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Abstract of Thesis 
 
 

Soil respiration, from plant roots and soil microbes, accounts for 60 – 80 percent 

of total ecosystem respiration, with the microbial component contributing approximately 

54 percent. Global climate trends resulting from CO2 emissions include increased soil 

temperatures and changes in precipitation regimes resulting in less frequent, more 

intense rainfall events. Soil temperature and moisture availability drive soil respiration 

rates, but how they impact the microbial respiration is poorly qualified. I investigated 

how the soil microbial community responds to changes in temperature and moisture 

availability in a laboratory based experiment.  Soils from a mixed hardwood forest under 

two thermal regimes received either a large or small simulated rainfall event. A large 

event corresponded with the highest recorded daily average rainfall event for a 30 year 

period and a small event was half that amount. Soil temperature, moisture, and 

respiration were measured at 30 minute intervals for the duration of the experiment. I 

used the following metrics to quantify microbial respiratory response: (1) maximum rate 

of soil microbial respiration (SMRmax); (2) the amount of time it took to reach SMRmax 

(Tmax); (3) the amount of time it took to return to pre-rainfall rates of soil microbial 

respiration (Tduration); and the total CO2 production in each mesocosm associated with 

rainfall (SMRtotal). Temperature treatments positively influenced SMRmax, but had no 

impact on my other metrics. Rainfall event size positively impacted SMRmax, Tduration, and 

SMRtotal. My research suggests that in temperate mixed hardwood forest soils moisture 

is a stronger driver of soil microbial respiration than temperature.  
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Introduction 

Widespread and accelerating anthropogenic climate change demands an 

improved understanding of terrestrial carbon cycling. Soil organic carbon represents a 

large pool in the terrestrial carbon cycle and respiration by plant roots and soil microbes 

accounts for 60 – 80 percent of total ecosystem respiration (Raich and Schlesinger 

1992; Le Quere et al. 2009). Soil respiration rates are driven by complex and interacting 

controls that include exogenous (soil moisture and temperature) and endogenous 

(photosynthetic gain) factors (Barron-Gafford et al. 2014), but have consistently been 

shown to rapidly respond to changes in soil moisture, temperature, and substrate 

availability (Yuste et al. 2007; Guntiñas et al. 2013; Potts et al. 2014).  A comprehensive 

understanding of how soil respiration is affected by changing temperature and 

precipitation regimes is therefore imperative to improving estimates of terrestrial carbon 

budgets (Figure 1).  

Ever increasing greenhouse gas emissions are expected to raise global surface 

temperature considerably in the coming decades, resulting in changing precipitation 

regimes and longer growing seasons (IPCC, 2015). Global temperatures are projected 

to increase 0.3°C to 0.7°C by 2035 (IPCC, 2015) and recent climate models predict 

changes in the hydrological cycle resulting in less frequent, more intense rainfall events 

(Huntington 2006; Seneviratne et al. 2006; IPCC 2015). Increased temperatures are 

also responsible for early onset of spring, resulting in longer growing seasons 

(Linderholm 2006). Predicting the effects of warming temperatures and altered 

precipitation regimes on ecosystem function is a long-stated goal of ecology (Raich and 

Schlesinger 1992; Weltzin et al. 2003) and how these factors influence soil microbial 
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respiration through soil organic matter decomposition are highly relevant for global 

carbon budget estimates.  

Pools of soil organic matter (SOM) are a result of inputs from both above-ground 

and below-ground carbon, primarily from leaf and root detritus, and outputs of CO2 from 

plant roots and soil microbes (Davidson and Janssens 2006). Soil organic matter is 

composed of a combination of dead and living animal and plant material, but the main 

constituent of SOM is soil organic carbon (SOC), which makes up 58 percent of its total 

weight (Lal 2001). SOC is often conceptualized as consisting of two principle pools 

characterized by their availability to soil microbes and which vary in their residence time 

in the soil ranging from days to millennia (Schimel et al. 2005).  

