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Introduction

The microarray technology has become an established approach for large-scale gene expression analysis with 
mature protocols for sample, microarray, and data processing. The maize oligonucleotide array (maizearray) is one 
of the few microarray platforms designed for genome-wide gene expression analysis in Zea mays L. Many datas-
ets addressing various genetic, physiological and developmental topics generated with this platform are available. 
The original 57,452 microarray probes were compiled based on expressed sequence tags (ESTs). Meanwhile the 
maize genome sequence became available providing the possibility for an improved annotation of the microar-
ray probe set. In this study we determined the genome positions of all maizearray probes to obtain current gene 
annotations and generated current Gene Ontology (GO) annotations. These new data allow tracing redundancy 
of the probe set and interfering cross-hybridizations, and doubled the number of genes with functional GO data. 
Our re-annotation will largely improve the functional analysis of available and future datasets generated on this 
microarray platform.

Abstract

DNA microarrays have become a mature technol-
ogy for gene expression analysis since their introduc-
tion in 1995 (Shena et al, 1995). DNA microarrays are 
generated by synthesizing or printing and cross-link-
ing DNA elements (oligonucleotides) to a solid sur-
face. These DNA elements serve as probes for hy-
bridization with fluorescent-labeled cDNAs or RNAs 
generated from complex transcript samples (Phimis-
ter, 1999). There are few microarray platforms spe-
cifically for genome-wide gene expression analysis in 
maize including amongst others the Affymetrix Maize 
Genome Array (www.affymetrix.com), various custom 
Agilent arrays (Ma et al, 2006; Ma et al, 2008; Hayes 
et al, 2010), the Affymetrix Maize CornChip0 (Kirst et 
al, 2006), a custom NimbleGen array (Sekhon et al, 
2011), and the 57K and 46K arrays from the Maize 
Oligonucleotide Array Project (Gardiner et al, 2005).

The maize oligonucleotide array is a long-oligo-
nucleotide (~70 nt) microarray platform. The microar-
ray was designed by the “maize oligonucleotide array 
project”, which was carried out by a collaboration of 
the University of Arizona, The Institute for Genomic 
Research (TIGR), and the University of Wisconsin. 
The initial maizearray called 57K comprising 57,452 
probes was printed on a two slides array set. The 
probes of the 57K maizearray were revised from oli-
gonucleotides without expression or with hybridiza-
tion problems. The reduced set comprising 43,536 
oligonucleotides was distributed as single-slide mi-
croarray named 46K maizearray. The collaboration 
offered a large number of low cost microarray slides 

to the academic maize science community along with 
established protocols for sample processing and hy-
bridization. The microarray platform was designed 
in absence of the maize’ whole genome sequence 
based on expressed sequence tags (ESTs), the TIGR 
Assembled Zea mays (AZMs), and additional se-
quences from repeated elements, chloroplast and 
mitochondria (Gardiner et al, 2005). Currently there 
are 32 experiments generated on the maizearray ac-
cessible in NCBI GEO (Barrett et al, 2009), listed in 
Table 1.

The available annotation version v4 of the maize-
array (www.maizearray.org) was also prepared before 
the release of the maize B73 genome. Although the 
microarray probes were designed to represent ex-
pression information of single genes this could not be 
ensured solely based on EST data and thus might not 
be the case for all of the probes. Multiple gene cop-
ies, alternative splicing forms of one gene and other 
cross-hybridization events may interfere with the 
gene expression information measured from probes 
designed without all relevant information.

