
Eastern Washington University
EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

2013

Elliptic curves and their cryptographic applications
Samuel L. Wenberg
Eastern Washington University

Follow this and additional works at: http://dc.ewu.edu/theses

Part of the Physical Sciences and Mathematics Commons

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for
inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact
jotto@ewu.edu.

Recommended Citation
Wenberg, Samuel L., "Elliptic curves and their cryptographic applications" (2013). EWU Masters Thesis Collection. 160.
http://dc.ewu.edu/theses/160

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern Washington University: EWU Digital Commons

https://core.ac.uk/display/230645207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dc.ewu.edu?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/student_research?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses/160?utm_source=dc.ewu.edu%2Ftheses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu


Elliptic Curves and Their Cryptographic Applications

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science

By

Samuel L. Wenberg

Winter 2013



THESIS OF SAMUEL L. WENBERG APPROVED BY

DATE:

FIRST MEMBER OF THE COMMITTEE, GRADUATE STUDY COMMITTEE

DATE:

SECOND MEMBER OF THE COMMITTEE, GRADUATE STUDY COMMITTEE

DATE:

THIRD MEMBER OF THE COMMITTEE, GRADUATE STUDY COMMITTEE



Abstract

This thesis is a basic overview of elliptic curves and their appil-

cations to Cryptography. We begin with basic definitions and a

demonstration that, given an elliptic curve addition, the points

of an elliptic curve form a mathematical group. We then pro-

ceed to delve further into the mathematics, discussing torsion

points on the group of elliptic curves before investigating the

behavior of elliptic curves over finite fields wherein is given a

proof of Hasse’s Theorem on elliptic curves. With these tools,

we discuss the discrete log problem, and the connection between

elliptic curves and the field of cryptography. Finally, we look at

elliptic curves over C and establish a trapdoor isomorphism be-

tween elliptic curves, and a topological torus.
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Chapter 1

Introduction:

The first recorded appearance of elliptic curves can be traced to Diophantus

in his text Arithmetica. Specifically, problem 24 of book IV, states: “To divide

a given number into two numbers such that their product is a cube minus its

side.” Put in more conventional terms, the task is to take some number a and

split it into two values y and a− y such that

y(a− y) = x3 − x

The task is thus to determine solutions to the above equation. Diophantus

found that via a “secant method” any two solutions of a cubic will produce a

third. Further, the “limiting case” of the secant, which is to say the “tangent”

at a single point, yields similar results in producing a new solution.

1.1 What’s So ”Elliptical” About Elliptic Curves

Now, certainly, y(a− y) = x3− x doesn’t look at all like the elementary equa-

tion for an ellipse. While Diophantus may have been the first to unwittingly

look at an elliptic curve type construction, he certainly did not call them as



such. The name stems from more recent mathematics, specifically the work

of John Wallis during the mid 1600’s. Wallis was attempting to ascertain

the arc length of ellipses, a rather important notion, with many applications

in the physical sciences. This led to an idea of what were dubbed elliptic

integrals[4]. Looking more deeply at elliptic integrals, with some prodigious

variable changes, eventually leads us back to these strange cubics that we are

referring to as elliptic curves. The connection here will be looked at much

deeper in a later chapter.

1.2 Some Examples of the Tangent and Secant

Methods of Diophantus

Example 1.1 We can see how the tangent method is employed by loosely

following the methods of Diophantus, albeit with a slightly more modern bent.

For our first example we will solve the problem stated at the begining of this

chapter for the case of a = 6. Our equation to solve then becomes:

6y − y2 = x3 − x (1.1)

Now, we note by observation that the ordered pair (−1, 0) is a solution to this

equation.

We create a generic line x = ky−1, a line with x-intercept at −1. We now wish

to pick k such that our line is tangent to the point (−1, 0). By substitution

into (1.1), we get:

6y − y2 = (ky − 1)3 − (ky − 1) = k3y3 − 3k2y2 + 2ky (1.2)

In order for our generic line to be tangent to (1.1), (1.2) must have a double

root at y = 0 (or else x = ky− 1 will not be tangent). We must thus choose k
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such that our degree-one terms are equal on either side of (1.2). In this case,

k = 3.

(1.2) then becomes (after some simplification) 0 = y2(27y − 26). Ignoring our

repeated y = 0 solution, which we already know, the only remaining solution

is y = 26
27

.

In terms of our problem, we find that we must split 6 into the summands 26
27

and 136
27

, the sum of which will be 6 and the product of which will equal the

difference of the perfect cube 4913
729

and its side 17
9

.

Example 1.2 A second application, this time of the secant method, involves

the so-called “cannonball problem.” [1] Consider a square-based pyramid of

cannonballs made up of x-many layers. Then the x = 1 pyramid would have

just the one cannonball, the x = 2 pyramid would have 5 cannonballs, etc.

The problem then is to ascertain values of x for which, should the x-pyramid

be knocked over the resulting cannonballs could be arranged into a square grid

of cannonballs. Specifically, we desire the following:

y2 = 12 + 22 + ...+ x2 (1.3)

Via induction we may easily show that the sum
x∑
i=1

i2 = x(x+1)(2x+1)
6

. We may

thus rewrite (1.3) as:

y2 =
1

3
x3 +

1

2
x2 +

1

6
x (1.4)

Trivially we know by observation that the x = 0 and x = 1 pyramids will

work, resulting in the points (0,0) and (1,1) respectively. We will construct a

line through these two points, resulting in (with elementary algebra) the line

y = x. Substituting this into (1.4) yields:

0 = x3 − 3

2
x2 +

1

2
x (1.5)

3



Figure 1.1: Graphical Representation of (1.4)

(a) y = x(x+1)(2x+1)
6 with the roots

marked.

(b) y2 = x(x+1)(2x+1)
6 . Note how the roots

remain the same.

Recall that a monic cubic polynomial with three roots, x1, x2, and x3 will look

like: (x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x
2 + ...

The point here being that given two known roots of a monic cubic polynomial,

we may ascertain the third by using the coefficient on the x2 term. Since we

know two solutions of (1.5) already, namely 0 and 1, we may find the third:

0 + 1 + x3 = 3
2
. Thus x3 here is 1

2
.

This naturally doesn’t present itself as a valid solution to the problem, since

half of a cannonball makes no sense, however we can certainly use this result

to reapply the secant method, and find more solutions. We can see that

the solution that we now have really gives us two distinct solutions to (1.4),

specifically (1
2
, 1
2
) and (1

2
,−1

2
) We will repeat the secant method with the points

(1, 1) and (1
2
,−1

2
). We are picking these points specifically because we wish to

establish our new solution somewhere in the first quadrant. Using these two

4



Figure 1.2: The secant lines

(a) Our first secant line, with our two

”starting points,” as well as the new point

at (12 ,
1
2).

(b) The second secant line, with our final

solution

points, one obtains 0 = x3 − 51
2
x2 + 72

2
x− 12, so 51

2
= 1 + 1

2
+ x3, so x3 = 24.

Evaluating (1.4) at x=24, we get the point (24, 70) or more specifically a 24-

layered pyramid is made up of 702 cannonballs.

1.3 Other Applications

While the focus of this paper is on cryptography, elliptic curves appear all over

mathematics. In mathematics, elliptic curves have applications in number the-

ory, topology and analysis. Additionally, there are methods involving elliptic

curves for testing primality of numbers as well as factorization of numbers.

Outside of theoretical mathematics, elliptic curves come up in physics, no-

tably in relation to the pendulum equation, as well as uses in modern physics.

Perhaps most famously, elliptic curves were crucial in the proof of Fermat’s

Last Theorem by Wiles in 1994.

5



Chapter 2

Basics

2.1 Notation and Definitions

Definition 2.1 An Elliptic Curve over a given field K is the set of points

(x, y) on the non-singular curve y2 + axy+ by = x3 + cx2 + dx+ e where x, y,

a, b, c, d, and e are all elements of K, along with a point at infinity that we

will refer to as ∞. Notationally we will refer to this elliptic curve as E(K).

For now we will treat this ∞ as a formal symbol with some useful properties.

We will investigate it further in a later section. Of importance is the fact

that the curve is non-singular, which is to say it has no singular points (points

where both partial derivatives are zero).

Example 2.2 The equation y2 +axy+ by = x3 + cx2 +dx+ e will be referred

to as the generalized Weierstrass equation.

What’s more given a field K that is neither characteristic 2 or 3, we may

do the following:

6



Starting with the generalized Weierstrass equation, we have

y2 + axy + by = x3 + cx2 + dx+ e

Since K is not characteristic 2, we may complete the square on the left, yielding:

y2 + (ax+ b)y = x3 + cx2 + dx+ e

y2 + (ax+ b)y +

(
ax+ b

2

)2

= x3 + cx2 + dx+ e+

(
ax+ b

2

)2

(
y +

ax+ b

2

)2

= x3 +

(
c+

a2

4

)
x2 +

(
d+

ab

2

)
x+

(
b2

4
+ e

)

Making the following substitutions,

a′ = c+
a2

4
b′ = d+

ab

2

c′ =
b2

4
+ e y′ = y +

ax+ b

2

we have: y′2 = x3 + a′x2 + b′x+ c′

Since K is not characteristic 3, let x′ = x+ a′

3
.

This yields y′2 = (x′3−a′x′2+ ....)+a′x′2− ...+ ... The point here being that the

x2 terms disappear, and our equation can be written as: y′2 = x′3 + Ax′ + B

for some constants A and B in our field K.

Definition 2.3 For an elliptic curve E(K) if the field is neither characteristic

2 or characteristic 3, we may rewrite the generalize Weierstrass equation as

y2 = x3 + Ax + B for A and B constants in K. This is referred to as the

Weierstrass Equation. What’s more, for the equation to represent an elliptic

curve the roots of the right-hand side of the Weierstrass equation must be

distinct.

Theorem 2.4 The right side of the Weierstrass equation has a double root if

and only if 4A3 + 27B2 = 0.

7



Proof: Recall first that for a given polynomial P with coefficients in a

field F , P has a double root if and only if P and P ′ share a root, r. The shared

double root r implies that P and P ′ share a linear factor (x− r). This means

that P has no multiple roots if and only if the greatest common divisor of P

and P ′ is 1 in the ring K[x]. In this case, our polynomial P is x3 + Ax + B,

so P ′ = 3x2 + A. Our goal is to determine the greatest common divisor of P

and P ′, which we will do by way of the Euclidean algorithm.

First we compute (x3 + Ax+B)/(3x2 + A) in the typical way:

1
3
x

3x2 + A
)
x3 + Ax+B

x3 + Ax
3

2A
3
x+B

So our first remainder is 2A
3
x+B. Continuing to the next step of the algorithm:

9
2A
x− 27B

4A2

2A
3
x+B

)
3x2 + A

3x2 + 9B
2A
x

−9B
2A

x+ A

−9B
2A

x− 27B2

4A2

A+ 27B2

4A2

Now, if the second remainder A + 27B2

4A2 is non-zero, then P and P ′ share no

linear factors, and thus have no common roots. Since A + 27B2

4A2 = 4A3+27B2

4A2 ,

we have no shared linear factors (and thus no double roots) if and only if

4A3 + 27B2 6= 0. Therefore, x3 + Ax + B has a double root if and only if

4A3 + 27B2 = 0.

8



In general we will use the much simpler Weierstrass equation, only resur-

recting the generalized Weierstrass equation for specific cases of characteristic

2 or characteristic 3 fields.

While in most cases pictures of elliptic curves would be relatively meaningless,

we will begin our exploration with Elliptic curves over R which yield two gen-

eral shapes, based on the number of real roots of the right hand side of the

Weierstrass equation (See Figure 2.1 for two examples).

Figure 2.1: Some Elliptic Curves

(a) y2 = x3 − x. Note the three real roots

at x = −1, x = 0, and x = 1.

(b) y2 = x3−x+1. Note the one real root

at x ≈ −1.32472

2.2 Point Addition on Elliptic Curves

Earlier, we established a basic method for finding new points given already

existing points on cubics. We will now expand upon those ideas to create a

9



clearly defined operation by which we will add points.

As we saw earlier we can start with two relatively generic points P1 = (x1, y1)

and P2 = (x2, y2) on some elliptic curve E(K). We can define a new operation

+E as follows. First construct a line L connecting P1 and P2. We then find

the third point of intersection between L and E(K), calling this P ′3 (similar

to what we found in earlier examples). Finally, in order to allow for certain

behavioral properties of the operation, we change the sign of the y-coordinate

of P ′3 to obtain P3. Notationally we write P1 +E P2 = P3.

Figure 2.2: Elliptic Curve Point Addition Case (i)

10



Example 2.5 Let E(R) be an elliptic curve with the following Weierstrass

equation: y2 = x3 + 73. Let P1 = (2, 9) and P2 = (3, 10). The line connecting

P1 and P2 is clearly y − 10 = x − 3 or y = x + 7. So combining with our

Weierstrass equation we get the following:

(x+ 7)2 = x3 + 73

x2 + 14x+ 49 = x3 + 73

0 = x3 − x2 − 14x− 49

As before, the sum of our three roots will equal the opposite of our x2 coef-

ficient, so we have 2 + 3 + x3 = 1 resulting in our third root being −4. The

point (−4, 3) thus lies both on the line y = x+ 7 and the curve y2 = x3 + 73.

Thus P1 +P2 = (−4,−3) since we need to ”flip” our point across the x-axis.

More generally, let’s consider two points P1 = (x1, y1) and P2 = (x2, y2) on

some elliptic curve E(K) defined by the Weierstrass equation y2 = x3+Ax+B.

For the first case, let’s assume that P1 and P2 are distinct points and fur-

ther let’s assume that x1 6= x2. Finally, let’s assume neither P1 nor P2 are the

point at infinity. The slope of the line which passes through P1 and P2 we can

define as: m = y2−y1
x2−x1 . So the line can be written as y = m(x − x1) + y1, and

combining with the equation of our elliptic curve yields:

(m(x− x1) + y1)
2 = x3 + Ax+B

0 = x3 −m2x2 + ...

Recall, we only need to worry about the coefficient on the x2 term, and so

x3 = m2 − x1 − x2. Plugging back into our linear equation, we get

11



−y3 = m(x3 − x1) + y1 (recall that this gives us the opposite of y3), and thus

our ordered pair for P3 = (x3, y3) is:

(m2 − x1 − x2,m(x1 −m2 + x1 + x2)− y1)

For the second case, let’s assume that again P1 and P2 are distinct but x1 = x2.

The line through these points is a vertical one, and this is where the afore-

mentioned point at ∞ comes into play. For now we will formally say that

P1 +E P2 =∞. From a pictorial sense think of this∞ as living simultaneously

along the top and the bottom of the coordinate plane. We will make more

sense of what this means in a later section.

For our third case, let’s assume P1 = P2. Then, instead of creating a se-

cant line, we will use the tangent line at P1. We can derive this formally via

implicit differentiation.

y2 = x3 + Ax+B

2y dy = (3x2 + A) dx

dy

dx
=

3x2 + A

2y

So at the point in question the slope is m =
3x21+A

2y1
. If y1 is zero, then we will

have a vertical tangent line at (x1, y1), so P1 +E P1 = ∞. We show below

that when y1 is zero, the numerator is not also zero (thus circumventing an

indeterminate slope).

Theorem 2.6 Let (x1, y1) be a point on an elliptic curve E(K) given by

y2 = x3 + Ax+B. Then if y1 = 0, 3x21 + A 6= 0.

Proof: Let y1 = 0. Further, assume that 3x21+A = 0. Then, (x1, y1) is

a critical point of y = x3+Ax+B and thus a critical point on the elliptic curve.

12



What’s more, since x31 + Ax1 + B = 0, x1 is also a root of y2 = x3 + Ax+ B.

Since (x1, y1) is simultaneously a critical point and a root, for our elliptic

curve, then x1 must be a double root, meaning x3 + Ax + B is of the form

(x − x1)2(x − x2). This is a contradiction since we require by definition that

the right hand side of the Weierstrass equation not have double roots.

Remark: The above really ends up being a consequence of the non-singular

nature of our elliptic curve. Let f(x, y) = y2 − (x3 + Ax + B), then

fx = −(3x2 + A) and fy = 2y. This gives us that y1 = 0 and 3x21 + A = 0

if and only if fx = 0 and fy = 0, which would indicate that the point (x1, y1)

was a singular point. Given y1 6= 0 we will have as our line y = m(x−x1) + y1

Figure 2.3: Cases (ii) and (iii) for elliptic curve point addition

(a) Case (ii) (b) Case (iii)

and as before we will be able to find our third point by looking at roots of

(m(x−x1)+y1)
2 = x3 +Ax+B. We get 0 = x3−m2x2 + ...⇒ x3 = m2−2x1.

Further, we see that y3 = m(x1 − x3) − y1. For the case of P1 = P2 then we

13



find that P1 +E P2 = (m2 − 2x1,m(x1 −m2 + 2x1)− y1)

For our final case, we will look at P1 +E ∞. Again we will treat this for-

mally with a more in depth analysis later. For now, we will say P1 +E∞ = P1,

and what’s more we will extend this notion to ∞ +E ∞ =∞. The definition

below summarizes point addition.