The labile pool of SOC is characterized by low molecular weight organic 

molecules which are readily available to soil microbes and have a short residence time 

in the soil.  Conversely, the recalcitrant pool of SOC is characterized by high weight 

organic molecules which are very difficult for most soil microbes to metabolize and 

hence have a long residence time in the soil (McLauchlan and Hobbie 2004; Allison 

2008). Soil CO2 fluxes are largely dominated by the small, but highly bio-reactive 

transient labile pool, whereas long-term storage is determined by the abundance of the 

persistent recalcitrant fraction (Trumbore et al. 1990).  As the labile pool is a direct 

reservoir of organic carbon readily available to soil heterotrophs, it has considerable 

control over ecosystem function. This pool, by impacting soil microbial activity, biomass, 

and rates of soil nutrient mineralization, has been shown to alter both ecosystem 

structure and productivity (Pastor and Post, 1986).  The labile pool of carbon is 

therefore responsible for much of the CO2 flux from soil to atmosphere and has been 
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shown to be sensitive to moisture and temperature alterations resulting from climate 

change (Zak et al. 1993; Trumbore et al. 1996).  

Soil respiration combines the respiratory activity of plant roots and soil microbes 

(Ryan and Law 2005) and is an important ecosystem function in that it represents a 

principle pathway for the exchange of carbon between the land surface and the 

atmosphere (Houghton 2003). Soil microbial respiration (SMR), is estimated to 

contribute more than half of total soil respiration (about 54 percent annually), directly 

through cellular activity and indirectly through decomposition of carbon (Hanson et al. 

2000). These estimates emphasize the considerable contribution of soil microbial 

communities to terrestrial CO2 fluxes.  

Whereas the soil microbial community is vast, research examining the link 

between community structure and function has focused primarily on the contributions of 

bacteria and fungi (Brandford and Fierer 2015). Due to the relative difficulty associated 

with isolating and identifying bacteria and fungi functionally and taxonomically, they are 

often considered functionally redundant (Allison and Martiney 2008).  However, the fact 

that bacteria and fungi may differ in the preferences for particular organic carbon 

substrates challenges the notion of functional redundancy and may provide better 

understanding of how each of these microbial functional groups contributes to carbon 

cycling. Bacteria are known for their rapid utilization of readily available, easily 

decomposed, labile carbon (Coleman et al. 2004), whereas fungi utilize more 

recalcitrant organic matter, which is more resistant to decomposition (Carroll and 

Wicklow 1992).  
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In addition to substrate utilization, fungi and bacteria have physiological 

differences that influence carbon cycling in soils. Fungi not only can utilize more lignified 

carbon, but also have hyphae which permit them access to surface litter (Holland and 

Coleman 1987). The cell walls of fungi are composed of polymers of melanin and chitin, 

which are much more resistant to degradation than the readily-decomposable, energy-

rich phospholipid walls of bacteria (Guttenberger et al. 1999). As a consequence of 

these physiological differences, soil microbial communities dominated by fungi have 

slower carbon turnover rates because they incorporate more carbon into biomass than 

bacteria, have more recalcitrant cell walls, and facilitate carbon stabilization and 

protection by enhancing aggregation of soils (Six et al. 2006).   

Soil temperature is a principle factor regulating microbial respiration (Raich and 

Schlesinger 1992) and accounts for the majority of seasonal and diel variation in CO2 

flux (Davidson et al. 1998).  Soil temperature controls SMR directly with increased 

temperature resulting in increased metabolic activities of the soil microbes, and 

indirectly through increased photosynthetic activity and the corresponding release of 

root exudates (Bertin et al. 2003). Tower-based measurements of ecosystem respiration 

which integrate respiratory efflux of CO2 from both above- and belowground sources 

correlated positively with both photosynthetic rates and site productivity, illustrating the 

important contribution of plants’ physiological performance to SMR (Craine et al. 1999; 

Janssens et al. 2001). Root respiration does not contribute to the microbial component 

of soil respiration however, the increased release of root exudates which is correlated 

with increased photosynthetic activity, provides more readily assessable labile carbon to 
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microbial communities resulting in increased microbial respiration rates (Hogberg and 

Read 2006).  

The positive influence of temperature on soil respiration rates is widely 

documented (Rustad et al. 2000) however, the pattern is not universal, suggesting that 

other biotic or abiotic factors may influence SMR. For example, in a boreal forest 

greenhouse study, Allison and Treseder (2008) found that experimental soil warming 

resulted in an initial increase in soil respiration but a then steady decline toward the end 

of the growing season. The authors suggested that the decline in respiration was 

associated with decreased soil moisture resulting from the temperature treatment.  This 

observation is supported by a growing body of research which demonstrates that soil 

temperature sensitivity is closely tied to soil moisture content, (Kirschbaum, 1995; Curiel 

Yuste et al., 2003; Lavigne et al., 2004), and that studies of soil temperature alone are 

incomplete and soil respiration fluxes cannot be accounted for solely on this factor.  

