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Abstract - The increasing availability of remote sensing data at no or low costs can be used as ancillary data in order to spatialize 
and improve the estimation of forest attributes and without increasing the sampling effort and costs. In this review paper, a descrip-
tion of the main statistical inferential techniques for approaching forest mapping is proposed. This article reviews the most used 
forest mapping methods based on the sole spatial information as well as techniques exploiting auxiliary information from remotely 
sensed data. The advantages and drawbacks of each method have been described on the basis of several factors, such as the 
aims of the investigation and the area under examination. Two main groups were here discussed with model-based methods on one 
side and model-assisted methods on the other, moving the attention from the model used to interpolate surfaces to the sampling 
scheme. Model-based methods include kriging, locally weighted regression, K-NN, decision trees and neural networks, while the 
inverse distance weighting interpolator is presented in the model-assisted group.
Reliable and up-to-date information on forest characteristics are mandatory tools for any decisional process. The main input data of 
such systems are wall-to-wall maps depicting the spatial structures of forests and additional elements. Actually, if the original aim of 
forest inventories was to estimate harvestable timber amounts, a general interest towards multipurpose surveys is mandatory. Such 
information must deal with increased costs and more time-consuming procedures.

Keywords - spatial interpolation; forest inventories; model-based inference; design-based inference; remote sensing; wall-to-wall 
forest attributes

Introduction 

Forests are essential for life on the Earth and lots 
of  human activities directly benefit from forest ser-
vices, including timber, energy and non-woody for-
est products (Holmgren and Persson 2002, Corona 
2016). Forests occupy a central role in a wide range 
of environmental issues related to biodiversity con-
servation, water regulation and soil protection, mit-
igation of climate change impacts and the provision 
of many ecosystem services (e.g. Holmgren and 
Persson 2002, Köhl et al. 2006, Maselli et al. 2005).

Forest management and assessment are relevant 
for forest industry and environmental stakehold-
ers (McRoberts and Tomppo 2007), representing 
the main requirements for compliance of interna-
tional agreements such as the FAO Global Forest 
Resource Assessment (FRA), the United Nations 
Convention on Biological Diversity (CBD) and the 
Kyoto protocol (e.g. McRoberts and Tomppo 2007). 
At the same time, forest management decisions 
must rely on objective, reliable and geo-referenced 
information (Corona et al. 2011), as that provided 

by forest inventories and remote sensing techniques 
(Köhl et al. 2006). Forest inventory should allow for 
statistically-sound estimation of forest attributes in 
a given area (Corona 2010). Sampling procedures 
for large-scale forest inventories, such as National 
Forest Inventories (NFI), were pioneered in the 20th 
century in North America and Scandinavia (Coro-
na 2000) with the main aim to estimate harvestable 
timber amount across a determined forest stand. 
Sweden, for instance, had its first NFI in 1923, when 
the country feared the beginning of a wood shortage 
(Holmgren and Persson 2002). Gradually, the inter-
est around NFI estimation changed and the aims 
moved towards multipurpose surveys (Lund 1998, 
Corona et al. 2002). In this transformation, variables 
not directly related to timber assessment and com-
munities constituted by non-traditional objects (e.g. 
urban forests, woodlots and tree rows) were includ-
ed within targeted ones (Kleinn 2002). However, an 
expected drawback of multipurpose forest invento-
ries is the increase in costs and time, unavoidable 
when working with an increasing number of vari-
ables (McRoberts and Tomppo 2007). Fortunately, 
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the increasing availability of remote sensing tools, 
techniques and information, i.e. data acquired from 
satellites and aircraft-based sensors (Schowengerdt 
2006) at no or low costs, can be used as ancillary 
data to spatialize and improve the estimation of 
forest attributes, without increasing the sampling 
effort and costs (e.g. Opsomer et al. 2007, Mattioli 
et al. 2012).

A further step in the scenario of enlarging NFI 
goals is to perform spatially-explicit estimation in 
order to generate forest maps for geographically 

depicting forest resource location (McRoberts and 
Tomppo 2007, Corona 2010). Moreover, intertwining 
forest inventorying and mapping has the advantage 
of using the resulting map to achieve a better strat-
ification of the area, as to improve future inventory 
estimates. 

The purpose of this review article is to summa-
rize the main statistical methods of forest mapping 
in accordance with the scheme reported in Figure 
1. The existing literature devoted to model-based 
methods is reviewed in Section 2, while literature 
devoted to model-assisted methods is reviewed in 
Section 3. The review considers both techniques 
based on the sole spatial information as well as 
techniques exploiting auxiliary information from 
remotely sensed data. Finally, Section 4 contains 
discussion and remarks.

Throughout the paper, 
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estimate non-sampled values without any assump-
tions. In opposition to the design-based approach 
(e.g. Särndal et al. 1992, Thompson 2002, Gregoire 
and Valentine 2008, for details on the differenc-
es between model-based and design-based infer-
ence), model-based inference views the surface  
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metric and non-parametric. Contrary to parametric 
methods, non-parametric approaches do not require 
to fully specify the distribution of the survey varia-
bles; a mixed approach using fully specified distri-
butions subsequently corrected by data-driven pro-
cedures is referred to as semi-parametric. 

Due to the vastness of model-based methodolo-
gies adopted for mapping, only few methods, cho-
sen on the basis of their popularity in forest studies, 
are presented in detail in the following paragraphs. 
The selected methods (see Fig. 1) include kriging 
and its variations (Section 2.1) as parametric meth-
ods, locally weighted regression (Section 2.2) as a 
semi-parametric method and nearest neighbour 
techniques (Section 2.3), decision trees (Section 
2.4) and artificial neural networks (Section 2.5) as 
non-parametric methods. 

2.1 Kriging
In geostatistics, kriging denotes a set of proce-

dures for spatial prediction, i.e. the estimation of the 
value of the interest variable at non-sampled loca-
tions. Matheron (1963) named the method after the 
proposal of the mining engineer Danie Gerhardus 
Krige, even though the formulation of spatial predic-
tion did not come from Krige’s work (Cressie 1993). 

