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Introduction

Field experiments were conducted in calcareous and non-calcareous soils in order to study the biofortification of 
Fe and Zn in maize grain using arbuscular mycorrhizal fungal (AMF) symbiosis. Treatments consisted of two levels 
of FeSO4 (12.5 and 25 kg ha-1), two levels of ZnSO4 (12.5 and 25 kg ha-1) and two mycorrhizal treatments [with 
(M+) or without (M-)] inoculum carrying Glomus intraradices) replicated four times in a factorial RBD. The results 
revealed that AMF colonization significantly increased soil available Fe (M- 1.9; M+ 2.1 mg kg-1) and Zn (M- 4.16; 
M+ 4.50 mg kg-1). Siderophore production in M+ plants (51.4 µmol cm-3 hr) were higher than M- plants (39.5 µmol 
cm-3 hr) and the increase observed irrespective of levels of Fe and Zn. Increased availability of Fe and Zn in soil in 
combination with enhanced concentrations in plants assisted M+ plants to maintain higher micronutrient contents 
in grains (Fe M- 31.2, M+ 35.3; Zn M- 45.1, M+ 52.4 mg kg-1). Mycorrhizal plants produced grains with had 10-
15% higher Fe and Zn contents while anti-nutritional factor “phytic acid” had decreased (M- 1.13; M+ 1.07 mg 
g-1). Overall, the data suggest that mycorrhizal fungal inoculation assists in biofortification kernels with Fe and Zn 
besides circumventing the impact of anti-nutritional factors.

Abstract

Micronutrient malnutrition is most prevalent in 
developing countries and deficiencies of Fe, Zn, and 
vitamin A are among the ten leading causes of illness 
and diseases in low-income countries (WHO, 2002). 
Widespread micronutrient malnutrition has enor-
mous socio–economic consequences, resulting in 
increased mortality and morbidity, impaired growth, 
development and learning ability in infants and chil-
dren, and loss in work capacity of adults; these in turn 
undermine economic growth and perpetuate poverty. 
Tackling micronutrient malnutrition is considered to 
be among the best investments that will generate a 
high return in socio-economic benefits (The World 
Bank, 2006).

Zinc and iron deficiencies are the most common 
micronutrient deficiencies in human populations af-
fecting health of over three billion people worldwide 
(Welch and Graham, 2004; Cakmak et al, 2010). Ac-
cording to a report published by the World Health Or-
ganization in 2002, deficiencies of Zn and Fe ranked 
fifth and sixth in terms of leading disease causing of 
high mortality in developing countries (WHO, 2002). 
Zinc deficiency causes impairments in brain develop-
ment and wound healing and increases susceptibility 
to infectious diseases including diarrhoea, pneumo-
nia and malaria by weakening the immune system 
(Black et al, 2008). Iron deficiency impairs physical 

growth, mental development and learning capacity in 
children, reduces reproductivity in adults and repre-
sents the most common cause of anemia (Kennedy 
et al, 2003). In most cases, Zn and Fe deficiencies 
are caused by inadequate dietary intake of Zn and Fe 
(Welch and Graham, 2004). In many countries, wheat 
is the main component of the diet and responsible for 
more than 50% of the daily caloric intake (Cakmak, 
2008). Wheat is, however, inherently too poor in Zn 
and Fe to meet the recommended dietary allowances 
for human-beings and also rich in anti-nutritional fac-
tor “phytic acid” which inhibits the bioavailability of 
micronutrients (Welch and Graham, 2004; Cakmak et 
al, 2010).The current Recommended Dietary Allow-
ance (RDA) for Zn and Fe average daily level of intake 
sufficient to meet the nutrient requirements is 11 and 
8 mg day-1 respectively.