The relationship between soil water content and microbial respiration is complex, 

but is consistently demonstrated with a decrease in microbial activity with decreased 

moisture (Or et al. 2007), and ceasing entirely at extreme lows (Schimel et. al.1999). 

This decrease in metabolic activity is caused by both physical and physiological 

processes. As soil drying occurs, available water in pores becomes disconnected, 

slowing down diffusion of solutes and limiting substrate availability resulting in a decline 

in nutrient flow to microbes (Schjonning et al. 2003). Increased soil respiration with 

water addition is a well-documented relationship (Liu et al. 2008; Yuste et al. 2003), but 

perhaps more interesting is how microbial communities respond to episodic rainfall 

events and how event magnitude interacts with temperature to drive respiration rates  
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 Resource availability is an obvious factor that limits metabolic activity, and water 

is necessary for microbial metabolic processes. Stress to organisms can be defined as 

any disturbance that results in a community shift in resource use from growth to 

physiological maintenance (Odum 1985).  In this sense, the drying-rewetting of soils 

associated with episodic rainfall events may represent a considerable stress on soil 

microbes. Additionally, pulses of activity as a result of intermittently available resources 

are common (Yang et al. 2010). The down regulation of microbial activity associated 

with drying and subsequent pulse of metabolic activity following wetting is a well-

documented phenomenon (Birch 1958; Fierer and Schimel 2003; Huxman et al. 2004).  

Projected changes in precipitation regime associated with global climate change 

include increased frequency in extreme events (Heinmann and Reichstein 2008), 

coupled with heat spells (Gangley et. al 2009) and longer periods of drought (Meehl et 

al. 2007).  Soils in most ecosystems experience periods of extended drying interspersed 

with rapid rewetting events (Fierer et. al 2003), but these trends  present a scenario in 

which temperate soils could experience longer periods of drying similar to arid and 

semi-arid ecosystems and therefore be more sensitive to discrete rainfall events.   For 

example, an experimental rainfall redistribution experiment in a temperate grassland 

demonstrates the metabolic sensitivity of soil microbial communities and associated 

carbon cycling consequences of soil wetting and drying associated with isolated rainfall 

events in an otherwise mesic ecosystem (Fay et al. 2008). 

 In water limited systems, long periods of drying occur, followed by discrete 

precipitation events (Loik et al. 2004). Because water is required for soil microbes to 

acquire and utilize carbon, the magnitude and duration of these pulses of water 
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availability are strong drivers of microbial activity (Huxman et al. 2004). The positive 

relationship between pulse driven moisture availability and soil respiration has been 

thoroughly demonstrated in these systems (Potts et al. 2006; Jenerette and Chatterjee 

2012,), but it is possible, given warming temperatures and changing precipitation 

regimes that similar relationships may be also exist in temperate ecosystem soils.  

Temperate forest ecosystems are historically less susceptible to fluctuations in 

moisture availability due to larger quantities of rainfall, but also the ability of the plant 

community to redistribute water from wetter, deeper soils (Borken et al. 2006).   This 

results in less stress to microbial communities, potentially driving a milder response to 

pulse moisture availability than in arid ecosystems. This resilience could be at risk 

however, due to predicted changes in precipitation regime for temperate systems.  For 

example, Borken et al. (2006) demonstrated that prolonged summer drought in a 

temperate forest resulted in a decrease in soil respiration, supporting the idea that less 

frequent rainfall has respiratory consequences in temperate systems. Certainly, 

temperate microbial communities will exhibit a positive respiratory response to water 

addition (Lee et. al 2004), but the magnitude and duration of this response, as well as 

interactive effects with increased temperatures in temperate soils is unclear. 

 The objective of this research was to examine how rainfall event size, coupled 

with increased temperature, influences dynamic shifts in soil microbial community 

structure and function. My goal was to quantify shifts in soil microbial community 

structure with concurrent measurements of SMR in the context of a laboratory-based full 

factorial soil moisture and temperature manipulation experiment. Due to difficulties 

associated with PCR inhibition, I was unable to collect community structure data. 
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Predictions, methods, and discussion of soil microbial community structure can be 

found in appendix A.  