We performed a new annotation of all the 57K 
maizearray probes by mapping the oligonucleotide 
sequences to the current maize genome assembly. 
With these data we can conclude if probes measure 
expression of single or multiple genes and/or loci re-
spectively. In addition to the mapping we obtained 
gene information for the loci that are represented 
by the oligonucleotide. Based on those genes we 
gathered functional information by retrieving gene 
ontology (GO) terms using Blast2GO (Conesa and 
Gotz, 2008). Although the maizearray production was 
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Table 1 - Published experiments generated on the 46K or 57K maizearray

GEO 	 Number of	 Array 	 Year of 	 Authors	 Field of 
accession 	 hybridizations	 version 	 publication	  	 research	
			 
GSE3890	 24	 57K	 2007	 Sawers et al	 leaf development
						      photosynthesis

GSE9341 	 16 	 57K 	 2008	 Spollen et al	 root development / water stress

GSE9352 	 16 	 57K 	 2008 	 Spollen et al 	 root development / water stress

GSE9369 	 16 	 57K 	 2008 	 Spollen et al 	 root development / water stress

GSE9379 	 48 	 57K 	 2008 	 Spollen et al 	 root development / water stress

GSE9386	 24	 57K	 2008a	 Liu et al	 kernel development

GSE9453	 64	 57K	 2008	 Fernandes et al	 stress response

GSE9698	 24	 57K	 2008	 Covshoff et al	 photosynthesis

GSE10308	 64	 57K	 2008	 Maron et al	 aluminium stress

GSE10449	 4	 57K	 2008	 Holding et al	 opaque2 modifier

GSE10542	 27	 46K	 2008	 Stupar et al	 heterosis

GSE10543	 24	 46K	 2008	 Stupar et al	 heterosis			

GSE10544	 108	 57K	 2010	 Morrison et al	 nitrate reductase regulation

GSE10596	 8	 57K	 2008	 Yue et al	 water stress

GSE11145	 4	 57K	 2008b	 Liu et al	 root development / nitrate

GSE14728	 96	 57K	 2009	 Hayano-Kanshiro et al	 water stress

GSE15853	 36	 57K	 2010	 Barros et al	 comparison transgenic / non-		
						      transgenic plants

GSE17484	 68	 46K	 2010	 Soos et al	 germination / stress

GSE17754	 63	 46K	 2010	 Thiemann et al	 heterosis

GSE17932	 16	 57K	 2010a$	 Moose and Boddu	 developing earshoot	

GSE17953	 32	 57K	 2010b$	 Moose and Boddu	 developing earshoot

GSE17971	 22	 57K	 2009$	 Moose and Zhao	 leaf development	

GSE18006	 26	 57K	 2010$	 Moose and Zhao	 seed nitrogen metabolism

GSE18008	 24	 57K	 2009$	 Moose and Ayodeji	 developing earshoot

GSE18011	 37	 57K	 2009$	 Moose and Church	 nitrogen response

GSE19883	 16	 46K	 2011	 Luo et al	 pathogen resistance

GSE24014	 6	 46K	 2011	 Bosch et al	 cell wall biogenesis

GSE25526	 45	 57K	 2010	 Riddle et al	 ploidy / hybridity

GSE27709	 9	 46K	 2011	 Johnson et al	 pest resistance

GSE29132	 36	 46K	 2012	 Moriles et al	 stress response

GSE33494	 18	 46K	 2011$	 Hansen et al	 water stress	

GSE36368	 9	 46K	 2012 $	 Zhaoxia et al	 root development / phosphate
	

$publication of the dataset only
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closed recently, we expect our annotation to be of 
high value for currently ongoing experiments and re-
analysis of existing datasets.

All data of the new annotation are assembled in 
one Supplemental Table and are accessible online. 

Methods
Localization of the oligonucleotides and identifica-
tion of their respective genes

The oligonucleotide sequences of the initial 57K 
maizearray, with all probes of the 46K maizearray  in-
cluded, were mapped to the maize genome to obtain 
genome positions for an association to specific gene 
loci. The whole procedure is outlined in Figure 1. The 
mapping of the oligonucleotides was performed on 
the maize genome sequence B73

