Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties

Feng-Ge Wang[†], Hong-Li Tian[†], Jiu-Ran Zhao^{*}, Hong-Mei Yi, Lu Wang, Wei Song

Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Shuguang garden middle road No.9, Beijing 100097, China

*Corresponding author: E-mail: maizezhao@126.com

[†]Both authors contributed equally to this work

Abstract

A core set of 60 SSRs was selected and modified using 231 Chinese and USA maize (*Zea mays* L.) inbred lines from more than 2000 SSRs for DNA fingerprinting analysis. All 60 SSR markers met the following criteria: (1) amplification of a single locus; (2) distinct amplification products; (3) adequate intervals between adjacent alleles; (4) suitable PCR fragment size; (5) reasonable discrimination power (DP); and (6) even distribution across the maize genome. Furthermore, the 60 SSR primers were re-designed to adjust the PCR product size. Together with the application of four different fluorescent dyes, a high-throughput 10-plex capillary electrophoresis platform was explored. The 60 core SSR markers were further divided into three groups (20 SSRs per group) according to peak morphology and DP value. Groups I, II and III were used in DNA fingerprinting analysis as a basic core, an expanded core and a candidate core set respectively. The allele number per locus varied from three to 22 with an average of 8.95; the average number of alleles per group I, II and III was a respective 7.35, 7.8 and 11.4. The DP values ranged from 0.366 to 0.913, with an average of 0.718 among all loci; the average group DP values were 0.697, 0.718 and 0.737 for groups I, II and III respectively; and the cumulative values of discrimination power (CDP) approached 1 for all groups. Cluster analysis results using 60 selected loci divided the Chinese inbred lines into six groups, including Luda Red Cob, P, Improved Reid, Tang-si-ping-tou, Waxy and Lancaster. The USA inbred lines were segregated into four groups, including SSS, Lancaster, Iodent and Oh43/Oh07Mid mixed.

Keywords: Maize, SSR, core primers, DNA fingerprinting

Introduction

Maize (Zea mays L.) is one of the most important cereal crops in the agricultural economy. Maize is widely cultivated throughout the world with broad applications, including human and animal food, biofuel, chemicals, and medicines, among others. In China, maize has become the second largest crop in terms of total production and growing area, and plays a key role in the agricultural structure of the country (Yu et al, 2007). The number of maize varieties has rapidly increased in China since 1980. To date, over 5,500 maize varieties have been authorized (http://www. newcorn.com.cn); more than 2,000 varieties have been given variety protection rights (http://www. cnpvp.cn), and over 1,000 varieties are inspected in national and regional trials each year. However, maize hybrid germplasm bases in China are quite narrow, with only a few inbred lines having played a central role in hybrid development i.e. Mo17, Huangzaosi, 330, E28, Dan340, and 478 (Li, 1998; Yu et al, 2007). In an attempt to breed high-yield corn hybrids, breeders prefer to use a very limited elite germplasm. Consequently, it becomes a challenge to identify established and new varieties and protect 'variety rights'. On the other hand, it is almost impossible to distinguish closely related inbred lines based on morphological characteristics, because morphology is highly dependent on environmental conditions and therefore variable. In addition, homonyms and synonyms further complicate identification among varieties. Therefore, DNA-fingerprinting is one of the most effective approaches to distinguish different maize varieties.

The extensive application of molecular markers to genetic studies has provided a foundation for its use in DNA fingerprinting analysis. In the last decade, many maize studies have been performed applying molecular markers to assess the levels of genetic diversity, QTL mapping, and markerassisted selection (MAS) breeding. The markers used include random amplified polymorphic DNA (RAPD) (Khampila et al, 2008), restriction fragment length polymorphisms (RFLP) (Bernardo, 1997), inter-simple sequence repeats (ISSR) (Barcaccia et al, 2003), amplified fragment length polymorphisms (AFLP) (Hartings et al, 2008), simple sequence repeats (SSR) (Lu and Bernardo, 2001; George et al, 2004; Clerc et al, 2005), and single nucleotide polymorphisms (SNP) (Jones et al, 2009; Pozar et al, 2009). However, RAPD, ISSR, AFLP and RFLP marker systems are not suitable for DNA fingerprinting analysis because of the markers are of a

Feng-Ge Wang et al

Table 1 - Samples used in this study include 135 Chinese inbred lines and 96 (from ID136 to ID 231) USA inbred lines.