Figure 2.4: Cases (iv) and (v) for elliptic curve point addition

(a) Case (iv) (b) Case (v)

Definition 2.7 Addition on Elliptic Curves:

For an elliptic curve E(K) defined by the equation y2 = x3 + Ax + B (K is

neither characteristic 2 or characteristic 3), and for the points P1 = (x1, y1)

and P2 = (x2, y2) on E, we have the following as definitions for P1 +E P2 =

P3 = (x3, y3):

i) If x1 6= x2, then

m = y2−y1
x2−x1 ,

x3 = m2 − x1 − x2,

14



and y3 = m(2x1 −m2 + x2)− y1

ii) If x1 = x2 and y1 6= y2, then

P1 +E P2 =∞

iii) If P1 = P2 and y1 6= 0, then

m =
3x21+A

2y1

x3 = m2 − 2x1

y3 = m(3x1 −m2)− y1

iv) If P1 = P2 and y1 = 0, then

P1 +E P2 =∞

v) Further, define P +E ∞ = P for all points P on E(K).

2.3 Some Words on Infinity

In order to get an idea of what exactly this point ∞ is, we will need some

ideas using 2-dimensional projective space over our field K.

Definition 2.8 Two-dimensional projective space over K notated as P2
K is

given by the equivalence classes of ordered triples (x, y, z) where x, y, z ∈ K

and x, y, z not all zero. We say that (x1, y1, z1) is equivalent to (x2, y2, z2) if

(x1, y1, z1) = (λx2, λy2, λz2) for some λ ∈ K, λ 6= 0. Denote the equivalence

with ∼. What’s more, since equivalence is only determined by the ratios of

x, y, and z, we will denote the equivalence class of (x, y, z) as (x : y : z)

When z 6= 0, any point (x, y, z) ∼ (x/z, y/z, 1). We can thus interpret equiv-

alence classes of the form (x : y : 1) as being the finite points in P2
K. If z = 0,

when we divide by z we interpret the resulting x or y coordinate as infinity.

As a result, we can consider the equivalence classes (x : y : 0) as being points
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at infinity.

We will shortly be showing that ∞ from our definition for elliptic curves will

be one of these (x : y : 0)’s.

Using the map (x, y)→ (x : y : 1) we get that the points in the 2-dimensional

affine plane, defined as A2
K = {(x, y) : (x, y) ∈ K×K}, map in a 1-1 and onto

fashion to the finite points in P2
K. 2-dimensional projective space over K thus

contains the 2-dimensional affine plane over K as well as a bunch of points at

infinity.

Definition 2.9 A polynomial in three variables x, y, z, is homogeneous of de-

gree n when it is the sum of terms of the form axiyjzk where i + j + k = n

and a ∈ K. Note: the coefficient need not be the same on each term.

Theorem 2.10 If f(x, y, z) is a homogeneous polynomial of degree n and

(x1, y1, z1) ∼ (x2, y2, z2), then f(x1, y1, z1) = 0 iff f(x2, y2, z2) = 0.

Proof: Let f(x1, y1, z1) = 0.

Since (x1, y1, z1) ∼ (x2, y2, z2), then (x1, y1, z1) = (λx2, λy2, λz2). So:

0 = f(x1, y1, z1) = f(λx2, λy2, λz2).

Now, each term of f(λx2, λy2, λz2) looks like:

aλixiλjyjλkzk = λi+k+jaxiyjzk = λnaxiyjzk

Factoring out λn (recall that λ is not zero) results in:

f(λx2, λy2, λz2) = λnf(x2, y2, z2) = 0⇒ f(x2, y2, z2) = 0

By symmetry, f(x2, y2, z2) = 0⇒ f(x1, y1, z1) = 0

Thus zeroes on homogeneous polynomials are well defined over P 2
K .

It is worth noting at this point that Theorem 2.10 requires homogeneous poly-

nomials. Consider the function f(x, y, z) = x2 + 2y − 5z. Certainly at the
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point (1 : 2 : 1) it appears this function is zero, using the member (1, 2, 1) of

the equivalence class as our check, however (2, 4, 2) is also a member of this

equivalence class, and f(2, 4, 2) 6= 0.

Given any polynomial f(x, y) we can create a homogeneous polynomial of the

form F (x, y, z) by multiplying in necessary powers of z onto each term. For

example, given f(x, y) = xy2 + 2xy + 2 we can rewrite it as the homogeneous

polynomial F (x, y, z) = xy2 + 2xyz + 2z3. In this way we get the following

relationships:

F (x, y, z) = znf(x/z, y/z)

f(x, y) = F (x, y, 1)

Consider now two parallel lines with linear equations: y = mx + b1 and

y = mx+b2. We can write them as homogeneous equations and then ascertain

points of intersection in P2
K as follows. First the homogeneous forms of the

equations are y = mx+b1z and y = mx+b2z. So y−y = mx+b1z−mx−b2z,

which results in: 0 = (b1 − b2)z. Thus z = 0 and y = mx. From this we get

that these two parallel lines intersect at (x : mx : 0). Notice that, x 6= 0 since

if x = 0 then x, y, and z would all equal zero which we asserted could not

occur, so dividing by x to clean up our representation yields the intersection

of these two lines to be the point (1 : m : 0). Note that this is one of the

points at infinity on P2
K

Repeating this process with the two vertical lines x = c1 and x = c2 yields the

following:

Homogeneous versions of these equations are x = c1z and x = c2z.

Thus, 0 = (c1 − c2)z ⇒ z = 0⇒ x = 0.
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Therefore any two vertical lines will intersect at (0 : y : 0) ∼ (0 : 1 : 0). Again

this is a point at infinity on P2
K.

Consider an elliptic curve defined by the Weierstrass equation y2 = x3+Ax+B.

If we want to consider points at infinity on this curve, we must first look at

the homogeneous version of this equation: y2z = x3 + Axz2 + Bz3. Recall

that points at infinity will have a z-coordinate of zero, thus substituting zero

in for z yields: 0 = x3, so points at infinity on our elliptic curve must be in the

equivalence class (0 : 1 : 0), and this is in fact the only point at infinity on our

elliptic curve. Note that this is the point where two vertical lines intersect. It

is this point that we call ∞.

We can now interpret points ii), iv), and v) in definition 2.7. For ii), the

line passing through P1 and P2 will be a vertical one, and thus the only other

place where it can intersect E(K) is at ∞. Since (0, 1, 0) ∼ (0,−1, 0), when

we ”flip” ∞ over the x-axis we still get ∞. For iv), the tangent line is again

vertical and so as per the previous description, P1 +E P2 =∞. For v), start by

assuming P 6=∞. Then the line between P and ∞ will be vertical, and thus

intersect E again on the opposite side of the x-axis. Flipping over the x-axis

will recover P .

2.4 Group Law for Elliptic Curves

Theorem 2.11 Addition over elliptic curves as defined above is an abelian

group:

i) Closure: For all P1, P2 ∈ E(K), (P1 +E P2) ∈ E(K)

ii) Associativity: For all P1, P2, P3 ∈ E(K), P1+E(P2+EP3) = (P1+EP2)+EP3
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iii) Existence of Additive Identity: There is some I ∈ E(K) such that

P +E I = P for all P ∈ E(K).

iv) Existence of Additive Inverse: For each P ∈ E(K) there exists some

−P ∈ E(K) such that P +E −P = I where I is the aforementioned addi-

tive identity.

v) Commutivity: P1 +E P2 = P2 +E P1 for all P1, P2 ∈ E(K).

Proof: i) Since the coordinates of P1 and P2 are elements of K, and K is a

field, clearly as defined in definition 2.9, x3 and y3 are elements of K. Thus

addition of two points on an elliptic curve either yields a further point on

E(K): (x3, y3) with x3, y3 ∈ K, or the addition yields ∞ which we defined as

being also an element of E(K), thus this point addition is closed over E(K).

ii) The proof for associativity is involved, and as such will be approached in

the next section.

iii) Let I =∞. We then have, by definition, the desired property.

iv) Let P 6= ∞. Then P = (x, y) for some x, y ∈ K. Let −P = (x,−y).

Then, as per definition 2.9, we have that P +E −P =∞. Now, if P =∞, let

−P =∞. As defined above, ∞+E ∞ =∞.

v) Clearly this is true in the cases where P1 = P2. What’s more, when P1 6= P2,

the line between these points will be the same regardless of the order in which

we consider our points. This means the third point of intersection between the

created line and the curve itself will not change, thus resulting in the same P3.

Now, it is worth noting that for our elliptic curve E(K), since all of our

point addition can be looked at in terms of addition and multiplication on K,

we get that sub-fields of K will yield subgroups of E(K). By example, the

group E(Q) is a subgroup of E(R) which is in turn a subgroup of E(C). We
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call E(Q) the subgroup of rational points. In a more general sense, if K is a

field and K̄ is its algebraic closure, the subgroup E(K) are the rational points

of E(K̄).

2.5 Some Words on the General Cubic

As some partial intuition into associativity, we can look at some properties of

the general cubic. We will start by establishing the set of cubics forms a vector

space. We will look at a special case of Bezout’s theorem and use this to help

establish associativity on the general cubic. This will give us associativity on

elliptic curves.

Definition 2.12 We will define the general cubic in two variables as the poly-

nomial:

C(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j

for constants, a, b, c, ..., j.

We may also think of this projectively as:

C(x, y, z) = ax3 + bx2y + cxy2 + dy3 + ex2z + fxyz + gy2z + hxz2 + iyz2 + jz3

It is worth noting that for a = b = c = d = 0, C(x, y) reduces to a

quadratic, however we may think of this as a degenerate cubic. Similarly, the

cubic might degenerate into a line or constant depending on the values of the

coefficients. This is not a problem for the projective version since all terms

are cubic.

Additionally, since the important points of the generalized cubic are uneffected

by scaling, really we can think of C as a polynomial in 9 coefficients (divide

everything by a assuming a 6= 0.
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Theorem 2.13 The set of cubics C(x, y) forms a vector space of dimension

10.

Proof: We will define our vector addition as polynomial addition, and

scalar multiplication as traditional multiplication of a scalar and a multivari-

able polynomial. Given C1 and C2 being cubics, then C1 + C2 will certainly

result in another cubic. Similarly, for a given scalar λ, then λC1 will be also

be a cubic. In order to account for all possible cubics, our basis would have to

be size 10, one for each of the 10 coefficients of C(x, y).

What’s more, this vector space becomes dimension 9 once we specify the ac-

tual curves by setting each C(x, y) = 0, or by ignoring scaling in the projective

version.

Definition 2.14 If the coefficients of C(x, y) are rational numbers and

P = (x, y) lies on C, and x and y are rational, then P is called a rational

point of C.

Theorem 2.15 Assume that C is actually a cubic (it has at least one non-

zero cubic term in x and y). Given two rational rational points P and Q on

C, then the line through P and Q intersects C at a 3rd rational point.

Proof: Let P = (x1, y1) and Q = (x2, y2) be rational points. Let

C(x, y) = ax3 + bx2y+ cxy2 +dy3 +ex2 +fxy+gy2 +hx+ iy+ j = 0. Further,

by the a linear substitution (x, y) to M(x, y) where M is an invertible 2x2

matrix with rational entries, we can assume that a 6= 0. The line through P

and Q is

y =
y2 − y1
x2 − x1

(x− x1) + y1 = mx+B
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where m and B are rational numbers, since x1, x2, y1, and y2 are all rational.

Substituting into C in order to find the points of intersection yields:

ax3 + bx2(mx+B) + cx(mx+B)2 + d(mx+B)3 + ex2 +

fx(mx+B) + g(mx+B)2 + hx+ i(mx+B) + j = 0.

We rewrite this as a monic cubic, and focus on the x2 coefficient as before.

This yields as the x2 coefficient:

bB + 2cBm+ 3dm2B + e+ fm+ gm2

a+ bm+ cm2 + dm3
= V

V is thus rational. This then requires that the third point of intersection will

have x-coordinate of −V − x1 − x2 = x3, which will also be rational. Then

mx3 + B = y3, which is also rational. The third point on C is then (x3, y3)

which is a rational point.

Define P ∗ Q to be the third intersection point found above. This gives us

a binary operation P ∗ Q on the set of rational points, provided it is a non-

empty set.

Theorem 2.15 is a special case of Bezout’s Theorem, which states that a curve

of degree m and a curve of degree n will intersect nm times taking into ac-

count multiplicities [10]. The cubic is clearly degree 3, and the connecting

line through P and Q is degree 1. This would give us that the line and cubic

intersect in three places. For two cubics C1 and C2 then, we get by Bezout’s

Theorem that these two cubics will intersect at 9 places.

Theorem 2.16 Let C, C1, and C2 be 3 different cubics, with C passing

through 8 of the 9 intersection points of C1 and C2. Then C also intersects

the 9th point of intersection.
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Proof: As previously stated, the set of cubics is 10-dimensional. The

set of cubics passing through a designated point P1 is thus 9-dimensional.

Requiring our cubic to pass through 2 designated points will yield an 8-

dimensional set of cubics. We can continue in this way and find that the set of

cubics which pass through 8 designated points P1, ...P8 will be 2-dimensional.

C must then belong to this 2-dimensional subspace. What’s more, any λ1C1 +

λ2C2 will also belong to this subspace for any given λ1 and λ2. We thus have

that C1 and C2 form a basis for this 2-dimensional subspace. This gives us

that C = λ1C1 +λ2C2 for some specific λ1 and λ2. Since both C1 and C2 equal

zero at the 9th point of intersection, P9, then so too will C, thus P9 lies on C.

We now make the connection between ∗ and elliptic curve addition. We will

assume that for a cubic C with a rational point O, if P and Q are also rational

points on C we will define P +Q to be O∗ (P ∗Q). This operation first creates

a line through P and Q to intersect C at a third point, giving P ∗Q. We then

intersect C with the line through O and P ∗Q thus getting P +Q. Note that

this is essentially elliptic curve point addition if we allow the point O to be∞.

Theorem 2.17 Let C be a given cubic where we have at least one rational

point. Let P , Q, and R be rational points on C. Then (P+Q)+R=P+(Q+R).

Proof: Since A+ B = O ∗ A ∗ B for rational points A and B, then it

will suffice to show (P +Q) ∗R = P ∗ (Q+R).

Consider, when we evaluate P ∗ Q we find the line through P and Q and

determine the third point of intersection on C. Call this line l1. Likewise, we
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create the following lines:

l2 = the line through Q ∗R and O

l3 = the line through P +Q and R

m1 = the line through P and Q+R

m2 = the line through Q and R

m3 = the line through P ∗Q and O

Note now that these points, P,Q, P ∗Q, etc are all intersections of the above

lines, and they all lie on C. Further we will define the point where m1 and l3

intersect as a point Z.

Figure 2.5: An artificial diagram of the 9 points and six lines.

Now, recall these lines will be of the form 0 = l = ax + by + c, where a, b,

and c are constants. Thus the nine points on m1,m2, and m3 will also be on

the product of these lines: 0 = m1m2m3 = C1. C1 is a cubic. Likewise, the

nine indicated points on l1, l2, and l3 will be on their product, call it C2 and

C2 will also be a cubic. Consider that C1 and C2 now intersect at the nine
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aformentioned points, and we know that our original cubic C intersects at 8

of those points, specifically, P , Q, P ∗Q, Q+R, Q ∗R, O, R, and P +Q. By

theorem 2.16, the ninth point of intersection Z must then be a point on C.

Since Z is on C and on m1, we get that Z = (Q + R) ∗ Z (the third point of

intersection on the line created by (Q+R) and P with C. By similar reasoning

Z is on l3 and C thus Z = (P +Q) ∗R.

Elliptic curves are a special case of the above, with rational point correspond-

ing to ∞. This then establishes the associative law for elliptic curves and

hence completes the proof that E(K) is an abelian group.

2.6 Point Multiplication

Another rather basic idea that is worth mentioning at this point is the idea

of elliptic curve point multiplication. It’s important to note that here we are

not referring to multiplying two points in the conventional sense, but rather

scaling points by integer values.

Definition 2.18 For a given integer n and point P from the elliptic curve

E(K), elliptic curve point multiplication will be defined as

nP = P +E P +E P +E ...+E P n times

This notion will be highly useful when we look at cryptographic applications.

Example 2.19 Consider some elliptic curve E(R) defined by the equation

y2 = x3 + x + 2. For a given point P = (1, 2) on E(R) we may find 5P as

follows:

(1, 2)+E (1, 2) using definition 2.7 part (iii) will yield (−1, 0). (−1, 0)+E (1, 2)
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yields (1,−2). We can continue to use definition 2.7 to find that (1,−2) +E

(1, 2) =∞, and ∞+E (1, 2) is (1, 2). So it turns out that in this case, 5(1, 2)

is in fact just (1, 2). Note that this process required five point additions, and

should we use a similar process to ascertain, say, 10P or 50P , you can see that

the number of point additions can quickly become quite laborious. In this

case, we have the convenient fact that 4P happens to be∞, meaning (1,2) has

order 4 in E(K). This fact, while highly convenient, is not always the case for

any given point on an elliptic curve.

We may use the following algorithm to more speedily compute a point multi-

plication.

Let n be a positive integer and P be a point on an elliptic curve. We may

compute nP as follows:

i) Define A = n, B = ∞, and C = P . For this algorithm, A is an integer

value, while B and C are points on our elliptic curve.

ii) If A is even, redefine A = A/2, B = B, and C = 2C.

iii) If A is odd, redefine A = A− 1, B = B +E C, and C = C.

iv) If A 6= 0, go back to step ii).

v) If A = 0, then B = nP

The primary notion at work here is the fact that point addition is an abelian

group operation, and as such we can break down n via binary expansion. We

may rewrite n as:

n = 2k1 + 2k2 + ...+ 2kr with k1 < k2 < ... < kr

⇒ n = 2k1 + 2k2−k12k1 + 2k3−k22k3 + ...+ 2kr−kr−12kr
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Doubling P k1 times will then yield 2k1P .

We can then double 2k1P , k2 − k1 times to get 2k2P , etc.

While doubling, we effectively add up each required piece to eventually end

up with the desired result.