RefGen v2 from ftp.maizesequence.org using 
BLASTn from standalone BLAST 2.2.26+ (Camacho 
et al, 2009) with a maximum e-value of 0.0001 and 
word-size set to 20. All matches with more than 3 

mismatches, insertions or deletions (indels) were re-
jected from further analysis. These stringent parame-
ters were chosen to comply to stringent hybridization 
conditions. All genes associated with full-length oligo-
nucleotide matches were annotated by searching the 
maize „working gene set” (WGS) version 5a.59 GFF3 
gene annotation (exon, intron) and the repeat/trans-
poson annotation of the TE Consortium (ZmB73_5a_ 
MTEC+LTR_repeats.gff) both datasets from ftp.maiz-
esequence.org. The annotation comprises a search 
for exon, intron and repeat bodies with identical po-
sitional information in respect of chromosome and 
overlapping genome position for both strands with 
the mapping results. Alignments of oligonucleotides 
on the genome sequence that were shorter than the 
oligonucleotide length were analyzed for a second 
fragment within 20,000 bp on the same strand. This 
threshold was chosen to equal the maximum length 
of maize introns (Schnable et al, 2009). The summed 
up length of both fragments needed to reach at least 
the length of the oligonucleotide minus 10 bp to be 
taken into account for a following analysis for oligo-
nucleotides overlapping splicing sites. In addition all 
matches covering at least the length of the oligonu-
cleotide minus the BLASTn word-size of 20 and the 
maximum 3 indels/mismatches were taken into the 
analysis for oligonucleotides potentially overlapping 
a splicing site as well. For this subset BLASTn would 
miss the second fragment by the given minimum 
word-length. This splice-candidate oligonucleotide 
set was mapped to the maize cDNA sequences from 
the WGS dataset version 5a.59 using BLASTn to ob-
tain gene annotation for oligonucleotides overlapping 
splice junctions. All settings and match criteria were 
identical to the initial mapping procedure. As microar-
ray probes are intended to represent the expression 
of a single gene, we analyzed the re-annotation for 
information about number of genes per oligonucle-
otide, number of transcripts for genes or number of 
copies for repeats respectively as well as the number 
of oligonucleotides that represent a gene or repeat.

Functional annotation using Blast2GO
The functional annotation of the maizearray was 

conducted with Blast2GO version 2.5.1 that obtains 
sequence annotation data by a three-step approach. 
The first step is searching for homologous gene prod-
ucts in the NCBI non-redundant protein sequences 
(nr) database using BLASTx. All sequences with 
successful identification of homologous protein se-
quences are forwarded to a mapping step that col-
lects GO-terms that are assigned to the blast hits and 
a final annotation by scoring the obtained GO-terms 
(Conesa and Gotz, 2008). The Blast2GO analysis was 
performed for all genes identified in the localization of 
the oligonucleotides except the repeated sequences. 
The analysis was performed with Blast2GO default 
settings using the most recent Blast2GO PRO data-
base b2g_apr12.

Figure 1 - The maizearray oligonucleotide sequences were 
mapped to the B73 Refgen v2 genome using BLASTn. Full-
length matches were annotated using the B73 WGS 5.59a 
gene and repeat annotations for both sense and anti-sense 
strand. Partial matches that reassemble the oligonucleotide 
sequence were mapped to the B73 WGS 5.59a transcript 
sequences using BLASTn. All full-length matches are anno-
tated by the transcript. The functional re-annotation of these 
datasets was performed using Blast2GO.
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Figure 2 - Oligonucleotide gene annotation results. Distri-
bution of annotations to both maizearray platforms. Half of 
annotations of oligonucleotides of both arrays allot to single 
genes with a larger fraction representing single transcripts 
and a smaller set of multiple transcripts of one gene. Nearly 
15% of all oligonucleotides of both arrays correspond to 
multiple genes. The smallest number of oligonucleotides 
maps anti-sense to genes or intronic regions. One-third of 
all oligonucleotides remains unannotated.