ID	Inbred Line	Pedigree	ID	Inbred Line	Pedigree
1	Ye478	U8112 × Shen5003	117	335	Waxy corn inbred line
2	1141	Selected from American hybrid "78599"	118	Zinuo5B	Waxy corn inbred line
3	8001	488 × 3189	119	Xiangnuo8	Waxy corn inbred line
4	C8605-2	7922 × 5003	120	9902	Waxy corn inbred line
5	H21	Huangzao4 \times H84	121	Shuangjin-11	Selected from Japanese hybrid "Jinyinsui"
6	K12	Huangzao4 \times Weichun	122	SH-251	Selected from Chaotian-1
7	P138	Selected from American hybrid "78599"	123	P12	Selected from American hybrid "78599"
8	Chang7-2	(Huangzao4 \times Wei95) \times S901	124	Ai311	Unknown
9	Dan340	Baigulû9 × Pod corn	125	Luyuan92	Yuanqi122 \times 1137
10	HuangC	$((Huangxiao162 \times Zi330) \times O2) \times Tuxepeno-1$	126	Qi318	Selected from American hybrid "78599"
11	Huangzao4	Selected from Tangsipingtou	127	434	$466 \times Hua94$
12	Lian87	$5003 \times Dan340$	128	Su80-1	Jinhuang55 $ imes$ Yuanwu02
13	Shen I37	Selected form American hybrid "6JK111"	129	Ji846	$Ji63 \times Mo17$
14	Shen5003	Selected form American hybrid "3147"	130	D375	$02428 \times Nannongxian2$
15	Tie7922	Selected form American hybrid "3382"	131	He344	Baitoushuang × Mo17
16	XingK36	Selected from Jiku-6	132	CA335	Selected form Pool 33
17	Ye107	Selected form hybrid "XL80"	133	P25	Introduced from CAU
18	Ye502	Dan340 \times Huangzao4	134	Cheng18	Dingshangyumi $ imes$ (Gong70 $ imes$ 60-22)
19	1145 (A)	Selected form American hybrid "78599"	135	1145 (B)	Selected from American hybrid "78599"
20	Tie9010	Dankang1 \times Dan340	136	B73	BSSSC
21	Ji853	Huangzao4 \times Zi330	137	Mo17	187-2 × 103
22	X178	Selected form American hybrid "78599"	138	PH4CV	PH7V0 × PHBE2
23	J0045	478 × P78599	139	PH6WC	PH01N × PH09B
24	Jing501	Selected from a population of 10 hybrids	140	PHZ51	$PH814 \times PH848$
25	Jing5237	Huangzao4 \times Dan340	141	PB80	Unknown
26	D9046	Tie7922 × Shen5003	142	PHW65	PH861 × PH595
27	Jin96	Unknown	143	PHG83	$PH814 \times PH207$
28	Nongxi531		144	792	Unknown
29	Dan598	$(((UH43Ht3 \times Dan340) \times Danhuang02) \times Danhuang11) \times 78599$	145	PH155	A33GB4 × A34CB4
30	21330	U1143 × Kelid7 (470 - D.: 0.40) - 4.40	140	NK790	
31	420 line 40.4	$(4/8 \times \text{Dan340}) \times 146$	147	PHK/6	PHAD IS X PHB02
32	JIIIU404	(Huangzao4 × Tuxepeno-2) × Huangzao4	140	PHG84	PH848 × PH090
33 24	LX9001		149	/031A	
34	JIII089	10478 × 78399	100	LH132	$(H93 \times B/3) \times B/3$
20	ro49 ling24	Silelijuus X Dalijuu	151	IDU14	Diapage Hub 2525
30	JIIIY24 ZhongE9	Zalostiu302 × Hualiyyesi Calastad from Vo478	152		Mol 714 v MDA 29
38	SW1611	Introduced from Theiland	15/	NS201	$MOTTEL \times MDA-20$ A632 $\sim B73H^{\dagger}$
30	118112		155	HRAI	
40	Ben7884_7	Ci7 × 1 289	156	PHT77	$PH814 \times PH995$
41	MC0303	$(9042 \times)$	157	N0508	linknown
42	Shennong92-67	noncorn inbred line	158	PHN11	$PH207 \times (PH207 \times PH806)$
43	502196	Huanozao $4 \times Dan340$	159	NS501	linknown
44	Ye515	(Huafeng100 \times AiC103) \times Huangzao4	160	LH39	Unknown
45	Ye52106	(Aiiin525 \times Ye107) \times 106	161	LH1	$(B37 \times Holden line 644) \times B37$
46	Zona31	Selected from Zi330	162	B47	Unknown
47	444	A619 \times Huangzao4	163	PHG35	PHG3BD2 \times PH595
48	81162	$(Aijin525 \times Ye107) \times 106$	164	LH150	Unknown
49	Ji842	Ji63 × Mo17	165	LH52	[(Mo17 \times Holden line 610) \times Mo17] \times Mo17
50	Longkang11	$Mo17 \times Zi330$	166	ML606	Unknown
51	GY246	high oil inbred line	167	LH57	$(Mo17 \times H99) \times LH53$
52	Wu314	(Huangzao4 \times Wu302D) \times Huangbaoliao	168	PHG39	PHA33GB4 × PHA34CB4
53	zhong106	Yemen short corn × Synthetic	169	LH60	LH55 \times LH47
54	Ji53	Selected from Ji synthetic 2Co-2	170	PHG71	A632Ht × PH207
55	Yuanfuhuang	Selected from Huangzao4	171	DKFBHJ	(FBAB \times B84) \times FBAB
56	3189	U8112 × Shen5003	172	NK740	Mo17 Backcross $3 imes$ Mexican Deep Kernel
57	A801	Dan9042 \times (Dan9046 \times Mohuang9)	173	LH38	L120 × A619
58	CN1483	Introduced from China Academe of Agricultural Sciences	174	PHG47	PH041 × MKSDTE C10
59	DHuang212	$D729 \times Huangzao4$	175	SG17	Unknown
60	Chang3	Selected from Yinglizi	176	PHG42	Unknown
61	Dabatang	Chinese landrace	177	LH51	Mo17 Backcross 5 recovery
62	Danhuang25	Selected from American hybrid "78599"	178	LH82	Holden line 610 \times LH7
63	Dunbai	Chinese landrace	179	LH59	$(Mo17 \times H99) \times LH53$
64	Duo29	Selected from American hybrid "78599"	180	78371A	[(4726 \times lowa Long Ear) \times 4726] \times 4726
65	Ji7162	Unknown	181	Q381	Pioneer Hyb 3369
66	Jing123	Unknown	182	LH143	A632 derived
67	Jing186	Sizi \times Jingdan841	183	LH143CMS	A632 derived
68	Jing594	Huangzao4 \times P78599	184	DK78002A	B73 × A634
69	5872	Zheng58 \times Mo17	185	NK807	W117 × B37
70	Yinglizi	Introduced from Europe	186	LP5	(Yugoslavian GLAMOS \times B73Ht) \times B73Ht
71	Zao673	Unknown	187	78004	B73 × A634
72	Zhe446	Unknown	188	PHG29	PH207 × (PH207 × PH806)
73	Zhe773-2	$Ji63 \times Huangzao4$	189	LH156	Va85 × Pa91
74	Zhongchang7	Unknown	190	DJ7	$B/3 \times BS16$ Synthetic
75	835	V8112 × 718	191	NK764	NK235 × B73
16	Dan598-1	Selected from Dan598	192	LH/4	Ab32 × B/3