 

Soil Microbial Community Function Hypotheses: 

I predicted that discreet rainfall events, regardless of their magnitude, would result in 

increased SMR. Further, I predicted that rainfall event size will not influence maximum 

rates of SMR (Huxman et al. 2004).  Rather, I predicted that increasing rainfall event 

magnitude would increase the duration of SMR and, in turn, increase the total amount of 

C respired in response to rainfall.  Conversely, I predicted that soil warming would 

positively influence maximum rates of SMR but cause a decline in the duration of SMR 

as a result of warmer temperatures’ effect on increased soil evaporation.  Finally, I 

predicted that the influence of warming on the duration of SMR would decline with 

increased rainfall magnitude due to increased soil moisture residence time resulting in 

decreased rates of evaporation.  

Methods: 

Site Description and Soil Collection 

I collected soils from a representative stand of second growth mixed hardwood 

forest on the property of the Beaver Meadow Audubon Center (BMAC), a 324-acre 

wildlife preserve established in 1951 (42°40'27.1"N 78°22'42.1"W, 4756 – 4920 meters) 

(Figure. 3).  At the site, soils are classified as Howard-Madrid gravely loam, a deep, well 
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drained, medium textured alkaline outwash soil with considerable quantities of gravel 

(National Resources Conservation Service 2010, Soil Conservation Service, 1956). 

 On July 28, 2014 I collected mineral soil from the O and shallow A horizons to a 

depth of approximately 20 cm. Working along two parallel 800 meter transects located 

200 meters apart and using a spade, I first removed the litter layer and then collected 

soils. Soils were transported back to the lab, bench dried, passed through a 2 mm sieve 

to remove large stones, roots, and macro fauna, homogenized, and stored at 4°C. 

 Soil mesocosms were exposed to two temperature regimes consisting of an 

ambient temperature control (20-21°C), and an experimentally increased temperature 

(ambient+5°C), which was accomplished by placing seed heating mats under the 

planting tray which contained the soil mesocosm. In addition to the temperature 

manipulation, mesocosms were randomly assigned to one of two types of simulated 

rainfall events.  I used average daily rainfall data for the period 1981-2010 recorded at 

the nearest climate monitoring site (Wales, NY) to estimate average growing season 

daily rainfall.  The largest average rainfall event on record for the aforementioned period 

was used as a large rainfall event (90 mm) and half that amount for a small rainfall (45 

mm). Water was applied to soils using a horticultural-style hand pumped sprayer set to 

apply a heavy mist to the entire soil surface. This method allowed a steady, consistent, 

and accurate application of water to the mesocosm. 

Experimental Design and Soil Mesocosm Construction 

The experiment was designed as a factorial experiment which examined the 

interactive effects of soil warming and simulated rainfall event size on soil microbial 

community structure and function. Two replicates of each of three experimental 
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treatments and a control were randomly assigned to the 8 available mesocosms. Upon 

completion of the experiment, each mesocosm was refilled with new soil following the 

protocol outlined above. The complete experiment was repeated two additional times.  

For statistical purposes, subsequent repetition of the experiment was treated as a block 

in my statistical models of the effect of soil warming and rainfall magnitude. 

Soil mesocosms consisted of a 12” PVC collar resting on a seed planting tray, 

which allowed for drainage. Soil temperature and volumetric soil water content were 

measured with soil moisture and temperature probes (model EC-5 and 8150-203 

respectively, Decagon Devices, Pullman, WA) positioned horizontally, approximately 5 

cm deep in the soil. Soil temperature and moisture were recorded at 30-minute intervals 

for the duration of the experiment.  SMR was measured using an automated soil 

respiration monitoring system (model LI-8100, Licor Environmental, Lincoln NE, USA) 

configured to take respiration measurements at 30-minute intervals.  I quantified SMR 

with the following metrics: (1) maximum rate of SMR (SMRmax); (2) the amount of time 

each mesocosm took to reach SMRmax (Tmax); (3) the amount of time each mesocosm 

took to return to pre-rainfall rates of SMR (Tduration); and the total CO2 production in each 

mesocosm associated with rainfall (SMRtotal; Figure 4).  These data were assessed for 

normality and statistical analyses of the effects of soil warming, rainfall magnitude and 

their interactions was conducted using a  two-way analysis of variance (JMP 7, SAS 

Institute, Cary, NC USA). 

In preparation for respiration measurements, soils were brought to room 

temperature by placing on bench in the laboratory for 48 hours. Soils were then 

homogenized a second time and loaded into PVC collars. Preliminary experiments 



18 
 

suggested that loading the soil into mesocosms resulted in artificially high respiration 

rates.  As such, mesocosms were allowed to acclimate for 5 days before beginning the 

experiment. 

