to Spring Canyon by 6/20/2015. It reentered the Sanpoil Arm on 7/2/2015, and 
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exited the Sanpoil Arm on 7/20/2015. It was detected between The Sanpoil Mouth and 

Whitestone Creek between 7/21/2015 and 8/26/2015.  It then moved within the Sanpoil 

Arm until 3/28/2016 when it exited, to head downriver to Spring Canyon where it was 

last detected on 4/3/2016.  

Sanpoil_3 was first detected four days after tagging; it remained in the Sanpoil Arm until 

5/16/2015, moving downstream to Spring Canyon by 5/21/2015. It resided here until 

6/5/2015 and moved upriver to Seven Bays by 6/23/2015. It entered the Spokane Arm on 

7/2/2015 moving upstream to Porcupine Bay by 7/9/2015. It was detected here until 

7/31/2015, it then moved down the Spokane Arm exiting on 8/7/2015. It was detected 

between Seven Bays and Hawk Creek until 9/20/2015. It then moved upriver to Castle 

Rock by 9/25/2015, where it was intermittently detected until 1/14/2016 before it moved 

downstream, and reentered the Sanpoil Arm on 2/28/2016. This fish was detected on a 

Colville Tribe maintained PIT tag array on the same date. It was not detected again on the 

acoustic receiver array until 6/9/2016. It exited the Sanpoil Arm on 6/10/2016 and moved 

upriver to Whitestone Rock by 6/13/2016. It subsequently moved downstream to Keller 

Ferry and back upstream to Whitestone Rock where it was last detected on 7/7/2016. 

Movements for Sanpoil_4 (unknown sex, 415 mm, date tagged 4/15/2015), Sanpoil_5 

(female 490 mm, date tagged 4/16/2015), and Sanpoil_6 (unknown sex, date tagged 

4/16/2015) are described in the following three paragraphs with range of movements 

presented in Figure B-2. 

Sanpoil_4 was first detected one day after tagging at the head of the Sanpoil Arm; it 

resided in the Sanpoil Arm until 5/3/2015. It then moved downstream to Spring Canyon 

by 5/17/2015, before it moved upstream to Castle Rock by 6/30/2015. From here, it 
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moved downriver to Hawk Creek where it remained until 8/23/2015 before it moved 

downstream to Plum Point on 9/9/2015. It once again moved upriver to Castle Rock by 

11/8/2015, where it remained until 11/20/2015. It moved downriver and reentered the 

Sanpoil Arm on 12/8/2015. It remained in the arm until 12/23/2015, before it moved 

downriver to Spring Canyon by 1/5/2016. It remained in the area between Spring Canyon 

and Keller Ferry until 3/20/2016 when it reentered the Sanpoil Arm. It moved up the 

Sanpoil Arm and its last acoustic detection was at the head of the Sanpoil Arm on 

3/24/2016. This fish was detected on a Colville Tribe Maintained PIT tag array on 

3/25/2016.   

Sanpoil_5 was first detected four days after tagging at the head of the Sanpoil Arm; it 

resided in the Sanpoil Arm until 4/28/2015.  It moved to Halverson Canyon by 5/15/2015 

and reentered the Sanpoil Arm on 5/23/2015. It remained in the Sanpoil Arm until 

5/29/2015 when it moved downriver to Spring Canyon on 6/5/2015. It then moved 

upstream and reentered the Sanpoil Arm the next day. It remained in the Sanpoil Arm 

until 6/30/2015 when it undertook a nearly reservoir long journey. It moved to Hunters 

by 7/17/2015, and moved in the area between Hunters and Seven bays until 3/9/2016. It 

then moved upstream from Hunters to Snag Cove by 4/11/2016. It then moved 

downstream to the Sanpoil mouth by 4/25/2016. Its last acoustic detection was on 

4/25/2015 at the head of the Sanpoil Arm. This fish’s PIT tag was detected on a Colville 

Tribe Maintained PIT tag array the next day.  