Maydica 56-1693

Tab	le 1	- continued

77	895	Dan598 \times Chang7-2	193	NK778	W117 \times B37Ht
78	Ji1037	$(Mo17 \times Suwan1) \times Mo17$	194	NK794	NK235 × B73
79	Qi319	Selected from American hybrid "78599"	195	DK4676A	1067-1 × B-Line Composite
80	CT019	Qi319 \times Shen137	196	FR19	$A635 \times W438$
81	Jun9058	6JK × 8085	197	DKFAPW	B14AHt \times B37Ht
82	F349(Disease Resistance)	$(P25 \times F349) \times F349$	198	LP1CmsHt	A632Ht C cytoplasm male sterile
83	P25(Disease Resistance)	Introduced from CAU	199	PHG50	PH848 × PH207
84	MC30	1145 × 1141	200	F42	B73 mutation selection
85	Huangye4	(Yejihong \times Huangzao4) \times Dunzihuang	201	DKMDF-13D	H4101 × Composite 800M
86	4112	A619 × 8112	202	G103	Unknown
87	5005	Selected from 8147	203	LH61	$[(ASA \times Mo17) \times Mo17] \times Mo17$
88	A235	Unknown	204	PHG80	PH495 × PH331
89	Bjian8	$(BC7321 \times Jianduangi) \times 8112$	205	PHG72	PH891 × PH207
90	zhonghuang64	Selected form Pioneer hybrid "64"	206	PHG86	$B64 \times B73$
91	Dan341	5003 × 561-1 • 332-2 • Men • B • 330	207	PHB09	PH555 × PH031
92	K10	$5003 \times \text{Chang3}$	208	LH145	A632Ht \times CM105
93	135	Unknown	209	LH146Ht	(B73 × CM105) × CM105
94	HOF2	Selected from American hybrid "78599"	210	DK78010	B73 × A634
95	Huotanghuang	Huobai \times Tang203	211	LH119	(H93 × B73) × B73
96	BM	Unknown	212	LH93	BS11(FR)C3
97	352	Unknown	213	NSSS	Unknown
98	4F1	Selected from Mo17	214	IODEET	Unknown
99	E28	(A619Ht1 × Lû9Kuan) × Lû9Kuan	215	S07:61	Unknown
100	Chong72	3147 × B37Ht	216	HPHR47	Unknown
101	Q126	Huangzao4 \times Weichun	217	2369	Unknown
102	Fu80	lû9 × Pod corn	218	PHM49	Unknown
103	ZaG546	Unknown	219	OQ603	Unknown
104	Zhonghuang69	Introduced from China Academe of Agricultural Sciences	220	11430	Unknown
105	JN22	Unknown	221	NKH8431	(NK377 × NKB386) × NK347
106	673	Unknown	222	PHW52	B73 × PHG39
107	JN15	$J0045 \times Qi319$	223	DKMBPM	Composite 400M
108	428	413 × Zi330	224	LH149	[(A662 × B73) × B73] × B73
109	0020	Qi319 \times short stalk 117B	225	ZMA22	Unknown
110	Bainuo6	Selected from Zizuo-3	226	SB326	Unknown
111	Paternal parent of Zinuo5	Waxy corn inbred line	227	LH65	$(Mo17 \times LH18) \times LH53$
112	Female parent of Zinuo5	Waxy corn inbred line	228	MBST	Unknown
113	Zinuo3	Selected from Zinuo-3	229	PHR32	Unknown
114	Jingnuo6	Selected from Zhongnuo-1	230	NKS8324	(CH593-9 × B73) × B73
115	9901	Waxy corn inbred line	231	PHH93	Unknown
116	Ziyu-3	Waxy corn inbred line			
	=	•			

dominant nature, are not highly informative, and provide inadequate exchange of data among different studies. In contrast, SSR markers are a suitable technique for DNA fingerprinting analysis. SSRs exhibit simple banding pattern, are informative, the markers are of a co-dominant nature, the method is highly repeatable and provides comparable data among different studies. Single SNP makers have lower information than SSRs, but are amenable to high-throughput methods with lower genotyping error rates. Consequently, the International Union for the Protection of New Varieties of Plants (UPOV) (2007, 2010) recommends SSRs for current construction of DNA fingerprint databases that have been well-defined and tested, and suggests future use of SNPs.

Selection of a universal SSR set is important for DNA fingerprinting analysis. Although a large number of SSRs are available in the maize GDB or PANZEA database, each SSR marker is not suitable for fingerprinting analysis. The SSRs must be evaluated and some primers re-designed; only SSR markers with high repeatability, distinct PCR bands, reasonable polymorphism, and known chromosomal loci are suitable for constructing a fingerprinting database. Furthermore, for a core SSR set, all SSRs should be evenly distributed across the genome. In recent years, construction of SSR-based fingerprinting databases have been completed in several crops, including rice (Nandakumar et al, 2004), wheat (Rôder et al, 2002; Li et al, 2006), potato (Coombs et al, 2004; Reid, 2004), and tomato (Bredemeijer et al, 2002), and each study reported a suitable set of SSRs. In maize, several sets of SSR markers have been published (George et al, 2004; Clerc et al, 2005; Kahler et al, 2010) based on the standardization of fingerprinting analysis technology, genetic diversity of French varieties, or identification of North American varieties. However, a core set of SSR markers has not been established for DNA fingerprinting analysis based on Chinese maize varieties. Therefore, the objectives of this study were to establish a core set of SSR markers for use in Chinese maize varieties to construct a DNA fingerprinting database that serves to accurately distinguish existing maize varieties and establish the identity of new varieties.

Materials and Methods

Plant materials

A total of 231 maize inbred lines were selected to evaluate SSR markers and primers, including 135 Chinese and 96 USA inbred lines (Table 1). Table 1 shows the inbred lines and their pedigrees. The 135

Feng-Ge Wang et al

Table 2 - Characterization of the 60 SSR loci for Chinese maize DNA fingerprinting analysis based on 231 inbreds. The map coordinates of the 60 loci are from the genetic map IMB2 2004 neighbors frame.