Localization of the oligonucleotides and identifica-
tion of genes

The initial BLASTn-search of the oligonucleotide 
sequences to the maize genome sequence resulted 
in 3,376,312 alignments. 1,339,243 of these align-
ments covering 48,756 (84.86%) distinct oligonucle-
otides fulfilled the threshold of maximum 3 indels or 
single nucleotide mismatches. The filtering for full-
length matches resulted in 584,589 alignments corre-
sponding to 37,351 (65.01%) of all oligonucleotides. 
9,962 of these oligonucleotides matched to multiple 
gene loci. 214,386 fragmented or partial alignments 
corresponding to 10,873 distinct oligonucleotide se-
quences were filtered as candidates potentially over-
lapping splice sites.

The annotation of the full-length alignments using 
the maize WGS 5a.59 GFF3 gene annotation results 
in 40,975 exons that are covered by 30,733 distinct 
oligonucleotides. A set of 13,014 intronic gene re-
gions is represented by 5,405 oligonucleotides. The 
mapping of the fragmented oligonucleotides to the 
B73 WGS transcripts for the discovery of oligonucle-
otides overlapping splice sites resulted in 7,125 tran-
scripts represented by 5,355 distinct oligonucleotides 
that were confirmed as oligonucleotides spanning an 
intronic region. The annotation of oligonucleotides 
to the anti-sense strand of genes resulted in 5,103 
exons covered by 5,101 oligonucleotides and 8,049 

Results

introns covered by 2,099 oligonucleotide sequences. 
The annotation of the oligonucleotides to the repeat 
position data from the TE Consortium resulted in 
3,306 repeated or transposable elements covered by 
1,190 oligonucleotide probes. The corresponding an-
ti-sense repeat annotation resulted in 1,796 repeats 
covered by 673 distinct oligonucleotides. The anno-
tation results are illustrated in Figure 2.

In total 40,692 (70.82%) of all oligonucleotides 
on the 57K maizearray and 32,210 (73.98%) on the 
46K maizearray respectively, were annotated to at 
least one known gene or repeat including annota-
tions of introns as well as oligonucleotides oriented 
to the anti-sense strand of genes. 36,881 (64.19%) 
of the 57K array probes and 29,861 (68.59%) of the 
46K maizearray oligonucleotides respectively re-
flect at least one gene (exon, spliced exon, repeat). 
28,408 (49.45%) of the 57K and 23,369 (53.68%) of 
the 46K oligonucleotides account the expression of 
a single gene. 17,241 (30.01%) of the 57K array and 
13,654 (31.36%) of the 46K array oligonucleotides re-
spectively could be furthermore assigned to a single 
splice-form of the gene. The numbers of these results 
are summarized in Table 2.

Functional re-annotation
The Blast2GO annotation of all oligonucleotides 

that were associated to a gene resulted in 47,562 
annotated genes covered by 32,745 distinct oligo-
nucleotides corresponding to 57.00% of the micro-
array probes. 38,144 GO-term annotations collate to 
30,546 distinct transcript-associated (exon/spliced 

Table 2 - Total and relative annotation results for both microarrays

	 57K maizearray	 46K maizearray

	 unannotated	 16.760	(29.18%)	 11.326 	(26.02%)
	 anti-sense/intronic	 3.811	 (6.63%)	 2.349 	 (5.39%)
	 multiple genes	 8.473	 (14.74%)	 6.492 	(14.91%)
	 single gene, >1 transcript	 11.167	 (19.44%)	 9.715 	(22.32%)
	 single transcript	 17.241	 (30.01%)	 13.654 	(31.36%)

Figure 3 - GO-annotation results. a) The number of oligo-
nucleotides of all maizearray probes with GO-annotation of 
our re-annotation could be two-fold increased compared 
to the official annotation. b) The total number of GO-terms 
obtained for the maizearray by the functional re-annotation 
was raised by factor 2.1.
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gonucleotide was slightly decreased.
The analysis of high-throughput experiments as 

microarrays aim to discover key genes responsible 
for a certain process or condition. The Gene Ontol-
ogy Consortium provides a uniform, dynamic, and 
controlled vocabulary represented in GO-terms for 
gene function, localization and biological processes 
for all eukaryote species (The Gene Ontology Con-
sortium 2000). This standardized nomenclature is 
applied by a large number of tools e.g. for ontology 
visualization (Day-Richter et al, 2007; Carbon et al, 
2009), or enrichment analysis (Gentleman et al, 2004; 
Alexa et al, 2006). In many microarray experiments 
a subset of genes with similar expression pattern is 
analyzed by GO-term enrichment that finally results 
in a set of overrepresented gene functions. Our func-
tional annotation enables to perform GO enrichment 
analyses covering more genes of the maizearray than 
the current available annotation and thus allows more 
accurate and detailed GO enrichment analyses. By 
integrating the redundancy information obtained by 
the oligonucleotide localization these analyses will 
furthermore be less biased.