Example 2.20 Using the previous example we want 5P . We define A = 5,

B =∞ and C = (1, 2).

1) A is odd, so we redefine as follows: A = 4, B =∞+E P = P , C = P .

2) A is now even so redefine as follows: A = 2, B = P , C = P +E P = 2P .

3) A is still even so redefine as follows: A = 1, B = P , C = 2P +E 2P = 4P .

4) A is odd, so redefine as follows: A = 0, B = P +E 4P , C = 4P .

5) A = 0 so B is our desired result.

Now, while the algorithm does not expedite the process much in this case, let

us consider a more difficult case.

Example 2.21 Let P be some point on an elliptic curve, such that for all

m ≤ 30, mP 6= ∞ Conventionally computing 30P would require 30 point

additions. Instead we use the algorithm:

Since 30 = 2+4+8+16, then 30P = 2P +4P +8P +16P . With the notation

of the algorithm:

1) A = 30, B =∞, C = P

2) A = 15, B =∞, C = 2P

3) A = 14, B = 2P , C = 2P

4) A = 7, B = 2P , C = 4P

5) A = 6, B = 6P , C = 4P

6) A = 3, B = 6P , C = 8P

7) A = 2, B = 14P , C = 8P

8) A = 1, B = 14P , C = 16P
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9) A = 0, B = 30P , C = 16P

By way of the algorithm, we required only 4 doublings, and 4 point additions,

one of which was a point plus ∞.

Algorithms like this are especially important since in cryptographic applica-

tions, n will very often take on extremely large values. The key to the algorithm

is the notion of point doubling, so at this point it is worth relooking at the

idea of doubling points as described earlier. Recall, for P = (x, y) with y 6= 0,

m =
3x2 + A

2y

x3 = m2 − 2x

y3 = m(3x−m2)− y

It is worth noting that if we let y2 = F (x) = x3 + Ax + B, we get that

m = F ′(x)
2y

. This implies

m2 =
F ′(x)2

4y2
=
F ′(x)2

4F (x)

so

x3 =
F ′(x)2

4F (x)
− 2x

We can thus think of doubling points in terms of this notion of derivatives.

2.7 Elliptic Curves Over Characteristic 2

While for the most part we can show most of the theory of elliptic curves

in non-characteristic 2 or 3 fields, there are specific cases where we will need

to work with these sorts of fields. It will thus be handy to have a few facts

concerning elliptic curves over these fields. The Weierstrass equation will be

28



insufficient in these cases, so we will need to re-look at the generalized Weier-

strass equation.

Consider the case of an elliptic curve over a characteristic 2 field. Recall the

generalized Weierstrass equation from earlier, and assume first for simplicity

that a = 0. The generalized Weierstrass equation then becomes:

y2 + by = x3 + cx2 + dx+ e

Using the same substitution for x as before: x = x + c
3

= x + c (since we are

in a characteristic 2 field).

This results in y2 +Ay = x3 +Bx+C. Again, since we are in a characteristic

2 field rearrange to get

y2 + Ay + x3 +Bx+ C = 0 (2.1)

For future reference, let

f(x, y) = y2 + Ay + x3 +Bx+ C (2.2)

for some coefficients A, B, and C.

Of course, this substitution won’t work if a 6= 0. Instead, we will create a

simpler version of the generalized Weierstrass equation by picking a substitu-

tion that will yield the following:

i) y2 coefficient equals the coefficients on the xy and x3 terms, and that these

coefficients are non-zero so we may divide through by them.

ii) x coefficients on either side of the equation are equal, so that when we set

one side of the equation equal to zero, we will have the x-terms cancel out.

iii) y coefficient is zero.
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Consider the generalized Weierstrass equation for an elliptic curve, with the

following linear substitution:

y → a′y + b′ x→ c′x+ d′ a′ 6= 0, c′ 6= 0

We get

(a′y + b′)2 + a(c′x+ d)(a′y + b′) + b(a′y + b′) = (c′x+ d′)3 + c(c′x+ d′)2 + d(c′x+ d′) + e

After some computation we get the following coefficients:

a′2 is the coefficient for y2

c′3 is the coefficient for x3

aa′c′ is the coefficient for xy

Now, letting a′2 = c′3 = aa′c′ yields the following:

a′ = ac′ c′2 = aa′ = a2c′

⇒ c′ = a2

⇒ a′ = a3

The y coefficient will be (2a′b′ + aa′d + ba′) = aa′d + ba′ since we are in a

characteristic 2 field. Allowing for this coefficient to equal zero yields:

aa′d+ ba′ = 0⇒ d′ = −a−1b

For our x coefficients, we get:

ac′b′ on the left and 3c′d′2 + 2cc′d′ + dc′ = c′d′2 + dc′ on the right.

Setting these equal yields:

ac′b′ = c′d′2 + dc′ ⇒ ab′ = d′2 + d⇒ ab′ = a−2b2 + d

⇒ b′ = a−3(b2 + a2d)
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In summary when a 6= 0 we have:

a′ = a3 b′ = a−3(b2 + a2d)

c′ = a2 d′ = a−1b

x = c′x+ d′ y = a′y + b′

which will allow us the following modification of the generalized Weierstrass

equation:

y2 + xy + x3 + Ax2 +B = 0 (2.3)

for some coefficients A and B.

For both (2.2) and (2.3) we must place some restrictions on the coefficients,

such that the curve described is non-singular. Recall, a given point is a singu-

lar point when the partial derivatives at that point are zero [2]. We are using

the formal derivative for polynomials here, since the concept of limits does not

really apply to our characteristic 2 field.

Assume that (x1, y1) is a singular point. Then for (2.2) we get:

fy(x1, y1) = 2y1 + A and fx(x1, y1) = x21 +B

Since we are in a characteristic 2 field though, everything with a multiple of 2

for a coefficient is really just zero, therefore:

fy(x1, y1) = A and fx(x1, y1) = x21 +B

Thus, we can ensure that (2.2) is non-singular if we restrict A 6= 0.

For (2.3) we get:

fy(x1, y1) = 2y1 + x1 and fx(x1, y1) = y1 + 3x21 + 2Ax1
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Since we are in a characteristic 2 field though, everything with a multiple of 2

for a coefficient is really just zero, so we get:

fy(x1, y1) = x1 and fx(x1, y1) = y1 + 3x21

Thus, for (x1, y1) to be a singular point, x1 must equal 0, and so too must

y1. The point (0, 0) is valid for (2.3) when B = 0, and so to ensure (2.3) is

non-singular, we will restrict B 6= 0.

Proposition 2.22 In summary: for a characteristic 2 field we have two mod-

ifications of the generalized Weierstrass equation:

y2 + Ay + x3 +Bx+ C = 0 with A 6= 0 (2.4)

y2 + xy + x3 + Ax2 +B = 0 with B 6= 0 (2.5)

Now that we have some equations, we will need to establish how points add,

specifically case (iii) from definition 2.7.

Certainly, we will still say that P +E ∞ = P . In general we will add in the

same manner as previous (from a geometric sense at least), allowing for certain

changes due to the different nature of the equations. Specifically, we need to

establish what negating a point means in our two cases.

Case 1: Let P = (x0, y0) be a point that satisfies (2.4). For −P ,

we want a point with the same x-coordinate of P , but a (possibly) differ-

ent y-coordinate. Now if we evaluate equation (2.4) at x = x0, we have a

monic quadratic equation in the one variable y. Recall at this point that for

monic-quadratic equations, the sum of the roots is the negation of the linear

coefficient. Armed with this, and knowing already that y0 is one of our roots,

the other root must then be −y0 − A. Since we are in characteristic 2, this is

in fact just y0 + A. Thus, for P = (x0, y0), −P = (x0, y0 + A).
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Case 2: Let P = (x0, y0) be a point that satisfies (2.5). If we mimic the

technique as before we find that −P = (x0, y0 + x0).

We will now look more in depth at the notion of doubling a point (specifi-

cally case (iii) of definition 2.7). We will have two cases to look at:

Case 1: Consider the elliptic curve E(K), where K is characteristic 2,

described by y2 +Ay + x3 +Bx+ C = 0 and a point P = (x0, y0) on E. Like

before we would like to understand what it means to have a slope at a point

P , and to do this we will use the formal derivative (keeping in mind that 2=0):

2yy′ + Ay′ + 3x2 +B = 0⇒ Ay′ + x2 +B = 0⇒ y′ =
x2 +B

A

Recall that A 6= 0 for this case, so our slope is defined.

We thus get that at P our tangent line is:

y =
x20 +B

A
(x− x0) + y0

Substitute into (2.8):(
x20 +B

A
(x− x0) + y0

)2

+ A

(
x20 +B

A
(x− x0) + y0

)
+ x3 +Bx+ C = 0

Simplifying yields:

0 = x3 +

(
x20 +B

A

)2

x2 + ...

So, the x-coordinate of our point of intersection is −
(
x20+B

A

)2
− 2x0 but since

we are in a characteristic 2 field, we may simplify this to
(
x20+B

A

)2
. The

corresponding y-coordinate is
(
x20+B

A

)(
x40+B

2

A2 − x0
)

. Now, we must flip this,

so we may use the above and get that:

P +E P =

(
x40 +B2

A2
,

[
x20 +B

A

] [
x40 +B2

A2
− x0

]
+ A

)
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Case 2: The setup here will be the same as in the previous case, except

that this time we will use the equation y2 + xy + x3 + Ax2 + B = 0. We can

mimic the techniques used in the previous case and get the following:

m =
y0 + x20
x0

which yields 0 = x3 + (m2 +m+ A)x2 + ....

Note:

m2 +m+ A =
y20 + x40
x20

+
y0 + x20
x0

+ A

using (2.5) and the fact that we are in a characteristic 2 field yields:

=
x0y0 + x30 + Ax20 +B + x40 + y0x0 + x30 + Ax20

x20
=
x40 +B

x20

Thus, using the above as well as the previous work negating a point in our

second case, we get:

P +E P =

(
x40 +B

x20
,

[
y0 + x20
x0

] [
x40 +B

x20
− x0

]
+
x40 +B

x20

)
In summary:

Proposition 2.23 For an elliptic curve E defined over a characteristic 2 field

K, we get the following for 2P given that P = (x, y).

1) If E is described by the equation y2 + Ay + x3 +Bx+ C = 0, then

2P =

(
x4 +B2

A2
,

[
x2 +B

A

] [
x4 +B2

A2
− x
]

+ A

)
2) If E is described by the equation y2 + xy + x3 + Ax2 +B = 0, then

2P =

(
x4 +B

x2
,

[
y + x2

x

] [
x4 +B

x2
− x
]

+
x4 +B

x2

)

2.8 Endomorphisms

For later work we will need to establish some results concerning endomor-

phisms of E.

34



Definition 2.24 A homomorphism α : E(K̄) → E(K̄) for E(K̄) an elliptic

curve over the closure of a field K, is called an endomorphism of E if there

are rational functions (quotients of polynomials) R1(x, y) and R2(x, y) with

coefficients in K̄ such that

α(x, y) = (R1(x, y), R2(x, y))

for all (x, y) ∈ E(K̄). We will notate the trivial endomorphism that maps

every point to ∞ as 0.

Example 2.25 For an elliptic curve E given by the Weierstrass equation, let

α(P ) = 2P .

α is certainly a homomorphism, since α(P +E Q) = 2(P +E Q) = P +E Q+E

P+EQ = 2P+E2Q since E is abelian. Therefore, α(P+EQ) = α(P )+Eα(Q).

From our rules of point addition, we have (for characteristic not equal to 2 or

3)

Given α(x, y) = (R1(x, y), R2(x, y))

R1 =

(
3x2 + A

2y

)2

− 2x

R2 =
3x2 + A

2y

(
3x−

(
3x2 + A

2y

)2
)
− y

Thus α is a homomorphism given by rational functions, so α is an endomor-

phism of E.

We will need to account for the cases where R1 or R2 might not be defined.

To do this, we will first consider a general rational function R(x, y). Given

that y2 = x3 +Ax+B, we may replace all even powers of y with a polynomial

exclusively in x, and all odd powers of y by y times a polynomial in x. We
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may thus express R(x, y) as

R(x, y) =
p1(x) + yp2(x)

p3(x) + yp4(x)

Multiplying by the conjugate of the denominator and substituting for y2 yields

R(x, y) =
q1(x) + yq2(x)

q3(x)
, for some q1, q2, q3

Recall now that α(x, y) = (R1(x, y), R2(x, y)), and (x, y) ∈ E(K̄).

α(x,−y) = α(−(x, y)) = −α(x, y) since α is a homomorphism

Hence: (R1(x,−y), R2(x,−y)) = −(R1(x, y), R2(x, y)) = (R1(x, y),−R2(x, y))

So, R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y).

From the general equation for R(x, y) above, we thus have that for R1,

q2(x) = 0 since the sign of y cannot affect the value of R1, and likewise for R2,

q1 = 0, since the change in sign of y must change the sign of R2. So

α(x, y) = (r1(x), r2(x)y)

where r1 and r2 are rational functions.

Example 2.26 Continuing example 2.25, we may rewrite R1 as follows:

R1 =
9x4 + 6Ax2 + A2

4(x3 + Ax+B)
− 2x

For R2:

R2 =
9x3 + 3Ax

2y
− (3x2 + A)3

8y3
− y

=
36x3y2 + 12Axy2

8y3
− (3x2 + A)3

8y3
− 8y4

8y3

=
36x3(x3 + Ax+B) + 12Ax(x3 + Ax+B)− (3x2 + A)3 − 8(x3 + Ax+B)2

8(x3 + Ax+B)y

=
36x3(x3 + Ax+B) + 12Ax(x3 + Ax+B)− (3x2 + A)3 − 8(x3 + Ax+B)2

8(x3 + Ax+B)2
y
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We thus have that α(x, y) = (r1(x), r2(x)y) where

r1 =
x4 − 2Ax2 + A2 − 8Bx

4(x3 + Ax+B)

and

r2 =
36x3(x3 + Ax+B) + 12Ax(x3 + Ax+B)− (3x2 + A)3 − 8(x3 + Ax+B)2

8(x3 + Ax+B)2

=
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− (A3 + 8B2)

8(x3 + Ax+B)2

Of future interest will also be the derivative of r1. With some straightforward

calculation, we see that

r′1 =
4(4x3 − 4Ax− 8B)(x3 + Ax+B)− 4(3x2 + A)(x4 − 2Ax2 − 8Bx+ A2)

16(x3 + Ax+B)2

=
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− (A3 + 8B2)

4(x3 + Ax+B)2

=2r2

Hence, 2(x, y) =
(
r(x), r

′(x)
2
y
)

where r = r1.

We may now consider the case where one of these rational functions is unde-

fined. Let

r1(x) =
p(x)

q(x)

where p(x) and q(x) are polynomials with no common roots. For the case of

q(x) = 0 for some (x, y), we say that α(x, y) =∞.

Theorem 2.27 Let

α(x, y) =

(
p(x)

q(x)
,
y · s(x)

t(x)

)
be an endomorphism of the elliptic curve E given by y2 = x3 + Ax + B, with

p, q, s, and t polynomials such that p and q do not share roots, and s and t do
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not share any roots. If q(x0) 6= 0 for some x0, then r2(x0) is defined, which is

to say, t(x0) 6= 0.

Proof: We first use the fact that α(x, y) is a point on E therefore,(
y · s(x)

t(x)

)2

=

(
p(x)

q(x)

)3

+ A
p(x)

q(x)
+B

⇒ (x3 + Ax+B)s2(x)

t2(x)
=
p3(x) + Ap(x)q2(x) +Bq3(x)

q3(x)
=

u(x)

q3(x)
(2.6)

where u(x) = p3(x) +Ap(x)q2(x) +Bq3(x). We now show that q(x) and u(x)

share no roots.

Assume that they share a root, x0. Then

0 = q(x0) = u(x0) = p3(x0) + Ap(x0)q
2(x0) +Bq3(x0)

⇒ p3(x0) = 0⇒ p(x0) = 0

Which contradicts the initial assertion that p and q do not share roots.

We will finish the proof by way of the contrapositive. Assume that x0 is a

root of t(x). From (2.6) we know that

(x3 + Ax+B)s2(x)q3(x) = u(x)t2(x)

⇒ (x30 + Ax0 +B)s2(x0)q
3(x0) = u(x0)t

2(x0)

Since t and s share no roots, s(x0) 6= 0. Further, since t(x0) = 0, we have that

(x30 + Ax0 +B)q3(x0) = 0

If q3(x0) = 0, then q(x0) = 0 and we are done via the contrapositive.

Instead assume that (x30 + Ax0 + B) = 0. Since x0 is a root of x3 + Ax + B

and t(x) we may rewrite as follows:

(x3 + Ax+B) = (x− x0)Q(x) and t(x) = (x− x0)T (x)
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where Q(x) and T (x) are polynomials. Via substitution,

(x− x0)Q(x)s2(x)q3(x) = u(x)[(x− x0)T (x)]2

⇒ Q(x)s2(x)q3(x) = u(x)(x− x0)T 2(x)

Evaluating both sides at x = x0 yields

Q(x0)s
2(x0)q

3(x0) = 0

Recall that since x3 + Ax + B has no multiple roots, Q(x0) 6= 0. As stated

before, s(x0) 6= 0, so again we have the conclusion that q(x0) = 0. Therefore

by contraposition, if q(x0) 6= 0 for some x0, then t(x0) 6= 0 and thus r2 is

defined when r1 is defined.

Definition 2.28 Let α be an endomorphism. The degree of α is defined as

deg(α) = Max{degp(x), degq(x)}

when α 6= 0. When α = 0, deg(0) = 0.