Sanpoil_6 was first detected seven days after tagging at the head of the Sanpoil Arm; it 

resided in the Sanpoil Arm until 5/10/2015. It moved downstream to Spring Canyon by 

5/24/2015, and moved upstream to reenter the Sanpoil on 5/31/2015 where it resided until 



164 
 

164 
 

6/30/2015. From here it moved upstream to Halverson Canyon by 7/14/2015, and then 

downstream to reenter the Sanpoil Arm on 7/29/2015. It left from here on 8/6/2015 and 

moved downstream to Plum Point by 8/8/2015. It resided in the Columbia between Keller 

Ferry and Plum Point until 10/4/2015. It then moved upstream to Wilmont Cove by 

11/2/2015. It began moving downstream 10 days later, and reentered the Sanpoil Arm on 

11/25/2015. It left the Sanpoil Arm for the last time on 12/11/2015, and was last detected 

at Spring Canyon on 1/14/16. 

Movements for Sanpoil_7 (unknown sex, 475 mm, date tagged 4/15/2015), Sanpoil_8 

(unknown sex 490 mm, date tagged 4/15/2015), and Sanpoil_9 (unknown sex, 508 mm 

date tagged 4/15/2015) are described in the following three paragraphs with range of 

movements presented in Figure B-3. 

Sanpoil_8 was first acoustically detected four days after tagging; it was detected on a 

Colville Maintained PIT tag array on 5/9/2015. It reentered the Sanpoil Arm on 

5/22/2015. It exited the Sanpoil on 6/11/2015 to Keller Ferry, reentered on 6/19/2015, 

exited on 6/25/2015, and reentered for the final time on 7/7/2015. It was last detected 5 

km up the Sanpoil Arm on 7/11/2015 

Sanpoil_9 was first detected 17 days after tagging; it resided in the Sanpoil arm until 

6/2/2015.  It move moved downstream to Spring Canyon by 6/7/2015. It was detected 

downstream of Camel Rocks until its last detection at Plum Point on 7/22/2015. 
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Figure B-2. Range of movements from Sanpoil River Redbands 1, 2, 3 (left) and range of movements from Sanpoil River 

                    Redbands 4, 5, and 6 (right). Included for each fish is sex, size and duration of detections.
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Movements for Sanpoil_10 (unknown sex, 406 mm, date tagged 4/15/2015,), Sanpoil_11 

(unknown sex 443 mm, date tagged 4/16/2015,) and Sanpoil_12 (unknown sex, 475mm 

date tagged 4/16/2015) are described in the following three paragraphs with range of 

movements presented in Figure B-3. 

Sanpoil_10 was first detected four days after tagging; it resided in the Sanpoil Arm until 

5/19/2015 when it was detected at Keller Ferry. It reentered the Sanpoil Arm on 

6/4/2015, and exited the Sanpoil Arm on 7/7/2015, moving upriver to Whitestone Rock 

by 7/13/2015.  Once again it reentered the Sanpoil Arm on 7/30/2015 where it remained 

from 12/21/2015 to 4/26/2016. It moved upstream to Whitestone Rock by 5/14/2016 and 

then downstream to Spring Canyon by 5/24/2016. It then reentered the Sanpoil Arm on 

6/2/2016 where it remained until its last acoustic detection on 7/7/2016. This fish was 

harvested on 8/6/2016 by an angler near Whitestone Creek.   

Sanpoil_11 was first detected 30 days after tagging; it resided in the Sanpoil Arm until 

5/27/2015. It moved upriver to Seven Bays by 6/17/2015, and downriver to reenter the 

Sanpoil Arm on 7/5/2015. It remained in the Sanpoil Arm until 8/5/2015 when it moved 

upstream to Seven Bays by 9/3/2015.  Its last acoustic detection was on 9/23/2015 at 

Seven Bays. Interestingly, the PIT Tag for this fish was detected passing through the PIT 

tag array in the Sanpoil River on 3/21/2016, suggesting that the transmitter failed 

prematurely as it was not detected on the 12 receivers between Seven Bays and the head 

of the Sanpoil Arm.  

Sanpoil_12 was first detected 11 days after tagging; it resided in the Sanpoil Arm until 

5/28/2015 when it moved downstream to Camel Rocks two days later. It then reentered 

the Sanpoil Arm on 6/5/2015 and remained until it briefly exited on 12/5/2015 and 
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returned on 12/8/2015.  It remained in the Sanpoil Arm for the rest of its detection 

history. It was absent between 1/29/2016-2/11/2016. During this time it was detected on a 

Colville Tribe maintained PIT Tag array on 1/29/2016. Its last detection was in the 

Sanpoil Arm on 6/15/2016. 

