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Introduction
Maize (Zea mays L) is one of the most impor-

tant food crops throughout the world. It has not only 
served as staple for humans and animals, but as 
source of bioenergy. With the expansion of popula-
tion and deterioration of the global energy crisis, 
maize will face greater demands for grain production. 
Hence, improvement of crop production is of great 
significance. Grain yield is a quantitative trait, which is 
influenced by environmental factors and multi-genes 
with minor effects (Li et al, 2011). The decomposition 
of the complex yield trait into its elementary compo-
nent traits may be the best strategy for elucidating 
the genetic mechanism of yield trait.

Kernel row number (KRN) trait is more accessible 
and accurate than other complex quantitative traits. 
KRN was not only an important yield component (one 
of the major components of grain yield), but also one 
of the key trait during the domestication of maize. 
The domestication of maize changed with dramatic 
differentiation in KRN from its wild ancestor teosinte 
(2 rows of kernel) to most varieties of modern maize 
(8-20 rows of kernel). Due to the crucial role of KRN 
trait in maize genetic and breeding, a considerable 
number of studies have been conducted on KRN trait 
and various types of data had been accumulated. In 
addition, lots of genes related to homology traits have 
been cloned from closely related model species.

Quantitative trait loci (QTL) mapping is a power-
ful tool for locating chromosomal regions involved in 
complex traits (Somers et al, 2007). Based on phe-
notypic and genotypic data, QTL mapping enables 
the identification of action, interaction, numbers and 
chromosomal locations of loci affecting particular 
traits (Miles and Wayne, 2008). In the past several 
decades, hundreds of QTL have been detected for 
KRN, which were then mapped on all ten chromo-
somes in maize (Cai et al, 2014; Choe and Rocheford, 
2012; Upadyayula et al, 2006). Liu et al (2015) identi-
fied a main QTL KRN4 mapping on chromosome 4 
(bin4.08) through genome-wide association studies 
(GWAS) and linkage mapping. The published QTL of 
KRN were derived from the different QTL mapping 
populations (F2:3, BC1S1, BC2F2, IF2, and RIL) and mo-
lecular markers (RFLP, SSR, INDEL, and SNP) (Austin 
and Lee, 1996; Calderón et al, 2016; Karen Sabadin 
et al, 2008; Li et al, 2009; Li et al, 2007; Lu et al, 2011; 
Veldboom and Lee, 1994). However, the validity of 
QTL mapping is influenced by many factors including 
different experiment environments, materials, map-
ping population, population type and size, number of 
QTL, density of genetic markers, and heritability of 
traits, among which the analysis of genetic and statis-
tical models have significantly influenced QTL detec-
tion and location (Austin and Lee, 1996; Martinez et 
al, 2016). These QTL associated with the same trait 
increased gradually, but the results dramatically dif-
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fered. It is difficult to apply to these QTL to molecular 
marker-assisted selection (MAS) breeding practice.

Compared with QTL mapping, molecular cloning 
of genes associated with KRN has lagged behind, es-
pecially, the field of positional or map-based cloning. 
Several genes associated with KRN have been iden-
tified and cloned through mutations or map-based 
cloning, include zfl2 (Bomblies and Doebley, 2006; 
Bomblies et al, 2003), fea2 (Bommert et al, 2013b) and 
ub3 (Chuck et al, 2014) and it’s enhancing QTL (Liu 
et al, 2015). fea2 gene of all these genes resulted in 
the over-proliferation of ear inflorescence meristem, 
increased the KRN, and was cloned and mapped 
into the major QTL regions for KRN on chromosome 
4 (bin4.05) (Bommert et al, 2013b; Taguchi-Shiobara 
et al, 2001). Moreover, the rapid development of next 
generation sequencing (NGS) technologies and com-
putational methods enables extensive transcriptome-
wide analysis of different tissues and organs in maize 
by RNA-seq, such as the developmental dynamics of 
the maize leaf transcriptome, regulatory modules of 
inflorescence architecture, regulatory network in the 
maize kernel and so on (Eveland et al, 2014; Fu et al, 
2013; Li et al, 2010b). Although some genes are found 
to be associated with KRN, the genetic mechanism is 
poorly known. Therefore, understanding genetic ba-
sis of KRN will not only accelerate the breeding of 
maize, but also make a further step into the study of 
maize evolution.