Kriging is “a minimum-mean-squared error meth-
od of spatial prediction” (Cressie 1993, p. 106) pre-
dicting the value of the interest variable at non-sam-
pled locations as linear combinations of the values 
collected at the sampled locations. However, it 
should be noticed that, even though kriging is a line-
ar predictor (e.g. Journel and Huijbregts 1978, Krige 
1978, Papritz and Stein 1999), nonlinear spatial pre-
diction methods are now part of the “kriging family” 

(Cressie 1990) as well. Methods of this family are 
summarized by Schabenberger and Pierce (2002). 
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0ŷ  
is the best linear unbiased predictor (BLUP). It is 
important to point out that the semi-variogram is 
usually unknown and it needs to be estimated from 
the sample data, using several techniques, such 
as ordinary least squares or maximum likelihood. 
For a complete overview of these methods refer to 
Schabenberger and Gotway (2005).

This technique is rarely used in forest mapping. 
Forest inventory data rarely show a “pure” spatial 
autocorrelation trend. Some comparisons were just 
performed in literature and with the aim of testing 
the performance of different methods. A valuable 
example is shown by Freeman and Moisen (2006) 
who used the ordinary kriging with the aim of im-
proving the point prediction accuracy of the na-
tionwide forest biomass map; in this case, kriging 
was tested in conjunction with the existing map, 
developed with nonparametric functions: the main 
finding was that neither the field biomass nor the re-
sidual biomass are proved to be good candidates for 
ordinary kriging. Biondi et al. (1994) tested the use 
of variogram analysis to derive indicators on spatial 
structure of monitoring plots; however, this work 
can’t be included among the “statistical mapping 
papers” given the aim of characterising the spatial 
structure of the forest and not the production of 
wall-to-wall maps.



Di Biase Rosa Maria1, Fattorini Lorenzo2, Marchi Maurizio3

Statistical inferential techniques for approaching forest mapping. A review of methods

Annals of Silvicultural Research - 42 (2), 2018: 46-58
49

2.1.2 Universal kriging 
Universal kriging can be considered as a gen-

eralization of the ordinary kriging (Matheron 1969, 
Huijbregts and Matheron 1971). The main relevant 
feature of this method is that the mean is “driven” 
by an ancillary data available for the whole study re-
gion and in addition to the sampled locations. In this 
sense, this technique can be used supposing that ex-
pectations are not constant, but they are linear com-
binations of 

 

called semi-variogram. From the assumption of intrinsic stationarity,    y   p p , 

where   : D p p  is a zero-mean intrinsically stationary process with semi-variogram

 .  

The ordinary kriging predictor can be expressed as 0 0
1

ˆ
n

i i
i

y y


 , where the weights 0i  

sum to 1 in order to ensure model-based unbiasedness of the predictor and are derived 

from the Lagrange multiplier method (Cressie 1993) in order to minimize the model-

based mean squared error. Therefore, is the best linear unbiased predictor (BLUP). It 

is important to point out that the semi-variogram is usually unknown and it needs to be 

estimated from the sample data, using several techniques, such as ordinary least squares 

or maximum likelihood. For a complete overview of these methods refer to 

Schabenberger and Gotway (2005). 

This technique is rarely used in forest mapping. Forest inventory data rarely show a 

“pure” spatial autocorrelation trend. Some comparisons were just performed in literature 

and with the aim of testing the performance of different methods. A valuable example is 

shown by Freeman and Moisen (2006) who used the ordinary kriging with the aim of 

improving the point prediction accuracy of the nationwide forest biomass map; in this 

case, kriging was tested in conjunction with the existing map, developed with 

nonparametric functions: the main finding was that neither the field biomass nor the 

residual biomass are proved to be good candidates for ordinary kriging. Biondi et al. 

(1994) tested the use of variogram analysis to derive indicators on spatial structure of 

monitoring plots; however, this work can’t be included among the “statistical mapping 

papers” given the aim of characterising the spatial structure of the forest and not the 

production of wall-to-wall maps. 

 

2.1.2 Universal kriging  

Universal kriging can be considered as a generalization of the ordinary kriging (Matheron 

1969, Huijbregts and Matheron 1971). The main relevant feature of this method is that 

the mean is “driven” by an ancillary data available for the whole study region and in 

addition to the sampled locations. In this sense, this technique can be used supposing that 

expectations are not constant, but they are linear combinations of 1k   functions of 

0ŷ
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unbiasedness. It is worth noting that for 0k  , universal kriging reduces to ordinary 

kriging. Also, when universal kriging is adopted, the semi-variogram is usually unknown 

and needs to be estimated from the sample data. For instance, Lochhead et al. (2018) 

recently tested this technique to provide spatial, wall-to-wall information on forest-

attributes in order to support management strategies. Main findings of the work were that 

while fair estimations were found with nonparametric methods (nearest neighbours with 

k ≤ 2) the universal kriging was very accurate but computationally more difficult if 

implemented for a macroscale. Another example is provided by Mandallaz (2000), where 

universal kriging was tested to compare design-based and kriging techniques for the 

estimation of spatial averages in the context of double sampling, as used in forest 

inventory; the Author concluded that geostatistical techniques are useful in the context of 

two-phase two-stage forest inventory, primarily for local estimation, where they are 

superior to the classical design-based techniques. 
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rope was performed. In this paper, the ICP-Forests 
Level I plots were extended with the NFI plot data 
of eighteen countries. A soil map, a biogeographical 
map and bioindicators derived from temperature 
and precipitation data were used as predictors and 
estimated overall accuracy was 43%. Moreover, in 
areas with NFI plot data, overall accuracy was high-
er and around 57%. Once again, this gain was mainly 
attributable to the much denser plot data, less to the 
prediction method.

2.1.4 Cokriging
Cokriging methods constitute alternative meth-

odologies to regression kriging for exploiting aux-
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et al. 2014). 

This technique has been successfully tested by Hudak et al. (2002) in comparison with 

regressive models and other kriging versions: according to their results, this methods 

produced less biased results than regression but poorly reproduced vegetation patterns, 

especially at the sparser (2000 and 1000 m) sampling frequencies. Cokriging, using the 

Landsat panchromatic band as ancillary variable, produced slightly more accurate 

predictions than ordinary kriging. Cokriging was also successfully used to map the spatial 

variability of plant diversity. Hernandez Stefanoni and Ponce-Hernandez (2005) mapped 

the number of species, the exponent Shannon and the reciprocal Simpson indices from 

141 sites sampled in a tropical forest. Several spatial interpolation techniques were 

compared and used to prepare a map of plant diversity. Results were quite unsatisfactory 

for cokriging. Indeed, this method performed among the poorest interpolators due to the 
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large span causes an over-smoothed function that may not fit the data well. On the other 

hand, a too small span produces prediction affected by much noise (Corona et al. 2014). 