Blue Creek 

Movements for Blue_1 (male 362 mm, date tagged 4/24/2015), Blue_2 (female 477 mm, 

date tagged 5/9/2015), and Blue_3 (female 521 mm, date tagged 4/1/2015) are described 

in the following three paragraphs with range of movements shown in Figure B-4. 

Blue_1 was first detected 23 days after tagging at Porcupine Bay. It moved upriver to 

STBL (Spokane Tribal Boat Launch also known as Wynecoop’s) by 6/4/2015 where it 

was detected until 9/23/2015. From 10/18/2015 to 2/17/2016 it was detected between 

STBL and Harker Canyon, it then moved downstream to Porcupine Bay by 3/2/2016. Its 

last detection was the next day at Porcupine Bay.  It was detected on a STOI maintained 

PIT tag array in Blue Creek on 4/26/2016. 

Blue_2 was first detected three days after tagging at Porcupine Bay. It moved upstream to 

STBL by 5/13/2015. It remained here until 5/31/2015. It was detected again at McCoy’s 

Marina on 6/3/2015. It remained here until 6/25/2015 before being detected at Porcupine 

Bay. It was detected between Porcupine Bay and Harker Canyon until 2/15/2016 when it 

moved downriver to Fort Spokane. It was detected here until 3/26/2016 before its last 

detection at Porcupine Bay on 3/27/2016.
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Figure B-3. Range of movements from Sanpoil River Redbands 7, 8, and 9 (left), and range of movements from Sanpoil River  

                    Redbands 10, 11, and, 12 (right). Included for each fish is sex, size and duration of detections.
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Blue_3 was first detected 15 days after tagging at Harker Canyon; it was detected here 

until 6/5/2015. It then moved downstream to Porcupine Bay the next day and was 

intermittently detected here until its last detection on 5/28/2016.   

Movements for Blue_4 (Female 483 mm, date tagged 4/24/2015), and Blue _5 (Female 

500mm, date tagged 4/1/2015) are described in the following two paragraphs with range 

of movements shown in Figure C-4.  

Blue_4 was first detected 10 days after tagging at Porcupine Bay, it then moved 

downstream, and exited the Spokane Arm on 4/12/2015. It was detected at Hawk Creek 

between 4/16/2015-4/21/2015. It then moved upriver to Seven Bays where it was last 

detected on 4/22/2015.   

Blue_5 was first detected 16 days after tagging at Porcupine bay. It was detected at 

McCoy’s Marina on 4/23/2015, and it moved upstream to Porcupine Bay where it was 

intermittently detected from 5/3/2015 to 12/19/2015.  

Spring Creek 

Movements for Spring_1 (Female 477 mm, date tagged 3/26/2015), and Spring_2 

(Female, 534 mm, date tagged 3/26/2015) are described in the following two paragraphs 

and range of movements are presented in Figure B-5. 

Spring_1 was first detected 45 days after tagging at STBL. It moved down the Spokane 

Arm to Porcupine Bay on 5/15/2015. It remained here until 6/9/2015 and moved 

upstream to Harker Canyon on 6/11/2015. It remained at Harker Canyon until 10/29/2015 

and moved to STBL on 10/31/2015. It then moved back to Harker Canyon on 11/8/2015 

and moved back to STBL on 11/15/2015. There was no detections between 1/13/2016 
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and 5/6/2016 indicating this fish may have moved upstream and may have homed back to 

its spawning location. It was detected at STBL from 5/6/2016 to 6/22/2016 and was 

detected downstream at Harker Canyon from 6/25/2016 to its last detection on 7/4/2016. 

Spring_2 was first detected on 4/30/2015, 34 days after tagging at STBL. It moved down 

the Spokane Arm to Harker Canyon on 5/3/2015, and Porcupine Bay from 5/3/2015 to its 

last detection on 5/5/2015.    

Movements for Spring_3 (Female 363 mm date tagged 4/16/2015), and Spring_4 (Female 

500mm, date tagged 5/21/2015) are described in the following two paragraphs with range 

of movements presented in Figure B-5. 