Meta-analysis is a quantitative comprehensive 
analysis method for synthesizing data from various 
different independent results (Rosenberg et al, 2004). 
It could mine the «real» QTL from a host of positioning 
results, refine confidence interval (CI) and enhance 
the accuracy and effectiveness of QTL mapping (Li 
et al, 2013). In recent years, the method has been fre-
quently applied in maize (Xiang et al, 2012), wheat 
(Hanocq et al, 2007) and rice (Ballini et al, 2008). For 
instance, Lv et al (2008) identified three meta-QTL 
(MQTL) for resistance to sugarcane mosaic virus in 
maize and mined four candidate genes on the MQTL 
of chromosome 3. One of MQTL for photoperiod 
sensitivity was identified in maize bin 10.04 where 
a CCT-domain containing gene was found (Xu et al, 
2012). And then this gene was proved to be ZmCCT 
that functioned on controlling photoperiod response 
in maize (Hung et al, 2012). Therefore, meta-analysis 
could facilitate to excavate consistency of main gene 
loci controlling the same trait, and also furnish valu-
able «clue» for QTL fine-mapping.

In the current study, the published QTL associ-
ated with KRN and GY in maize were collected and 
MQTL were retrieved through meta-analysis path-
way with IBM2 2008 Neighbors as a reference map. 
Meanwhile, the purpose of combining comprehen-
sive meta-analysis with currently available RNA-seq 
data of critical periods in the KRN morphogenesis is 
to identify candidate gene responsible for KRN trait. It 
provided important information for MAS breeding and 

Materials and Methods
Collection of data

Grain yield (GY) of maize is a complex trait con-
sisting of several yield components, including ker-
nel row number, kernel number per row and kernel 
weight. In this study, GY and KRN were investigated. 
The key words «grain yield» and «kernel row number» 
were retrieved in the NCBI (http://www.ncbi.nlm.nih.
gov/pubmed/) and MaizeGDB website (http://www.
maizegdb.org/). Here, we collected 29 manuscripts 
published from 1996 to 2015. The information of QTL 
consisted of parent lines, the types and size of QTL 
mapping population, and the numbers of QTL per 
trait was provided in Table 1. Furthermore, we also 
surveyed flanking molecular markers, QTL position, 
confidence interval (CI), LOD score and proportion of 
phenotypic variance explained (PVE or R2) in terms of 
each QTL. If two or several QTL for the same trait ex-
isted in consensus map positions in one study, they 
were considered as identical QTL, and thus only one 
QTL was counted in our study. The gene action and 
epistatic loci were not considered in this paper.

The genome sequences for B73 (Release 
ZmB73_RefGen_v2) was downloaded from http://
www.maizesequence.org/index.html. The 5’-UTR, 
coding determining sequences (CDS), 3’-UTR, exon, 
intron and intergenic regions were determined based 
on their original annotations (ZmB73_5b_FGS, http://
ftp.maizesequence.org/current/filtered-set/). TSS_
up_0.5kb region are defined as 0.5kp upstream of the 
transcription start site and TES_down_0.5kb region 
are defined as 0.5kp downstream of the transcription 
end site. The RNA-seq data of inflorescence meri-
stem (IM) period of B73 were downloaded from NCBI 
(accession number GSE51050) (Eveland et al, 2014).

QTL projection and meta-analysis QTL
The 373 identified QTL were projected onto the 

reference map (IBM2 2008 Neighbors) for meta-
analysis based on the original map positions, LOD 
score, CI and R2. The following formulas were used 
to estimate 95% CI in case the CI of QTL was not 
demonstrated.