According to forest literature, this technique has been often used to study spatial trends 

or to derive insights on single tree growth trends. For example, Wang et al. (2005) 

successfully implemented this technique to obtain a net primary production regression 

model and including spatial non-stationary in the parameters estimated for forest co-

i

2

 that is 
supposed to generate the data. As usual, 

 

poor correlation between the plant diversity variables and vegetation indices computed 

by remote sensing data. 

 

2.2 Locally weighted regression 

Locally weighted regression (LWR) or geographically weighted regression (GWR), often 

referred to as loess model, was introduced by Cleveland and Davlin (1988). This 

algorithm is based on the semiparametric model  i i iy g  x  that is supposed to 

generate the data. As usual, s are supposed to be independent normal variables with 

mean zero and variance , while g is a smooth function of the covariates. Following a 

notation akin to Corona et al. (2014), for any unsampled location, locally weighted 

regression provides a prediction  0 0ˆ ˆy g x  achieved exploiting a neighbourhood set 0Q  

of  1 m n   sampled locations whose vectors of auxiliary variables are closest to 0x . 

Each point in 0Q  is weighted accordingly to its distance from 0x , in such a way that 

closer points have higher weights. Successively, these weights are used in a weighted 

least squares regression for fitting a linear function of the covariates of type T
0y β x , in 

such a way that the locally weighted regression predictor is T
0 0 0
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large span causes an over-smoothed function that may not fit the data well. On the other 

hand, a too small span produces prediction affected by much noise (Corona et al. 2014). 

According to forest literature, this technique has been often used to study spatial trends 

or to derive insights on single tree growth trends. For example, Wang et al. (2005) 

successfully implemented this technique to obtain a net primary production regression 

model and including spatial non-stationary in the parameters estimated for forest co-

i

2

 , in such a way that closer points have high-
er weights. Successively, these weights are used in a 
weighted least squares regression for fitting a linear 
function of the covariates of type 

 

poor correlation between the plant diversity variables and vegetation indices computed 

by remote sensing data. 

 

2.2 Locally weighted regression 

Locally weighted regression (LWR) or geographically weighted regression (GWR), often 

referred to as loess model, was introduced by Cleveland and Davlin (1988). This 

algorithm is based on the semiparametric model  i i iy g  x  that is supposed to 

generate the data. As usual, s are supposed to be independent normal variables with 

mean zero and variance , while g is a smooth function of the covariates. Following a 

notation akin to Corona et al. (2014), for any unsampled location, locally weighted 

regression provides a prediction  0 0ˆ ˆy g x  achieved exploiting a neighbourhood set 0Q  

of  1 m n   sampled locations whose vectors of auxiliary variables are closest to 0x . 

Each point in 0Q  is weighted accordingly to its distance from 0x , in such a way that 

closer points have higher weights. Successively, these weights are used in a weighted 

least squares regression for fitting a linear function of the covariates of type T
0y β x , in 

such a way that the locally weighted regression predictor is T
0 0 0
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technique to obtain a net primary production re-
gression model and including spatial non-stationary 
in the parameters estimated for forest co-systems in 
China. Elevation and climatic variables were includ-
ed as covariates and in addition to the time-integrat-
ed normalized difference vegetation index and this 
technique successfully overcame the more classic 
least squares regression. Zhang and Shi (2004) in-
vestigated the spatial heterogeneity of multivariate 
relationships between tree growth and diameter at 
breast height. The Authors attempted to capture 
spatial variation by calibrating a multiple regression 
model fitted at each tree in a sample plot, weight-
ing all neighboring trees by a function of distance 
from the subject tree. Similarly, Subedi et al. (2017) 
applied a Bayesian approach to GWR to model the 
relationship between tree crown and diameter at 
breast height. Observed tree data and simulated 
data were used to investigate model fitting and per-
formance in order to overcome some limitations of 
GWR. Also in this case, model fitting was used as 
diagnostic tool to map spatial heterogeneity across 
a study plot. Chave et al. (2005) worked to convert 
inventory data into an estimate of aboveground bi-
omass in tropical forests. Finally, drivers of forest 
transition in a province of Northern Vietnam be-
tween 1993 and 2000 were studied by Clement et al. 
(2009) by GWR of remotely sensed and field data. 
This technique has been used more to map the spa-
tial variation of a target variable across a study area 
more than derive interpolated surfaces (i.e. the spa-
tial distribution of basal area).

2.3 Nearest neighbour techniques
To account for spatial heterogeneity, non-para-

metric models have been proposed as an alternative 
to the parametric prediction provided by universal 
and regression kriging. Among non-parametric ap-
proaches, the popularity of nearest neighbour (NN) 
techniques has quickly increased among research-
ers, especially in forest applications (McRoberts et 
al. 2010b, Baffetta et al. 2012, Mattioli et al. 2012). 
NN techniques were first introduced by Fix and 
Hodges (1951) and then applied in forest invento-
ries for the first time in the Finnish NFI (Tomppo 
1991). This pioneering work contributed to the in-
creasing success of the NN techniques in the inven-
tory framework (e.g. Gjertsenet al. 1999,Katila and 
Tomppo 2001,Chirici et al. 2008).

In practice, NN methods predict unsampled val-
ues using a linear combination of observations that 
are nearest or most similar to the location to be pre-
dicted in the space of the auxiliary variables. Main 
advantages of NN methodologies include: i) predic-
tion in both univariate and multivariate cases and ii) 
no assumptions on the distribution of the variables 

(McRoberts et al. 2010a).
2.3.1 k-NN
The most general NN technique is the k-NN meth-

od that includes most NN techniques adopted in for-
est studies (McRoberts 2012). Consider a distance 
metric, such as Euclidean distance or Mahalanobis 
distance, in the space of the auxiliary variables. 
Then, adopting a notation similar to Baffetta et al. 
(2009), for any unsampled location 
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0,1,2t  , but no studies have compared the effects of different values of t (McRoberts 

2012). Regarding the number of neighbours, usually a small k is preferred. However, as 

McRoberts (2012) points out, other criteria may be more suitable and multiple 

optimization criteria are possible as well. It is worth noting that there are no theoretical 

studies on the model-based properties of k-NN (Corona et al. 2014). The unique 

theoretical attempt is due to McRoberts et al. (2007) but involve severe, restrictive 

assumptions, e.g. the realizations of the interest variable Y are random variables with the 

same expectation and variance and their covariances have a parametric structure (Corona 

et al. 2014). 