Results 

Ambient (19.6 °C ± 0.01, n = 1949) temperature treatments were significantly 

different from increased (24.9 °C ± 0.02, n = 1949) treatments, such that warmed soils 

were consistently an average of 5°C warmer than ambient soils (Figure 5).  Large 

rainfall treatments (127 mm) resulted in a similarly sharp spike in volumetric water 

content, followed by a decline, with warmed soils drying more rapidly than ambient 

(Figure 6). Small rainfall treatments (64mm) did not both reach a similar peak moisture 

rate as warmed soils lost much water to evaporation almost immediately and prior to 

saturating to probe depth (Figure 6). 

Soil wetting strongly influenced rates of SMR in our experimental mesocosms 

(Figure 7). Baseline SMR rates were very low in both ambient and elevated temperature 

treatments, but within minutes of soil wetting, SMR increased rapidly for several hours 

before reaching SMRmax.  However, the period of maximum metabolic activity was short-

lived as SMR soon began a pattern of decline over a period of several days before 

returning to baseline. In all temperature and rainfall treatments, SMRmax was reached 

within the first several hours following soil wetting. Contrary to our prediction, 

temperature (ANOVA, F = 1.47, df = 5,23, P = 0.24; Figure 8A) and rainfall (ANOVA, F 

= 2.57, df = 5,23, p = 0.13; Figure 8A) did not influence Tmax. However, warmed 

treatments had greater SMRmax than ambient temperature controls (ANOVA, F = 28.20, 
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df = 5,23, p < 0.0001; Figure 8B).  Similarly, large rainfall treatments had greater 

SMRmax than small rainfall treatments (ANOVA, F = 8.73, df = 5,23, p = 0.0085; Figure 

8B). 

  Increasing simulated rainfall event size had a strong, positive influence on Tduration 

(ANOVA, F = 81.01, df = 5,23, p < 0.0001; Figure 8C), such that small events (6.4 ± 0.4 

days) returned to pre-pulse conditions approximately four days prior to large events 

(10.6 ± 0.6 days). By doubling the amount of simulated rainfall I observed a 36 percent 

longer Tduration, with increased heat treatments returning to pre-pulse rates an average of 

a day earlier than ambient treatments (Figure 8C).  

SMRtotal was positively influenced by increased rainfall (ANOVA, F = 52.05, df = 

5,23, p < 0.0001; Figure 8D) but there was no effect of temperature (ANOVA, F = 1.84, 

df = 5,23, p = 0.19; Figure 8D) nor did the influence of simulated rainfall on SMRtotal 

depend on temperature (ANOVA, F = 0.002, df = 5,23, p = 0.97; Figure 8D). Large 

rainfall treatments had greater SMRtotal than small rainfall treatment (2.46 mol CO2 ± 0.2, 

1.2 mol CO2 ± 0.07 respectively).  

 

Discussion 

The role of soil temperature 

 In agreement with my prediction, I found that soil warming resulted in a 

significant increase in SMRpeak over ambient temperature controls. According to kinetic 

theory, SOM decomposition rates should increase with increasing temperatures 
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(Arrhenius 1889). Microbes degrade SOM using extracellular enzymes through 

oxidative or hydrolytic processes and enzyme production has been shown to sharply 

increase with an increase in temperatures (Kirschbaum 2006, Wallenstein et al. 2010). 

Increased SMR respiration in response to increased temperatures may therefore simply 

be the result of increased enzymatic activity.  

In addition to increased enzymatic activity, increased temperatures could also 

influence substrate availability for the soil microbes. In the soil, minerals regularly bind 

to organic matter making it unavailable to the SMC (Tisdall and Oades 1982, Six et al. 

2002). Turnover times for compounds bound to soil minerals can be orders of 

magnitude longer than for bio-available compounds (Sorensen 1972). However, SOM 

and soil mineral sorption-desorption processes can be described as reversible 

equilibrium reactions and are therefore subject to Le Chatelier’s principle (1985) which 

states that in endothermic reactions (i.e. desorption) temperature increases should 

result in a shift to more product being produced. This trend of an increase in desorption 

rates has been observed in experimental studies (Kalbitz et al. 2000) supporting the 

idea of increased substrate availability resulting in increased SMC respiration rates.  