CI = 530 / (N × R2)        (1)
CI = 163 / (N × R2)        (2)

where N represented the mapping population size 
and R2 represented the ratio of phenotypic variation 
explained by the identified QTL. The formula (1) was 
applied in backcrossed lines (BC), test-cross lines 
(TC) and F2 population (Darvasi and Soller, 1997) and 
formula (2) was applied in recombinant inbred lines 
(RIL) ( Guo et al, 2006).

The high-density genetic linkage map of IBM2 
2008 Neighbors (Intermated B73 × Mo17) played a 
crucial role in the reference map. This map crossed 
8,054.28 centiMorgans (cM) and included 15,991 
RFLP, SSR, AFLP, genes, PARD markers etc. This 
wealthy map shared plentiful common markers with 

selecting candidate genes for KRN in maize.
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Results

Initial QTL on chromosomes in maize
Information on QTL for GY and KRN was collect-

ed from 29 literatures reported over the past 19 years 
from 1996 to 2015. A total of 373 QTL were collected 
(Table 1) and 166 special for GY and 207 for KRN, 

Table 1 - Detailed information of the QTL used for Meta-analysis.

References	 Parents	 Population size	 Cross type	 N° of QTL for GY	 N° of QTL for KRN

Barrière et al, 2010	 F838 x F286	 240	 RIL	 8	 -
Liu et al, 2011	 Huang C x Xu178	 203	 RIL	 7	 -
Ribaut et al, 2007	 Ac7643S5 x Ac7729	 240	 F2:3	 8	 -
Messmer et al, 2009	 CML444 x SC-Malawi	 236	 RIL	 5	 -
Liu et al, 2010	 Mo17 x Huangzao4	 239	 RIL	 -	 6
Guo et al, 2011	 Zheng58 x Chang7-2	 231	 F2:3	 10	 -
Cai et al, 2012	 Ye478 x Wu312	 218	 RIL	 18	 -
Liu et al, 2014	 V671 x Mc	 270	 F2:3	 -	 -
Yang et al, 2015	 B73 x SICAU1212	 325	 RIL	 -	 26
Li et al, 2014	 Nongxi531 x H21	 526	 BC4F1	 -	 17
Cai et al, 2014	 MT-6 x B73	 266	 F2	 -	  7
Yu et al, 2014	 1132 x 751	 342	 F2	 -	  3
Tian et al, 2014	 Y1648 x Y2348	 180	 F2:3	 -	 7
	 Y1648 x Y2348	 180	 F2:4	 -	 6
		  -	 BC3F2:3	 -	 4
Choe and Rocheford	 2012BH20 x BH30	 264	 F2:3	 -	 5
Yang et al, 2012	 GY220 x 8984	 282	 RIL	 8	 20
	 GY220 x 8622	 263	 RIL	 6	 13
Li et al, 2011	 Dan232 x N04	 258	 RIL	 10	 13
Peng et al, 2011	 Huangzao4 x Qi319	 230	 F2:3	 4	 -
	 Huangzao4 x Ye478	 235	 F2:3	 4	 -
Lu et al, 2011	 Ye478 x Dan340	 397	 F2:3	 12	 13
Tang et al, 2010	 Zong3 x 871	 426 433	 IF2	 3	 1
Li et al, 2010a	 5003 x 178	 210	 F2:3	 7	 12
Li et al, 2009	 GY220 x 8984	 284	 F2:3	 1	 4
	 GY220×8622	 265	 F2:3	 2	 4
Karen Sabadin et al	 2008L-08-05F x L-14-4B	 400	 F2:3	 -	 10
Li et al, 2007	 Dan232 x N04	 220	 BC2F2	 4	 2
		  259	 F2:3	 1	 4
Yan et al, 2006	 Zong3 x 87-1	 266	 F2:3	 5	 18
Upadyayula et al, 2006	 ILP x B73	 150	 BC1F1	 -	 4
Ho et al, 2002	 RD6501 x RD3013	 204	 BC2 as TC	 5	 -
Huang et al, 2010	 F2 x F252	 300	 Conventional F3	 9	 -
	 F2 x F252	 322	 Intermated F3	 12	 -
Coque and Gallais, 2006	 Io x F2	 99	 RIL as TC	 11	 -
Austin and Lee, 1996	 Mo17 x H99	 186	 RIL	 6	 8