Definition 2.29 We say that an endomorphism α 6= 0 is separable if the

derivative r′1(x) is not identically zero, which is to say r′1(x) 6= 0 for all x.

While the derivative r′1(x) may not be apparent, we use the following:

Theorem 2.30 For r1(x) = p(x)
q(x)

where p and q do not share any roots

r′1(x) is identically zero ⇐⇒ p′(x) is identically zero and q′(x)is identically zero.

Proof: Assume p′(x) = q′(x) = 0, for all x. Then via the quotient

rule,

r′1(x) =
p′(x)q(x)− q′(x)p(x)

q2(x)
⇒ r′1(x) = 0
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Now, assume r′1 = 0. Then, we have that

r′1(x) =
p′(x)q(x)− q′(x)p(x)

q2(x)
= 0

⇒ p′(x)q(x)− q′(x)p(x) = 0

⇒ p′(x)q(x) = q′(x)p(x) (2.7)

Suppose q′ isn’t identically zero, in particular, q is a polynomial of degree at

least 1. Let x0 be a root of q(x). This means p(x0) 6= 0. We have two cases to

look at.

Case 1: q′(x0) 6= 0.

Then evaluating 2.7 for x0 yields:

0 = q′(x0)p(x0)⇒ p(x0) = 0⇒ x0 is a root of p(x)

which is a contradiction.

Case 2: q′(x0) = 0

Now, since x0 is a root of both q′(x) and q(x), we may rewrite these polynomials

as

q(x) = (x− x0)mQ(x) and q′(x) = (x− x0)nQ̂(x)

where Q(x) and Q̂(x) are polynomials for which x0 is not a root, and m > n.

From (2.7) we have

p′(x)(x− x0)mQ(x) = (x− x0)nQ̂(x)p(x)

⇒ p′(x)(x− x0)lQ(x) = Q̂(x)p(x)

where l > 0. Again, evaluating at x = x0 yields

0 = Q̂(x0)p(x0)⇒ p(x0) = 0
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which again is a contradiction, since x0 cannot also be a root of p.

We thus have that q′(x) = 0, and by a symmetrical argument, p′(x) = 0.

Therefore, r′1(x) is identically zero if and only if p′(x) and q′(x) are both

identically zero.

For some results in the next chapter we will need the following theorem.

Theorem 2.31 Let α 6= 0 be a separable endomorphism of an elliptic curve

E. Then

degα = N

where N is the size of the kernel of α : E(K̄)→ E(K̄).

If α is not separable, then

degα > N

Proof: Let α(x, y) = (r1(x), yr2(x)) with r1(x) = p(x)/q(x), with p

and q polynomials. Assume first that α is a separable endomorphism. By

definition, r′(x) 6= 0. By the quotient rule,

r′ =
p′q − q′p

q2
6= 0

So p′q − q′p is not the zero polynomial. Let S be the set of x ∈ E(K̄) such

that (pq′ − p′q)(x)q(x) = 0. It is worth noting that S is finite, since neither

pq′−p′q nor q are the zero polynomial. Let (a, b) ∈ E(K̄). Note the following:

1.) K̄ is algebraically closed, so not finite, and thus we have infinitely many

(a, b) to choose from. We may thus require that a 6= 0, b 6= 0, (a, b) 6=∞, and

be assured such a point exists.

2.) Let p have degree d and q have degree d′. Then the degree of p − aq will

coincide with the maximum of d and d′. This may not work if d = d′, but if
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this is the case, we can specifically choose our a to ensure their leading terms

do not cancel out. Recalling the definition for the degree of α gives us that

deg(p(x)− aq(x)) = Max{deg(p), deg(q)} = deg(α).

3.) Since S is finite, and we have an infinite number of a’s to choose from, we

may pick an a such that a is not in r1(S).

4.) r1(x) will take on infinitely many values as x runs over K̄ (remember K̄

itself is not finite), so for each x ∈ K̄ there will be a corresponding point

(x, y) ∈ E(K̄). α(E(K̄)) is thus an infinite set. It follows that we may find an

(a, b) in α(E(K̄)).

In summary, we have a point (a, b) such that the following hold:

1.)a 6= 0, b 6= 0, (a, b) 6=∞

2.)deg(p(x)− aq(x)) = Max{deg(p), deg(q)} = deg(α)

3.)a 6∈ r1(S)

4.)(a, b) ∈ α(E(K̄))

Since we are looking at an algebraically closed field, this gives us that

p(x) − aq(x) = 0 has deg(α) roots, counting multiplicities. If we can show

p− aq has no multiple roots then we are done.

We will show that there are exactly deg(α) points (x1, y1) ∈ E(K̄) such that

α(x1, y1) = (a, b). By our definitions above, we have that

p(x1)

q(x1)
= a, y1r2(x1) = b

Since we definied (a, b) 6= ∞, we have that q(x1) 6= 0. Further, since b 6= 0,

then r2(x) 6= 0, so we can write y1 = b
r2(x1)

, implying that y1 is really just

determined by x1. As such, it will suffice to count the number of x1’s for

which α(x1, y1) = (a, b) holds. From assumption 2, we know that the degree

of p(x)− aq(x) is equal to deg(α).
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Assume that x is a multiple root of p− aq. Then

p(x)− aq(x) = 0 p′(x)− aq′(x) = 0

Multiplying p = aq and aq′ = p′ gives us:

ap(x)q′(x) = ap′(x)q(x)

Recall, we required a 6= 0, so x is a root of pq′ − qp′, and thus x ∈ S, and so

a = r1(x) ∈ r1(S), which contradicts our third restriction above. Thus p− aq

has deg(α) distinct roots, and thus there are deg(α) many points (x1, y1) that

satisfy p(x1)
q(x1)

= a. This gives us that the size of the kernel is equal to the degree

of α

If α is separable, the same logic as above holds, except that p′ − aq′ is the

zero polynomial and so p− aq will have multiple roots, resulting in the size of

the kernel being smaller than the degree of α.

Finally, before moving on there is one last result that we will need. In chapter

3 we will be looking at an endomorphism for multiplication by an integer n,

that is to say, for a point P ∈ E(K̄) we will want to identify some α such that

α(P ) = nP . In order to create some sort of condition on the separability of

this endomorphism, the following two lemmas will prove useful:

Lemma 2.32 Let E be an elliptic curve y2 = x3 +Ax+B. For a fixed point

(u, v) on E, as (x, y) varies over E write

(x, y) + (u, v) = (f(x, y), g(x, y))
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where f and g are rational functions of x and y.

Then

d
dx
f(x, y)

g(x, y)
=

1

y

Proof: From the addition formulas for points on an elliptic curve, we

get that:

f(x, y) =

(
y − v
x− u

)2

− x− u

g(x, y) =
2u(y − v)

x− u
− (y − v)3

(x− u)3
+
x(y − v)

x− u
)− v

=
2u(y − v)(x− u)2 − (y − v)3 + x(y − v)(x− u)2 − v(x− u)3

(x− u)3

=
−vu3 + 2u3y − 3u2xy + 3uvx2 + v3 − 3v2y − 2vx3 + 3vy2 + x3y − y3

(x− u)3

d

dx
f(x, y) = 2

(
y − v
x− u

)(
y′(x− u)− (y − v)

(x− u)2

)
− 1

=
2y′(y − v)(x− u)− 2(y − v)2 − (x− u)3

(x− u)3

Recall that from earlier we know 2yy′ = 3x2 + A, so by substitution:

d

dx
f(x, y) =

3x2+A
y

(y − v)(x− u)− 2(y − v)2 − (x− u)3

(x− u)3

=
(3x2 + A)(y − v)(x− u)− 2y(y − v)2 − y(x− u)3

y(x− u)3

=
Auv − Auy − Avx+ Axy + u3y − 3u2xy + 3uvx2 − 2v2y − 3vx3 + 4vy2 + 2x3y − 2y3

y(x− u)3

This implies that

y
d

dx
f(x, y)− g(x, y) =

y(−u3 − Au+ v2 + x3 + Ax− y2) + v(u3 + Au− v2 − x3 − Ax+ y2)

(x− u)3

Recall that both (u, v) and (x, y) are on E, so we get the relations:

v2 = u3 + Au+B and y2 = x3 + Ax+B.
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Rearranging and substituting yields:

y
d

dx
f(x, y)− g(x, y) =

y(B −B) + v(−B +B)

(x− u)3
= 0

Thus y d
dx
f(x, y)−g(x, y) = 0 which we may rearrange to get the desired result.

Lemma 2.33 Let α1, α2, and α3 be nonzero endomorphisms of an elliptic

curve E with α1 + α2 = α3. Write

αj(x, y) = (Rj(x), ySj(x))

Suppose there are constants c1 and c2 such that

R′1(x)

S1(x)
= c1

R′2(x)

S2(x)
= c2

Then

R′3(x)

S3(x)
= c1 + c2

Proof: Let (x1, y1) and (x2, y2) be variable points on E. Let

(x3, y3) = (x1, y1) + (x2, y2) where (x1, y1) = α1(x, y) and (x2, y2) = α2(x, y).

Then x3 and y3 are rational functions of x1, x2, y1, and y2, which in turn are

rational functions of x and y. By Lemma 2.32 and allowing (u, v) = (x2, y2),

we have

∂x3
∂x1

=
y3
y1

Similarly:

∂x3
∂x2

=
y3
y2
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By the preamble,
dxj
dx

= cj
yj
y

for j = 1, 2. Using the chain rule:

dx3
dx

=
∂x3
∂x1

dx1
dx

+
∂x3
∂x2

dx2
dx

=
y3
y1

dx1
dx

+
y3
y2

dx2
dx

= c1
y3
y1

y1
y

+ c2
y3
y2

y2
y

= (c1 + c2)
y3
y

Dividing by y3/y yields the desired result.

Proposition 2.34 Let E be an elliptic curve defined over a field K, and let

n be a nonzero integer. Suppose that multiplication by n is given by:

n(x, y) = (Rn(x), ySn(x))

Where Rn and Sn are rational functions that are indexed in terms of the mul-

tiplier n. Then

R′n(x)

Sn(x)
= n

Proof: We will proceed by induction on n. First note that for n = 1,

we have R1(x) = x and S1(x) = 1 for all x. Thus fo n = 1, the proposition

holds, and this gives us a base case. Assume then that the proposition holds

for some n ∈ Z. Then by lemma 2.33:

R′n+1(x)

Sn+1(x)
=
R′n(x)

Sn(x)
+
R′1(x)

S1(x)
= n+ 1

Looking back to Example 2.26 we see that for the case of n = 2, r′1 = 2r2 ⇒
r′1
r2

= 2.

Corollary 2.35 Multiplication by n is separable if and only if n is not a mul-

tiple of the characteristic p of the field.
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Proof: This follows directly from the above proposition. Recall that

for n(x, y) = (Rn(x), ySn(x)) to be separable, R′n must not be identically zero.

Let n 6= kp for any k. So 0 6= n = R′n
Sn

which implies that R′n 6= 0. Going the

other direction: Assume n(x, y) is separable. Then R′n 6= 0 which implies that

n 6= 0. This is equivalent to n is not a multiple of the characteristic p.
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Chapter 3

Torsion

Before we can look at some applications of elliptic curves as they apply to cryp-

tography, we must first investigate some properties concerning some specific

types of points, called Torsion Points.

Definition 3.1 A given point P on an elliptic curve E(K) is called a torsion

point of order n if for some integer n, nP =∞.

Recall that ∞ is our group identity element, and as such, we may generalize

this definition to any group. It should be noted we are using the term ’order’

in a slightly different manner to which traditional algebra texts use it. Here,

n need not be the least integer for which nP = ∞ for P to be considered a

torsion point of order n.

It is often useful to look at the set of all torsion points of a specific order,

and to facilitate this we will use the following notation for the elliptic curve

E(K), with K̄ the algebraic closure of the field K.

E[n] = {P ∈ E(K̄)|nP =∞} (3.1)
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It is worth noting at this point that E[n] forms a subgroup of our group E(K̄).

This stems from a more general result in modern algebra in which for any

abelian group A, the set of n-torsion elements, which we will call A[n], forms

a subgroup of A. Certainly A[n] inherits associativity, identity and inverses

from the parent group, and so really the only sticking point is closure. Given

a, b ∈ A[n] though, then a+ b is certainly in A[n], as n(a+ b) = na+ nb.

3.1 The Case of E[2]

Example 3.2 Consider an elliptic curve E(K), where K is not character-

istic 2. We will describe E[2]. From section 2.2, we found that the gen-

eralized Weierstrass equation may be rewritten as y2 = some monic cubic.

Factoring over the algebraic closure of K, we may then write our equation as

y2 = (x − x1)(x − x2)(x − x3). Now, we are looking for the points that have

the property 2P =∞. From Definition 2.7, P +E P =∞ if and only if y = 0.

This means that aside from the point ∞ itself, we have three other 2-torsion

points: (x1, 0), (x2, 0), and (x3, 0). Geometrically this will require the tangent

line at P to be vertical.

What’s more, with relatively little work, we can get that

E[2] = {∞, (x1, 0), (x2, 0), (x3, 0)} ' Z2 ⊕ Z2, when the field for E(K) is

not characteristic 2. Recall first that up to isomorphism there are two groups

of order 4, both of which are abelian. The first is Z4, and the second is the

Z2 ⊕ Z2. Now, E[2] is itself a group, and further, E[2] has no element of

order 4. This means that E[2] cannot be isomorphic to Z4, and thus must be

isomorphic to Z2 ⊕ Z2.
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We will now look at E[2] for an elliptic curve over a characteristic 2 field. Just

like above, we will require P = −P , and just like in earlier sections we will

have 2 cases to deal with.

Case 1: Let E be an elliptic curve over a characteristic 2 field with the

equation y2 + Ay + x3 + Bx + C = 0. Recall for this case, if P = (x, y) then

−P = (x, y + A). Thus, for a point to be torsion of order 2, we require that

y = y + A. This would require A = 0 but as we established earlier A 6= 0. So

aside from ∞ there are no torsion points of order 2 in this case, and E[2] ' I

where I is the trivial group.

Case 2: Let E be an elliptic curve over a characteristic 2 field with the

equation y2 + xy + x3 + Ax2 + B = 0. Recall that for this case, if P = (x, y)

then −P = (x, y+x). If P is torsion of order 2, y = y+x so x = 0. Evaluating

our equation at x = 0 gives y2 + B = 0, so y2 = B, and y =
√
B. We know

that such a square root exists because y is an element of the closure of our

field K. Furthermore, square roots are unique for characteristic 2 fields, since

a = −a in these fields. This means that aside from ∞ we have one distinct

torsion point of order 2. In this case, E[2] ' Z2.

In summary, for a given elliptic curve, we have the following for E[2]:

1) E[2] ' Z2 ⊕ Z2, if K is not characteristic 2.

2) E[2] ' Z2 or E[2] ' I, if K is characteristic 2, where I is the trivial group.

3.2 E[3] and Beyond

We start by assuming the characteristic of our field is not 2 or 3. If P is a

3-torsion point, then 3P =∞, or more specifically, 2P = −P .

From our figure, we infer that P must be an inflection point.

Computationally, the picture requires that the x-coordinates of P and 2P must
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Figure 3.1: Graphically: 2P = −P

It is worth noting that for P +E P = −P , we need the

“third point of intersection” for our tangent line to also be

P so that when we flip over the x-axis we get −P .

be the same, and their y-coordinates must differ by a sign. From definition

2.7,

x = m2 − 2x, where m =
3x2 + A

2y

This gives us:

x =

(
3x2 + A

2y

)2

− 2x⇒ 3x4 + 6Ax2 + 12Bx− A2 = 0

Proposition 3.3 There are four distinct x-values that satisfy

3x4 + 6Ax2 + 12Bx− A2 = 0.
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Proof: Let F (x) = x3 + Ax + B as before. Let

g(x) = 3x4 + 6Ax2 + 12Bx − A2. Now recall from earlier, m2 = F ′(x)2

4F (x)
, and

since x = m2 − 2x, we get

x =
F ′(x)2

4F (x)
− 2x

⇒ 0 = 12xF (x)− F ′(x)2

⇒ 0 = 2F ′′(x)F (x)− F ′(x)2

since F ′′ = 6x

So we can redefine g(x) in terms of F :

g(x) = 2F ′′(x)F (x)− F ′(x)2

For r a root of g(x), if r is a multiple root, g(r) = 0 and g′(r) = 0.

Thus, let’s assume r is a double root of g. We then get the following (note

that F ′′′ = 6):

g′(x) = 2F ′′′ · F + 2F ′′ · F ′ − 2F ′ · F ′′

g′(x) = 2F ′′′ · F

g′(x) = 12F (x)

Since r is a double root of g,

0 =g′(r) = 12F (r)⇒ F (r) = 0

and

0 =2F ′′(r)F (r)− F ′(r)2

⇒ 0 =F ′(r)

Thus r is also at least a double root of F . But by definition of an elliptic

curve, F (x) in this context cannot have a double root.
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Therefore, r cannot be a multiple root of g(x), and thus the roots of g must

be distinct.

Each of these roots will have 2 possible corresponding y-values which will

yield 8 distinct points on our elliptic curve that have the desired property,

aside from ∞. Therefore E[3] is an abelian group of 9 elements. Now, E[3]

is not cyclic, so cannot be isomorphic to Z9, and thus must be isomorphic to

Z3 ⊕ Z3.