k-NN is probably the most used technique in forest mapping from NFI plots (McRoberts 

and Tomppo 2007). Franco-Lopez et al. (2001) tested several k-NN setups and including: 

distance metric, weighting function, feature weighting parameters and number of 

neighbours. Ancillary information and image enhancement techniques were also tested 

and the Euclidean distance, a three date 18-band composite image, and feature weighting 

parameters were the best options to build maps of basal area, volume, and cover type. The 

, 
but no studies have compared the effects of different 
values of t (McRoberts 2012). Regarding the number 
of neighbours, usually a small k is preferred. How-
ever, as McRoberts (2012) points out, other criteria 
may be more suitable and multiple optimization 
criteria are possible as well. It is worth noting that 
there are no theoretical studies on the model-based 
properties of k-NN (Corona et al. 2014). The unique 
theoretical attempt is due to McRoberts et al. (2007) 
but involve severe, restrictive assumptions, e.g. the 
realizations of the interest variable Y are random 
variables with the same expectation and variance 
and their covariances have a parametric structure 
(Corona et al. 2014).

k-NN is probably the most used technique in for-
est mapping from NFI plots (McRoberts and Tomp-
po 2007). Franco-Lopez et al. (2001) tested several 
k-NN setups and including: distance metric, weight-
ing function, feature weighting parameters and num-
ber of neighbours. Ancillary information and image 
enhancement techniques were also tested and the 
Euclidean distance, a three date 18-band composite 
image, and feature weighting parameters were the 
best options to build maps of basal area, volume, 
and cover type. The Authors addressed the simplic-
ity of this method and its role in post stratification. 
Forest variables were also investigated by Reese et 
al. (2003) in Sweden where k-NN was used to pro-
vide a synoptic coverage using a consistent method 
and data source over all of Sweden. Ohmann et al. 
(2011) investigated the use of k-NN to map gradi-
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ents of community composition. Main findings were 
that community composition gradients were strong-
ly associated with climate and elevation, and less so 
with topography and soil.

2.3.2 MSN &GNN
Most similar neighbour (MSN) (Moeur and 

Stage 1995) and gradient nearest neighbour (GNN) 
(Ohmann and Gregory 2002) are two variations of 
the k-NN technique, both using a single neighbour, 
i.e. 

 

Authors addressed the simplicity of this method and its role in post stratification. Forest 

variables were also investigated by Reese et al. (2003) in Sweden where k-NN was used 

to provide a synoptic coverage using a consistent method and data source over all of 

Sweden. Ohmann et al. (2011) investigated the use of k-NN to map gradients of 

community composition. Main findings were that community composition gradients were 

strongly associated with climate and elevation, and less so with topography and soil. 

 

2.3.2 MSN &GNN 

Most similar neighbour (MSN) (Moeur and Stage 1995) and gradient nearest neighbour 

(GNN) (Ohmann and Gregory 2002) are two variations of the k-NN technique, both using 

a single neighbour, i.e. 1k  , to impute the value of the interest variable at an unsampled 

location. 

With MSN, the most similar neighbour is chosen based on a similarity function, which is 

derived from canonical correlation analysis (Hotelling 1936). On the other hand, the GNN 

procedure models the relationship between the survey and the auxiliary variables with 

direct gradient analysis (Gauch 1982) using stepwise canonical correspondence analysis 

(CCA) (terBraak 1986). Moeur and Stage (1995) used MSN to model ecosystem 

functioning for landscape design. Actually, the Authors worked in a different way, simply 

choosing the most similar plot from the whole dataset instead of estimating design 

attributes element-by-element in a traditional sense for each first-phase observation. In 

this particular case, the canonical correlation analysis was used to derive a similarity 

function for this procedure a MSN inference. 

 

2.4 Decision trees 

A decision tree is a non-parametric method for discriminating among classes of objects 

(Carbonell et al. 1983). In practice, decision trees recursively partition the space of 

auxiliary variables into classes, which are determined from the sampled values 

(McRoberts et al. 2010b). 

Decision trees are widely used for prediction of forest attributes (e.g. Helmer et al. 2010) 

because they can accommodate non-linear responses, continuous and categorical 

auxiliary variables, missing data and collinear variables (Urban 2002,Brosofske et al. 

2014). Furthermore, their graphic representation can be easily interpreted, even for 

, to impute the value of the interest variable 
at an unsampled location.

With MSN, the most similar neighbour is chosen 
based on a similarity function, which is derived from 
canonical correlation analysis (Hotelling 1936). On 
the other hand, the GNN procedure models the re-
lationship between the survey and the auxiliary var-
iables with direct gradient analysis (Gauch 1982) 
using stepwise canonical correspondence analysis 
(CCA) (terBraak 1986). Moeur and Stage (1995) 
used MSN to model ecosystem functioning for land-
scape design. Actually, the Authors worked in a dif-
ferent way, simply choosing the most similar plot 
from the whole dataset instead of estimating design 
attributes element-by-element in a traditional sense 
for each first-phase observation. In this particular 
case, the canonical correlation analysis was used 
to derive a similarity function for this procedure a 
MSN inference.

2.4 Decision trees
A decision tree is a non-parametric method for 

discriminating among classes of objects (Carbonell 
et al. 1983). In practice, decision trees recursively 
partition the space of auxiliary variables into class-
es, which are determined from the sampled values 
(McRoberts et al. 2010b).

Decision trees are widely used for prediction of 
forest attributes (e.g. Helmer et al. 2010) because 
they can accommodate non-linear responses, con-
tinuous and categorical auxiliary variables, missing 
data and collinear variables (Urban 2002, Brosofske 
et al. 2014). Furthermore, their graphic representa-
tion can be easily interpreted, even for complex cas-
es (Young et al. 2009). A shortcoming of this group 
of algorithms is that the procedure is not completely 
known and they are generally described as a “black 
box” where input and output data are known but 
nothing is given about the actual structure of the 
calculation process.

2.4.1 CART
Classification and Regression trees (CARTs) 

(Breimanet al. 1984) are single decision tree models 
predicting categorical (classification tree) or contin-

uous (regression tree) variables. The most impor-
tant steps in building a CART are splitting, stopping 
and pruning (Song and Lu 2015). 