Total				    166	 207

the original maps recorded in this paper. The projec-
tion of QTL was carried out by BioMercator V3.0 soft-
ware (Sosnowski et al, 2012). The best positions of 
original QTL and CI were projected on the reference 
map underlying the homothetic function (Chardon 
et al, 2004). MQTL are the consensus QTL from the 
model with lowest Akaike Information Criterion (AIC) 
value (Goffinet and Gerber, 2000). When some QTL 
could not be projected or map positions were beyond 
the scope on the reference map, the QTL would be 
discarded to ensure accuracy and dependability of 
projection.

Candidate genes mining and GO analysis
These MQTL involved in KRN were selected as 

the candidate genomic region for further analysis. 
RNA-seq data controlling maize inflorescence ar-
chitecture were downloaded from NCBI website 
(www.ncbi.nlm.nih.gov/geo/; GSE51050; Eveland 
et al, 2014). The candidate genes were identified by 
the gene-level expression values, which are repre-
sented by fragments per kilo base exon per million 

reads mapped (FPKM), and a consensus FPKM was 
determined for each gene based on its representa-
tion across biological replicates. The GO enrichment 
analysis of the significant genes with FPKM > 1 of 
MQTL regions was carried out using singular enrich-
ment analysis (SEA) approach by online AgriGO tool 
(http://bioinfo.cau.edu.cn/agriGO/) with the B73 ref-
erence genome (AGPv3.30) as background (Du et 
al, 2010). The highly significant enriched terms were 
chosen by default P-value and false discovery rate 
(FDR). Protein sequence alignment using BLAST by 
default e-value (e-10), and homologous genes were 
identified with identity larger than 40% and coverage 
more than 60% length alignment.
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With the development of molecular marker tech-
nology and QTL mapping software, plenty of QTL 
have been generated on over 10 chromosomes and 
gene cloning for agronomic traits in maize. By far, 
thousands of QTL have been generated, that are rel-
evant to phenotype (plant height, leaf angle, and ear 
diameter, etc), flowering time, biotic stress, abiotic 
stress, and so on. Extensive studies had been done 
on yield and yield-related traits, especially for KRN 
trait. Consequently, the researchers have to face the 
problems that how to effectively employ these in-
dependent study programs. In addition, increase of 
gene expression data produced by microarray-based 
and RNA-seq would unlock new area in meta-analy-

Discussion

respectively. Nine original QTL for GY and seven for 
KRN could not be projected on the reference map. 
These initial QTL were unevenly distributed on the 
10 chromosomes. The amount of initial QTL (Table 2) 
ranged from 19 (chromosome 7) to 69 (chromosome 
1). QTL for GY (37) and KRN (32) was the highest on 
the chromosome 1. GY QTL was the least (7) on the 
chromosome 10. The least (3) of KRN QTL were lo-
cated onto chromosome 6.

Meta-QTL of KRN and GY on chromosomes in 
maize

Based on the principle of the lowest AIC value, 35 
MQTL for KRN and 19 MQTL for GY were detected 
via meta-analysis pathway, respectively, which were 
also unevenly distributed on all chromosomes (Ta-
bles 2 and 3). The number of MQTL changed from 
two (chromosomes 6 and 7) to 12 (chromosome 
1), with an average of 5.4 MQTL per chromosome. 
Chromosome1 had the highest frequency of MQTL 
(12), while chromosomes 6 and 7 had the lowest (2). 
The numbers of initial QTL in one MQTL ranged from 
two to nine. The maximum of MQTL for GY and KRN 
were distributed on chromosome 1, correspond-
ing to the distribution of original QTL. The MQTL for 
GY were detected on all ten chromosomes, whereas 
KRN MQTL were located on all chromosomes except 
chromosomes 6 and 7.