Set	No. of Loci	Loci name	Chr BIN	Motif sequence	Forward Primer sequence (5'-3')	Reverse Primer sequence (5'-3')	No. of alleles	Allele range	DP
I	N01 N02 N03 N04 N05 N06 N07 N08 N09 N10 N11 N12 N13 N14 N13 N14 N13 N14 N15 N16 N17 N18 N19 N20	bnlg439w1 umc1335y5 umc2007y4 bnlg1940k7 ^a umc2105k3 phi053k2 ^b phi072k4 ^b bnlg2291k4 ^a umc1705w1 bnlg2305k4 bnlg161k8 bnlg1702k1 umc1545y2 ^b umc1125y3 bnlg240k1 phi086k15 ^b phi065k9 ^b umc1432y6 ^a umc1506k12 ^a	$\begin{array}{c} 1.03\\ 1.06\\ 2.04\\ 2.08\\ 3.00\\ 3.05\\ 4.01\\ 4.06\\ 5.03\\ 5.07\\ 6.00\\ 6.05\\ 7.00\\ 6.05\\ 7.00\\ 8.06\\ 8.08\\ 9.03\\ 9.04\\ 10.02\\ 10.05\\ \end{array}$	(TC) (AG) (TC) (CT) (GT) (GTAT) (TGTT) (AG) (CT) (AAG) (CT) (AAGA) (CTCG) (GAA) (GGAAA) (GTCAA)(GTGCA) (GCA) (GTCA)(GTGCA) (GCA) (TC) (TTTG)	AGTTGACATCGCCATCTTGGTGAC CCTCGTTACGGTTACGCTGCTG TTACACAACGCAACACGAGGC CGTTTAAGAACGGTTGATTGCATTCC GAAGGCCATGAATAGACCATGAG CCCTGCCTCCAGATTCAGAGAGTTG GCCCTCCTCCCAGGTCAGAG GCACACCCGTAGTAGCTGAGACTTG GGAGGTCGTCAGATGGAGTTCG CCCCTCTCCTCAGCATGGAGCTTG GCACGCTCTGCTAGTGGAGCTTG GCACGCCGTAGCAGCGGGAGGATCG CCCCTCTCCCCAGGTCGGGGATGATCC GCACGCGTTATCATGCCGAGCAC ATGCCGTTATCATGCGATGC GGAGGGCGGGGGGATTTCTC GCACGCCGTGGGGGATTTCTC TGAACCACCCGATGCAACTTG CCCCTTCAAGAATATCCTTGTCC GCGGTAAGAGTAGTCGTAGGGCTAGTGTAG GAGAATCAAGAGGTGCGAGCATC GAGGAATGATGCCGCGAGAAGAG	GAACAAGCCCTTAGCGGGTTGTC GATGACCCCCCTTACTTCGTTATG GCTATAGGCCGTAGCTTGGTTAGTG GCTATAGGCCGTAGCTTGGTGAGACAC GCCTTTATTTCTCCCCTTGCTGCC ATGGACTCTGTGCGACTTGTACCG TAGGCTGGCTGGAAGATTGTGC CGTTGCCCATACATCATGCCTC CATAACCTTGCCTCCCAAACCC CACGTACGGCATGCAGACAAG CGTCTTGTCTCGCTCCTGCA GAGGACGGCATGGCAGAGCATGG GAGGACGGCACGCCTGCA GCTTGCTCCTTGAATGCGT CCACCCAACCCA	12 4 13 13 6 4 6 9 12 13 13 7 5 7 6 4 4 5 6 7 35	319-369 233-257 233-300 324-388 280-350 333-363 333-363 362-421 254-349 240-312 154-216 260-347 180-249 149-175 220-238 202-238 202-239 202-239 201-15 270-290 211-259 163-196	0.801 0.375 0.822 0.805 0.663 0.485 0.705 0.792 0.860 0.876 0.821 0.721 0.721 0.756 0.807 0.689 0.685 0.467 0.366 0.771 0.662
Ш	N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 N35 N36 N37 N38 N37 N38 N39 N40 Average	umc1147y4 bnlg1671y17 phi96100y1 b umc1536k9 bnlg1520k1 ^a umc1489y3 ^a bnlg490y4 umc2115k3 umc2115k3 umc2115k3 umc2160k3 umc2160k3 umc2160k3 umc2164 bnlg2235y5 phi233376y1 ^b umc22164 phi041y6 ^{a, b} umc2163w3 e	1.07 1.10 2.00 2.07 4.04 4.09 5.02 5.03 6.01 6.07 7.01 7.03 8.09 9.01 9.05 10.00 10.04	(CA) (CT) (AGGT) (GT)(TA) (CT)(AC)(GA)(TA) (GCG) (TA) (GCCAT) (AGC) (AGC) (AG) (CTG) (AG) (TG) (CGG) (CTAG) (CAGC) (CAGC) (AG)	AAGAACAGGACTACATGAGGTGCGATAC CCCGACACCTGAGTTGACCTG TTTTGCACGAGCACATCGTATAACG TGATAGGTAGTAGCATACCCTGGTATCG CACTCTCCCTCTAAAATATCAGACAACACC GCTACCCGCAACAAGAACTCTTC GGTGTTGGAGTCGCTGGGAAAG GGCCACGTTATGCTCCATTGC GCCACTGGCACTGTACCCATCG CTTCCCCCGGCATCATCCCAAC GGCAACGGCATTGATCCCAACG GGCAACGAGTGAGGTGAG	GTTTCCTATGGTACAGTTCTCCCTCGC CTGGAGGGTGAAACAAGAGCAATG CCATCTGCTGATCCGAATACCC GAGCATAGAAAAAGTTGAGGTTAATATGGAGC GCTTCTGCTGCTTTTTTTTTT	6 14 7 13 6 4 11 8 6 4 9 6 10 6 7 8 7 10 6 8 7 7.80	149-172 173-255 231-287 216-284 231-265 245-331 167-200 265-295 125-145 259-313 200-254 198-244 153-176 174-198 180-222 184-214 184-214 239-283 296-334 280-352	0.429 0.896 0.786 0.890 0.722 0.428 0.766 0.682 0.749 0.524 0.671 0.828 0.799 0.637 0.804 0.737 0.804 0.737 0.800 0.675 0.749 0.749 0.737
III	N41 N42 N43 N44 N45 N46 N47 N48 N49 N50 N51 N52 N53 N54 N55 N55 N55 N55 N57 N58 N59 N60 Average	bnlg1025y4 um1538y3 umc1261k10 ^a bnlg1175k1 bnlg152k3 ^a umc1136y2 ^a , ^b phi021y8 umc1051k2 umc1051k2 umc1051k2 umc1496y3 ^a mmc0081k1 umc1859k1 umc1127k1 ^a phi328175y4 ^b phi116k1 ^b umc1741w1 bnlg162k2 ^a bnlg1191k7 ^a umc1366y1 bnlg112k17 bnlg1450A1 ^a e	$\begin{array}{c} 1.07\\ 1.11\\ 2.02\\ 2.04\\ 3.02\\ 3.10\\ 4.03\\ 4.08\\ 5.00\\ 5.05\\ 6.06\\ 6.08\\ 7.04\\ 7.06\\ 8.03\\ 8.05\\ 9.06\\ 9.06\\ 10.03\\ 10.07\\ \end{array}$	(AG) (AG) (GT) (AG) (CT) (CAG) (CT) (GCA) (CT) (GCA) (GA) (GAG) (GAG) (GAG) (GTCA)(TGTA) (AG) (CT) (CCT) (CCT) (CCT) (GA) (TC)	CTCTCCTCACGCCAACTTAATCTGTG CTCGAAACAGGTGGTACAGTGCG TGGTAATGGTATGTAGAAGAAGTGCGTATG GACACTTGCACGACGCCTCGCTTAT GTTTCGGACGAAAGCCTAATAACCC CCTCTCGTCTCATCACCTTTCCC CCAAGTGTAAAGAGTGCGAAGAAGCAG GGATCGGAGTAGCGCAAAGTAG GATAACCACTCCCAGTTAGCAGCAG AACACCCATCCCAGGTTGCAGG CCCCCCCCCC	GTGACTCCTAAGCTCGCCGAATAA AGCAGCTTTTACCCCTGATTTTTCC CAGCGACAAGAGCAGCGTG ATCCCAAGCACCACGGTCAAG GCCGCGTAGTGGATAGGAGC GCTGCATACAGACATCCAACCAAAG CCATCACGAAAGGTGGAGGTAGAAGA GCCATCAAACCCTCAACTCTGC CCAACATGAAGGGAGGGTGC GGTTGTTTGCCTCTTCTGTACTCTGTTG AAAGATGACTTTGTGGGCAGTGG GCCACCATCGACTGGCACTG CGGCGACCCACTCATCTCAT	11 20 5 17 17 7 10 14 9 6 14 13 4 5 13 17 13 3 8 22 21 1.4	141-201 131-194 231-249 261-340 183-263 122-162 167-208 226-286 146-184 167-215 140-194 153-261 302-346 240-265 144-215 239-284 240-299 226-238 256-294 232-352	0.804 0.838 0.692 0.880 0.585 0.673 0.580 0.852 0.630 0.706 0.871 0.797 0.723 0.588 0.680 0.840 0.840 0.844 0.842 0.844 0.842 0.793 0.913 0.737