The splitting rule allows for the partition of the 
observations into two nodes, with the observations 
going into the left child-node only if the splitting 
condition is true. The splitting conditions are de-
termined by the most important auxiliary variables, 
chosen accordingly to some characteristics related 
to the degree of “purity” of the resulting child-node 
(Song and Lu 2015). For CARTs, this degree of pu-
rity is measured via the Gini index and the twoing 
criteria (Breimanet al. 1984). Other decision tree 
methods using different criteria are reported in the 
table by Song and Lu (2015). 

The splitting procedure ends when the stopping 
criteria (e.g. minimum number of observations in an 
end node and maximum number of steps) are met. 
Those should prevent the data to be overfitted, i.e. 
the criteria become so complex that the number of 
observations in the end nodes is insufficient for a 
reliable prediction. 

An alternative to the stopping rule is the pruning 
procedure, which consists in growing a large tree 
and then pruning, i.e. removing, the nodes provid-
ing few information (Hastie et al. 2009). Alongside 
this kind of pruning, referred to as post-pruning, is 
pre-pruning, which prevents the creation of non-sig-
nificant branches.

An interesting case study was provided by Tor-
resan et al. (2016) where metrics extracted from an 
airborne LiDAR sensor could be exploited to predict 
different forest structure types by means of classi-
fication trees: while the model has provided mod-
erately satisfactory results in term of classification 
performance, Authors foresee substantial room for 
improvement by multi- or hyperspectral imaging 
that allow detailed characterization of the spectral 
behaviour of the forest structure types.

2.4.2 Random forest
Among the methods based on the construction 

of a multitude of decision trees, usually referred to 
as ensemble classifiers, random forest (Breiman 
2001) is probably the most used. The random forest 
algorithm (RF) uses unpruned CARTs constructed 
from bootstrap samples, while a random set of aux-
iliary variables determines the splitting rules at each 
node of a tree (McInerney and Nieuwenhuis 2009). 
It should be noted that unpruned, fully grown trees 
reduce the chances of overly fitted trees (Breiman 
2001), whereas the random set of auxiliary varia-
bles used for each tree decreases the correlation 
between trees (Brosofske et al. 2014). Each ful-
ly-grown tree is used to predict the out-of-bag data, 
i.e. the data not in the bootstrap sample. 
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Other decision tree methodologies, such as 
bagging (or bootstrap aggregation, Breiman 1996) 
and boosting (Schapire et al. 1998), are not consid-
ered in this review because they are not common 
in forest applications (Brosofske et al. 2014). Fur-
thermore, random forest produces similar or better 
results than those achieved with these techniques. 
Indeed, Breiman (2001) demonstrated that ran-
dom forest is as accurate as AdaBoost, which is a 
boosting technique introduced by Freund and Sha-
pire (1996), faster that bagging and less sensitive to 
noise than other boosting techniques (Schapire et 
al. 1998). Random Forest was successfully used by 
Hudak et al. (2008) comparing several approaches 
for imputing the basal area and tree density aggre-
gated at the plot-scale and species-level. Topograph-
ic variables and canopy structure were used as pre-
dictors and derived from discrete-return airborne 
LiDAR data. Main findings were that RF produced 
the best results overall, especially after reducing the 
number of response variables to the most important 
species in each RF demonstrated to be very suitable 
and flexible to predict canopy structure and topo-
graphic metrics derived from LiDAR surveys can be 
very useful for species-level imputation (Chirici et 
al. 2013).

2.5 Artificial neural networks
Artificial neural networks (ANNs) are prediction 

techniques inspired by the biological neural network 
of animal brains and its processing information sys-
tem (McRoberts et al. 2010b). The first attempt of 
ANN was indeed a simple model to explain how 
neurons in the brain might work (McCulloch and 
Pitts 1943). ANNs are particularly useful for com-
plex and non-linear problems (Ingram et al. 2005).

Typically, an ANN is formed by a collection of 
single processing units, the so-called artificial neu-
rons, linked by the neural structure, i.e. an assem-
blage of weighted connections (Agatonovic-Kustrin 
and Beresford 2000), and a learning rule (Baret 
1995). An ANN gathers its knowledge by detecting 
patterns and relationships in the training data. This 
means that an ANN learn, or is trained, through 
experience with appropriate learning exemplars 
(Agatonovic-Kustrin and Beresford 2000), in a way 
similar to human brains. As learning proceeds, the 
weighted connections are iteratively adjusted and 
once all patterns and relationships in the training 
data are learned, the ANN can be used to predict 
unknown values (Carvalho 2001). A valuable com-
parison between regression methods and machine 
learning techniques in forest mapping was de-
scribed by Garcia-Gutierrez et al. (2014): the Au-
thors presented a comparison between the classic 

multiple linear regression-based methodology and 
regression techniques in machine learning and in-
cluding neural networks; the main aim was to esti-
mate many variables and including single-tree stem 
biomass, crown biomass, total volume, basal area, 
dominant height, mean height at stand level. Also, 
LiDAR metrics were exploited and included in the 
model as predictors and the main findings were that 
classic multiple linear regression performed low-
er than machine learning technique. Görgens et al. 
(2015) compared the performance of three machine 
learning tools (neural network, random forest and 
support vector regression) for predicting stand vol-
ume of fast-growing forest plantations. LiDAR met-
rics were used and proven to be more effective for 
the estimation of stand volume: in this particular 
case study, the previously described random forest 
algorithm had the best RMSE compared to neural 
network.

2.5.1 Multi Layer Perceptron (MLP)
Among the several types of ANNs, Multi Layer 

Perceptron (MLP) is the most widely applied in 
remote sensing studies (Carvalho 2001). This algo-
rithm has at least three layers of artificial neurons 
that, with the exception of the input ones, are ac-
tivated by non-linear functions. It should be noted 
that too many layers may decrease the predictive 
ability (Blackard and Dean 1999). As for the learning 
rule, MLP uses the backpropagation, which is the 
best learning principle for non-linear relationships 
(Jensen et al. 1999).

Valuable examples of MLP algorithm are repre-
sented by Foody et al. (2001) and Mas et al. (2004). 
In the first paper, the biomass dynamics have been 
modelled in tropical forests of Malaysia from re-
motely sensed data. In the second example, de-
forestation processes were analysed in a GIS envi-
ronment aiming at predicting the spatial distribution 
of tropical deforestation. In this case, an MLR was 
trained in order to estimate the propensity to de-
forestation as a function of the explanatory varia-
bles and was used to develop deforestation risk as-
sessment maps. The model performance was quite 
high and able to classify correctly 69% of the grid 
cells. This study strengthened the knowledge that 
artificial neural networks and derived methods such 
as MLP have a great potential to predict land cover 
changes, mainly due to their flexibility and the pos-
sibility to develop complex, non-linear models.