Biofortification is a process in which plants are al-
lowed to take up the minerals (Fe and Zn) from the 
soil and immobilize them in the grains so as to pro-
duce nutritionally rich grains that support dietary re-
quirement of humans. This approach has proved to 
be sustainable, relatively low cost, highly efficacious 
and large coverage (Poletti et al, 2004). One of the 
biological means to mitigate micronutrient deficiency 
is by exploiting naturally occurring mycorrhizal sym-
biosis. Arbuscular mycorrhizal fungal (AMF) associa-
tion is known to facilitate uptake of slowly diffusing 
nutrient ions such as phosphorus, zinc and copper 
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by the external mycelium (Li et al, 1991; Sylvia et al, 
1993; Subramanian and Charest, 1995; Subramanian 
et al, 2008; 2009). Besides hyphal transport of Zn, 
mycorrhizal symbiosis orchestrates soil biochemical 
changes such as increased phosphatase (Tarafdar 
and Marschner, 1994; Kim et al, 1998; Kandeler et al, 
2002) and dehydrogenase (Wamberg et al, 2003) ac-
tivities, enhanced biomass carbon contents (Hamel 
et al, 1991; Kim et al, 1998) and secretion of a unique 
glycoprotein ‘‘glomalin’’ by the hyphae (Wright and 
Upadhyaya, 1998) in the rhizosphere that may as-
sist in promoting availability of Zn. The micronutrient 
improvement in mycorrhizal plants is always associ-
ated with rhizosphere acidification (Dodd et al, 1987), 
more external mycelium in the soil (Jakobsen et al, 
1992) and soil biochemical changes (Subramanian 
and Charest, 2007). Besides, host plants retain the 
large green leaf area (Subramanian et al, 1997) and 
chlorophyll concentration (Subramanian and Charest, 
1995; Augé, 2001) under the water deficit conditions.

Habashy and Abo-Zide (2005) showed that the 
availability of micronutrients (Fe, Mn, and Zn) was 
positively affected by inoculation with AM fungi when 
compared to the uninoculated treatments. DTPA ex-
tractable Fe and Mn were slightly affected by AM fun-
gi inoculation than that uninoculated one. In addition, 
the DTPA extractable Zn was also increased in the 
soil treated with AM. In the presence of mycorrhizal 
fungi, a decrease in Fe concentration was observed 
in soybean (Pacovsky and Fuller, 1988), whereas for 
maize an increase of shoot Fe concentration was de-
scribed (Clark and Zeto, 1996) and total Fe uptake 
by soybean and maize was increased in mycorrhizal 
plants (Lambert et al, 1979). Caris et al (1998) report-
ed that the Fe concentration in shoots and were sig-
nificantly higher in mycorrhizal than non-mycorrhizal 
sorghum plants. This study hypothesizes that AMF 
colonization acidifies the rhizosphere that assists in 
improving the availability of Fe and Zn. Further, root 
architecture modifications may facilitate uptake of 
micronutrients which eventually resulted in biofortifi-
cation of maize kernels. 

Materials and Methods
Experimental soil

Field experiments were conducted in two loca-
tions one each at the Experimental Farms of Agri-
cultural Research Station (ARS), Bhavanisagar and 
Tamil Nadu Agricultural University (TNAU), Coim-
batore, under natural conditions. The details of soil 
characteristics are given in Table 1. Briefly, the ARS 
soil had red sandy loam texture, neutral pH, free from 
salinity and low in organic status and low, medium 
and high in available N, P and K, respectively. The 
TNAU soil had clay loam texture, alkaline pH, and low 
in available N and medium in available P and K, re-
spectively. The indigenous mycorrhizal fungal spore 
populations in ARS and TNAU soils were 21 and 8 
100 g-1, respectively. Since the native inoculums load 

was low, no attempt was made to fumigate the soil 
before field tests.  

Field experiments
Both field experiments had the same set of treat-

ments. Treatments consisted of two levels of FeSO4 

(12.5 and 25 kg ha-1) and two levels of ZnSO4 (12.5 
and 25 kg ha-1) in the presence or absence of arbus-
cular mycorrhizal fungal (M+ and M-) inoculation. 
There were eight treatment combinations replicated 
four times in a factorial randomized block design 
(FRBD). The AMF inoculum carrying Glomus intrara-
dices (2 g) was applied at the base of the seed hole 
just prior to sowing. Vermiculite based mycorrhizal 
inoculum (Glomus intraradices TNAU-11-08) used in 
this study was provided by the Department of Micro-
biology of this University. This strain was cultured in 
maize plants and propagules comprised of infected 
root bits and spores were blended in sterile vermicu-
lite. Maize hybrid seeds (COMH-5) were sown on the 
inoculum layer of soil. Germination percentage was 
nearly 95% on the seventh day of sowing. Half the 
dose of N (75 kg ha-1) and full dose of P (75 kg ha-1) 
and K (75 kg ha-1) were applied in the form of urea, 
single superphosphate and muriate of potash, re-
spectively, as basal at the time of sowing. In addition, 
two levels of Fe as FeSO4 and Zn as ZnSO4 were ap-
plied as per treatment. In the two sets of experiments, 
root colonization, soil available micronutrients, sid-
erophore concentration, plant micronutrient status, 
physiologically active Fe and grain Fe and Zn besides 
phytic acid was measured. 