The overlapped MQTL between GY and KRN 
traits were identified with interval on chromosome. As 
is shown in table 3, three overlapped MQTL were de-
tected from 54 MQTL, and they were GY5 overlapped 
with KRN4 on chromosome 1 (bin 1.06), GY4 over-
lapped with KRN5 on chromosome 1 (bin 1.05), and 
GY10 overlapped with KRN18 on chromosome 3 (bin 
3.05), respectively. The overlapping regions maybe 
inferred some pleiotropic QTL controlled of KRN and 
GY traits, which could facilitate to screen candidate 
genes and could process the MAS breeding.

Mining possible candidate genes in MQTL and GO 
analysis

A total of 3447 annotated genes were contained in 
these MQTL regions (Supplementary Table 1). FPKM 
value of 46.07% (1,588) of these genes ranged from 
1.03 to 1,160.35, with an average of 23.39 (Supple-
mentary Table 2). 1,154 genes with FPKM value >1 
were annotated and categorized into 101 significant 
GO terms, including 58 GO terms involved in biologi-
cal process such as cellular process (GO:0009987), 
signaling process (GO:0023046), signal transmission 
(GO:0023060) and 43 GO terms, which were exten-
sively involved in cellular process, intracellular part 

(GO:0044424), intracellular (GO:0005622) and cell 
part (GO:0044464) (Figure 1, Supplementary Table 3).

Significant progress has been made in under-
standing the molecular mechanism of inflorescence 
development in Arabidopsis, and the classical ABC 
model had been upgraded to ABCDE model. In or-
der to identify candidate genes involved in inflores-
cence development in the MQTL regions, 52 genes 
that were functionally characterized to inflorescence 
development were collected from Arabidopsis and 
Rice (Supplementary Table 4). A total of six homologs 
genes in the MQTL regions were identified by pro-
tein sequences alignment. These genes involved in 
the MADS-box gene family and transcription factor in 
rice and the CLV pathway in Arabidopsis. Three can-
didate genes GRMZM2G043584, GRMZM2G017386, 
and GRMZM2G404207, which are homologous to 
CLV1 (Stone et al, 1998). OsMADS7 (homologous 
gene of the candidate gene GRMZM2G159397) and 
OsMADS32 (homologous gene of the candidate gene 
GRMZM2G001139) functioned on inflorescence de-
velopment and impacted the kernel number per ear in 
rice (Cui et al, 2010; Wang et al, 2015). RFL (homolo-
gous gene of the candidate gene GRMZM2G180190) 
controlled of the inflorescence and floral develop-
ment (Ikeda-Kawakatsu et al, 2012). Among of them, 
GRMZM2G043584 was mapped in the KRN6 interval 
and its FPKM value was 86.97. GRMZM2G017386, 
GRMZM2G404207, and GRMZM2G001139 were 
located in the KRN34 interval and the FPKM val-
ues were 4.68, 7.64, and 129.75, respectively. 
GRMZM2G159397 was mapped in the KRN4 interval 
and its FPKM value was 3.9. GRMZM2G180190 was 
mapped in the KRN12 interval and its FPKM value 
was 69.17.

Table 2 - Numbers of initial QTL and identified MQTL (in brackets) on the chromosomes.

Chr	 Chr1	 Chr2	 Chr3	 Chr4	 Chr5	 Chr6	 Chr7	 Chr8	 Chr9	 Chr10	 Total

GY	 37(6)	 11(1)	 16(2)	 12(1)	 13(1)	 18(2)	 15(2)	 13(1)	 15(2)	 7(1)	 157(19)
KRN	 32(6)	 21(5)	 26(5)	 27(4)	 26(5)	 3(0)	 5(0)	 20(3)	 11(1)	 29(5)	 200(35)

Total	 69(12)	 33(6)	 42(7)	 39(5)	 39(6)	 21(2)	 19(2)	 33(4)	 26(3)	 36(6)	 357(54)
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Table 3 - Meta-analysis results of GY and KRN in maize.