3. Design-based methods
Design-based inference views the surface  

 

of Malaysia from remotely sensed data. In the second example, deforestation processes 

were analysed in a GIS environment aiming at predicting the spatial distribution of 

tropical deforestation. In this case, an MLRwas trained in order to estimate the propensity 

to deforestation as a function of the explanatory variables and was used to develop 

deforestation risk assessment maps. The model performance was quite high and able to 

classify correctly 69% of the grid cells. This study strengthened the knowledge that 

artificial neural networks and derived methods such as MLP have a great potential to 

predict land cover changes, mainly due to their flexibility and the possibility to develop 

complex, non-linear models. 

 

3. Design-based methods 

Design-based inference views the surface   :y Dp p  as fixed, therefore making no 

assumptions about the mechanism generating it and views the n sampled locations 

1, , np p  as random, being the outcome of a random selection generated by a 

probabilistic sampling scheme. As stated in Section 2, pure design-based methods cannot 

be used for constructing wall-to-wall maps, owing to the impossibility of estimating non-

sampled values without any assumptions. Specifically, from a design-based point of view, 

either a location is sampled, and then there is no need for estimation, or it is unsampled 

and then there is no information to perform a design-based estimation. Thus, as pointed 

out by Fattorini et al. (2018a), the sole way to recover information for the unsampled 

locations is to use an assisting model.  

While use of an assisting model is a widely adopted and effective way to estimate totals 

and averages of finite populations, that is not true for estimating single population values. 

Indeed, when estimating totals and averages the assisting model is used to predict each 

population value, but the total of errors performed by the model is estimated from the 

sample and then adopted to correct the total or average achieved from those predictions 

in accordance with the criterion provided by the difference estimator (Särndal et al. 1992). 

In this way, we achieve design-unbiasedness of the resulting estimators, or approximate 

unbiasedness up to the first term of approximation, as well as exact or approximate 

design-based variance expressions and suitable variance estimators, as happens for the 

well-known generalized regression and ratio estimators. On the other hand, when 

estimating the value at a single location, there is no way to correct the error invariably 

as fixed, therefore making no as-
sumptions about the mechanism generating it and 
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views the n sampled locations 
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were analysed in a GIS environment aiming at predicting the spatial distribution of 

tropical deforestation. In this case, an MLRwas trained in order to estimate the propensity 

to deforestation as a function of the explanatory variables and was used to develop 

deforestation risk assessment maps. The model performance was quite high and able to 

classify correctly 69% of the grid cells. This study strengthened the knowledge that 

artificial neural networks and derived methods such as MLP have a great potential to 

predict land cover changes, mainly due to their flexibility and the possibility to develop 

complex, non-linear models. 

 

3. Design-based methods 

Design-based inference views the surface   :y Dp p  as fixed, therefore making no 

assumptions about the mechanism generating it and views the n sampled locations 

1, , np p  as random, being the outcome of a random selection generated by a 

probabilistic sampling scheme. As stated in Section 2, pure design-based methods cannot 

be used for constructing wall-to-wall maps, owing to the impossibility of estimating non-

sampled values without any assumptions. Specifically, from a design-based point of view, 

either a location is sampled, and then there is no need for estimation, or it is unsampled 

and then there is no information to perform a design-based estimation. Thus, as pointed 

out by Fattorini et al. (2018a), the sole way to recover information for the unsampled 

locations is to use an assisting model.  

While use of an assisting model is a widely adopted and effective way to estimate totals 

and averages of finite populations, that is not true for estimating single population values. 

Indeed, when estimating totals and averages the assisting model is used to predict each 

population value, but the total of errors performed by the model is estimated from the 

sample and then adopted to correct the total or average achieved from those predictions 

in accordance with the criterion provided by the difference estimator (Särndal et al. 1992). 

In this way, we achieve design-unbiasedness of the resulting estimators, or approximate 

unbiasedness up to the first term of approximation, as well as exact or approximate 

design-based variance expressions and suitable variance estimators, as happens for the 

well-known generalized regression and ratio estimators. On the other hand, when 

estimating the value at a single location, there is no way to correct the error invariably 

  as ran-
dom, being the outcome of a random selection gen-
erated by a probabilistic sampling scheme. As stated 
in Section 2, pure design-based methods cannot be 
used for constructing wall-to-wall maps, owing to 
the impossibility of estimating non-sampled values 
without any assumptions. Specifically, from a de-
sign-based point of view, either a location is sam-
pled, and then there is no need for estimation, or 
it is unsampled and then there is no information to 
perform a design-based estimation. Thus, as pointed 
out by Fattorini et al. (2018a), the sole way to recov-
er information for the unsampled locations is to use 
an assisting model. 

While use of an assisting model is a widely 
adopted and effective way to estimate totals and 
averages of finite populations, that is not true for 
estimating single population values. Indeed, when 
estimating totals and averages the assisting model is 
used to predict each population value, but the total 
of errors performed by the model is estimated from 
the sample and then adopted to correct the total 
or average achieved from those predictions in ac-
cordance with the criterion provided by the differ-
ence estimator (Särndal et al. 1992). In this way, we 
achieve design-unbiasedness of the resulting esti-
mators, or approximate unbiasedness up to the first 
term of approximation, as well as exact or approx-
imate design-based variance expressions and suit-
able variance estimators, as happens for the well-
known generalized regression and ratio estimators. 
On the other hand, when estimating the value at a 
single location, there is no way to correct the error 
invariably provided by the model prediction. Thus, 
any model-assisted estimator at a single location 
and the subsequent map are destined to be design 
biased. Accordingly, as pointed out by Fattorini et 
al. (2018a), any map arising from a model-assisted 
criterion can achieve statistical soundness only if it 
is proven to be design-based asymptotically unbi-
ased and consistent (DBAU&C). These issues have 
precluded the use of model-assisted inference in 
forest mapping. 

A recent work (Fattorini et al. 2018b) deals with 
the condition ensuring DBAU&C for model-assisted 
maps achieved by using an inverse distance weight-
ing (IDW) interpolator (Shepard 1968) to estimate 
unsampled locations. The assisting model, i.e. the 
criterion leading to the IDW interpolator, is the sim-
ple Tobler’s first law of geography (Tobler 1970), 
asserting that a spatial location is more similar to 
the nearby locations than to those further apart. In 
accordance with this principle, the prediction of 
the interest variable at the unsampled units is ob-
tained as a weighted sum of the sampled values with 
weights decreasing with the distance to the point to 

be predicted. 
3.2 Inverse Distance Weighting interpolation
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DBAU&C of 0ŷ . These conditions concern the spatial pattern of the interest variable in 

the area, i.e. the behaviour of the surface   :y Dp p  , the sampling design adopted to 

select the n sample locations and the distance function  .  