 $^{\rm a}$ Locus was used in Kahler et al (2010); $^{\rm b}$ Locus was used in George et al (2004)

Chinese inbred lines cover a broad germplasm resource and have been frequently used to develop maize hybrids in China. The inbred lines belong to the following heterotic groups: Tang-si-ping-tou (TSPT), Luda Red Cob (LRC), Lancaster (Lan), Improved Reid, P groups, and Waxy corn (Table 1). The 96 USA inbred lines (from ID136 to ID 231, Table 1) were obtained over the terms of variety protection rights in the USA. The germplasm background includes Lancaster, SSS, Iodent, Oh43, and Oh07Mid heterotic groups (referred to Mikel, 2006; Mikel and Dudley, 2006).

DNA extraction and SSR analysis

Sixty seeds of each inbred were grown in an incubator for approximately five days. Subsequently, approximately fifty young leaves representing each inbred were selected from different plants and ground into a fine powder. Total genomic DNA was extracted from 50-pooled leaf (4.5-5.0 g) using the CTAB procedure according to the CIMMYT (2005) laboratory protocols. DNA quality and quantity were estimated using a BioPhotometer Plus (Eppendorf, Hamburg, Germany).

PCR was performed in a 20µl reaction volume containing approximately 4µl of total genomic DNA, 0.25µM of each primer (one primer was dye labeled), 0.15mM dNTP, 2.5mM MgCl₂, 1 unit of Taq polymerase (Tiangen, Beijing, China), and 1×PCR buffer. PCR amplification parameters were as follows: 94°C for 5 min; followed by 35 cycles at 94°C for 40 sec, 60°C for 35 sec, and 72°C for 45 sec; with a final extension at 72°C for 10 min. PCR products were run on an AB 3730xl DNA Analyzer (Applied Biosystems, USA). Subsequently, 1.5µl of the 10-plex PCR product, 8.5µL Hi-DiTM formamide, and 0.1µl GeneScanTM-500 LIZ (Applied Biosystems, USA) as an in-

Figure 1 - Discrimination power (DP) curve and cumulative discrimination power (CDP) value of groups I and II primers. A: DP value curve of group I primers (the order of primers displayed on the abscissa is according to the DP value)

B: DP value curve of group II primers (the order of primers displayed on the abscissa is according to the DP value)

C: CDP value curve of group I primers

D: CDP value curve of the group II primers

ternal standard was loaded into each well of a 96-well optical reaction plate. The samples were denatured at 95 °C for 5 min, and the sample plates were spun at 1000 rpm for 1 min. Finally, electrophoresis was carried out on an AB 3730xl DNA Analyzer, and the resulting data were analyzed using Data Collection Ver. 1.0.

Selection and evaluation of SSR markers

One hundred SSRs, with 10 markers per chromosome, were selected from over 2000 in the Maize GDB public database. The location of the 100 SSRs on the integrated genetic map IBM2 2004 neighbors frame was known to exhibit an even distribution along the maize chromosomes. The screening procedure is reported in Wang et al (2007). Fifteen primer pairs of each locus were redesigned for the 100 candidate loci using Primer Premier 5.0 and Oligo 6.22 to develop the multiplex set. Nomenclature for the newly designed primers was specified using the "name of the original primer", the "code of the designer", and the "serial number". The original and newly designed primers at the same locus were detected using the above described amplification program and electrophoresis method. Based on the banding patterns, efficiency of amplification, and the score estimates from Primer Premier 5.0 and Oligo 6.22, one optimized primer pair was selected per locus.

The 100 primers with the 231 maize inbred lines were used to screen a core SSR set for fingerprinting analysis using fluorescent dye labeled primers. Sixty core SSRs were subsequently selected for fingerprinting analysis on the basis of the following criteria (referred to Macaulay et al, 2001; Vardhney et al, 2008; UPOV, 2007, 2010): (1) the amplification fragment included a single locus not multiplex loci; (2) the fragment was easily amplified; (3) appropriate intervals between adjacent alleles; (4) a suitable fragment range; (5) reasonable discrimination power (DP); and (6) genomic distribution. In order to avoid linkage among loci, and fully reflect the genetic information, the selected loci were of known genetic location and distributed throughout the genome. The genetic location of all loci was based on the genetic IBM2 2004 neighbors frame map (Table 2). For the selected loci, we calculated linkage disequilibrium (LD) among all loci using GENEPOP Ver. 3.4 (Raymond and Rousset, 1995) based on the 231 inbred lines. If there was significant linkage disequilibrium (P<0.01) between two loci, one locus was deleted.

The selected 60 core SSRs were further divided into three groups, groups I, II, and III as a basic core set, an expanded core set and a candidate core set respectively, according to three criteria: the stability of the amplification product, peak morphology and discrimination power (Table 2).

Construction of a 10-plex capillary electrophoresis system using dye-labeled primers

Based on the fragment size range and the type of dye labeled, a 10-plex electrophoresis set was constructed. The combination pattern was 3+3+2+2, each set of primers was divided into four groups based on the four dyes types (VIC, NED, PET, FAM), and markers with the same label were separated by more than 10 bp (Table 3).