Spring_3 was first detected six days after tagging at STBL. It moved down the Spokane 

Arm to Fort Spokane on 5/16/2015. It then moved back up the Spokane Arm to STBL by 

7/21/2015, and then went back downstream to Porcupine Bay by 10/14/2015 and up to 

Harker Canyon on 11/1/2015. It was not detected again until 3/11/2016 at STBL. From 

here it went down the Spokane Arm to Fort Spokane on 4/22/2016. It moved down the 

reservoir to Seven Bays on 4/26/2016 and eventually was detected at Spring Canyon on 

6/18/2016. It then moved back upstream to Camel Rocks on 6/28/2016, and was last 

detected at Plum Point on 7/4/2016. 

Spring_4 was first detected 10 days after tagging at STBL. This fish quickly moved down 

the Spokane Arm and the main body of Lake Roosevelt. It was detected at Fort Spokane 

on 5/17/2015, Seven Bays on 5/17/2015 and at subsequent receivers downstream. Its last 

detection was on 5/21/2015 at Spring Canyon.
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Figure B-4. Range of movements from Blue Creek Redbands 1, 2, and 3 (left) and range of movements from Blue Creek  

                     Redbands 4, and 5 (right). Included for each fish is sex, size and duration of detections.
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Figure B-5. Range of movements from Spring Creek Redbands 1, and 2 (left), and range of movements of Spring Creek  

                    Redbands 3, and 4 (right). Included with each fish is sex, size, and duration of detections.          
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Wilmont Creek  

Movements for Wilmont_1 (Female 477 mm, date tagged 4/15/2015), and Wilmont_2 

(Female, 534 mm, date tagged 4/15/2015) are described in the following two paragraphs 

and range of movements are presented in Figure B-6. 

Wilmont_1 was first detected 15 days after tagging at Wilmont Cove. It was detected 

here until 8/22/2015 and moved up the Reservoir to Gifford by 8/30/2015. It was detected 

at Gifford until 9/3/2015. There was a hiatus in detections until it was last detected on 

2/29/2016 at Hunters.  

Wilmont_2 was first detected 30 days after tagging at Wilmont Cove it moved 

downstream to Whitestone Rock by 6/3/2015. It has been continuously detected from that 

date to 7/7/2016 and is suspected to have died or lost its tag.  

Movements for Wilmont_3 (Female 514 mm, date tagged 4/15/2015), and Wilmont_4 

(Female, 549 mm, date tagged 4/15/2015) are described in the following two paragraphs 

and range of movements are presented in Figure C-6. 

Wilmont_3 was first detected four days after tagging at Wilmont Cove. It moved down to 

Halverson Canyon by 5/6/2015 and then back up the Reservoir entering the Spokane Arm 

at Fort Spokane on 5/7/2015. It moved up the arm to Porcupine Bay on 5/13/2015 and 

then back downstream last being detected at McCoy’s Marina on 5/18/2015.  

Wilmont_4 was first detected one day after tagging at Wilmont Cove. It moved down the 

Reservoir briefly moving into the Spokane Arm at Fort Spokane on 4/17/2015. It 
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continued to move down the reservoir to Spring Canyon by 5/9/2015 and then upstream 

to Plum Point where it was last detected on 5/16/2015. In late May this fish was 

harvested by an angler near Plum Point and its tag was subsequently returned. 

Hunters Creek  

Movements for Hunters_1 (Female 496 mm, date tagged 5/9/2015), and Hunters_2 

(Female, 480 mm, date tagged 5/9/2015) are described in the following two paragraphs 

and range of movements are presented in Figure B-7. 

Hunters_1 was first detected 13 days after tagging at Hunters. It moved up the Reservoir 

to Bissel Island on 5/23/2015 where it was detected until 5/30/2015. It moved 

downstream to Hawk Creek by 6/16/2015 and then up to Wilmont Cove where it was last 

detected on 6/25/2015.  

Hunters_2 was first detected four days after tagging at Hunters. This fish moved up the 

reservoir to Chalk Grade by 5/15/2015. It was detected here until 5/22/2015 before it 

moved downstream. It was last detected at Bissel Island on 5/24/2015.  

Onion Creek 

 Movements for Onion_1 (Female 461 mm, date tagged 6/1/2015) Onion_2 (Female 461 

mm date tagged 6/1/2015), and Onion_3 (Male 490 mm, date tagged 5/15/2015) are 

described in the following four paragraphs with range of movements presented in Figure 

B-8.        
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Figure B-6. Range of movements from Wilmont Creek Redbands 1, and 2 (left) and range of movements from Wilmont Creek  

                    Redbands 3, and 4 (right). Included for each fish is sex, size, and duration of detections.          