Now let’s say that our field has characteristic 2. From the previous section,

we know there are 2 cases to look at:

i) y2 + Ay + x3 +Bx+ C = 0 with A 6= 0

ii) y2 + xy + x3 + Ax2 +B = 0 with B 6= 0

In order to use the previous logic regarding our criterion for 3-torsion points,

we will use the formulas for doubling points we found earlier:

For a given point P = (x, y), for 2P = (x1, y1)

i) x1 =
x4 +B

A2

ii) x1 =
x4 +B

x2

As before, 2P = −P , so for P = (x, y) we have the following for case i):

x =
x4 +B

A2
⇒ A2x = x4 +B ⇒ x4 − A2x+B = 0

Now, letting h(x) = x4−A2x+B, we get h′(x) = 4x3−A2 = A2, since we are

in characteristic 2. Now, as we’ve mentioned before for this case, A 6= 0, and

thus our roots must be distinct. Therefore there exist 4 distinct x-value solu-

tions to the equation, which as we saw before implies 8 distinct non-identity
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3-torsion elements. This gives us that, E[3] ' Z3 ⊕ Z3.

For case ii):

x3 = x4 +B ⇒ x4 − x3 +B = 0

We set h(x) = x4−x3 +B and get that h′(x) = 4x3− 3x2 = x2 (characteristic

2), thus the only root of h′(x) is 0, which is not itself a root of h(x), and

therefore we have no multiple roots. Following the previous logic, for this case

E[3] also has nine elements.

So, for a field of characteristic 2, E[3] ' Z3 ⊕ Z3.

Now, let’s say that our field is characteristic 3. As we saw in chapter 2, we can

simplify the generalized Weierstrass equation to the form

y2 = x3 + Ax2 + Bx + C for constants A, B, and C. Like previously, we

may discern the following about doubling points:

For a given point P = (x, y) with 2P = (x1, y1), we have:

m =
2Ax+B

2y

x1 = m2 − A− 2x

As before, we may use this coupled with the fact that we require the x-

coordinates of P and 2P to be the same to obtain the following:(
2Ax+B

2y

)2

− A = 3x = 0

⇒ 4A2x2 + 4ABx+B2

4y2
− A = 0

54



Recall that we are in a characteristic 3 field and y2 = x3 +Ax2 +Bx+C, so:

A2x2 + ABx+B2

x3 + Ax2 +Bx+ C
− A(x3 + Ax2 +Bx+ C)

x3 + Ax2 +Bx+ C
= 0

⇒ A2x2 + ABx+B2 − Ax3 − A2x2 − ABx− AC
x3 + Ax2 +Bx+ C

= 0

⇒ −Ax3 +B2 − AC
x3 + Ax2 +Bx+ C

= 0

⇒ Ax3 −B2 + AC = 0 (3.2)

If both A and B are zero, then the equation y2 = x3 +Ax2 +Bx+C becomes

y2 = x3 + C, which has multiple roots in our characteristic 3 field. As such,

either A or B must be non-zero.

If A = 0, then (3.2) gives us that −B2 = 0 ⇒ B = 0, but we just said B

cannot equal zero if A also equals zero. This implies that there are no values

of x for which the criteria is satisfied and E[3] ' I in this case, where I is the

trivial group.

If A 6= 0, then we may rewrite (3.2) as A(x3 + D) = 0 for some constant D.

This gives us one value for x that satisfies the criteria, and this value of x

has two corresponding y-values. As such, once we include ∞, E[3] becomes a

group of order 3, and as such must be isomorphic to Z3.

In summary, we have the following for E[3]:

1) E[3] ' Z3 ⊕ Z3, if K is not characteristic 3.

2) E[3] ' Z3 or E[3] ' I, if K is characteristic 3.

Example 3.4 Consider the elliptic curve E over C defined by the equation
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y2 = x3 + x. To find the points of E[2], we set y to zero and solve:

0 =x3 + x

0 =x(x2 + 1)

0 =x(x+ i)(x− i)

giving distinct points (aside from the point at ∞): (0, 0), (i, 0), (−i, 0), hence

E[2] ' Z2 ⊕ Z2

For E[3]. As previously stated, the x-coordinate of 2P must be the same

as the x-coordinate of P . For P = (x, y), using our addition rules we get

2P =

((
3x2 + 1

2y

)2

− 2x,

(
3x2 + 1

2y

)(
3x−

(
3x2 + 1

2y

)2
)
− y

)

2P =

(
9x4 + 6x2 + 1

4y2
− 8xy2

4y2
,

(
3x2 + 1

2y

)(
12xy2

4y2
− 9x4 + 6x2 + 1

4y2

)
− y
)

2P =

(
9x4 + 6x2 + 1− 8x(x3 + x)

4y2
,

(
3x2 + 1

2y

)(
12x(x3 + x)− 9x4 − 6x2 − 1

4y2

)
− y
)

2P =

(
x4 − 2x2 + 1

4y2
,

(
3x2 + 1

2y

)(
3x4 + 6x2 − 1

4y2

)
− y
)

2P =

(
x4 − 2x2 + 1

4y2
,

(
9x6 + 18x4 − 3x2 + 3x4 + 6x2 − 1

8y3

)
− 8y4

8y3

)
2P =

(
x4 − 2x2 + 1

4y2
,
9x6 + 21x4 + 3x2 − 1

8y3
− 8(x3 + x)2

8y3

)
2P =

(
x4 − 2x2 + 1

4y2
,
9x6 + 21x4 + 3x2 − 1

8y3
− 8(x6 + 2x4 + x2)

8y3

)
2P =

(
x4 − 2x2 + 1

4y2
,
x6 + 5x4 − 5x2 − 1

8y3

)
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and so

x =
x4 − 2x2 + 1

4y2

⇒4x(x3 + x) = x4 − 2x2 + 1

⇒4x4 + 4x2 − x4 + 2x2 − 1 = 0

⇒3x4 + 6x2 − 1 = 0

Using basic algebra, we get four distinct solutions:

x = α, −α, (i
√

3α)−1, −(i
√

3α)−1

where α =
√

2
√
3−3
3

We can easily determine the 8 distinct points by solving for y with the different

values of x.

Letting β =
√

2α√
3
, our 8 points are:

(α, β), (α,−β), (−α, iβ), (−α,−iβ)

(
−i√
3α
,

2
√
i

4
√

27β

)
,

(
−i√
3α
,− 2

√
i

4
√

27β

)
,

(
− −i√

3α
,

2
√
−i

4
√

27β

)
,

(
− −i√

3α
,−2
√
−i

4
√

27β

)
These 8, along with ∞ form E[3].

We can also determine the points in E[4]. Now, certainly, any point in E[2] is

also in E[4], giving us those four points. For the others we consider that for

any point P in E[4], 2P +E 2P =∞, which requires that the y-coordinate of
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2P is 0. From our point addition definition:

0 =
3x2 + 1

2y

(
3x− 9x4 + 6x2 + 1

4y2

)
− y

0 =
3x2 + 1

2y

(
12x(x3 + x)− 9x4 − 6x2 − 1

4y2

)
− y

0 =
(3x2 + 1)(3x4 + 6x2 − 1)

8y3
− 8y4

8y3

0 =9x6 + 18x4 − 3x2 + 3x4 + 6x2 − 1− 8(x3 + x)2

0 =9x6 + 21x4 + 3x2 − 1− 8x6 − 16x4 − 8x2

0 =x6 + 5x4 − 5x2 − 1

Factoring:

0 = (x− 1)(x+ 1)(x4 + 6x2 + 1)

Clearly, x = ±1 are solutions. We can easily determine the others:

let:x2 = t

⇒t2 + 6t+ 1 = 0

⇒t =
−6±

√
32

2
= −3± 2

√
2

So:

x = ±i
√

3± 2
√

2 = ±i(1±
√

2)

Letting γ = i(1±
√

2), we have as our 6 x-values:

1,−1, γ,−γ, γ−1,−γ−1

At this point it is worth noting that these 6 x-values will yield 2 distinct points

each, and once we include the four points from E[2], we will have 16 distinct

points in E[4]. We can find these points explicitly by solving for y in the usual

way.
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This all leads up to the more general result:

Theorem 3.5 Let E(K) be an elliptic curve defined over a field K and let

n ∈ Z+. If the characteristic of K does not divide n, or the characteristic of

K is zero, then

E[n] ' Zn ⊕ Zn

If the characteristic of K equals some p > 0 such that p|n, write n = prn′ with

p - n′. Then

E[n] ' Zn′ ⊕ Zn′ or Zn ⊕ Zn′

The proof for this theorem will be in the next section.

3.3 Division Polynomials and a Proof for The-

orem 3.5

In order to go about proving theorem 3.5 we will first need an idea of division

polynomial. The goal here will be to create an endomorphism as described

earlier to account for multiplication of a point by an integer. Now, from

earlier, we know that α(P ) = 2P is an endomorphism, where:

α(x, y) =

((
3x2 + A

2y

)2

− 2x, ...

)

Note, that the x-coordinate has denominator 4y2, which suggests the x-coordinate

of the more general P → nP endomorphism might be of the form φn
ψ2
n
, for ap-

propriately chosen polynomials φn and ψn.
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Definition 3.6 The set of division polynomials, ψm ∈ Z[x, y, A,B], is defined

as follows:

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx− A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1) for m ≥ 3

We will use these division polynomials to explicitely construct the endomor-

phism for nP .

Lemma 3.7 When n is odd, ψn is a polynomial in Z[x, y2, A,B], and when n

is even, ψn is a polynomial in 2yZ[x, y2, A,B].

Proof: By definition, this is true for n ≤ 4. We will thus first look at

the even case, proceeding by induction:

Let n > 4 and n = 2m for some m ∈ Z. We will assume by induction that the

lemma holds for all ψi with i < n. Since n = 2m > 4, we have that m > 2, and

thus 2m > m+ 2. Referring back to definition 3.6 we see that all ψ’s present

in the definition for ψ2m fall under our induction assumption. If m is even,

we get that ψm, ψm+2 and ψm−2 are all in 2yZ[x, y2, A,B] by the induction

hypothesis. Further, ψm+1 and ψm−2 are both polynomials in Z[x, y2, A,B],

and by observation ψ2m must be a polynomial in 2yZ[x, y2, A,B]. If m is odd,

m − 1 and m + 1 are even, which still results in ψ2m being a polynomial in

2yZ[x, y2, A,B], since the ψm−1 and ψm+1 are squared.
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We now let n = 2m + 1, n > 4. By the recursive formula for φ2m+1 and the

induction hypothesis ψ2m+1 must be a polynomial in Z[x, y2, A,B], regardless

of whether m is even or odd.

We will use the following polynomials in the next lemma:

φm = xψ2
m − ψm+1ψm−1

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)

Lemma 3.8 φn ∈ Z[x, y2, A,B] for all n. ωn ∈ yZ[x, y2, A,B], when n is odd,

and ωn ∈ Z[x, y2, A,B] when n is even.

Proof: We will first look at the case of n being odd. When n is

odd, we get from Lemma 3.7 that ψn+1 and ψn−1 are both polynomials in

2yZ[x, y2, A,B]. They are thus both polynomials in yZ[x, y2, A,B], and so

their product will be a polynomial in Z[x, y2, A,B]. By observation for odd n,

xψ2
n ∈ Z[x, y2, A,B], and thus for an odd n, φn ∈ Z[x, y2, A,B]. Now, for n

odd, we get that ψn+2ψ
2
n−1 is a polynomial in 4y2Z[x, y2, A,B] as is ψn−2ψ

2
n+1

and thus ωn is a polynomial in yZ[x, y2, A,B].

For the case of n an even number. When n is even, we get that ψn+1 and ψn−1

are both polynomials in Z[x, y2, A,B] and thus their product will be as well.

ψn is a polynomial in 2yZ[x, y2, A,B], which upon being squared really just

becomes a polynomial in Z[x, y2, A,B], thus for even n, φn ∈ Z[x, y2, A,B].

Now for ωn when n is even:

We can pretty easily see that ωn ∈ 1
2
Z[x, y2, A,B], using Lemma 3.7. While

this is enough for any application of this lemma that we will use, we still need

to resolve the extra multiple of 1
2

which we will do by first confirming the
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following from [1].

ψn ≡ (x2 + A)(n
2−1)/4 mod 2, when n is odd

(2y)−1ψn ≡
(n

2

)
(x2 + A)(n

2−4)/4 mod 2, when n is even

The mod 2 in this case means that the coefficients of the resulting polynomials

are taken mod 2.

We can see that these equivalencies holds by definition for n ≤ 4, establishing

some base cases. As our induction assumption, let us assume that the above

equivalencies hold for all n ≤ 2m where 2m ≥ 4. This implies that m ≥ 2.

Recall our definitions of ψ2m and ψ2m+1:

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1) for m ≥ 3

Since m ≥ 2, the induction hypothesis is valid for all ψ’s in the above. First

we will look at ψ2m+1 with an odd m.

ψ2m+1 ≡ (x2 + A)((m+2)2+3m2−4)/4−

(m− 1)(x2 + A)((m−1)
2−4)/4y4(m+ 1)3(x2 + A)3((m+1)2−4)/4

Since m is odd, (m + 1) and (m − 1) are even, thus the second term is even,

and congruent to 0 mod 2. Thus:

ψ2m+1 ≡ (x2 + A)((m+2)2+3m2−4)/4 + 0 mod 2

≡ (x2 + A)(4m
2+4m)/4

≡ (x2 + A)((2m+1)2−1)/4
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For an even m, we get:

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1

ψ2m+1 ≡ y(m+ 2)(x2 + A)((m+2)2−4)/4y3m3(x2 + A)3(m
2−4)/4−

(x2 + A)((m−1)
2−1)/4+3((m+1)2−1)/4

Since m is even, so too is m+ 2 and thus the first term is equivalent to 0, mod

2:

ψ2m+1 ≡ 0 + (x2 + A)((m−1)
2−1)/4+3((m+1)2−1)/4

≡ 0 + (x2 + A)(4m
2+4m)/4

≡ (x2 + A)((2m+1)2−1)/4 mod 2

As desired. For ψ2m with m odd.

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)

≡ 1

2y
(x2 + A)

m2−1
4

[
(x2 + A)((m+2)2−1)/4y2(m− 1)2(x2 + A)2((m−1)

2−4)/4

−(x2 + A)((m−2)
2−1)/4y2(m+ 1)2(x2 + A)2((m+1)2−4)/4

]
=
y

2
(x2 + A)

m2−1
4

[
(m− 1)2(x2 + A)(3m

2−3)/4 − (m+ 1)2(x2 + A)(3m
2−3)/4

]
= (x2 + A)(4m

2−4)/4−4m

2
y

≡ (2m)y(x2 + A)((2m)2−4)/4 mod 2
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Finally, we will look at ψ2m for an even m.

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)

≡ 1

2y
(ym) (x2 + A)

m2−4
4

[
y(m+ 2)(x2 + A)(m

2+4m)/4(x2 + A)2((m−1)
2−1)/4

− y(m− 2)(x2 + A)(m
2−4m)/4(x2 + A)2((m+1)2−1)/4

]
mod 2

=
my

2
(x2 + A)(m

2−4)/4
[
(m+ 2)(x2 + A)3m

2 − (m− 2)(x2 + A)3m
2
]

=
my

2
(x2 + A)(4m

2−4)/4(m+ 2−m+ 2)

= (2m)y(x2 + A)((2m)2−4)/4

Thus, by induction, we get the desired result.

Armed with this knowledge, we get that for an even n,

ωn = (4y)−1(ψn+2ψ
2
n−1 − ψn−2ψ2

n+1)

≡ (4y)−1
[
2y

(
n+ 2

2

)
(x2 + A)((n+2)2−4)/4(x2 + A)2((n−1)

2−1)/4
]

− (4y)−1
[
2y

(
n− 2

2

)
(x2 + A)((n−2)

2−4)/4(x2 + A)2((n+1)2−1)/4
]

mod 2

=
1

4

[
(n+ 2)(x2 + A)3n

2/4 − (n− 2)(x2 + A)3n
2/4
]

=
n+ 2− n+ 2

4
(x2 + A)3n

2/4

= (x2 + A)3n
2/4

We may thus say that for even n, ωn ∈ Z[x, y2, A,B].

For a given elliptic curve defined by y2 = x3 + Ax + B, we can replace all

instances of y2 with x3 +Ax+B, and all polynomials in Z[x, y2, A,B] may be

written as polynomials in Z[x,A,B]. For this given elliptic curve then (where

A and B are now fixed values), we may write φn(x) and ψ2
n(x).

64



Lemma 3.9

ψn =y(nx(n
2−4)/2 + ... For n even

ψn =nx(n
2−1)/2 + ... For n odd

Proof: We will have multiple cases to look at here. This proof will

require induction so first we need to establish a few base cases.

Let n = 0. Then ψ0 = 0 = y(0x(0
2−4)/2).

Let n = 1. Then ψ1 = 1 = 1x(1
2−1)/2.

Let n = 2. Then ψ2 = 2y = y(2x(2
2−4)/2).

Let n = 3. Then ψ3 = 3x4 + ... = 3x(3
2−1)/2 + ...

Let n = 4. Then ψ4 = 4yx6 + ... = y(4x(4
2−4)/2)

Let n = 5. Then ψ5 = 5x12 = 5x(5
2−1)/2.

We can now induct, and there will be multiple cases to look at. In all cases,

we will assume that the lemma holds for all values less than or equal to n.

Case 1: n = 2m for m an even number.

Consider, ψn+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 by definition 3.6. By the induction

hypothesis, we have that the leading term for ψn+1 is:

[y(m+ 2)x((m+2)2−4)/2][ymx(m
2−4)/2]3−

(m− 1)x((m−1)
2−1)/2[(m+ 1)x((m+1)2−1)/2]3

= x6(m4 + 2m3)x(4m
2+4m−12)/2 − (m− 1)(m+ 1)3x(4m

2+4m)/2

= (m4 + 2m3 −m4 − 2m3 + 2m+ 1)x(4m
2+4m+1−1)/2

= (2m+ 1)x((2m+1)2−1)/2

Case 2: n = 2m for m an odd number.