Data analysis

SSR loci were scored using GeneMapper ver. 3.7 (Applied Biosystems, USA). The software Power-Marker ver. 3.25 was used to estimate the number of alleles and genotypic frequencies (Liu and Muse, 2005). The discrimination power (DP) for an individual SSR locus and the cumulative discrimination power (CDP) for multiple loci were estimated as follows (Tessier et al, 1999): DP=1- \sum (pi)² and CDP=1-C1×C2×C3...×Ci, where pi represents the frequency of each genotype, and Ci represents the confusion probability of each locus (Ci= \sum (pi)²). The neighborjoining (NJ) tree for the Chinese and USA inbred lines was obtained respectively using Rogers (1972) genetic distance, based on data from the selected 60 SSR loci using Power-Marker ver. 3.25 software.

Figure 2 - Neighbor-joining (NJ) trees for the Chinese and USA inbred lines based on Roger's genetic distance.

Results

Characterization of the 60 SSR primers for construction of the maize fingerprinting database

The 231 inbred lines were used to characterize the 60 primers. Table 2 provides detailed information for the 60 primers, including genetic map location, motif sequence, redesigned primer sequence, allelic numbers, PCR product range, and DP value. All inbred lines were successfully amplified using the 60 primers, and PCR products were clearly observed and unambiguously scored. Each of the 60 SSR primers displayed widely polymorphic PCR products across all samples. In total, the 60 SSR primers generated 537 alleles. The number of alleles per locus varied from three to 22, with an average of 8.95. The average number of alleles for groups I, II, and III were respectively 7.35, 7.8, and 11.4. The number of alleles detected should reflect the actual number of alleles within the 60 loci, as the samples spanned a range of resources. PCR fragment size at each locus varied from 12 bp at locus N58 to 120 bp at locus N60. In addition, we calculated DP and CDP values based on genotypic frequency. DP values varied among loci, and exhibited a range from 0.366 (N19) to 0.913 (N60), with an average DP of 0.718 over all 60 loci; the average DP values of groups I, II, and III were

Table 3 - An example of the combination patterns of the 20 primers of I group (two 10-plex sets) and the 20 primers of II groups (two 10-plex sets).

Set	Loci	Chr	Allele	Fluorescence	Set	Loci	Chr	Allele	Fluorescence
	name	BIN	range	labeled		name	BIN	range	labeled
		10.00	014 050	140			F 00	405 445	140
1-1	umc1432y6	10.02	211-259	VIG	I- I	umc1429y7	5.03	125-145	VIC
1-1	umc2105k3	3.00	280-350	VIC	I-1	umc1999y3	4.09	167-200	VIC
1-1	phi072k4	4.01	408-432	VIC	I-1	umc1489y3	3.07	231-265	VIC
I-1	umc1545y2	7.00	180-249	NED	I-1	umc1147y4	1.07	149-172	NED
I-1	bnlg1702k1	6.05	260-347	NED	I-1	phi299852y2	6.07	200-254	NED
I-1	phi065k9	9.03	391-415	NED	I-1	umc2163w3	10.04	280-352	NED
I-1	bnlg240k1	8.06	220-239	PET	I-1	phi233376y1	8.09	180-222	PET
I-1	bnlg439w1	1.03	319-369	PET	I-1	bnlg490y4	4.04	245-331	PET
I-1	bnlg2305k4	5.07	240-312	FAM	I-1	umc2084w2	9.01	184-214	FAM
I-1	bnlg1940k7	2.08	324-388	FAM	I-1	phi96100y1	2.00	231-287	FAM
I-2	umc1125y3	7.04	149-175	VIC	I-2	umc1936k4	7.03	153-176	VIC
I-2	umc1335y5	1.06	233-257	VIC	I-2	umc2160k3	7.01	198-244	VIC
I-2	phi053k2	3.05	333-363	VIC	I-2	phi041y6	10.00	296-334	VIC
I-2	bnlg161k8	6.00	154-216	NED	I-2	bnlg2235y5	8.02	174-198	NED
I-2	umc2007y4	2.04	233-300	NED	I-2	umc1536k9	2.07	216-238	NED
I-2	bnlg2291k4	4.06	362-421	NED	I-2	bnlg249k2	6.01	259-313	NED
I-2	umc1506k12	10.05	163-196	PET	I-2	bnlg1520k1	2.09	156-204	PET
I-2	umc1705w1	5.03	254-349	PET	I-2	umc1231k4	9.05	239-283	PET
I-2	phi080k15	8.08	202-238	FAM	I-2	bnlg1671y17	1.10	173-255	FAM
I-2	umc1492y13	9.04	270-290	FAM	I-2	umc2115k3	5.02	265-295	FAM

respectively 0.697, 0.718, and 0.737; and the cumulative values of discrimination power (CDP) approached 1 for all groups (Table 2, Figure 1).

Multiplex capillary electrophoresis system

Grouping SSRs into a multiplex electrophoresis system depends on the labeled dye and the fragment size range. The 60 primers used in this study could be designed into multiplex system applying four dyes and the different size range. Table 3 represents a combination pattern of four 10-plex sets, comprised of 40 primers for groups I and II.

Clustering analysis

The neighbor-joining analysis method was used to construct a dendrogram from 60 loci of the 135 Chinese and 96 USA inbred lines (Figure 2). The clustering results were nearly consistent with the heterotic groups established based on pedigree information. The 135 Chinese inbred lines were clustered into six groups, including Luda Red Cob (LRC), P, Improved Reid, Tang-si-ping-tou (TSPT), Waxy, and Lancaster (Lan) groups. The LRC group was represented, in part, by inbreds Dan340, Tie9010, and Fu80. Twenty-nine Chinese inbreds, including P138, X178, and Qi319 comprised the P group, most of which were derived form USA hybrid P78599. The Improved Reid group consisted of 23 Chinese inbreds, which included Ye478 and Zheng58 etc, most of which were derived form Shen5003 and U8112. The TSPT group included 25 inbreds, which were mainly derived from the Chinese local germplasm Huangzao4. Fourteen Waxy inbreds were clustered into one group. The Lancaster group was comprised of inbreds Ji1037, Ji846, and Ji842, among others, which have Mo17 in their pedigree. The 96 USA inbreds formed the following groups based on the NJ tree and pedigree data: SSS, Lancaster, lodent, and Oh43/ Oh07Mid. The SSS group comprised 36 inbreds containing the genetic composition of B73. The Lancaster group included 18 inbreds, and results indicated most lines were closely related to Mo17. The lodent and Oh43/Oh07Mid groups were distinguished according to cluster results and genetic background (Mikel, 2006).