Conclusion
We performed a re-annotation of the maizear-

ray by mapping the microarray probe sequences to 
the B73 maize genome and annotating them to the 
known genes and repeats, resulting in an annotation 
for 70.82 % of all oligonucleotides of the 57K maize-
array and 73.98% of the 46K array respectively. A 
subsequent functional re-annotation using Blast2GO 
nearly doubled the number of oligonucleotides with 
functional information. Our newly generated annota-
tion allows a more precise analysis of gene expres-
sion based on the microarray platform by knowing 
the genes that account for a certain expression. The 
additional information about cross-hybridization of 
multiple genes to oligonucleotides allows an assured 
analysis of gene expression and the elimination of 
ambiguous expression values. Our annotation with 
Blast2GO results in nearly twice as much genes with 
gene ontology function annotation. Together, these 
data will enable more precise downstream functional 
characterization of expression data generated on the 
maizearray platforms. We expect our re-annotation to 
be of high value for the maize community by support-
ing the re-analysis of previously published data and 
ongoing analyses based on either the 46K or the 57K 
maizearray.

Discussion
Localization of the oligonucleotides and identifica-
tion of genes

The localization of the oligonucleotide sequences 
on the B73 genome resulted in a large number of 
alignments for nearly 86% of all microarray probes. 
The unmapped oligonucleotides were most probably 
designed from ESTs that have been sequenced from 
other maize lines than B73 and that are lacking in B73 
or exhibit a large number of indels or SNPs that ex-
ceeded the mapping thresholds. A large number of 
oligonucleotides matched to multiple genome loci. 
These oligonucleotides are expected to account for 
repeats and genes that were multiplied due to trans-
position or genome duplication events that maize has 
undergone (Schnable et al, 2009).

The annotation of oligonucleotides mapping to 
introns as well as the anti-sense strand of genes re-
vealed oligonucleotides that were not optimally po-
sitioned during the microarray design and thus are 
not able to reflect intended gene expression. The 
anti-sense to the protein-coding genes located oligo-
nucleotides are assumed to either may have arisen 
from miss-orientation of the ESTs which the oligo-
nucleotides were designed from or cover natural anti-
sense transcripts (NATs) (Jin et al, 2008). The oligo-
nucleotide probes located anti-sense to transposons 
and repeated elements are able to reflect intermediate 
products by the RNA interference pathway (Ito, 2012) 
that will be detected depending on the hybridization-
sample preparation. Our re-annotation resulted in a 
slightly lower number of annotated genes compared 
to the current official annotation but the localization 
to the maize genome and knowledge about cross-
hybridization allows a more precise analysis of gene 
expression data obtained from the maizearray. Here 
we show that 30,655 (53.36%) of the 57K probes and 
23,262 (53.43%) of the 46K probes of all oligonucle-
otides correspond to a single gene, demonstrating 
the high information content in the expression data 
generated on the maizearray.

Functional re-annotation
The current official annotation of the maizear-

ray version 4 provided by the collaboration covered 
43,381 gene-associated oligonucleotides and com-
prised a GO annotation for 16,549 of these oligo-
nucleotides with a total of 113,584 GO-terms. This 
implies an average annotation of 6.86 GO-terms per 
oligonucleotide. As a consequence of our re-annota-
tion, the number of GO-annotated gene-associated 
oligonucleotides was increased nearly by factor two, 
the average number of GO-terms per annotated oli-
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