Mycorrhizal colonization
Maize plant roots sampled from M+ and M- treat-

ments were analyzed for their mycorrhizal coloniza-
tion at 45 DAS. The roots were uprooted along with a 
ball of earth without disturbing the neighboring plants 
by a spade. The roots were repeatedly washed with 
tap water until they are free from dirt and soil particles. 
The root segments of 1 cm length in 100 numbers 
were cut per treatment, and estimated for mycorrhizal 
colonization following Dalpé (1993). Before mounting 
the root segments on slides, they were bleached with 
2.5% KOH, acidified in 1% HCl and stained in 0.05% 
tryphan blue solution (tryphan blue 0.5 g, glycerol 
500 ml, 1% HCl 50 ml and distilled water 450 ml) and 
destained. Root segments were observed under the 

Table 1 - Initial soil characteristics of the calcareous and 
non-calcareous soils 

Parameter Calcareous Non-calcareous

Soil Texture Clay Loam Sandy Loam
pH 8.39 7.20
EC  (dS m-1) 0.45 0.04
Organic carbon (%) 0.42 0.26
Available N (kg ha-1) 186.2 226.2
Available P (kg ha-1) 16.6 19.6
Available K (kg ha-1) 412.4 258.4
DTPA Zn (mg g-1) 0.61 0.93
DTPA Fe (mg g-1) 1.67 36.2
Spore Count (Nos 100g-1) 8 21
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10 x lens microscope for the presence of any of the 
mycorrhizal structures such as arbuscules, vesicles, 
external hyphae and spores.

Physiologically active iron (Fe2+)
Fresh leaves (100 mg) sampled at 45 and 75 days 

after sowing were washed in dH2O, air dried and in-
cubated in 1.5% 1–10 orthophenanthroline solution 
for 16 h with continuous stirring at 25 ± 1°C. The 
contents were filtered through Whatman No 1 filter 
paper and the absorbance of the resulting solution 
was read at 510 nm (Katyal and Sharma, 1980). A 
standard curve for iron was prepared using varying 
concentrations of ferrous ammonium sulfate ranging 
from 5 to 150 µg ml-1. 

Micronutrient concentrations in grains
One g of powdered plant samples (roots, shoots) 

or 0.5 g grain samples were mixed with 12 ml triple 
acid (HNO3, H2SO4 and HClO4 in 9:2:1) mixture and 
kept overnight for cold digestion. The digested sam-
ples were kept on a sand bath till the samples be-
come colourless. The digested samples were diluted 

Table 2 - Percentage of mycorrhizal colonization examined in the arbuscular mycorrhiza inoculated (M+) and non-inocu-
lated (M-) root segments (n=100) of maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels.

Treatments Calcareous Non-calcareous
 Sterilized   Natural Sterilized   Natural
 45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS
 M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+

Fe12.5   Zn12.5 1.8e 31.4c 4.5c 39.4b 8.8e 33.7c 11.6c 46.4b 2.1d 37.5b 2.8c 39.7a 11.4e 40.4cb 15.4c 55.7b
Fe25     Zn12.5 2.2e 33.8b 3.2d 38.6b 8.2e 35.3b 11.6c 45.8b 2.6d 30.0c 2.9c 46.2a 10.7e 42.4b 15.1c 55.0ba
Fe12.5   Zn25 3.4d 35.6b 2.7d 46.7a 10.9d 37.6b 10.8c 50.3a 2.0d 37.5b 2.4c 48.4a 14.2d 45.1b 14.3c 60.4a
Fe25     Zn25 2.0e 40.5a 2.4d 47.5a 11.5d 42.2a 9.2d 48.1a 2.8d 40.0a 3.0c 44.1ba 14.9d 50.6a 12.6c 57.7a
Mean 2.4 35.3 3.2 43.1 9.9 37.2 10.8 47.7 2.4 36.3 2.8 44.6 12.8 44.6 14.4 57.2

ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M ** ** ** ** ** ** ** **
F ** ** ** * ** ** ** **
Zn ** ** ** ** * * ** **
M×F ** * * NS * NS * NS
F×Z * * * NS NS NS * NS
M×Z * * * * NS NS * *
M×F×Z NS * NS * NS NS NS *

*P ≤ 0.05; **P ≤ 0.01; NS = Not significant

up to 50 ml using dH2O and were stored for further 
nutrients analysis. The Fe and Zn concentrations 
were determined by a standard protocol described 
by Lindsay and Norwell (1956). The diluted samples 
were fed to an Atomic Absorption Spectrometer (Var-
ian Spectra AA 220, Australia) to determine Fe and 
Zn concentrations.  Blanks were maintained without 
adding sample.

Estimation of phytic acid
Phytic acid was estimated by the method of Da-

vies and Reid (1979). One g of material was ground 
and extracted with HNO3 by continuous shaking, fil-
tered and made up to suitable volume with water. To 
1.4 ml of the filtrate, 1 ml of ferric ammonium sul-
phate (21.6 mg in 100 ml water) was added, mixed 
and placed in a boiling water bath for 20 min.  The 
contents were cooled and 5 ml of isoamyl alcohol 
was added and mixed.  To this, 0.1 ml ammonia solu-
tion was added, shaken thoroughly and centrifuged 
at 3000 rpm for 10 min.  The alcoholic layer was sep-
arated and the colour intensity was read at 465 nm 

Table 3 - Available zinc (Zn) and iron (Fe) (mg kg-1) concentrations examined in the soils of arbuscular mycorrhi-
za inoculated (M+) and non-inoculated (M-) soils  at 45 days after sowing (DAS) under varying Fe and Zn levels. 

Treatments DTPA Zn (mg kg-1) DTPA Fe (mg kg-1)
 Calcareous   Non calcareous Calcareous   Non calcareous
 Sterilized   Natural Sterilized   Natural Sterilized   Natural Sterilized   Natural
 M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+

Fe12.5   Zn12.5 0.91d 1.00c 1.10c 1.30b 1.10d 1.20c 1.33d 1.64b 1.02d 1.20b 1.12c 1.27b 35.0dc 42.6b 42.2d 50.6b
Fe25     Zn12.5 0.93d 1.02c 1.13c 1.30b 1.12d 1.32b 1.37d 1.65b 1.13cb 1.32a 1.27b 1.42a 36.7c 48.3a 44.4c 55.8a
Fe12.5   Zn25 1.04b 1.17a 1.25b 1.49a 1.17c 1.39b 1.38d 1.82a 1.02d 1.17b 1.14c 1.27b 35.2dc 42.6b 42.5d 50.3b
Fe25     Zn25 1.05b 1.19a 1.27b 1.54a 1.22c 1.49a 1.49c 1.85a 1.15b 1.37a 1.29b 1.47a 39.4c 51.9a 47.6cb 59.2a
Mean 0.98 1.10 1.18 1.40 1.15 1.35 1.39 1.74 1.07 1.26 1.20 1.35 36.6 46.3 44.1 53.9

ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
        CD(0.05)
M ** ** ** ** ** ** ** **
F ** ** ** ** ** ** * **
Zn * * ** ** ** ** ** *
M×F * * * * ** * * *
F×Z * ** * ** ** * * *
M×Z * * * * * * * *

M×F×Z * * * * * NS * **

*P ≤ 0.05; **P ≤ 0.01; NS = Not significant
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Table 4 - Siderophores (μmol cm-3 h-1) concentration in the arbuscular mycorrhiza inoculated (M+) and non-inoculated (M-) 
maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels.