MQTL	 Bin	 Map position(cM)	 Physical distance (bp)	 QTL number	 R2 (%)	

GY1	 1.01	 82.8-83.7	 6,954,139-7,860,111 	 2	 6.52
GY2	 1.01-1.02	 113.8-133.6	 12,187,402-15,081,335	 7	 10.81
GY3	 1.03	 270.6-284.13	 44,227,633-51,364,865	 3	 6.32
GY4	 1.04-1.05	 401.3-417	 83,525,378-92,380,497	 3	 7.83
GY5	 1.06	 548.4-599.89	 191,089,609-198,332,129	 4	 10.12
GY6	 1.1	 898.7-908.47	 273,251,258-275,484,407 	 3	 10.47
GY7	 10.04	 287.72-295.9	 117,897,673-126,625,283 	 4	 9.1
GY8	 2.03-2.04	 234.37-250.1	 22,753,277-29,124,988	 3	 6.9
GY9	 3.04	 150-160.74	 190,889,172-15,281,332	 2	 2.81
GY10	 3.04-3.05	 280.4-305.88	 119,647,741-129,046,658	 3	 9.64
GY11	 4.03-4.04	 208.85-218.5	 32,240,789-25,233,582 	 6	 8.32
GY12	 5.04	 312.6-318.9	 135,817,962-139,233,160	 3	 7.39
GY13	 6.01-6.02	 107.32-121.09	 70,934,148 -71,079,235	 5	 5.62
GY14	 6.02	 145.7-148.7	 91,687,346-92,109,561 	 2	 8.3
GY15	 7.04	 410.5-430.5	 156,589,630-159,146,113	 3	 10.77
GY16	 7.02	 187.91-188.1	 21,437,175-83,038,512	 3	 6.07
GY17	 8.07	 483.4-494.7	 167,143,057-168,933,171	 2	 7.35
GY18	 9.06	 500.1-519.02	 145,303,921-147,424,091	 2	 4.86
GY19	 9.04	 340.38-344.8	 131,066,648-133,267,815 	 3	 5.99
KRN1	 1.02	 133.6-143.5	 15,080,522-16,243,042	 5	 9.67
KRN2	 1.05	 471.7-473.8	 164,555,621-166,770,972	 2	 5.06
KRN3	 1.11	 1010.2-1019.1	 287,892,994-288,334,071	 4	 5.71
KRN4	 1.06-1.07	 541.3-658.6	 187,975,047-209,868,319	 2	 13
KRN5	 1.05	 410.76-432.4	 87,363,085-103,311,831	 2	 3.08
KRN6	 1.02-1.03	 190.53-219	 27,030,719-34,917,215 	 2	 4.11
KRN7	 10.03	 196.14-198.28	  65,096,249-75,723,023 	 2	 9.85
KRN8	 10.03	 217.8-228.3	  82,081,161-86,418,123	 7	 16.26
KRN9	 10.07	 473.04-483.61	 148,996,063-149,073,556	 9	 8.13
KRN10	 10.06	 380.5-383.12	 138,475,535-138,981,043 	 6	 9.02
KRN11	 10.04	 344.8-352.94	  133,215,331-135,382,131	 2	 10.33
KRN12	 2.02	 148.1-151.03	 12,874,870-13,827,670	 5	 5.3
KRN13	 2.02	 135.59-147.12	 12,025,692-12,644,804	 3	 6.21
KRN14	 2.03	 191.5-197.76	 18,133,383-19,461,962	 5	 11.22
KRN15	 2.09	 596.78-599.13	 223,833,611-224,605,071	 2	 3.26
KRN16	 2.07	 425.14-435.82	 193,207,119-195,782,417	 4	 7.91
KRN17	 3.03	 129.4-131.7	 9,963,297-10,076,403	 3	 5.01
KRN18	 3.05	 299.2-312.8	 126,509,015-136,874,092	 4	 6.19
KRN19	 3.08	 633.8-652.4	 213,547,173-213,644,376	 6	 9.83
KRN20	 3.06	 436.31-439.72	 178,144,821-179,875,893	 2	 6.48
KRN21	 3.08	 592.61-608.17	 208,900,189-209,849,913	 4	 6.89
KRN22	 4.01-4.02	 81-94.7	 4,746,444-5,327,212 	 4	 7.92
KRN23	 4.05	 254.9-268.4	 36,124,099-43,215,480	 3	 4.84
KRN24	 4.09	 581.14-587.83	 224,240,449-225,801,290 	 5	 6.87
KRN25	 4.07	 424.08-428	 173,915,604-177,558,650	 8	 11.52
KRN26	 4.09	 602.1-619.4	 228,653,486-231,903,992	 3	 6.57
KRN27	 5.01	 114.17-116.84	 5,996,253-6,721,366	 4	 6
KRN28	 5.01	 172.26-181.11	 11,733,612-13,003,041	 5	 8.97
KRN29	 5.05	 440.34-449.93	 185,561,749-189,463,674	 6	 8.27
KRN30	 5.05	 404.9-410.8	 175,676,893-180,186,824	 6	 11.82
KRN31	 5.03-5.04	 297.5-305.17	 78,362,776-84,252,685	 4	 9.98
KRN32	 8.02	 153.3-157.57	 16,951,357-18,202,247	 6	 12.14
KRN33	 8.03	 293.77-295.91	 104,279,060-104,774,930 	 5	 8.7
KRN34	 8.06	 409.62-439.67	 138,853,275-164,088,415  	 2	 9.4
KRN35	 9.03	 240.5-257.6	 89,923,716-102,441,499	 7	 8.42