176 
 

176 
 

   

Figure B-7. Range of movements from Hunters Creek Redbands 1 and 2. Included for  

                     each fish is sex, size and duration of detections. 
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Onion_1 was first detected six days after tagging in British Columbia, 56 km upstream of 

the international border. It then moved down the Reservoir to French Rocks by 6/15/2015 

where it was detected until 6/25/2015.  

Onion_2 was first detected 30 days after tagging at Little Dalles Eddy. It moved upstream 

to Northport on 7/11/2015 where it remained until 9/8/2015. It then was detected at Big 

Sheep Creek from 9/10/2015 to 9/26/2015. It moved back downstream to Northport 

where it was detected between 10/3/2015 to its last detection on 2/22/2016.  

Onion_3 was first detected seven days after tagging at Little Dalles Eddy. It moved 

downstream to Snag Cove by 5/26/2015 where it remained until 6/23/2015. It then moved 

upstream and was detected at Northport two days later. It resided at Northport until 

8/15/2015, and moved downstream to Kettle Falls by 8/27/2015 where it was detected 

until its last detection on 9/4/2015.   

Movements for Onion_4 (Female 515 mm date tagged 5/15/2015), Onion_5 (Female 485 

mm date tagged 5/9/2015). Onion_6 (Female 526 mm date tagged 5/19/2015) and 

Onion_7 (Female 465 mm date tagged 6/1/2015) are described in the following three 

paragraphs with range of movements presented in Figure C-8. 

Onion_4 was first detected three days after tagging at Little Dalles Eddy. It continued to 

move downstream to Milepost 110 by 5/20/2015 where it was detected until 7/14/2015. It 

then moved downstream and was detected at Hunters from 8/18/2015 to 11/8/2015. It 

then moved upriver to Northport by 12/25/2015 where it was detected until its last 

detection on 2/6/2016.  
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Onion_5 was first detected 24 days after tagging at Northport. It was detected here until 

7/8/2015. It moved downstream to China Bend by 7/17/2015 and returned to Northport 

the following day. This fish was detected at Northport until its last detection on 8/2/2015.  

Onion_6 was first detected 4 days after tagging at Northport. This fish moved 

downstream to Chalk Grade by 5/27/2015 where it was last detected.   

Onion_7 was first detected 31 days after tagging at Flat Creek Eddy. It moved 

downstream to Milepost 110 by 8/10/2015 and remained here until 8/24/2015. It moved 

upstream to Snag Cove by 9/2/2015 and remained here until 9/24/2015. It was next 

detected at Hunters on 12/27/2015 and continued moving downstream, and was detected 

at Seven Bays on 1/29/2016.  It was next detected in the mouth of the Sanpoil River on 

3/4/2016. It continued downriver and was detected at Spring Canyon on 3/10/2016.It 

remained here until 4/15/2016 when it moved upstream briefly entering the Spokane Arm 

at Fort Spokane on 4/18/2016 and was last detected at Mission Point on 4/21/2016.   

Big Sheep Creek  

Movements for Big Sheep_1 (Male 521 mm, date tagged 4/6/2015), Big Sheep_2 (Male 

489 mm date tagged 4/6/2015), and Big Sheep_3 (Female 517 mm date tagged 

5/24/2015) are described in the following three paragraphs with range of movements 

presented in Figure B-9. 

Big Sheep_1 was first detected 43 days after tagging at Little Dalles Eddy. It moved 

downstream to Kettle Falls by 5/22/2015 and was detected here until 7/21/2015. 
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Figure B-8. Range of movements from Onion Creek Redbands 1, 2, and 3 (left) and range of movements from Onion Creek  

                    Redbands 4, 5. 6, and  7 (right). Included for each fish is sex, size and duration of detections. 
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Big Sheep_2 was first detected five days after tagging at the mouth of Big Sheep Creek. 

It remained here until 5/6/2015 before moving downstream to French Rocks by 5/9/2015. 

It was last detected at French Rocks on 5/11/2015.  

Big Sheep_3 was first detected two days after tagging at the mouth of Big Sheep Creek. 

It was detected here until 5/14/2015. It was then detected downstream at Northport on 

7/7/2015 and then upstream near Black Sands beach on 6/8/2015. It was last detected in 

the United States here on 6/9/2015.  It was next detected 56 km upstream of the 

International Border in early September 2015. There was a hiatus of detections until 

March 7, 2016 when it was detected 53 km upstream the international border. It then was 

detected the next day 56 km upstream of the International Border. It was then detected 

here continuously until August 11, 2016. 