Discussion

Selection criteria for a core set of SSR primers in a DNA fingerprinting database

Common selection criteria are necessary to consider for a single locus primer, including product quality, high polymorphisms, and PCR fragment size. However, two additional points are important in selecting core primers. First, a few base pair intervals between adjacent alleles are required to easily differentiate alleles. Second, primers have to exhibit reasonable polymorphisms, because too high or low level of polymorphism is directly related to over complexity in data analysis. It is inefficient to construct a database using low polymorphic primers, and difficult to score alleles using high polymorphic primers. Figure 3 provides two representative loci, which are suitable to construct a fingerprinting database. On a core primer set, the following criteria are ideal: (1) All selected loci are distributed across the genome to avoid linkage among loci. (2) The primers are combined in a multiplex electrophoresis to increase throughput (for example, different size ranges). (3) Efficiency is improved when the candidate primers have the potential for multiplex amplification (for example, similar annealing temperatures). The primer set reported in this study might not meet all the above requirements, such as uniform distribution. SSR distribution is nonuniform in the maize genome (Sharopova et al, 2002), therefore, it is impossible to achieve a perfect primer set.

Figure 3 - Electrophoresis results of two representative loci suitable to construct a database and fingerprinting analysis (on AB 3730xl DNA Analyzer).

Comparison between published loci and loci reported in this study

The majority of previously published loci were included in the 2000 used in this study (i.e. reported in George et al, 2004; Clerc et al, 2005; Kahler et al, 2010). During the screening process, which resulted in selection of 100 markers, we made choices based on amplification efficiency, polymorphisms, and genetic location (see Wang et al, 2007 for details). The selection process for capillary electrophoresis reduced the core primer set from 100 to 60, which differed from the denaturing polyacrylamide (George et al, 2004; Clerc et al, 2005) and agarose (Kahler et al, 2010) gel electrophoresis platform. Therefore, some primers were not retained. Compared with reports of previously applied primer sets, 18 were consistent with Kahler et al, (2010), and 12 with George et al (2004), however we had no primers in common with those used by Clerc et al (2005) (Table 2). Therefore, some loci are more general and can be selected independent of materials and electrophoresis platform, and other loci are specific to materials and electrophoresis platform. In this study, we selected and evaluated the 100 best candidate SSRs systematically and comprehensively using 231 inbred lines representing a broad Chinese and USA maize genetic background for DNA fingerprinting analysis (Table 1 and Figure 2). Presently, the 60 core primers and in

particular the 40 primers of groups I and II have been used to construct the Chinese maize database and are widely used in China to identify maize varieties. Overall, based on the current level of research and technology platforms available in maize, this primer set should be superior to any other primers in DNA fingerprinting analysis for Chinese maize varieties.

The optimal number of primers to construct a maize DNA fingerprinting database

Considering the differences in fingerprinting database scales, and the range of genetic backgrounds in maize varieties, the SSR primer numbers should be variable according to different database. For example, it was possible to discriminate 192 Eucalyptus samples using only three SSRs (Kirst et al, 2005), and establish a Chinese criminal DNA database using 13 SSR polymorphisms (Du et al, 2000). In this study, 10 basic core primers for group I was sufficient to differentiate 231 inbred lines (Figure 1), however, so few markers is not desirable in practice. Maize can be backcrossed an unlimited number of times and become infinitely close to the original variety. Consequently, there is little genetic difference among some maize varieties. Currently, plant variety protection law in China is based on the 1978 version of UPOV, and does not include the concept of an essentially derived variety (EDV). Therefore, a series of maize varieties exist with genetic similarity that exceeds

90%. For example, many new hybrids similar to Zhengdan958 were popularized during recent years. The 231 inbred lines used in this study are relatively easy to distinguish because the lines cover a broad genetic background and exhibit a wide range of genetic diversity. Although the 231 inbred lines could successfully be differentiated using 10 primers, it is not always feasible in practical applications. Therefore, we maintained the 60 core primer set, and these primers were further subdivided into three groups to select primers of any group or a combination of groups for different research purposes. Group I is comprised of 20 primers used as basic core primers. This group exhibits the highest evaluation scores to construct a large-scale database to identify varieties. Primers in group II show a slightly lower score than group I, and should be chosen as expanded core primers. Generally, a combination of groups I and II (a total of 40 primers) is sufficient to identify varieties with narrow genetic backgrounds or similar varieties. Compared with groups I and II primers, group III primers exhibit the lowest scores, but the highest polymorphisms. Consequently, group III primers are recommended as candidate core primers. All 60 core primers demonstrate utility in estimating maize germplasm resources (Figure 2).

Molecular markers for a maize DNA fingerprinting database

Until recently SSR markers were the choice for fingerprinting analysis, however, advances in technology have resulted in a shift toward SNPs, particularly in model plants with substantial genomic resources. UPOV has provided extensive recommendations for SSRs and future sequencing information for SNPs (UPOV 2007, 2010). SSR and SNP markers have been the most appropriate to construct DNA fingerprinting databases, but both methods have their own advantages and disadvantages.

The disadvantages of SSRs compared with the advantages of SNPs are as follows: (1) SSRs occur at a much lower genomic density and exhibit an uneven distribution relative to SNPs (Sharopova et al, 2002; Hamblin et al, 2007). (2) Compared with SNPs, SSRs have a slightly higher genotyping error rate. This is due to the multi-allelic nature of SSRs, and the subsequent variation in fragment size. Furthermore, comparison and integration issues exist between different SSR detection platforms. SNPs are bi-allelic, and represent the smallest units of genetic variation in the genome. Therefore, alleles are easily read, compared, and integrated between different data sets. (3) SSR detection throughput is far lower than SNPs. SSR throughput generally includes only one primer for polyacrylamide gels or as high as 10-plex primers using four-color fluorescence. However, SNPs are amenable to design a high-throughput platform. Based on the current technical level, the throughput can range from 48, to thousands, and even tens of thousands (using an Applied Biosystems, USA; Illumina BeadArray, USA platform). Therefore, it is likely SNPs will provide increased resolution. However, SSRs exhibit higher allelic diversity for each locus relative to SNPs. SSRs are well researched and the experimental technique is relatively mature. In addition, SSRs can be performed without the need for expensive instrumentation; therefore any laboratory can apply SSR research. Compared with SNPs, the key advantage of SSRs is a lower cost for fingerprinting analysis of individual samples.