Whereas kinetic theory supports my observation that increased soil temperature 

results in a short-term increase in SMR, this trend is not supported in the results of my 

other longer-term metrics of soil microbial community function. Contrary to my 

prediction, I did not find a significant impact of temperature on Tduration or on SMRtotal. 

These metrics are closely linked, as a longer period of respiratory activity following soil 

wetting would, all other things being equal, result in greater total CO2 production. These 
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results suggest that temperature increases may impact SMC respiration rates shortly 

after warm up, but may lose strength as a driver of SMR over time. 

Despite the support for increased substrate availability of more recalcitrant 

compounds with increased temperatures, SMRtotal in response to experimental rainfall 

was not influenced by increased temperature (Figure 8D). This suggests that the 

significantly greater SMRmax observed in response to temperature are perhaps due to 

increased utilization of labile SOC and not a result of an increase in the availability of 

recalcitrant SOC. Support for this can be found in studies which have examined the 

temperature sensitivity of carbon stocks in soils. While there are difficulties associated 

with differentiating between carbon pools, studies have reported that the labile pool is 

more sensitive to temperature changes than the recalcitrant pool (Liski et al. 1999, 

Melillo et al. 2002).  

Another reason for inaccurate temperature response predictions may be a result 

of the nature of studying soil respiration. For example, many field studies are limited in 

their ability to differentiate between the contributions of autotrophs and heterotrophs to 

soil respiration. Therefore published results of temperature dependent soil respiration 

responses may not give an accurate description of the microbial community responses. 

For example, Boone et al. (1998) found that roots exert a strong influence on the 

temperature dependence of soil respiration, but the microbial community was less 

responsive to changes in temperature. Other studies have also credited the strong 

dependence of soil respiration to temperature changes to root activity (Atkin et al. 

2000). 
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The role of soil moisture 

  Since first observed by Birch (1958), the rapid respiratory pulse response of soil 

biota to drying and rewetting has been well documented (Manzoni et al. 2012). Large 

and rapid metabolic response to episodic moisture availability are observed in semi-arid 

ecosystems (Potts et al. 2006), Mediterranean (Carbone et al. 2011), and more mesic 

ecosystems (Daly et al. 2009).  Similar to these studies, I also observed a rapid 

response of soil microbial community function to soil wetting (Figure 7).   

Based on the rational and hypotheses presented by Huxman et al. (2004), I 

predicted small and large rainfall events would cause similar increases in shallow soil 

moisture and therefore would not have significantly different effects on SMRpeak. 

Contrary to this prediction, I found that rainfall event size did have a significant impact 

on peak rate, such that large events resulted in significantly higher rates than small 

events. My results are likely a result of the physical changes in the soil complex 

associated with drying and rewetting.  During dry periods, soil water content declines 

and the water in soils pores becomes increasingly disconnected resulting in a decrease 

in diffusion of solutes and a limitation of substrates to the soil microbial community 

(Schjonning et al. 2003). Upon rewetting diffusion is no longer restricted, and labile 

carbon sources become displaced as water infiltrates pore spaces, making them 

available to microbes and facilitating diffusion (Hungate et al 2007). Water has also 

been shown to break up soil aggregates releasing older labile carbon that would 

otherwise not be assessable to microbes (Appel 1998). Assuming saturation did not 

occur, it stands to reason that my large rainfall event provided access to more substrate 

resulting in increased peak microbial respiration rates.   
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The accessibility of substrate to the soil microbial community could also explain 

results for my other measurement metrics. In agreement with my predictions, both 

Tduration and SMCpulse were significantly impacted by rainfall event size, such that large 

events resulted in both a longer duration and more total carbon evolved.  While 

increased access to labile carbon plays an obvious role in these metrics, physiological 

factors associated with drying-rewetting cycles in soils can also help improve our 

understanding.  

Osmotic regulation is important for the soil microbial community as they have 

semi-permeable membranes and are both small, and in close contact with soil water. As 

soil drying occurs microbial cells must accumulate solutes to avoid dying from 

dehydration (Harris 1981). Accumulating solutes to produce osmolytes is energetically 

costly and results in a shift in carbon utilization, resulting in a decline in respiration rates 

during drying. This relationship could help explain the shortened duration and SMCpulse 

from small rainfall treatments as the microbial community shifts carbon allocation from 

growth (resulting in respiration) to water stress adaptation. As osmolytes can be 

metabolized upon rewetting (Fierer and Schimel 2003), the subsequent release of these 

osmoregulatory substances can also help explain the pulse respiratory response.  