Movements for Big Sheep_4 (Female 581 mm, date tagged 4/24/2015), and Big Sheep_5 

(Male 447 mm date tagged 4/24/2015) are described in the following two paragraphs 

with range of movements presented in Figure B-9. 

Big Sheep_4 was first detected three days after tagging at Northport. It was subsequently 

detected downstream at French Rocks 5/3/2015 and at Chalk Grade on 5/7/2015. It was 

last detected on 5/11/2015 at Chalk Grade.  

Big Sheep_5 was first detected 57 days after tagging at Northport. It was detected at 

Northport between 6/21/2015 to 7/10/2015. It was then detected at the mouth of Big 

Sheep Creek from 7/13/2015 to 8/17/2015. The last string of detections were at Northport 

between 8/23/2015 to 9/22/2015. 
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Figure B-9. Range of movements from Big Sheep Creek Rebands 1,2,and 3 (left) and range of movements for Bg Sheep Creek  

                    Redbands 4, and 5 (right). Included for each fish is sex, size and duration of detections.
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Comparison of the Range of Movements to Previous Years 

 

Sanpoil River 

Most Sanpoil River Redbands were only detected on Sanpoil River receivers or on 

receivers in the main stem of the Columbia River between Grand Coulee Dam and Seven 

Bays (72 km upstream of Grand Coulee Dam) in all three years of the study: 1) Of 12 

detected on multiple receivers in 2015/2016 (present study), all were detected on 

receivers in the Sanpoil River and 9 were only detected on receivers in the Columbia 

River between Grand Coulee Dam and Seven Bays; 2) Of 11 detected on multiple 

receivers in 2014/2015 (Walston et al. 2015), all were detected in the Sanpoil River and 

seven were only detected downstream of Seven Bays; 3) of 13 detected on multiple 

receivers in 2013/2014 (Stroud et al. 2014) nine were never detected above Seven Bays. 

However, in all three years of the study, a few fish from the Sanpoil exhibited 

extraordinary movements outside of this normal range of activity: 1) in 2015/2016 

(present study), one Sanpoil River fish  was detected at Snag Cove (196 km upstream of 

Grand Coulee Dam, although it later homed back to the Sanpoil River during its 

spawning migration), another was detected in the mainstem Columbia at Castle Rock (82 

km upstream of Grand Coulee Dam), and a third at Porcupine Bay on the Spokane River 

(99 km upstream of Grand Coulee Dam); 2) In 2014/2015 (Walston et al. 2015) one was 

detected as far as Castle Rock, another at Hunters (110 km upstream of Grand Coulee 

Dam), a third at Chalk Grade (145 km upstream of Grand Coulee Dam), and a fourth at 

French Rocks (152 km upstream of Grand Coulee Dam); 3) In 2013/2014 (Stroud et al. 

2014) one was detected at Porcupine Bay, another at Castle Rock, a third at Wilmont 
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Cove (93 km upstream of Grand Coulee Dam), and a fourth at Nancy Creek (175 km 

upstream of Grand Coulee Dam). 

Spokane Arm 

Blue Creek Redbands were typically detected in the Spokane Arm. Of the five detected 

on multiple receivers four never left the Spokane Arm. The one that did moved down the 

Columbia to Seven Bays. This is in contrast to what was seen in previous years. In 

2014/2015 only one was detected on multiple receivers and moved out of the Spokane 

Arm to Spring Canyon (Walston et al. 2015). In 2013/2014 three were detected on 

multiple receivers, with one that moved out of the Spokane Arm and up the Columbia to 

Hugh Keenlyside Dam, and the other two moved down the Columbia to Spring Canyon 

(Stroud et al. 2014). 

Spring Creek Redbands typically resided in the Spokane Arm. Three were detected in 

2015 between The Wynecoops receiver and The McCoy’s Marina receiver. One quickly 

left the Spokane Arm in 2015, being detected at Seven Bays on May 17, 2015 it was last 

detected at Spring Canyon (2 km upstream of Grand Coulee Dam) on May 21, 2015.  

Another left the Spokane Arm in April 2016 and resided around Spring Canyon from 

June to July 2016.   