sis linked to QTL and expression-based information.

Meta-QTL of KRN trait
In this study, we collected and reallocated 207 

QTL of KRN from myriads of individuals studies via 
meta-analysis pathway, and a total of 35 KRN MQTL 
were identified. Generally, the more initial QTL in the 

MQTL, the higher reliability is. Twenty-two (62.8%) 
MQTL were integrated more than 3 initial QTL, and 
9 (25.7%) MQTL integrated more than 5 initial QTL, 
with an average of 3.5 initial QTL. Among these KRN 
MQTL, the MQTL of KRN9 possessing the most 
initial QTL (9 QTL) were mapped on chromosome 



61 ~ M40

Jiang et al 6

Maydica electronic publication - 2016

10 (bin10.07). The MQTL of KRN8 possessing the 
highest R2 (16.26%) were mapped on chromosome 
10 (bin10.03). Furthermore, 3 (8.5%) out of all KRN 
MQTL were overlapped with MQTL for GY, which 
were some common and overlapped intervals in pre-
vious research relevant to GY trait (Martinez et al, 
2016; Wang et al, 2016).

Compared to the previously published genes 
associated with KRN, three reported genes were 
mapped in these MQTL intervals, including ub2 (bin 
1.06) involved in KRN (Chuck et al, 2014), ct2 (bin 
1.01) resulted in fasciated ear (Bommert et al, 2013a) 
and zfl2 (bin 2.02) controlling KRN (Bomblies et al, 
2003). Meanwhile, the cloned genes td1 (Bommert et 
al, 2005), fea2 (Taguchi-Shiobara et al, 2001), fea4 (Je 
et al, 2016), and ub3 (Chuck et al, 2014) associated 
with KRN were not able to be mapped in the MQTL 
intervals in this study. It may be because the clone’s 
genetic materials coming from specific genetic back-
ground. Generally, the genetic R2 of the consistency 
of QTL under various genetic backgrounds were not 
high, while those QTL exhibiting high R2 values were 
parent-of-origin specific QTL.