Conclusions 

My research suggests that in forest soils the soil microbial communities’ 

functional response is more dependent on moisture availability than temperature.  

Increased temperature positively influenced peak respiration rate, but I did not see an 

effect on my other measurement metrics. In contrast, soil moisture strongly influenced 
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all facets of microbial community function. This could have important implications for 

global carbon budgets. Increased temperatures are likely to impact global CO2 

emissions, but, shifting rainfall patterns associated with climate change may have 

greater impact (Weltzin et al. 2003). Further research should include similar studies on 

different soil types and an improved methodologies for collecting corresponding 

community structure data.  
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Tables: 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Group specific primers with sequence and target group (from Fierer et al. 
2005). 

Table 2. Forward and reverse primers, amplicon length, and target annealing 
temperatures (from Fierer et al. 2005). 
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Figures: 
 
 

 

Figure 1. Conceptual model illustrating soil moisture’s mediating influence 

on biological responses to anthropogenic climate change (Weltzin et al 

2003). 



27 
 

 
 

 

 

 

 

 

 

  

Figure 2. A schematic of how a rainfall event (labeled here as “disturbance”) could 

impact soil microbial composition, supporting multiple competing hypotheses 

proposed for changes in community structure (Allison and Martiney 2008). 
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Figure 3. Soils were collected from a second growth mixed hardwood forest near 

Java, NY during July, 2014. 
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Figure 4. Visualization of metrics used to quantify soil microbial functional responses to 
experimental warming and simulated rainfall. A) Tmax was the time it took to reach peak 
respiration rate. B) SMRmax was measured as the highest single recorded respiration rate 
post rainfall addition. C) Tduration was the time it took for 24-hour average respiration rates 
to return to pre pulse 24-hour average respiration. D) SMRtotal was calculated by 
integrating SMR with respect to time.  
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Figure 5. Difference in mean ± SE of increased vs. ambient temperature 
treatments in laboratory incubation of forest soils. Ambient treatment was 
maintained at room temperature of the laboratory and increased treatment 
(+5°C) was accomplished by placing soil mesocosms on seed heating mats. 
Measurements were taken twice hourly and maintained for the duration of the 
experiment.   
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Figure 6. Time course of volumetric water content (VWC) for duration of 
simulated rainfall pulse response in forest soils. Black lines indicate warmed 
(24.9 °C ± 0.02) and red lines ambient (19.6 °C ± 0.01) temperature 
treatments. A large rainfall event (solid) was 785 ml of water, equivalent to the 
largest rainfall event on record in the area for a 30 year period, and a small 
event (outline) was 392.5 ml, half of the large event. Measurements were taken 
every half hour and logged for duration of experiment.  
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Figure 7. Time course of mean soil microbial respiration (SMR) in mixed 
hardwood forest soils in laboratory based incubations. Respiratory pulse is a 
result of small (392.5 ml) or large (785 ml) simulated rainfall event. Temperature 
treatments included ambient (19.6 °C ± 0.01) and warmed (24.9 °C ± 0.02). 
Ambient temperature was maintained at room temperature of laboratory and 
increased temperature was + 5°C.  Measurements were taken twice hourly for 
duration of experiment. Individual lines terminate once 24 hour average 
respiration rate returns to pre pulse 24 hour avg. rate. 
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Figure 8.  Relationship between heat and rainfall treatments and A. Tmax (amount of 
time to reach SMRmax), B. SMRmax (maximum rate of soil microbial respiration), C. 
Tduration (the amount of time each mesocosm took to return to pre-rainfall rates of 
SMR), D. SMRtotal (total CO2 production in each mesocosm) in mixed hardwood 
forest soil laboratory incubations. 
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Appendix A. 

Community Structure 

Predictions: 

The potential responses of soil community structure to the treatments can be described 

in one of four (equally likely) ways, so I present multiple alternative hypotheses (Allison 

and Martiney 2008; Figure 2): 

1. The community will be resistant to changes in temperature and precipitation 

regime, the treatments will have no significant effect on community structure. 

Resulting in the same fungal to bacterial ratio before, during, and after the 

experiment.  

2. The community will be resilient to changes in temperature and precipitation 

regime, with a change in bacteria to fungal ratio for the duration of the 

disturbance, but returning to pre-treatment conditions after drying occurs. 