Previously, acoustic tracking information for Spring Creek Redband Trout has been 

elusive. Stoud et al. (2014) stated there appeared to be detection issues in the Spokane 

Arm since out of four Spring Creek Redbands tagged in 2013 one was detected on the 

receiver array. Of five Redband tagged by Walston et al. (2015) in 2014 three were 

detected and two of those were detected on multiple receivers. The 2013 Redband moved 
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out of the Spokane River to Hunters but was detected for four days. Of the two 2014 

Redbands one moved to Plum point and the other never left the Spokane Arm. 

Middle Reservoir 

We captured two Redbands we tagged in Alder Creek where in 2013 five where tagged, 

and 11 were tagged in 2014 (Walston 2015). In the previous years a trap was used to 

collect fish, but was not put to use in 2015. The fish tagged in 2015 were both males, one 

was post spawn caught on a barbless jig at the mouth of Alder Creek, and the other was 

caught in the stream by backpack electrofishing. Neither of these were detected on the 

receiver array. However, five were detected in 2013, and six were detected in 2014 

(Walston 2015).   

Alder Creek Redbands displayed diverse movements in 2013 and 2014. In 2013 three 

were detected on multiple receivers. All moved downstream of Alder Creek with one to 

Keller Ferry, one to Hawk Creek and another to Castle Rock. These were detected for 

twenty five, three and fourteen days respectively. In 2014 four were detected on multiple 

receivers.  One moved upstream to Bissel Island, one moved upstream to French Rocks 

and downstream to Whitestone Rock, another moved between Hunters and Whitestone 

Creek, and the last moved upstream to Kettle Falls. These were detected for four months, 

nine months, and eight months, and twenty one days respectively. 

Wilmont Creek Redbands were typically detected in the lower middle reservoir below 

Wilmot Cove (100 km upstream of Grand Coulee Dam). Two deviated from the trend of 

being detected in the lower middle reservoir with one moving up to Gifford (131 km 

upstream of Grand Coulee dam) and another entered the Spokane, being detected as far 

upstream as McCoy’s Marina. Redbands were only previously tagged in 2014 in 
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Wilmont Creek. Two were detected on multiple receivers and both moved downstream to 

Spring Canyon. One of these did entrain over Grand Coulee Dam (Walston et al. 2015).  

Hunters Creek Redbands were only tagged in 2015, but had short detection histories. 

Three were detected on the array with two detected on multiple receivers. All seven 

Redbands were tagged on May 9, 2015, and all were ripe adults. We were pressed for 

time in getting transmitters out and decided to implant them into these fish. We have 

thought that perhaps most of these fish expelled the transmitters after spawning.  On two 

occasions (March 25 and May 28, 2016) we searched Hunters Creek from the mouth, 

upstream to the plunge pool where we tagged Redbands the previous year, with a 

hydrophone and were unable to detect any tags.  

Upper Reservoir 

Onion Creek Redbands did not appear to follow a recognizable trend. Three did not move 

below Kettle Falls, and four moved down as far as French Rocks and Hunters, with one 

moving as far downstream as Spring Canyon and subsequently back upstream. Onion 

Creek Redbands were only previously tagged in 2014. All four detected on  multiple 

receivers moved downstream of Onion Creek with one that entrained over Grand Coulee 

Dam, one to Bissell Island (129 km upstream of Grand Coulee Dam), Chalk Grade (151 

km upstream of Grand Coulee Dam), and Snag Cove (Walston et al. 2015).   

Big Sheep Creek Redbands were rarely detected downstream of Gifford, Washington 

(175 km upstream of Grand Coulee dam) during the three years of this study: 1) In 

2015/2016 (present study) of  five, the furthest downstream any were detected was 

French Rocks (159 km upstream of Grand Coulee Dam); 2) Of three detected on multiple 

receivers in 2014/2015 (Walston et al. 2015) two never moved downstream of French 
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Rocks; 3) Of seven detected on multiple receivers in 2013/2014 (Stroud et al. 2014) five 

were never detected below Gifford (131 km upstream of Grand Coulee Dam).  

However, in previous years of this study Big Sheep Creek Redbands made movements 

outside this range of activity. In 2014/2015 one was detected as far downstream as Spring 

Canyon. In 2013/2014 one was detected at Bissel Island and another entrained over 

Grand Coulee Dam. 
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