As before ψn+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1. By the induction hypothesis the
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leading term of ψn+1 is:

(m+ 2)x(m
2+4m+4−1)/2m3x(3m

2−3)/2−

y(m− 1)x(m
2−2m+1−4)/2y3(m+ 1)3x3(m

2+2m+1−4)/2

= (m4 + 2m3)x(4m
2+4m)/2 − y4(m4 + 2m3 − 2m− 1)x(4m

2+4m−12)/2

= (m4 + 2m3)x(4m
2+4m)/2 − (m4 + 2m3 − 2m− 1)x(4m

2+4m)/2

= (2m+ 1)x((2m+1)2−1)/2

Case 3: n = 2m− 1 for m an even number.

From definition 3.6 we get that: ψn+1 = (2y)−1(ψm)(ψm+2ψ
2
m−1−ψm−2ψ2

m+1).

By the induction hypothesis the leading coefficient will be:

2−1mx(m
2−4)/2{[y(m+ 2)x(m

2+4m)/2](m− 1)2x(m
2−2m)−

[y(m− 2)x(m
2−4m)/2](m+ 1)2x(m

2+2m)}

= 2−1myx(m
2−4)/2{(m3 − 3m+ 2)x3m

2/2 − (m3 − 3m− 2)x3m
2/2}

= 2myx(m
2−4)/2x3m

2/2

= y(2m)x((2m)2−4)/2

Case 4: n = 2m− 1 for m an odd number.

As before, ψn+1 = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1). By the induction

hypothesis the leading coefficient will be:

(2y)−1mx(m
2−1)/2{(m+ 2)x(m

2+4m+3)/2y2(m− 1)2x(m
2−2m−3)

− (m− 2)x(m
2−4m+3)/2y2(m+ 1)2x(m

2+2m−3)}

= 2−1ymx(m
2−1)/2{(m3 − 3m+ 2)x(3m

2−3)/2 − (m3 − 3m− 2)x(3m
2−3)/2}

= 2ymx(m
2−1)/2x(3m

2−3)/2

= y(2m)x((2m)2−4)/2

Lemma 3.9 leads to the following:
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Corollary 3.10

φn(x) =xn
2

+ ...

ψ2
n(x) =n2xn

2−1 + ...

Proof: If n is odd, then the corollary clearly holds for ψ2
n. Recall that

we defined φn = xψ2
n − ψn+1ψn−1, so for an odd n, the leading term of φn will

be

xn2(x(n
2−1)/2)2 − y(n+ 1)x((n+1)2−4)/2y(n− 1)x((n−1)

2−4)/2

= n2xn
2 − x3(n2 − 1)xn

2−3

= xn
2

Now, if n is even, the leading term of ψ2
n is

y2n2xn
2−4 → x3n2xn

2−4 = n2xn
2−1 (since y2 = x3 + ...)

The leading term for φn for an even n will be (keeping in mind that y2 = x3+...)

x4n2xn
2−4 − (n+ 1)x(n

2+2n)/2(n− 1)x(n
2−2n)/2

= n2xn
2 − (n2 − 1)xn

2

= xn
2

The previous lemmas lead us to the following theorem, the proof for which

is outside the scope of this thesis. A rigorous proof may be found in section

9.5 of [1].

Theorem 3.11 For P = (x, y) on y2 = x3 + Ax + B (assuming not charac-

teristic 2 field),

nP =

(
φn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)
(3.3)
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This endomorphism in hand, we can further investigate the operation of point

multiplication, allowing us to address questions of degree, and ultimately pro-

vide a proof for Theorem 3.5.

Of further interest is the following which will lay the groundwork for future

theorems:

Theorem 3.12 Let E be an elliptic curve defined over a field K. Let α 6= 0 be

the multiplication by n endomorphism. Then α : E(K̄)→ E(K̄) is surjective.

Proof: Let (a, b) ∈ E(K̄). Since α(∞) = ∞, we will assume

(a, b) 6= ∞. Notationally, let α(x, y) = (r1(x), r2(x)y), and let r1(x) =

p(x)/q(x), where p and q share no common roots. We want to show that

there exists some (x0, y0) ∈ E(K̄) with α(x0, y0) = (a, b).

Now, in our case, p(x) = φn(x) and q(x) = ψ2
n(x). We are looking at the

instances where a = p/q. Now, from corollary 3.10, we have that the polyno-

mial φn(x) − aψ2
n(x) will never be constant. We may thus consider the case

where p − aq is a nonconstant polynomial and identify the instances where

p(x)− aq(x) = 0.

Consider: if p(x)− aq(x) is not a constant polynomial, then there exists some

x0 such that p(x0)− aq(x0) = 0, since K̄ is algebraically closed. Since p and q

have no common roots, q(x0) cannot be 0, since if it were, this would require

p(x0) = 0. Now, let y0 be a square root of x30 + Ax0 + B. We then get that

α(x0, y0) = (a, b′) for some b′. Now, since b′2 = a3 + Aa + B = b2, then we

have that b = ±b′. We’re done if b′ = b. If b′ = −b, then we simply will look

at α(x0,−y0) = (a,−b′) = (a, b), and again we’re done.
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Theorem 3.13 The endomorphism for nP has degree n2.

Proof: Recall that we define the degree of an endomorphism to be the

the maximum of the degrees of the numerator and denominator of the first

coordinate. By Corollary 3.10 we get that the degree of both polynomials is

n2, so the degree of the endomorphism is also n2 so long as φn(x) and ψ2
n(x)

share no common roots. We will proceed via contradiction to show this is the

case.

Assume that φn(x) and ψ2
n(x) share a common root, and let n′ be the smallest

index for which this occurs, and first suppose that this n′ = 2m for some m.

Using our definitions for φ and ψ yield:

φ2(x) = xψ2
2 − ψ3ψ1 = x4y2 − 3x4 − 6Ax2 − 12Bx+ A2

= 4x4 + 4Ax2 + 4Bx− 3x4 − 6Ax2 − 12Bx+ A2

= x4 − 2Ax2 − 8Bx+ A2 (3.4)

ψ2
2(x) = 4y2 = 4(x3 + Ax+B)

= 4x3 + 4Ax+ 4B (3.5)

Since m is an integer value, as is 2, we may utilize (3.3) to get:

n′P = 2mP = 2(mP ) = 2

(
φm(x)

ψ2
m(x)

,
ωm(x, y)

ψ3
m(x, y)

)
=

(
φ2(φm/ψ

2
m)

ψ2
n(φm/ψ2

m)
,
ω2(mP )

ψ3
2(mP )

)
Using (3.4) and (3.5) in conjunction with the above, while looking at just the

first coordinate yields:

φ2m

ψ2
2m

=

(
φ2(φm/ψ

2
m)

ψ2
n(φm/ψ2

m)

)
=

(
(φm/ψ

2
m)4 − 2A(φm/ψ

2
m)2 − 8B(φm/ψ

2
m) + A2

4(φm/ψ2
m)3 + 4A(φm/ψ2

m) + 4B

)
=
φ4
m − 2Aφ2

mψ
4
m − 8Bφmψ

6
m + A2ψ8

m

(4ψ2
m)(φ3

m + Aφmψ4
m +Bψ6

m)
(3.6)
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Define the numerator of (3.6) to be U and the denominator to be V . Note: U
V

might be a reduced form of φ2m
ψ2
2m

.

In order to continue, we need the following:

Lemma 3.14 Let ∆ = 4A3 + 27B2 and

F (x, z) = x4 − 2Ax2z2 − 8Bxz3 + A2z4

G(x, z) = 4z(x3 + Axz2 +Bz3)

f1(x, z) = 12x2z + 16Az3

g1(x, z) = 3x3 − 5Axz2 − 27Bz3

f2(x, z) = 4∆x3 − 4A2Bx2z + 4A(3A3 + 22B2)xz2 + 12B(A3 + 8B2)z3

g2(x, z) = A2Bx3 + A(5A3 + 32B2)x2z + 2B(13A3 + 96B2)xz2 − 3A2(A3 + 8B2)z3

We then get that

Ff1 −Gg1 = 4∆z7 and Ff2 +Gg2 = 4∆x7

Proof: It should be noted that while F and G mimic U and V the

remaining polynomials come from the extended Euclidean Algorithm. These

identities can be confirmed through straightforward computation. F (x, 1) and

G(x, 1) have no shared roots, and so we find the polynomials f1 and g1 by the

extended Euclidean algorithm such that F (x, 1)f1(x) − G(x, 1)g1(x) = 4∆.

With a change of variables x→ x/z and multiplication by z7, we get the first

result. Switching the roles of x and z yields the second.

Utilizing lemma 3.14 gives us

U · f1(φm, ψ2
m)− V · g1(φm, ψ2

m) = 4ψ14
m∆

U · f2(φm, ψ2
m)− V · g2(φm, ψ2

m) = 4φ7
m∆

70



From this we may deduce that if U and V have a common root, then so too

must ψ2
m and φm. This contradicts our assumption that n′ = 2m is the small-

est index for which φn and ψ2
n share a common root.

We now must ensure that in fact U = φ2m and V = ψ2
2m. Since U and V

share no common roots and U/V = φ2m/ψ
2
2m, we have that φ2m is a multiple

of U and ψ2
2m is a multiple of V . Using Corollary 3.10, we can (after some

computation) discern the leading term of U is x4m
2
. Again using the corollary,

we know that φ2m = x(2m)2 and since φ2m is a multiple of U , we get the desired

equality. Further, since U = φ2m, then V = ψ2
2m.

Assume the smallest index where φn and ψ2
n have a common root is odd,

so n′ = 2m + 1 for some m. Let r be a common root of φn′ and ψ2
n′ . By

definition, we have that φn = xψ2
n − ψn+1ψn−1. Evaluating at r yields:

0 = ψn′−1(r)ψn′+1(r)

Consider that φ2
n′+1 and φ2

n′−1 are both polynomials, and from above, we know

that their product is zero when evaluated at r. We can thus say that for δ

equals either 1 or −1, ψ2
n′+δ(r) = 0. Now, note that (ψnψn+2δ)

2 = ψ2
nψ

2
n+2δ, so

since ψn′(r) = 0, (ψnψn+2δ)(r) = 0.

By definition, we know that φn′+δ = xψ2
n′+δ − ψn′ψn′+2δ, and evaluating at r

gives us that φn′+δ(r) = 0. Thus φn′+δ and ψ2
n′+δ have a common root of r.

Recall at this point that n′ is odd, so n′ + δ must be even. Previously in this

proof, we showed that if φ2m and ψ2
2m share a root, then so too does φm and

ψ2
m. We will replicate this idea with n′ + δ. Specifically, we now have that

φ(n′+δ)/2 shares a root with ψ2
(n′+δ)/2. Since we previously established that n′

is the smallest index for which this occurs, then

n′ + δ

2
≥ n′ ⇒ δ ≥ n′
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If δ is −1 this clearly will not work, and if δ is 1, then n′ must be 1 (n′ is odd).

This implies that φ1 and ψ2
1 share a common root, but recall that φ1 = x and

ψ2
1 = 1, which clearly do not share any roots. This gives us that for any case,

φn and ψ2
n share no common roots, and thus the degree of the endomorphism

for a point multiplied by n is in fact n2.

For the proof of theorem 3.5 we will also need the Fundamental Theorem

of Finite Abelian Groups, a result from algebraic group theory. The proof for

this result (or an equivalent variation) may be found in almost any algebra

textbook.

Theorem 3.15 A finite abelian group G is isomorphic to a group of the form

Zn1 ⊕ Zn2 ⊕ ...⊕ Zns

with ni|ni+1 for 1 ≤ i ≤ s− 1. The integers i are uniquely determined by G.

We may now go about proving theorem 3.5. Recall:

Theorem 3.5 Let E(K) be an elliptic curve defined over a field K and let

n ∈ Z+. If the characteristic of K does not divide n, or the characteristic of

K is zero, then

E[n] ' Zn ⊕ Zn

If the characteristic of K equals some p > 0 such that p|n, write n = prn′ with

p - n′. Then

E[n] ' Zn′ ⊕ Zn′ or Zn ⊕ Zn′
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Proof: Let p be the characteristic of the field K. Assume first that n

is not a multiple of p. Let the endomorphism for a point times an integer n

be denoted as α. Then by Corollary 2.35, α is separable. By definition, the

kernel of α is E[n]. From Theorem 3.13, α has degree n2, and from Theorem

2.31, E[n] has order n2.

By Theorem 3.15, we know that E[n] ' Zn1 ⊕Zn2 ⊕ ...⊕Zns , with ni|ni+1 for

1 ≤ i ≤ s − 1. Let l be a prime dividing n1. Then, it must be that l|ni for

all i. Combining this with the fact that each ni divides n since every element

has order dividing n, we get that if P ∈ E[l], then P ∈ E[n] since l|n, so

E[l] ⊆ E[n]. From algebra, we know that for a given cyclic group G of order

n, if d|n, then G has φ(d) many elements of order d, where φ is the Euler-Phi

function [9]. Since we may apply this to each ni for l, and since φ(l) = l − 1,

we get by including the identity of each summand that E[l] has order ls.

From the first part of the proof though, we know that E[l] is of order l2,

so s = 2. This results in E[n] ' Zn1 ⊕ Zn2 for some n1, n2. Since, E[n] is of

order n2, n2 = n1n2, and since n1|n2|n, it follows that n1 = n2 = n, and thus

when p 6 |n, E[n] ' Zn ⊕ Zn.

Now, let p|n. First we will consider the case where n = pk where k is an

integer. From corollary 2.35, we know that multiplication by p is not a sepa-

rable endomorphism. By theorem 3.13 and theorem 2.31 we have that the size

of the kernel of this endomorphism (E[p]) is less than p2. Now, each element

of E[p] has either order 1 or order p, the size of E[p] must be some power of

p, which forces either 1 or p. Supposing first that E[p] is of size one (trivial),
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then E[pk] must also be trivial for all k, by definition. Now, suppose that E[p]

is cyclic of order p.

Claim: E[pk] ' Zpk for all k.

We will begin here by showing the size of E[pk] is not smaller than pk. Let

P ∈ E[pk] be an element of order pj, with j < k. By theorem 3.12, we have

that multiplication by p is surjective so there exists some point Q such that

pQ = P . This gives us that

pjQ = pj−1P 6=∞ and pj+1Q = pjP =∞

So Q has order pj+1. Since j was arbitrary, and we have an element of order

1 (the identity), then via induction we can find an element of order pk. This

gives us that E[pk] is cyclic of order pk.

We may combine this claim with our previous work to establish the remainder

of the proof. Write n = pkn′ where p 6 |n′. First note that E[n] ' E[n′]⊕E[pr].

From above, we know that E[pk] ' 0 or ' Zpk . The Chinese Remainder The-

orem gives us that Zn′ ⊕ Zpk ' Zn′pk ' Zn, and from the first part of the

theorem, we know that E[n′] ' Zn′ ⊕ Zn′ .We thus get the desired result:

E[n] ' Zn′ ⊕ Zn′ or Zn ⊕ Zn′

Theorem 3.5 gives us a very very useful general notion of the nature of torsion

subgroups on elliptic curves. We can certainly see that the results from the ex-

amples of E[2] and E[3] are supported by the theorem. the torsion subgroups

form the basis for many higher level mathematics on elliptic curves, specifi-
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cally the Weil Pairing, which proves to be very useful for future applications

when looking at elliptic curves over finite fields.
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Chapter 4

Elliptic Curves over Finite

Fields

While previous examples of elliptic curves have been over relatively arbitrary

fields, often in cryptography we care about fields of finite size. Consider the

elliptic curve E taken over some finite field of size n, Fn. Since Fn is finite, so

too will be the size of the resulting group E(Fn).

One method of determining E(Fn) is via brute force. First we construct a list

of quadratic residues (the non-zero squares) in Fn, denoted Q(Fn). It is worth

noting that exactly half of the non-zero elements of a non-characteristic 2 finite

field are quadratic residues. This results from the properties of the mapping

Q : F → F given by Q(a) = a2. Specifically, Q is a group homomorphism

whose kernel is {−1, 1}. By the first isomorphism theorem then, Q = imQ '

F/ ker Q⇒ |Q| = |F|
| kerQ| = |F|

2
.

Once we have a collection of residues, we proceed by computing f(x) for each

x ∈ Fn where f(x) = x3 +Ax+B. Each f(x) ∈ Q then yields a ±y satisfying

y2 = f(x).
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4.1 Examples

Example 4.1 Let E be an elliptic curve with y2 = x3 + x + 1 as the cor-

responding Weierstrass equation. We first will establish a list of quadratic

residues (the non-zero squares) of F19, which we will denote Q(F19). With

relatively little calculation these are:

Q(F19) = {1, 4, 5, 6, 7, 9, 11, 16, 17}

We now list possible values of x, computing x3 + x + 1 mod 19 for each x,

picking out only the ones which yield values from Q(F19).

x x3 + x+ 1 mod 19 y Points

0 1 1, 18 (0,1), (0,18)

2 11 7, 12 (2,7), (2,12)

5 17 6, 13 (5,6), (5,13)

7 9 3, 16 (7,3), (7,16)

9 17 6, 13 (9,6), (9,13)

10 4 2, 17 (10,2), (10,17)

13 7 8, 11 (13,8), (13,11)

14 4 2, 17 (14,2), (14,17)

15 9 3, 16 (15,3), (15,16)

16 9 3, 16 (16,3), (16,16)

Our table gives us 20 distinct points, and along with the point at ∞, we then

get that E(F19) is of size 21.