3. The community will be functionally redundant such that, the community 

composition will be altered with the new community persisting post-disturbance, 

but will perform functionally, as indicated by respiration rates, the same as the 

pre-disturbance community.   

4. The community will be altered and will exhibit a different functional response to 

the treatments. 
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Methods: 

To quantify how temperature and rainfall interact to dynamically influence community 

composition, I periodically sampled soils from each mesocosm before, during and after 

the experiment.  To sample soil, I collected soils at four locations within the mesocosm 

to the entire depth. This sample was homogenized and 1 gram of the homogenized 

sample was stored in 1-ml Eppendorf tube, and kept at -80°C.  

To quantify soil microbial community structure, I extracted soil microbial DNA from 

the frozen samples using a commercially available kit (Axygen AxyPrep MAG Soil, Stool 

and Water DNA Kit, Thermo Fisher Scientific, Waltham, MA USA).  Extracted DNA was 

analyzed using qPCR assays (BIO-RAD CFX96 Touch™ Real-Time PCR Detection 

System, BIO-RAD, Hercules, California, USA). Forward primers each 25 µl reaction 

contained the following 12.5 µl SYBR Green Real-Time PCR Master Mix (Life 

Technologies, Thermo Fisher Scientific, Waltham, MA USA), 5 µl purified water, 1.25 µl 

(1 µM) of forward and reverse primers, and 5 µl template DNA (1-3 ng/µl). PCR 

conditions were 15 minutes 95°, followed by 40 cycles at 94 ° for 30 seconds, 30 

seconds at 53 ° annealing temperature, and 72° for 30 seconds. Primers (Table 1) and 

annealing temperatures (Table 2) were adapted from Fierer et al. (2005) and modified 

for optimization of equipment. Primers were chosen that target all bacterial groups 

(forward - EUB338, reverse – EUB518), and all fungal group (forward – 5.8s, reverse 

ITS1F).  
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Results: 

 
Despite my best efforts, I was unable to describe microbial community structure using 

DNA extraction and analyses. After numerous attempts to adjust PCR conditions, 

including using a gradient to help determine appropriate annealing temperatures and 

adjusting reaction quantities, I spiked the soil DNA with E.coli DNA. Using the all 

bacteria primers, I was able to determine that metal ions in the soil water solution may 

have inhibited PCR (Opel et al. 2010). An ethanol precipitation was employed to attempt 

to further purify DNA, but this was also unsuccessful. We established that a DNA 

purification kit may have accomplished purification but due to time and financial 

constraints we were unable to attempt this option.  

Discussion: 
 
 
The role of soil temperature  

 

I was ultimately unsuccessful in my efforts to examine the resistance, resilience, 

or redundancy of the soil microbial community (Allison and Martiney 2008) by 

quantifying changes in soil microbial community structure in response to simulated 

rainfall and increased temperature using qPCR. To the best of my knowledge, this was 

a unique experimental design and therefore I was unable to find studies that supported 

or refuted my specific hypotheses. However, I can speculate as to how rainfall event 

magnitude and soil warming may have influenced dynamic shifts in the soil microbial 

community.  
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Direct effects of increased temperatures could have promoted increases in the 

bacterial community, who have a rapid turnover associated with an accelerated 

generation time, and whose numbers have been shown to increase in warmer 

temperatures compared to slower growth rate of fungi (Pietikainen et al. 2005). This 

idea is supported by a recent study which found that warming treatments in forest soils 

were positively correlated with an increase in bacteria and negatively correlated with 

fungi (Wei et al. 2014). However, Schindlebacher et al. (2011) found that warming over 

time had no impact on microbial community structure in forest soils. Temperature could 

also have indirectly influenced community structure by accelerating soil drying time and 

limiting the duration of water availability (Placella et al. 2012).  

 
The role of soil moisture 

 

The absence of studies addressing my hypothesis and lack of results from qPCR 

data do not allow me to address my research objectives directly however, I can 

speculate on potential soil microbial community structure changes. Physiological stress 

associated with soil drying could result in a reduction of microbial diversity by favoring 

the groups that are best adapted to dealing with water stress (Schimel et al. 1999). This 

could potentially favor fungal communities, which are more tolerant to drought, as a 

result of their ability to access and transfer moisture from micropores with their hyphae 

(de Boer et al. 2005). This idea is supported by the findings of Bell et al. (2009) who 

reported an increase in the fungal component of the microbial community in response to 

drying in grassland soils with no change in overall bacterial community size, despite 

shifts in functional groups.  
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