Treatments Calcareous Non calcareous
 Sterilized   Natural Sterilized   Natural
 45 DAS   75 DAS 45 DAS   75 DAS 45 DAS   75 DAS 45 DAS   75 DAS
 M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+

Fe12.5   Zn12.5 40.6b 47.8a 41.2b 51.7a 46.1c 58.3a 46.8b 63.1a 13.4c 22.4a 13.6ba 20.3a 15.2c 27.3a 15.4b 24.8a
Fe25     Zn12.5 38.4cb 46.2a 38.3b 50.7a 43.6c 56.4a 43.5b 61.9a 11.8c 20.2a 12.5b 19.5a 13.4c 24.6a 14.2b 23.8a
Fe12.5   Zn25 36.4c 43.1b 40.0b 51.4a 41.4dc 52.6a 45.4b 62.7a 11.5c 17.1b 10.8b 17.1a 13.1c 20.9b 12.3b 20.9a
Fe25     Zn25 34.5c 41.8b 37.0b 49.8a 39.2d 51.0b 42.1b 60.8a 10.8c 16.4b 9.8b 15.3b 12.3c 20.0b 11.1c 18.7ba
Mean 37.5 44.7 39.1 50.9 42.6 54.6 44.5 62.1 11.9 19.0 11.7 18.1 13.5 23.2 13.3 22.1

ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M  ** ** ** ** ** ** ** **
F  ** ** ** ** ** * ** *
Zn  * * * * * * * *
M×F  * * * * * NS * NS
F×Z  NS * * * * NS NS NS
M×Z  NS NS NS NS NS NS NS NS
M×F×Z NS NS * * NS NS NS NS

*P ≤ 0.05; **P ≤ 0.01; NS = Not significant

against amyl alcohol blank after 15 min. Sodium phy-
tate standards were run along with the sample. The 
results were expressed as mg phytic acid g dry wt-1.

Soil available micronutrient status
Soil available Fe and Zn was extracted by mixing 

10 g of soil sample with 20 ml DTPA extractant (13.1 
ml triethanolamine, 1.967 g DTPA, and 1.47 g CaCl2 
mixed together, made up to 1 l and adjusted to pH 
7.3) for 2 h and filtered through Whatman# 42 filter 
paper, and the absorbance was read in an atomic ab-
sorption spectrophotometer (Spectra AA220, Varian). 
The Fe and Zn concentrations were determined by a 
standard protocol described by Lindsay and Norwell 
(1978). 

Statistical analysis
A two-way analysis of variance (ANOVA) was 

done for all data set and the entire set of data had ful-
filled the assumptions of ANOVA. None of the tables 
had required transformations of the data before car-
rying out ANOVA. The data collected from the field 
sites (Coimbatore and Bhavanisagar) were analyzed 

Mycorrhizal colonization 
The experiments were undertaken in order to 

study the effect of mycorrhizal inoculation on im-
proving the availability of micronutrients (Fe and Zn), 
enhancing the host plant nutritional status which in 
thus fortification of micronutrients in grain which cir-
cumventing phytic acid “anti-nutritional” factors. The 
data on soil, plant and mycorrhizal parameters have 
taken statistically analyzed and the results obtained 
are critically discussed. Arbuscular mycorrhizal fun-
gal (M+) inoculation significantly (P ≤ 0.01) increased 
the mycorrhizal colonization of maize plants grown 

Results and Discussion

Table 5 - Physiologically active iron (mg kg-1 of tissue) in the arbuscular mycorrhiza inoculated (M+) and non-inoculated (M-) 
maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels. 

Treatments Calcareous Non calcareous
 Sterilized   Natural Sterilized   Natural
 45 DAS   75 DAS 45 DAS   75 DAS 45 DAS   75 DAS 45 DAS   75 DAS
 M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+

Fe12.5   Zn12.5 2.96b 7.63a 4.90b 10.3a 7.17b 10.8a 9.49b 12.5b 11.1d 21.0b 16.5cb 20.9b 16.2c 22.4b 24.7c 32.6b
Fe25     Zn12.5 3.85b 8.99a 6.64b 13.2a 8.42ba 12.7a 11.5b 16.6a 14.0c 23.9a 18.8b 24.3a 21.7b 31.2a 33.3b 38.1a
Fe12.5   Zn25 3.44b 7.26a 4.75b 11.2a 5.84b 10.2a 9.28b 12.8b 12.9c 20.0b 15.7cb 22.8ba 15.4c 21.7b 32.1b 35.6ba
Fe25     Zn25 3.73b 8.68a 6.35b 12.0a 7.25b 12.2a 11.1b 15.8a 14.5c 24.7a 19.5b 26.8a 20.2b 30.4a 30.2b 41.9a
Mean 3.50 8.14 5.66 11.7 7.17 11.5 10.4 14.4 13.1 22.4 17.6 23.7 18.4 26.4 30.1 37.1

ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M  ** ** ** ** ** ** ** **
F  ** ** ** ** ** ** ** **
Zn  ** ** ** * ** ** ** *
M×F  NS * * NS * * NS NS
F×Z  NS NS * NS * NS * NS
M×Z  NS * * NS NS NS NS *
M×F×Z NS NS NS NS NS NS NS NS

*P ≤ 0.05; **P ≤ 0.01; NS = Not significant

separately. Despite the fact that the experimental de-
sign had only three replications, care was taken to 
record the observations from 5 plants in each rep-
lication. Mean Comparison test (Duncan’s Multiple 
Range Test, DMRT) was done for the significantl val-
ues at p < 0.05. Statistical procedures were carried 
out with the software package IRRI stat (IRRI, Manila, 
Philippines).
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Figure 1 - Iron concentration of grain (mg kg-1) of arbuscular mycorrhizal fungus inoculated (AM+) and uninoculated (AM-) maize 
plants  under two levels of FeSO4 (12.5 and 25 kg ha-1) and two levels of ZnSO4 (12.5 and 25 kg ha-1) in calcareous (A) and 
natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four replications.

that micronutrient fertilization assists root growth and 
mycorrhizal colonization. 

Soil available micronutrient status
The available (DTPA extractable) Zn and Fe con-

centrations in M+ soils were significantly (P ≤ 0.01) 
higher than M- soils in both calcareous and non-cal-
careous regardless of sterilized or natural conditions 
(Table 3). The available Fe concentrations of both M+ 
and M- soils had 30-40 times lower values in cal-
careous soils in comparison to non-calcareous soils 
suggesting that there is a strong inhibitory effect of 
free lime status on the availability of Fe. A negative 
correlation between lime status and available Fe has 
already been well established (Zuo et al, 2007). The 
data clearly indicated that the introduced AMF spe-
cies Glomus intraradices inoculation had consistent 
effects on availability of micronutrients in soil regard-
less of free lime status of soils. Subramanian et al 
(2009) have shown that the mycorrhizal colonization 
facilitates acidification of rhizosphere, solubilization 
of tightly bound residual form of zinc besides hyphal 
transport of metallic micronutrients collectively con-
tribute for the availability. Rhizosphere of mycorrhiza 
colonized citrus plants assists in acidification and 
increased the root ferric chelate reductase activity 
in combination with hyphal transport helped the ac-
quisition by the host plant. Our study in conjunction 
with reported literature are in conformity with the ob-
servations of earlier reports (Koide and Kabir, 2000; 

under sterilized or unsterilized conditions of both 
calcareous and non-calcareous soils (Table 2). How-
ever, natural soils had the mycorrhizal colonization in 
the range of 37-48% and 45-57%, in calcareous and 
non-calcareous soils, respectively. Iron and zinc ap-
plication had a little effect on root colonization under 
sterilized or unsterilized conditions in both calcare-
ous and non-calcareous soils. The sterilization of the 
experimental soils eliminated indigenous mycorrhizal 
population which resulted in less than 5% of the root 
segments exhibiting mycorrhizal colonization. The 
data are in conformity with the observations of Wang 
et al (2008) who have reported no colonization in cit-
rus plants grown in sterilized soils. Further, addition 
of both Fe and Zn singly or in combination improved 
the percentage of mycorrhizal fungal colonization re-
gardless of calcareous or non-calcareous soils. Zinc 
fertilization is known to promote the production of 
highly branched fibrous roots of maize that facilitate 
mycorrhizal colonization. Subramanian et al (2008) 
have shown that Zn fertilization improved the root 
biomass of both mycorrhizal and non-mycorrhizal 
maize plants but the response was more pronounced 
for M+ plants. Since the experimental soils of both lo-
cations were deficient in Zn (less than 1 mg kg-1), the 
fertilization would have helped in alleviating Zn de-
ficiency besides promoting root growth. Further, Fe 
fertilization has shown to improve colonization of Glo-
mus versiforme in citrus plants. These data suggest 
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Figure 2 - Zinc concentration of grain (mg kg-1) of arbuscular mycorrhizal fungus inoculated (AMF+) and uninoculated (AMF-) 
maize plants under two levels of FeSO4 (12.5 and 25 kg ha-1) and two levels of ZnSO4 (12.5 and 25 kg ha-1) in calcareous steril-
ized (A) and natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four 
replications.