In a summary, Both SSRs and SNPs are ideal marker systems to construct a DNA fingerprinting database. SSRs will continue to play an important role in the long term because of their higher information content and low cost. SNPs will be the marker of interest in the future due to data accuracy and higher throughput, along with improved SNP technology.

Acknowledgements

The research was financially supported by the Beijing Agricultural Innovative Platform II - Beijing Natural Science Fund Program (D08070500690802) and the project 973 (2009CB118400) from Ministry of Science and Technology of China.

References

- Barcaccia G, Lucchin M, Parrini P, 2003. Characterization of a flint maize (*Zea mays* var. *indurata*) Italian landrace, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genet Resour Crop Ev 50: 253-271
- Bernardo R, 1997. RFLP markers and predicted testcross performance of maize sister inbreds. Theor Appl Genet 95: 655-659
- Bredemeijer GMM, Cooke RJ, Ganal MW, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B, 2002. Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105: 1019-1026
- CIMMYT 2005. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. Third Edition. Mexico, DF: CIMMYT
- Clerc VL, Bazante F, Baril C, Guiard J, Zhang D, 2005. Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110: 294-302
- Coombs JJ, Frank LM, Douches DS, 2004. An applied fingerprinting system for cultivated potato using simple sequence repeats. Amer J of Potato Res 81: 243-250
- Du ZC, Li L, Lin Y, Que TZ, Cheng DL, Shen WZ, Yan PH, Liu Y, He GY, Zhao ZM, Shen M, 2000. Polymorphism of 13 STR loci for establishment of Chinese criminal DNA database. J Forensic Med 16: 1-6
- George MLC, Regalado E, Cao WLM, Dahlan M, Pabendon M, Warburton ML, Xianchun X, Hoising-

Feng-Ge Wang et al

ton D, 2004. Molecular characterization of Asian maize inbred lines by multiple laboratories. Theor Appl Genet 109: 80-91

- Hamblin MT, Warburton ML, Buckler ES, 2007. Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. Plos One 12: e1367
- Hartings H, Berardo N, Mazzinelli GF, Valoti P, Verderio A, Motto M, 2008. Assessment of genetic diversity and relationships among maize (*Zea mays* L.) Italian landraces by morphological traits and AFLP profiling. Theor Appl Genet 117: 831-842
- Jones E, Chu WC, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, Mcmullen MD, Bezawada C, Warren J, Babayev J, Basu S, Smith S, 2009. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (*Zea mays* L.) germplasm. Mol. Breeding 24: 165-176
- Kahler AL, Kahler JL, Thompson SA, Ferriss RS, Jones ES, Nelson BK, Mikel MA, Smith S, 2010. North American study on essential derivation in maize: II. selection and evaluation of a panel of simple sequence repeat loci. Crop Sci 50: 486-503
- Khampila J, Lertrat K, Saksirirat W, Sanitchon J, Muangsan N, Theerakuplisut P, 2008. Identification of RAPD and SCAR markers linked to northern leaf blight resistance in waxy corn (*Zea mays* var. *ceratina*). Euphytica 164: 615-625
- Kirst M, Cordeiro M, Rezende GDSP, Grattapaglla D, 2005. Power of microsatellite markers for fingerprinting and parentage analysis in *Eucalyptus grandis* Breeding populations. J Hered 96: 161-166
- Li Y, 1998. Development and germplasm based of maize hybrids in China. Maydica 43: 259-269
- Li GY, Dreisigacker S, Warburton ML, Xia XC, He ZH, Sun QX, 2006. Development of a fingerprinting database and assembling and SSR reference kit for genetic diversity analysis of wheat. Acta Agronomica Sinica 32: 1771-1778
- Liu K, Muse SV, 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21: 2128-2129
- Lu H, Bernardo R, 2001. Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103: 613-617
- Macaulay M, Ramsay L, Powell W, Waugh R, 2001. A representative, highly informative 'genotyping set' of barley SSRs. Theor Appl Genet 102: 801-809.
- Mikel M.A., 2006 Availability and analysis of proprietary dent corn inbred lines with expired U.S. plant variety protection. Crop Sci. 46: 2555-2560
- Mikel MA, Dudley JW, 2006. Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46: 1193-1205

Nandakumar N, Singh AK, Sharma PK, Mohapatra

T, Prabhu KV, Zaman FU, 2004. Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seed in rice using microsatellite markers. Euphytica 136: 257-264

- Pozar G, Butruille D, Silva HD, Mccuddin ZP, Penna JCV, 2009. Mapping and validation of quantitative trait loci for resistance to *Cercospora zeaemaydis* infection in tropical maize (*Zea mays* L.). Theor Appl Genet 118: 553-564
- Raymond M, Rousset F, 1995. GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86: 248-249
- Reid A, 2004. Creation of an SSR database for potato varieties on the UK national list. Document for UPOV Working group on biochemical and molecular techniques and DNA-profiling in particular (BMT-TWA/Potato/1/4)
- Rŏder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal MW, 2002. Construction and analysis of a microsatellitebased database of European wheat varieties. Theor Appl Genet 106: 67-73
- Rogers JS, 1972. Measures of genetic similarity and genetic distance. In: Studies in genetics VII. University of Texas Publication 7213, Austin
- Sharopova N, Mcmullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr, 2002. Development and mapping of SSR markers for maize. Plant Mol Biol 48: 463-481
- Tessier C, David J, This P, Boursiquot JM, Charrier A, 1999. Optimization of the choice of molecular markers for varietal identification in *Vitis vinifera* L. Theor Appl Genet 98: 171-177
- UPOV (International Union for the Protection of New Varieties of Plants), 2007. Guidelines for DNAprofiling: molecular marker selection and database construction ("BMT guidelines"). UPOV, Geneva, Switzerland
- UPOV (International Union for the Protection of New Varieties of Plants), 2010. Guidelines for DNAprofiling: molecular marker selection and database construction ("BMT guidelines"). UPOV, Geneva, Switzerland
- Varshney RK, Thiel T, Sretenovic-Rajicic T, Baum M, Valkoun J, Guo P, Grando S, Ceccarelli S, Graner A, 2008. Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Mol Breeding 22: 1-13
- Wang FG, Zhao JR, Dai JR, Yi HM, Kuang M, Sun YM, Yu XY, Guo JL, Wang L, 2007. Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high

throughput automated genotyping in maize. Chinese Sci Bull 52: 215-223

Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y, 2007. Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica 52: 81-194