The first condition is the continuity of the surface   :y Dp p  with discontinuities 

admitted only over regions of zero measure. The assumption is quite reasonable in many 

real situations. Indeed, surfaces usually change smoothly, well approaching the continuity 

assumption, while abrupt variations usually occur along borders delineating sudden 

  00    


d
d


0

lim

 . In this case the IDW in-

terpolator is 

 

provided by the model prediction. Thus, any model-assisted estimator at a single location 

and the subsequent map are destined to be design biased. Accordingly, as pointed out by 

Fattorini et al. (2018a), any map arising from a model-assisted criterion can achieve 

statistical soundness only if it is proven to be design-based asymptotically unbiased and 

consistent (DBAU&C). These issues have precluded the use of model-assisted inference 

in forest mapping.  

A recent work (Fattorini et al. 2018b) deals with the condition ensuring DBAU&C for 

model-assisted maps achieved by using an inverse distance weighting (IDW) interpolator 

(Shepard 1968) to estimate unsampled locations. The assisting model, i.e. the criterion 

leading to the IDW interpolator, is the simple Tobler’s first law of geography (Tobler 

1970), asserting that a spatial location is more similar to the nearby locations than to those 

further apart. In accordance with this principle, the prediction of the interest variable at 

the unsampled units is obtained as a weighted sum of the sampled values with weights 

decreasing with the distance to the point to be predicted.  

 

3.2 Inverse Distance Weighting interpolation 

Following Fattorini et al. (2018b), let 1, , np p  be n sample locations selected by means 

of a sampling scheme that induces a sampling design. The sampling design is a probability 

measure defined on the sample space, which ensures the existence of a joint probability 

density function for any n-tuple 1, , np p . In this case the IDW interpolator is 

 
 

01
0

01

ˆ
n

i ii
n

ii

y
y















p p

p p
 where  : 0,    is a non-increasing function with 

and . Fattorini et al. (2018b) determined the conditions ensuring 
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and the subsequent map are destined to be design biased. Accordingly, as pointed out by 
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further apart. In accordance with this principle, the prediction of the interest variable at 
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The first condition is the continuity of the surface   :y Dp p  with discontinuities 

admitted only over regions of zero measure. The assumption is quite reasonable in many 
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readily ensured by  for any .  

Actually, in real situations, there may be cases in which the surface shows many 

discontinuities, deteriorating the properties of the interpolator. However, Fattorini et al 

(2018b) have demonstrated the consistency of the whole map if these discontinuities 

occur for a set of zero measure.  

As a first application (Fattorini et al. 2018b), the IDW interpolator was adopted to 

estimate the coverage of holly oak in the Montagnola Senese (Central Italy). Based on 

the tessellation stratified sampling scheme previously adopted in the last Italian NFI 

(Fattorini et al. 2006), quadrats of size 10 10 m were centred at 106 inventory points and 

the percentage of plot covered by holly oak was recorded (Chiarucci et al. 2008).  

 

4. Conclusions 

Forest monitoring and assessment are rapidly evolving as new information needs arise 

and new techniques and tools become available. However, the exploitation of the latter, 

as well as their implementation within operative forest management processes, should be 

evidence-based (Corona 2018). Distinctively, the advancement of remote sensing 

imagery and statistical methods has eased the process of forest mapping, providing easily 

accessible and affordable sources of information.  

The most popular methods exploiting the sole spatial information as well as those 

requiring auxiliary variables have been here reviewed. Despite their popularity and 

numerous forest applications, few investigations about the properties of applied statistical 

methods have been conducted and there are even less comparative studies on their 

performances. For instance, McInerney and Nieuwenhuis (2009) found that k-nn is more 

  


dd
d

2

0
lim

    dd 2

 should 

satisfy 

 

changes in the area. Therefore, those borders can be assimilated by curves that satisfy the 

theoretical condition of being a set of zero measure. Regarding the sampling design, it 

should be asymptotically spatially balanced, i.e. able to spread out the sample locations, 

so that as the sample size n increases any location of the domain is likely to have nearby 

locations sampled. Fattorini et al. (2018b) proved that the most widely sampling schemes 

adopted in forest surveys, such as tessellation stratified sampling and systematic grid 

sampling (Barabesi and Franceschi 2011, Barabesi et al. 2012) ensure the required spatial 

balance. Finally, the distance function   should satisfie , that can be 

readily ensured by  for any .  

Actually, in real situations, there may be cases in which the surface shows many 

discontinuities, deteriorating the properties of the interpolator. However, Fattorini et al 

(2018b) have demonstrated the consistency of the whole map if these discontinuities 

occur for a set of zero measure.  

As a first application (Fattorini et al. 2018b), the IDW interpolator was adopted to 

estimate the coverage of holly oak in the Montagnola Senese (Central Italy). Based on 

the tessellation stratified sampling scheme previously adopted in the last Italian NFI 

(Fattorini et al. 2006), quadrats of size 10 10 m were centred at 106 inventory points and 

the percentage of plot covered by holly oak was recorded (Chiarucci et al. 2008).  

 

4. Conclusions 

Forest monitoring and assessment are rapidly evolving as new information needs arise 

and new techniques and tools become available. However, the exploitation of the latter, 

as well as their implementation within operative forest management processes, should be 

evidence-based (Corona 2018). Distinctively, the advancement of remote sensing 

imagery and statistical methods has eased the process of forest mapping, providing easily 

accessible and affordable sources of information.  

The most popular methods exploiting the sole spatial information as well as those 

requiring auxiliary variables have been here reviewed. Despite their popularity and 

numerous forest applications, few investigations about the properties of applied statistical 

methods have been conducted and there are even less comparative studies on their 

performances. For instance, McInerney and Nieuwenhuis (2009) found that k-nn is more 

  


dd
d

2

0
lim

    dd 2

, that can be readily en-

sured by 

 

changes in the area. Therefore, those borders can be assimilated by curves that satisfy the 

theoretical condition of being a set of zero measure. Regarding the sampling design, it 

should be asymptotically spatially balanced, i.e. able to spread out the sample locations, 

so that as the sample size n increases any location of the domain is likely to have nearby 

locations sampled. Fattorini et al. (2018b) proved that the most widely sampling schemes 

adopted in forest surveys, such as tessellation stratified sampling and systematic grid 

sampling (Barabesi and Franceschi 2011, Barabesi et al. 2012) ensure the required spatial 

balance. Finally, the distance function   should satisfie , that can be 

readily ensured by  for any .  