Subramanian et al, 2008).

Siderophore concentration 
Mycorrhizal fungal inoculated roots significantly 

produced higher (P ≤ 0.01) siderophore concentra-
tions than non-mycorrhizal roots in both stages of 
calcareous and non-calcareous soil (Table 4). With 
the progression of plant growth stages on both soils, 
M+ soil had higher siderophore production status 
while M- soil had consistently lower siderophore pro-
duction under both soil conditions. Mycorrhizal fun-
gus inoculated soil had significantly (P ≤ 0.01) higher 
siderophore production in calcareous soil compared 
to the non-calcareous soil (calcareous M- 44.5; M+ 
62.1 μmol cm-3 h-1, non-calcareous M- 13.3; M+ 22.1 
μmol cm-3 h-1) conditions. 

Mycorrhizal symbiosis enhances the production 
of mugenic acids which serve as a chelating agent 
that favors availability of micronutrients particularly in 
calcareous soils where the availability is very much 
restricted. Similar results were reported by Linder-
mann (1992) and he stated that an arbuscular mycor-
rhizal grass species, which showed greater Fe uptake 
than non-mycorrhizal controls, tested positively when 
bioassayed for hydroxymate siderophores (Hasel-
wandter, 1995). Even higher siderophore concentra-
tions may be reached in microenvironments such 
as biofilms, unless pH depression and/or anaerobic 
conditions in the microenvironment increase the 

solubility of iron, depressing siderophore production. 
Siderophores facilitate Fe uptake to both microbial 
flora and higher plants. Ericoid mycorrhizal fungi pro-
duce siderophore (Landeweert et al, 2001; Howard, 
2004). Ericoid mycorrhizal fungi release ferricrocin 
or fusigen as the main siderophores. Ferricrocin was 
also shown to be produced by the ectomycorrhizal 
fungi Cenococcum geophilum and Hebeloma crus-
tuliniforme.

Arbuscular mycorrhizal fungi are reported to en-
hance Fe-uptake rates of associated host plants, 
which can be taken as an indication that mycorrhizal 
siderophores of a yet unknown structure may be in-
volved (Haselwandter, 2008). Enhancement of sider-
ophores and/or phytosiderophores per unit volume of 
root in mycorrhizal plants suggests that mycorrhizal 
fungi may secrete siderophore by themselves and/or 
induce plant root to produce more phytosiderophore 
(Aliasgharzad et al, 2009).

Active Fe content
Mycorrhizal plants had significantly (P ≤ 0.01) 

higher physiologically active Fe concentrations than 
non-mycorrhizal plants at both 45 and 75 DAS in 
calcareous and non-calcareous soils (Table 5). The 
physiologically active Fe content in plants appears to 
play a vital role in chlorophyll synthesis. In this study, 
a strong correlation between physiologically active Fe 
and chlorophyll concentration has been established 
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(Table 5) (Calcareous soil r2 = 0.76; Non-calcareous 
soil r2 = 0.873). Our data are in agreement with the 
observations Zou at al (2000) who have reported a 
strong correlation between active Fe and chlorophyll 
concentrations. Chlorophyll synthesis in the plants is 
directly related to the availability of the physiologi-
cally active Fe and micronutrients in plants available 
form (Suresh Kumar et al, 2011). Fe nutrition in plants, 
the concentration of active iron in leaves is recog-
nized as a better nutritional iron indicator than total 
iron and has been also suggested by Scholl (1979), 
Dekock (1979), Katyal and Sharma (1980), and Men-
gel et al (1984). Higher Fe concentrations in grains of 
M+ plants may be attributed to the hyphal transport 
of Fe and besides improved plant available Fe that 
may have supported Fe nutrition of maize plants and 
fortification of grains (Caris et al, 1998). In addition 
to the hyphal transport, mycorrhizal fungi produce Fe 
siderophores that may favour chelation and availabil-
ity of Fe.