Candidate genes mining of KRN Meta-QTL
QTL mapping and cloning of the corresponding 

genes were an effective way to elucidate the molecu-
lar mechanism. Although a lot of QTL were identified 
in previous experiments, the genes underlying QTL 
had only been cloned in a few cases, particularly for 
minor QTL. In many cases, the major QTL region typi-
cally contained minor QTL clusters, and the pheno-
type of traits is controlled by polygenes. The tradition-
al way was difficult to perform in-depth case-study 
research. RNA-seq technology provided a solution. 
For example, Eveland et al (2014) revealed regulatory 
modules controlling maize inflorescence architecture 
by RNA-seq technologies, and provided compre-
hensive insight into the developmental dynamics of 
gene expression for inner ear morphogenesis. Inter-
estingly, the number of known genes, including ub2, 
ub3 and zfl2, controlling KRN trait that had expres-
sion of FPKM between > 6.62 and < 65.37 in 1-mm 
ear stage. The genes related to abnormal ear mor-
phology, including ra1, ra2, ra3, ct2, fea2, fea3, and 
fea4, had expression of FPKM between > 2.30 and 
< 67.66. FPKM value was far less than that of high-
est value (GRMZM2G153292; 4,006.72). The results 
show that the FPKM value of key genes response for 
significant morphological changes was not the higher 
the better and might be around the average of 13.45.

Figure 1 - Summary of the functional analysis of GO terms.
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maize. Development 130: 2385-2395
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Genetic architecture of flowering time in maize as 
inferred from quantitative trait loci meta-analysis 
and synteny conservation with the rice genome. 
Genetics 168: 2169-2185

Choe E, Rocheford TR, 2012. Genetic and QTL anal-
ysis of pericarp thickness and ear architecture 
traits of Korean waxy corn germplasm. Euphytica 
183: 243-260

Chuck GS, Brown PJ, Meeley R, Hake S, 2014. Maize 
SBP-box transcription factors unbranched2 and 
unbranched3 affect yield traits by regulating the 
rate of lateral primordia initiation. P Natl Acad Sci 
111: 18775-18780

Coque M, Gallais A, 2006. Genomic regions involved 
in response to grain yield selection at high and 
low nitrogen fertilization in maize. Theor Appl 
Genet 112: 1205-1220

Cui RF, Han JK, Zhao SZ, Su KM, Wu F, Du XQ, Xu 
QJ, Chong K, Theißen G, Meng Z, 2010. Func-
tional conservation and diversification of class E 
floral homeotic genes in rice (Oryza sativa). Plant 
J 61: 767-781

Darvasi A, Soller M, 1997. A simple method to cal-
culate resolving power and confidence interval of 
QTL map location. Behav Genet 27: 125-132

Du Z, Zhou X, Ling Y, Zhang ZH, Su Z, 2010. agriGO: 

Applications of meta-QTL in MAS
MAS technologies were significantly contribut-

ing in increasing accuracy in selection and breeding 
work to improve the efficiency of breeding practice, 
which was the trend of molecular breeding strategies. 
In recent years, the success of MAS for genetic im-
provement of yield related traits had been reported in 
maize and rice (Liang et al, 2004; Stuber et al, 1987). 
Meta-QTL originated from different genetic back-
grounds, growth environments and types of molecu-
lar markers contained clear indication of QTL location 
and the interactions of environment-environment and 
gene-environment could improve efficiency in MAS. 
Particularly, the QTL-rich regions related to various 
traits had higher efficiency of selection. There were 
also three overlapping intervals in our study. In sum-
mary, these «hot bins» may be the pleiotropic regions 
character of yield and yield components, which could 
take a shortcut for the MAS breeding.

In comparison to QTL mapping of important ag-
ronomic traits, the gene cloning could be more useful 
to understand the molecular mechanism and genetic 
improvement of a trait, which is also the foundation of 
breeding by design. All identified candidate genes for 
KRN in maize, especially, those genes with conserved 
ortholog in closely related species, might have a po-
tential influence on elucidating the molecular mecha-
nisms of morphogenesis and increasing the breeding 
efficiency by marker-assisted selection based on the 
functional marker.
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