Actually, in real situations, there may be cases in which the surface shows many 

discontinuities, deteriorating the properties of the interpolator. However, Fattorini et al 

(2018b) have demonstrated the consistency of the whole map if these discontinuities 

occur for a set of zero measure.  

As a first application (Fattorini et al. 2018b), the IDW interpolator was adopted to 

estimate the coverage of holly oak in the Montagnola Senese (Central Italy). Based on 

the tessellation stratified sampling scheme previously adopted in the last Italian NFI 

(Fattorini et al. 2006), quadrats of size 10 10 m were centred at 106 inventory points and 

the percentage of plot covered by holly oak was recorded (Chiarucci et al. 2008).  

 

4. Conclusions 

Forest monitoring and assessment are rapidly evolving as new information needs arise 

and new techniques and tools become available. However, the exploitation of the latter, 

as well as their implementation within operative forest management processes, should be 

evidence-based (Corona 2018). Distinctively, the advancement of remote sensing 

imagery and statistical methods has eased the process of forest mapping, providing easily 

accessible and affordable sources of information.  

The most popular methods exploiting the sole spatial information as well as those 

requiring auxiliary variables have been here reviewed. Despite their popularity and 

numerous forest applications, few investigations about the properties of applied statistical 

methods have been conducted and there are even less comparative studies on their 

performances. For instance, McInerney and Nieuwenhuis (2009) found that k-nn is more 

  


dd
d

2

0
lim

    dd 2 for any 

 

changes in the area. Therefore, those borders can be assimilated by curves that satisfy the 

theoretical condition of being a set of zero measure. Regarding the sampling design, it 

should be asymptotically spatially balanced, i.e. able to spread out the sample locations, 

so that as the sample size n increases any location of the domain is likely to have nearby 

locations sampled. Fattorini et al. (2018b) proved that the most widely sampling schemes 

adopted in forest surveys, such as tessellation stratified sampling and systematic grid 

sampling (Barabesi and Franceschi 2011, Barabesi et al. 2012) ensure the required spatial 

balance. Finally, the distance function   should satisfie , that can be 

readily ensured by  for any .  

Actually, in real situations, there may be cases in which the surface shows many 

discontinuities, deteriorating the properties of the interpolator. However, Fattorini et al 

(2018b) have demonstrated the consistency of the whole map if these discontinuities 

occur for a set of zero measure.  

As a first application (Fattorini et al. 2018b), the IDW interpolator was adopted to 

estimate the coverage of holly oak in the Montagnola Senese (Central Italy). Based on 

the tessellation stratified sampling scheme previously adopted in the last Italian NFI 

(Fattorini et al. 2006), quadrats of size 10 10 m were centred at 106 inventory points and 

the percentage of plot covered by holly oak was recorded (Chiarucci et al. 2008).  
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Forest monitoring and assessment are rapidly evolving as new information needs arise 

and new techniques and tools become available. However, the exploitation of the latter, 

as well as their implementation within operative forest management processes, should be 

evidence-based (Corona 2018). Distinctively, the advancement of remote sensing 

imagery and statistical methods has eased the process of forest mapping, providing easily 

accessible and affordable sources of information.  

The most popular methods exploiting the sole spatial information as well as those 

requiring auxiliary variables have been here reviewed. Despite their popularity and 

numerous forest applications, few investigations about the properties of applied statistical 

methods have been conducted and there are even less comparative studies on their 

performances. For instance, McInerney and Nieuwenhuis (2009) found that k-nn is more 
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Actually, in real situations, there may be cases in 

which the surface shows many discontinuities, de-
teriorating the properties of the interpolator. How-
ever, Fattorini et al. (2018b) have demonstrated the 
consistency of the whole map if these discontinui-
ties occur for a set of zero measure. 

As a first application (Fattorini et al. 2018b), the 
IDW interpolator was adopted to estimate the cov-



Di Biase Rosa Maria1, Fattorini Lorenzo2, Marchi Maurizio3

Statistical inferential techniques for approaching forest mapping. A review of methods

Annals of Silvicultural Research - 42 (2), 2018: 46-58
55

erage of holly oak in the Montagnola Senese (Cen-
tral Italy). Based on the tessellation stratified sam-
pling scheme previously adopted in the last Italian 
NFI (Fattorini et al. 2006), quadrats of size 10x10m 
were centred at 106 inventory points and the per-
centage of plot covered by holly oak was recorded 
(Chiarucci et al. 2008). 

4. Conclusions

Forest monitoring and assessment are rapidly 
evolving as new information needs arise and new 
techniques and tools become available. However, 
the exploitation of the latter, as well as their imple-
mentation within operative forest management pro-
cesses, should be evidence-based (Corona 2018). 
Distinctively, the advancement of remote sensing 
imagery and statistical methods has eased the pro-
cess of forest mapping, providing easily accessible 
and affordable sources of information. 

The most popular methods exploiting the sole 
spatial information as well as those requiring aux-
iliary variables have been here reviewed. Despite 
their popularity and numerous forest applications, 
few investigations about the properties of applied 
statistical methods have been conducted and there 
are even less comparative studies on their perfor-
mances. For instance, McInerney and Nieuwenhuis 
(2009) found that k-nn is more effective than ran-
dom forest when estimating volume and basal area 
in Ireland and a study of Maselli and Chiesi (2006) 
showed that locally weighted regression, kriging 
and k-nn perform similarly when estimating stand-
ing volume in Central Italy. 

It is clear that the advantages and disadvantages 
of each method depend on the aims of the investiga-
tion, the variables involved, the type of remote sens-
ing data and the study area, all elements to take in 
consideration when choosing an appropriate tech-
nique (Brosofske et al. 2014). As Corona et al. (2014, 
page 30) pointed out, “the matter is still contro-
versial” and further investigation on the statistical 
drawbacks and benefits of such methods are need-
ed. A good dataset with reliable and unbiased data is 
the main starting point. Actually, the complexity of 
a model is generally unable to solve deficiencies of 
the sampling methods.
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