Note in the previous example, how 19 was fairly close to 21. This hints at

a more general notion. Consider for some y2 = f(x) = x3 + ..., if we as-

sume roughly half of the values of f(x) are residues, each such residue gives
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Figure 4.1: Graphical representation of E(F19). Note how it is still symmetrical

about the x-axis.

2 solutions; ±y. So recalling that our finite field is of size n, we would get

approximately n + 1 solutions, the +1 being required due to ∞. We would

then expect the following:

|E(Fn)| ≈ n+ 1 + ε(n)

where ε(n) is an error term, with ε(n)/n ≈ 0 as for large values of n. The

precise statement of this is summed up in Hasse’s Theorem for Elliptic Curves,

which we will be looking at in the next section.

We would like to be able to add points, and since F19 is neither character-

istic 2 nor 3, we may appeal to our formulas from chapter 2. We will need to

be careful, however since all the arithmetic must be done within our field. We

can also interpret this process graphically, just as we did before.
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Example 4.2 Let’s add the points (5, 6) and (14, 2). First we will need to

compute m, which we may do in the typical way:

m =
2− 6

14− 5

≡ −4

9
≡ 15

9

≡ 15 · 9−1 ≡ 15 · 17

≡ 8 mod 19

So with relatively little work, we get that our connecting “line” in this case is

y = 8x+ 4.

We may then go about computing our new point:

x3 = 82 − 14− 5

≡ 7 mod 19

y3 = 8(2 · 5− 82 + 14)− 6

≡ 8(10− 7 + 14) + 13

≡ 8 · 17 + 13 ≡ 16 mod 19

Thus, (5, 6) +E (14, 2) = (7, 16).

Simmilar to the elliptic curve over R we can also think of elliptic curve addi-

tion graphically. In fact, since all our coordinates are to be taken mod 19, the

line we draw will end up wrapping around the coordinate axis. This behavior

is similar to a line being drawn upon a torus. At this point, this notion is

probably rather cryptic, but we will return to this idea in Chapter 7, where

we look more closely at the relation ship between a torus and an elliptic curve.
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Figure 4.2: The “line,” y = 8x + 4 connecting (−5, 2) and (5, 6) (seen in

red) wraps around the coordinate axis. Recall also that (14, 2) is the same as

(−5, 2) in this field. We get that (7, 3) is the third point of intersection, and as

we did previously, we flip over the y-axis to get our solution: (7,−3) ≡ (7, 16).

What’s more, the point (9, 16) is a generator of E(F19).:

P=(9,6), 2P=(7,3), 3P=(10,2) 4P=(16,3)

5P=(0,1), 6P=(15,16), 7P=(2,12), 8P=(13,11)

9P=(14,2), 10P=(5,6), 11P=(5,13) 12P= (14,17)

13P=(13,8), 14P=(2,7), 15P=(15,3) 16P= (0,18)

17P=(16,16), 18P=(10,17), 19P=(7,16) 20P= (9,13)

21P=∞

Thus, we may deduce that E(F19) is cyclic of order 21. While we will be using

the point (9, 16) later on (so these calculations will be handy), it is worth

noting that other points will generate this group, most notably (0, 1).
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Not all elliptic curves over finite fields create cyclic groups, as we will see in

our next example:

Example 4.3 Consider the elliptic curve E given by y2 = x3 + 2 over F7.

Q(F7) = {1, 4, 2} so:

x x3 + 2 mod 7 y Points

0 2 3, 4 (0,3), (0,4)

3 1 1, 6 (3,1), (3,6)

5 1 1, 6 (5,1), (5,6)

6 1 1, 6 (6,1), (6,6)

So along with the point ∞, we have that E(F7) is of size 9. This means that

either E(F7) ' Z9 or E(F7) ' Z3 ⊕ Z3. With a little calculation we get that:

1(3,1)=(3,1) 1(5,1)=(5,1) 1(6,6)=(6,6)

2(3,1)=(3,6) 2(5,1)=(5,6) 2(6,6)=(6,1)

3(3,1)=∞ 3(5,1)=∞ 3(6,6)= ∞

We have three elements all of which are order 3, which means that E(F7) 6' Z9

(as Z9 has only two order 3 elements), and thus it must be that

E(F7) ' Z3 ⊕ Z3.

4.2 Some Nice Theorems

There are two primary theorems that govern the size of an elliptic curve over

finite fields.

Theorem 4.4 Let E be an elliptic curve over the finite field Fn. Then

E(Fn) ' Zk or E(Fn) ' Zk1 ⊕ Zk2

for some integer k ≥ 1, or for some integers k1, k2 ≥ 1 with k1 dividing k2.
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Proof: This theorem largely rests on the Fundamental Theorem of

Finite Abelian Groups (see Theorem 3.15). Since for each i, the group Zni
has

n1 many elements of order dividing n1, we find that for some integer power

r, E(Fn) has nr1 elements of order dividing n1. By Theorem 3.5 we have that

there are no more than n2
1 such points. Thus r ≤ 2, and we have the desired

result.

Theorem 4.5 Let E be an elliptic curve over the finite field Fn. Then the

order of E(Fn) satisfies:

|n+ 1− ord(E(Fn))| ≤ 2
√
n

This is referred to as Hasse’s Theorem on Elliptic Curves.

In order to prove Hasse’s theorem, we will need a few extra notions. The first

is the Frobenius Endomorphism.

Definition 4.6 For a field finite field Fn of characteristic p, the Frobenius

Automorphism notated as φ : Fn → Fn is defined as

φp(a) = ap, for a ∈ Fn

Now, a basic result from Algebra tells us that for a prime p, we have (a+b)p =

ap + bp mod p. This thus gives us that φp(a + b) = φp(a) + φp(b). Now, this

holds for any characteristic p field, and thus will also hold for Fn, where n = pk

for some k.

We may now consider the frobenius Endomorphism on E(Fn).

Theorem 4.7 Let E be an elliptic curve over Fn. Then the Frobenius Endo-

morphism φ : E(Fn)→ E(Fn) where

φ((x, y)) = (xn, yn)

is an endomorphism of E with degree n.
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Now, certainly, we can see that φ maps from E(Fn) to E(Fn), and is given

by rational functions. Further, by definition, the degree is n, provided φ itself

is a homomorphism. We must show that for (x1, y1), (x2, y2), φ((x1, y1)) +E

φ((x2, y2)) = φ((x1, y1) +E (x2, y2)). We may then proceed by checking the

elliptic curve addition rules. For this proof, we will assume Fn is not char-

acteristic 2 or characteristic 3, so we may use the Weierstrass equation. The

proof with the generalized Weierstrass equation is similar.

Recall for x1 6= x2, we have for (x1, y1) +E (x2, y2) = (x3, y3):

m = y2−y1
x2−x1 , x3 = m2−x1−x2, and y3 = m(2x1−m2+x2)−y1

then, for φ((x3, y3) we get (xn3 , y
n
3 ). Now, for x, y ∈ Fn, we know that (x+y)n =

xn + yn, since Fn is characteristic p. Further, we also know that for a ∈ Fn,

an = a.

This gives us that the x-coordinate for φ((x3, y3) is

xn3 = m′2 − xn1 − xn2 , where m′ =
yn2 − yn1
xn2 − xn1

=

(
y2 − y1
x2 − x1

)n
= mn

Similarly, the y-coordinate of φ((x3, y3) is

y3 = m′(2nxn1 −m′2 + xn2 )− yn1

Now, recalling that 2n = 2, we see that in both cases, xn3 and yn3 are really

just the formulas for x3 and y3 with all our original coordinates x1, x2, y1, and

y2 taken to the nth power. In essence, we have φ((x1, y1)) +E φ((x2, y2)) =

φ((x1, y1)+E (x2, y2)) as desired. The other cases for addition work in a similar

fashion, allowing us to say φ is indeed a homomorphism, and thus an endo-

morphism.

In addition to the Frobenius endomorphism, we also will need the following:
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Proposition 4.8 Let E be defined over Fn, with m ≥ 1. Then

1) Ker(φ− 1) = E(Fn)

2) φ− 1 is a separable endomorphism.

Proof: Consider that for our finite field Fn, a ∈ Fn implies that an = a.

Thus for (x, y) ∈ E(Fn), both x and y are in Fn. Thus φ(x, y) = (xn, yn) =

(x, y). More generally, for P ∈ E(Fn), φ(P ) = P . Since φ is an endomorphism

it has the property of homomorphisms, thus we may say that:

φ(P )− P = 0 ⇐⇒ (φ− 1)(P ) = 0

So the points P ∈ E(Fn) form the kernel of φ− 1.

Part 2 follows from a more general result:

Lemma 4.9 Let E be an elliptc curve defined over Fn, where n is the power

of some prime p. Let r and s be integers, not both 0. The endomorphism

rφ+ s is separable if and only if p - s.

Proof: Write multiplication by r and multiplication by s as follows:

r(x, y) = (Rr(x), ySr(x))

s(x, y) = (Rs(x), ySs(x))

Extending this notation, we may then describe the endomorphism rφ as

(rφ)(x, y) = (Rrφ(x), ySrφ(x))

Then we get

(Rrφ(x), ySrφ(x)) = (φr)(x, y) = (Rn
r (x), ynSnr (x))

Now, define:

crφ =
R′rφ
Srφ

=
(Rn

r )′

Srφ
=
nRn−1

r R′r
Srφ

= 0, (recall we are in Fn)
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cs =
R′s
Ss

Now, by Proposition 2.34 we have that cs = s. By Lemma 2.33, we have that

R′rφ+s
Srφ+s

= crφ + cs = 0 + s = s

Thus, for R′rφ+s 6= 0, p - s.

Continuing now with Proposition 4.8, we see that by applying the above lemma

with r = 1, s = −1, since only ±1| − 1, and p 6= ±1 since p must be prime,

then φ− 1 must be separable.

As a corollary of the above statement we have that ord(E(Fn)) = deg(φ− 1),

by Theorem 2.31.

Additionally we will also need the following result

Proposition 4.10 Let α and β be endomorphisms of E and let a and b be

integers. Define endomorphism aα + bβ defined as

aα + bβ(P ) = aα(P ) + bβ(P )

where aα(P ) means multiplication on E of the point α(P ) by the integer a

(likewise for bβ). Then we have the following:

deg(aα + bβ) = a2 degα + b2 deg β + ab(deg(α + β)− degα− deg β)

The proof for this involves the use of the Weil pairing, which we will not be

going into, but a complete proof may be found in 3.3 of[1].

We now have the tools needed to prove Hasse’s Theorem (Theorem 4.5). Let

a = n+ 1− ord(E(Fn))
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By Proposition 4.8, we have that a = n+ 1− deg(φ− 1). We must show that

|a| ≤ 2
√
n.

We now need the following lemma:

Lemma 4.11 Let r, s be integers. Then deg(rφ− s) = r2n+ s2 − rsa.

Proof: From Proposition 4.10, we get that

deg(rφ− s) = r2 deg φ+ s2 deg(−1) + rs(deg(φ− 1)− deg(φ)− deg(−1))

Now, we know deg φ = n from Theorem 4.7. deg(−1) = 1. Substituting these

values yields the desired result.

Since deg(rφ− s) ≥ 0, we may say that for r, s ∈ Z, with gcd(s, n) = 1:

r2n+ s2 − rsa ≥ 0

⇒ n
(r
s

)2
− a

(r
s

)
+ 1 ≥ 0

The set of rational numbers r/s such that gcd(s, n) = 1 is dense in R. We

may thus say that

nx2 − ax+ 1 ≥ 0 (4.1)

for all x ∈ R.

The discriminant of (4.1) must therefore be non-positive. This means that

a2 − 4n ≤ 0, which yields |a| ≤ 2
√
n.

Hasse’s theorem becomes useful since in crypotgraphic applications of elliptic

curves the size of finite field is often very large. Such a large field would make

the table method far too cumbersome to employ.
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Chapter 5

Discrete Log Problem

The discrete logarithm problem forms the cornerstone of many of the cryp-

tographic applications we will see later. In this chapter, we will look at the

classical discrete logarithm problem, as well as some basic attacks upon it as

well as its use in cryptography.

5.1 Definition and Examples

Definition 5.1 Let G be a group. Let a, b ∈ G. If the group is written

multiplicatively, suppose ak = b for some integer k (if the group is written

additively, ka = b). In either case the discrete logarithm problem is to find k.

This idea is perhaps most easily seen in the familiar setting the integers modulo

p over multiplication, where p is a prime.

Example 5.2 Consider the group Z×19. Suppose 2k ≡ 17 (mod 19). We want

to find k. Now certainly with numbers this small, we could just guess and

check, and after relatively little computation, we can find that k = 10. What’s
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more, it is trivial to check if we are correct:

210 = 1024 = 53× 19 + 17 ≡ 17( mod 19)

It is worth noting that not all formulations of this problem work out. The

preamble of the discrete log problem assumes that we have ak = b is solvable

for k, but it is worth considering the cases where such a problem cannot be

solved.

Example 5.3 As in the previous example, we will work in Z×19. Now, 2

is a generator of this field, so 2k = b will have a solution for any given

b ∈ Z×19. Consider 4, which is not a generator of Z×19. The subgroup gen-

erated by 4 is {1, 4, 16, 7, 9, 17, 11, 6, 5}. This means that while 4k = 9 will

have a solution: k = 4, the equation 4k = 8 does not have a solution.

Not all discrete logarithm problems are made equal. Consider the case of the

group of integers modulo n over addition. Let A,B ∈ Z such that kA ≡ B

mod n for some k ∈ Z. If A is relatively prime to n, we can compute the

multiplicative inverse of A mod n via the Extended Euclidean Algorithm,

then multiply by B to recover k.

Example 5.4 Consider the case of the group of integers modulo 109 over

addition. Let k32 ≡ 49 mod 109. Via the Extended Euclidean Algorithm we

can find k:

109− 32 · 3 = 13 and 32− 13 · 2 = 6 and 13− 6 · 2 = 1 so:

1 = 13− 2(32− 13 · 2) = 13(5) + 32(−2)

1 = 5(109− 32 · 3) + 32(−2)

1 = 109(5) + 32(−17)
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Thus the inverse of 32 is congruent to -17 mod 109, or more specifically 92.

Now, taking 92 ·49 mod 109 yields 39, which we can then quite easily confirm

is the desired value for k:

39 · 32 = 1248 = 11 ∗ 109 + 49 ≡ 49 mod 109

This ease of discerning k due to the Euclidean Algorithm makes the additive

group of integers modulo n a very poor choice for cryptographic purposes.

Finally we will briefly look at an example of the discrete log problem in the

environment of elliptic curves. In this case, a and b will be points on the el-

liptic curve, with k still an integer. Given ka = b we will need to find k, if it

exists.

Example 5.5 Consider the elliptic curve E(F19), the elliptic curve defined

over the finite field F19, with the Weierstrass equation y2 = x3 + x + 1. Sup-

posing now we are given the following:

P = (9, 6) Q = (14, 2) kP = Q

where P , Q ∈ E and k ∈ Z.

In this case, after some calculation:

P = (9, 6), 2P = (7, 3), 3P = (10, 2)

4P = (16, 3), 5P = (0, 1), 6P = (15, 16)

7P = (2, 12), 8P = (13, 11), 9P = (14, 2)

So after plenty of calculation, we get that k = 9.
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5.2 Methods of Attack: Index Calculus

Now, in examples 5.2 and 5.5, we used a brute force method of tackling the

discrete log problem. While this is all well and good for the multiplicative

group of integers mod 19, this method becomes significantly more problematic

as the size of the group increases. For the group of integers, we may instead

use a technique referred to as the index calculus.

Let p be a prime and let g be a primitive root mod p (so g generates the

cyclic group of integers mod p over multiplication). Note that g has order

p− 1. We then have that for any h 6≡ 0 mod p, we can write h ≡ gk for some

integer 0 < k < p. We will let k = L(h) where L(h) then denotes the discrete

logarithm of h:

gL(h) ≡ h mod p

Now, for given h1 and h2, we have

h1h2 ≡ gL(h1h2) and h1h2 ≡ gL(h1)gL(h2) = gL(h1)+L(h2)

⇒ L(h1h2) ≡ L(h1) + L(h2) mod p− 1

Thus L mimics the traditional logarithm. The index calculus offers a method

for computing our function L. The big idea is that we compute L(li), where

each li is a small prime. The set of li’s is called the factor base. We then use

this to compute L(h) for an arbitrary h.

Example 5.6 We will first revist example 5.2. Recall, we needed to solve

2k ≡ 17 mod 19. We will choose as our factor base {2, 3, 5}. We will now

inspect some values of the form 2x ≡ ± a product of primes from our factor

base, still mod 19. Unless stated otherwise, assume all equivalencies are mod
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19.

21 ≡ 2

215 ≡ 22 · 3

217 ≡ 2 · 5

Now, in terms of our function L this gives us:

21 ≡ 2 mod 19⇒ 1 ≡ L(2) mod 18

215 ≡ 22 · 3 mod 19⇒ 15 ≡ 2L(2) + L(3) mod 18

217 ≡ 2 · 5 mod 19⇒ 17 ≡ L(2) + L(5) mod 18

We may thus infer that L(2) ≡ 1, L(3) ≡ 13 and L(5) ≡ 16, all mod 18. Armed

with all the discrete logs of our factor base, we compute 2j · 17 mod 19 for

different values of j till we find one that factors nicely using our factor base.

For this example, j=1 works just fine:

21 · 17 ≡ 3 · 5 mod 19

So,

1 + L(17) ≡ L(3) + L(5) mod 18

⇒ L(17) ≡ 13 + 16− 1 mod 18

⇒ L(17) ≡ 10 mod 18

And we thus have that 210 ≡ 17 mod 19, as we saw earlier.