Iron and zinc concentrations in grains
M+ maize plants produced grains with significant-

ly higher Fe concentrations under sterilized and natu-
ral soils conditions regardless of lime status. Grain Fe 
concentrations of M+ were nearly doubled and con-
sistently higher than M- under calcareous (Figure 1A-
1D) (M- 37.6; M+ 51.8 mg kg-1) and non-calcareous 
(M- 48.4; 55.5 mg kg-1) soils under natural conditions 

in comparison to sterilized calcareous (M- 21.7; M+ 
29.0 mg kg-1) and non-calcareous (M- 23.6; M+ 35.2 
mg kg-1).  Similarly, Zn concentrations (Figure 2A-2D) 
of maize grains were significantly higher for mycorrhi-
zal treatments in both calcareous (36.3 mg kg-1) and 
non-calcareous (39.7 mg kg-1) soils than M- treat-
ments (Calcareous 22.6; non-calcareous 27.2 mg 
kg-1). Our data clearly demonstrated that mycorrhi-
zas improve Fe concentrations of maize irrespective 
of soil conditions. The data have shown that mycor-
rhizal symbiosis has a potential to enhance grain Zn 
concentrations to the tune of 13-15 mg per kg grains. 
Such response has already been reported earlier. Our 
earlier experimental data have shown improved Zn 
concentrations in maize grains as a result of hyphal 
transport, acidification of rhizosphere and synergistic 
interaction with P (Subramanian et al, 2008; 2009).

Phytic acid concentrations
Mycorrhiza inoculated plants produced grains 

with significantly (P ≤ 0.01) lower phytic acid concen-
trations than M- plants in both calcareous (Figure 3A-
3D) and non-calcareous soils. The phytic acid con-
centrations in M+ grains in calcareous soil were 1.12 
and 1.07 mg g-1 which were 5-6% and 5-7.5% lower 
in sterilized and natural soils, respectively, in com-
parison to M- grains (sterilized 1.10; natural 1.05 mg 
g-1). Similar trends were observed in non-calcareous 
soils but the values were lower than calcareous soils. 

Figure 3 - Phytate concentration of grain (mg g-1) of arbuscular mycorrhizal fungus inoculated (AMF+) and uninoculated (AMF-) 
maize plants under two levels of FeSO4 (12.5 and 25 kg ha-1) and two levels of ZnSO4 (12.5 and 25 kg ha-1) in calcareous steril-
ized (A) and natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four 
replications.
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There is no reported literature to support that mycor-
rhizal symbiosis has a potential to decrease phytic 
acid concentrations. But, indirectly, mycorrhizas are 
well known to promote the availability of Zn is soils as 
well as in grains which is widely considered as an in-
hibitory factor. Akay and Ertas (2008) have indicated 
that the chickpea genotypes rich in Zn have a nega-
tive correlation with phytic acid concentrations.  Simi-
lar observation has made by Ryan et al (2008). Our 
present study has clearly shown an increase in grain 
Zn which may have suppressed the phytic acid con-
centrations. A strong negative correlation between 
grain Zn concentrations and phytic acid content has 
been established (Kaya et al, 2009). Since mycorrhi-
zal symbiosis facilitates accumulation of Zn concen-
trations in grains which may suppress the phytic acid 
content. 

Conclusion
Overall, the four sets of greenhouse and field ex-

perimental data unequivocally demonstrated that my-
corrhizal symbiosis facilitates the availability of both 
Fe and Zn. The synergistic interaction between these 
two nutrients may assist in enhanced uptake of iron 
and zinc which eventually gets remobilized into de-
veloping grains. Since mycorrhizal fungal inoculation 
is one of the potential factors assist in biofortification 
kernels with minerals besides circumventing the im-
pact of anti-nutritional factors. Mycorrhizal symbiosis 
is a potential factor to be considered to achieve nutri-

Figure 4 - Correlations between available micronutrients (Fe and Zn) and P of the arbuscular mycorrhiza inoculated (M+) and 
non- inoculated soils.
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