Now, while this didn’t really save us that much time, the index calculus can

be leveraged to great effect when the size of the field is a really large prime.

Example 5.7 Let p = 1217. Say now, I am given 3k ≡ 31 mod 1217. Cer-

tainly, we could check all 1216 different possibilities for k, but that would get
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dull extremely fast. Instead, we will build a factor base as before: {2, 3, 5, 7, 11, 13}.

With some computation mod 1217 we find:

31 ≡ 3

324 ≡ −22 · 7 · 13

325 ≡ 53

330 ≡ −2 · 52

354 ≡ −5 · 11

387 ≡ 13

In order to handle the negative values above, we will need a result from num-

ber theory.

Claim: 3(p−1)/2 ≡ −1 mod p, for p 6= ±1 mod 12.

Proof: Since Z(p)× is cyclic of order p− 1, then for odd p,

(a
p−1
2 )2 = ap−1 = 1

for any a in Z(p)×. Thus a
p−1
2 = ±1 or more specifically:

a
p−1
2 ≡


1 (mod p) if there is an integer x such that a ≡ x2 (mod p)

−1 (mod p) if there is no such integer.

This is an application of Euler’s Criterion.

It thus remains to show that 3 is not a square mod 1217. Using the law of

quadratic reciprocity we see that 3 is a square mod p when p ≡ ±1 mod 12.

For our case, we look at 1217 mod 12, and find that 1217 6≡ ±1 mod 12. This

implies that 3 is not a residue (square) mod 1217 and thus that 3
p−1
2 = −1.
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Continuing on with the index calculus:

1 ≡ L(3)

24 ≡ 608 + 2L(2) + L(7) + L(13)

25 ≡ 3L(5)

30 ≡ 608 + L(2) + 2L(5)

54 ≡ 608 + L(5) + L(11)

87 ≡ L(13)

And with just a bit of computation, we end up with L(2) ≡ 216, L(3) ≡ 1,

L(5) ≡ 819, L(7) ≡ 113, L(11) ≡ 1059, and L(13) ≡ 87, all mod 1216. We

now consider 3j · 31 and after some trials with j we get that:

326 · 31 ≡ 25 · 3 · 7 mod 1217

⇒ L(31) = 5L(2) + L(3) + L(7)− 26 mod 1216

Which results in L(31) ≡ 1168, and so 31168 ≡ 31 mod 1217. Again we can

easily check this with any calculator that can handle modular arithmetic.

When utilizing the index calculus, it is crucial that the factor base be chosen

cleverly. Too small of a factor base will make finding values that factor into

your factor base difficult, while too large of a factor base will result in prob-

lems attempting to find the values of the L(li)’s. For a practical example, A.

Joux and R. Lercier used a factor base consisting of the first 1 million primes

to tackle discrete logs mod a 120-digit prime in 2001 [1].

It is worth noting that the index calculus heavily relies on the fact that inte-

gers can be rewritten as products of primes. Because of this fact, we cannot

easily extend this technique to any arbitrary group. While the index calculus
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is often relatively quick (the runtime is subexponential) its limited area of use

requires other, slower modes of attack for more general groups [1].

5.3 ”Baby Step, Giant Step”: A More Gen-

eral Attack

For an arbitrary additive group G (we will write our groups in this section

additively since that is ultimately what the group over an elliptic curve is), we

will need a more general form of attack than the index calculus in the previous

section. Notationally for this section, G will be an additive group, P and Q

will be elements of G, the order of G will be N , and k will again be an integer

that we wish to find. Our discrete log problem will take the form of:

Given P,Q, solve kP = Q if possible.

The method we will use here is called the ”Baby Step, Giant Step”. While

slower than the previously mentioned index calculus, it will work for any ar-

bitrary group. The attack works as follows:

1) Fix an integer m ≥
√
N and compute mP .

2) Make and store a list of all the elements iP where 0 ≤ i < m.

3) Compute the points Q − jmP for j = 0, 1, ...,m − 1 until one matches an

element from the stored list in step 2.

4) If iP = Q − jmP we then have with some rearranging Q = kP with

k ≡ i+ jm mod N .

Now, since m2 > N , i < m, and j < m, then

k = i+ j, m ≤ (m− 1) + (m− 1)m = m2 − 1 < m2, 0 ≤ k < m2
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We can rewrite k as k = k0 + mk1 with k0 ≡ k mod m and 0 ≤ k0 < m and

k1 = (k − k0)/m. Thus, 0 ≤ k1 < m, since k < m2. We then have i = k0 and

j = k1, which will yield the desired Q− k1mP = kP − k1mP = k0P .

In a more general sense, consider the set S = {jm+ i : 0 ≤ i < m, 0 ≤ j < m}

for a fixed integer m. If j1m+ i1 = j2m+ i2, this forces i1 ≡ i2 mod m, which

then requires that i1 = i2 due to the constraints on i. We then get that j1

must be equal to j2. So S has m2 elements. What’s more, its largest value

occurs at (m − 1)m + (m − 1) = m2 − 1, and its smallest value occurs at 0,

so really S = {0, 1, 2, ...,m2 − 1}.We can thus use the elements of this set to

cover the numbers 0 to m2 − 1; our baby steps being of size 1 (indexed with

the i’s), and our giant steps of size m (indexed by the j’s). For some value

N ≤ m2, we will then assuredly cover the numbers 0 to N − 1, possibly more

than once mod N .

For the particular set of steps outlined above, the baby step is computed at

step 2, when we compute values of iP by taking P and adding it to (i− 1)P .

The giant step then is in step 3, when we add −mP to Q− (j − 1)mP .

This attack is better than brute force because it requires only 2m basic com-

putations, plus step 4 where we extract our value for k. For large values of m,

2m is significantly smaller than m2.

Example 5.8 Consider example 5.5 above. We will now use the baby step

giant step method to tackle this problem, instead of brute force. Recall, our

discrete log problem here was:

k(9, 6) = (14, 2)
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Now, as we’ve seen earlier the order of E(F19) is 21. We will let m = 5. We

then get that

5P = (0, 1)

From before we also have our list of ”iP elements”:

P = (9, 6), 2P = (7, 3), 3P = (10, 2), 4P = (16, 3)

We need to look at Q− j5P for values of j. This results in the following:

Q− 1(0, 1) = (14, 2) + (0, 18) = (16, 3)

So k = 4 + 1 ∗ 5 = 9 just as we got before.

5.4 Cryptographic Applications of Discrete Logs

But just how difficult is the discrete log problem? The problem itself is widely

regarded as being just as computationally difficult as factoring integers[5]. As

we saw in the previous sections, the index calculus lets us solve discrete logs

in subexponential time, but only for a specific type of group. This makes the

discrete log problem fantastic to build on as a cornerstone for cryptography.

Before we can look at some codes of our own though, we must first establish

some groundwork.

5.4.1 Terminonlogy and “Big Ideas”

The typical situation involving secret messages has three parties, often referred

to as Alice, Bob, and Eve. We will keep this naming convention. Generally,

Alice wishes to send a message to Bob. This message will be referred to as

the plaintext. Eve wishes to know the contents of the plaintext, against the
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wishes of both Alice and Bob. Alice will employ an encryption key to convert

the plaintext into a coded form of the original, known as the ciphertext. This

ciphertext, she will send to Bob, who will then use his decryption key to con-

vert the ciphertext back into plaintext. The goal of any cryptographic system

then is to create an encryption scheme that is undecipherable by Eve.

There are two main types of crypto-systems. The first is symmetric encryp-

tion, wherein the encryption key and decryption key are either the same, or

one can be easily inferred from the other. The downside of these systems is

that they require some way of initially establishing the keys ahead of time

between Alice and Bob, a situation that is not always practical or possible.

The advantages are that good symmetric systems are often computationally

relatively quick.

The other type of crypto-system is referred to as public key encryption. In

a public key system, Alice and Bob need no prior contact. Bob possesses both

a public key, that he publishes to the world, which Alice uses to encrypt the

plaintext, as well as a private decryption key. Obviously for these systems to

be secure, the decryption key should be virtually unobtainable from knowledge

of the public encryption key. While often more convenient, since Alice need

not have met Bob to exchange keys, public key systems are often much slower

to implement than symmetric systems.

5.4.2 Diffie-Hellman Key Exchange

So, what if Alice and Bob haven’t had any prior communication, but still wish

to use a symmetric encryption scheme. One way of exchanging the required
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keys is via the Diffie-Hellman Key Exchange. Though the original method

used multiplicative groups of finite fields, it is equally valuable in the realm of

elliptic curves.

1) Alice and Bob agree between each other on a particular multiplicative group

of some finite field, call this G. This choice is made such that the discrete log

problem is nontrivial. They also publicly agree upon an element P ∈ G, such

that the subgroup generated by P is large (most often these are chosen so that

the order of the subgroup generated by P is a large prime value).

2) Alice and Bob each choose an integer that they keep to themselves. Alice

will choose a ∈ Z and Bob will choose b ∈ Z. They each then compute P a and

P b respectively.

3) Alice will send Bob P a, and likewise, Bob will send Alice P b.

4) Using her secret integer, Alice will use the information sent to her by Bob

to compute (P b)a and likewise, Bob will compute (P a)b. Note now that both

Alice and Bob have the same element: P ab.

5) Alice and Bob will then employ an agreed upon method of extracting a key

from the resulting P ab.

It might seem that Eve knows quite a lot from this exchange, but the crux of

the matter is that Eve does not know the values of P ab. She only knows G,

P , P a, and P b. If she can somehow solve the discrete log problem on G, she

could find either a or b, however as we previously mentioned, Alice and Bob

specifically chose G such that the discrete log problem was hard.

Formally, Eve’s conundrum is referred to as the Diffie-Hellman Problem.
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“Given P , P a, and P b all in G, compute P ab.”

Provided Eve can solve discrete logs, she can leverage her knowledge of P and

P a to recover a, then compute (P b)a just like Bob does.

Say that Eve is sent a tip from some source claiming to know P ab. Is there a

way she can determine whether the information is correct? This is a related

problem to the Diffie-Hellman problem, referred to as the Decision Diffie-

Hellman Problem.

“Given P , P a, and P b all in G, and given Q ∈ G, determine whether

Q = P ab.”

Example 5.9 For this example we will be considering a multiplicative group

over the integers modulo 113. Our element P will be the number 3. Alice will

choose 23 as her secret integer and Bob will choose 32. Now, Alice will send

Bob 323 mod 113 and Bob will send Alice 332 mod 113. Alice now has 28,

and Bob has the number 39. Alice now finds that 2823 ≡ 106 mod 113, and

Bob finds that 3932 ≡ 106 mod 113. In this case, Alice and Bob might use

the first 4 bits of the binary representation of 106 as their key, or some other

previously agreed upon method.

Now, certainly Alice and Bob would want to use a much larger value than

113 for the size of their group, otherwise Eve could (with modern computing

technology) brute force the problem and discern the values of a and b very

quickly.

5.4.3 Elgamal Public Key Encryption

Where Diffie-Hellman can be used to set up a symmetric system, the discrete

log problem can also be used to establish public key systems. This method,
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described by Taher Elgamal in 1984 [7], allows for Alice and Bob to communi-

cate securely without the need to have any pre-established contact. For Alice

to send her message, she must first obtain Bob’s public key.

Bob’s Public Key

1) Bob chooses a multiplicative group G where the discrete log problem is

difficult.

2) Bob chooses a element P ∈ G, customarily choosing P such that the order

of P is a large prime.

3) Bob chooses some integer n, and computes P n. For our purposes we will

let B = P n.

4) Bob makes G, P , and B public. Bob keeps the integer n private.

Alice Encrypts Her Message

1) Alice obtains all of Bob’s public key.

2) Alice expresses her message as an element M ∈ G.

3) Alice chooses her own secret integer, k and computes P k = M1.

4) Alice computes a new point M2 = MBk.

5) Alice sends M1 and M2 to Bob.

Bob Decrypts the Message

Bob decrypts by calculating M2M
−n
1 . This yields M as follows:

(MBk)(P k)−n = MP nk(P kn)−1 = M

What Eve Sees

Assuming Eve is watching, all she will see is the components of Bob’s public

key, as well as M1 and M2. Eve can only ascertain M if she can somehow solve

the discrete log problem on G.

Example 5.10 For this example, we will use the multiplicative group of the

integers modulo 2539. Bob’s public key will consist of this group G, the integer
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P=35, and the integer B=154. Bob’s secret integer in this case is n=54.

Now, let’s say that Alice wishes to encode the message “HELLO WORLD”.

She first will need a method of translating her message into numbers. One

common method is to correspond letters to their numerical position in the

alphabet (with a → 00, b → 01 and so on till z → 25) and look at two-letter

blocks. In this way, the message “HELLO WORLD” would be broken up into:

“HE LL OW OR LD,” which would then translate numerically to:

0704 1111 1422 1417 1103

She will then choose a different secret integer k for each block. She could use

the same integer k for each block, however picking a different one for each

block will better the security of the encrypted message. Looking at the first

block, Alice chooses as her secret integer for this block 29. She computes her

encoded message as follows:

M1 = 3529 ≡ 2400 mod 2539

M2 = 704× 15429 ≡ 1832 mod 2539

This first block would then be encoded as the ordered pair (2400, 1832). Alice

would send this block to Bob, as well as similarly encoded versions of the four

other blocks. Bob would then compute (for the first block) 1832 × 2400−54

mod 2539, which he would find to be 704, which he would then interpret as

the letters H and E.
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Chapter 6

Elliptic Curve Cryptography

With the ever increasing speed of computers, it is imperative that encryption

keeps pace. Groups on elliptic curves provide a much more efficient ecosystem

than more traditional groups. All the previously discussed techniques of en-

cryption can be mimicked with an elliptic curve as the group. Not only that

but elliptic curves can provide equivalent security at a lower cost computation-

ally to legitimate users [1]. It is estimated that a 160-bit elliptic curve key will

provide the same level of security as a more traditional RSA key of 1024-bits

[6]. In this chapter, we will first reapply the earlier cryptographic methods

using discrete logs in the setting of elliptic curves. We will follow this with a

new method known as the Elliptic Curve Integrated Encryption Scheme.

6.1 Using Elliptic Curve Discrete Logs in Cryp-

tography

Most of the applications in this section will work exactly as they did in the

previous chapter, just with the group being now an elliptic curve over some
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finite field.

6.1.1 Diffie-Hellman Key Exchange

1) Alice and Bob agree between each other on an elliptic curve E over a finite

field Fn. This choice is made such that the discrete log problem on E(Fn)

is nontrivial. They also publically agree upon a point P ∈ E(Fn), such that

the subgroup generated by P is large (most often these are chosen so that the

order of the subgroup generated by P is a large prime value).

2) Alice and Bob each choose an integer that they keep to themselves. Alice

will choose a ∈ Z and Bob will choose b ∈ Z. They each then compute aP

and bP respectively.

3) Alice will send Bob aP , and likewise, Bob will send Alice bP .

4) Using her secret integer, Alice will use the information sent to her by Bob

to compute a(bP ) and likewise, Bob will compute b(aP ). Note now that both

Alice and Bob have the same point: abP .

5) Alice and Bob will then employ an agreed upon method of extracting a key

from the resulting abP , like using information based on the x-coordinate of

abP or some similar method.

Example 6.1 Consider the elliptic curve E(F19). We will use the point (9, 6)

as our point P . Alice and Bob will choose the integers 3 and 5, respectively.

Alice will then compute 3(9, 6) = (10, 2), and send Bob (10, 2), while Bob

will compute 5(9, 6) = (0, 1) and send Alice (0, 1). Alice will then compute

3(0, 1) = (15, 3), while Bob will compute 5(10, 2) = (10, 2) + (14, 17) = (15, 3).

Alice and Bob then might use the number 15 as the key for some symmetric

system of encryption like a Caesar cipher.
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6.1.2 Elgamal Public Key Encryption

Again, just like the Diffie-Hellman key exchange, we may conduct Elgamal

public key encryption using elliptic curves over finite fields.

Bob’s Public Key

1) Bob chooses an elliptic curve E over a finite field Fn, where the discrete log

problem is difficult.

2) Bob chooses a point P on E, customarily choosing P such that the order

of P is a large prime.

3) Bob chooses some integer r, and computes rP . For our purposes we will let

B = rP .

4) Bob makes E, Fn, P , and B public. Bob keeps the integer r private.

Alice Encrypts Her Message

1) Alice obtains all of Bob’s public key.

2) Alice expresses her message as a point M ∈ E(Fn).

3) Alice chooses her own secret integer, k and computes kP = M1.

4) Alice computes a new point M2 = M +E kB.

5) Alice sends M1 and M2 to Bob.

Bob Decrypts the Message

Bob decrypts by calculating M2 +E −rM1.

Example 6.2 Let’s say that Bob’s public key consists of the elliptic curve

E(F19) with the equation y2 = x3 + x+ 1. Bob will choose as his public point

(9, 16). Bob’s private integer will be 3 so Bob’s public key will be E(F19), and

the points (9, 16) and (10, 2).

For the sake of argument, Alice wishes to send Bob the point (5, 6). Alice then
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must compute M1 and M2 with her secret integer, say 5:

M1 = 5(9, 16) = (0, 1)

M2 = (5, 6) +E 5(10, 2) = (5, 6) +E (15, 3) = (16, 3)

Alice now sends these two points to Bob, who decrypts like so:

(16, 3)− 3(0, 1) = (16, 3) +E 3(0, 18) = (16, 3) +E (15, 16) = (5, 6)

6.2 Elgamal Digital Signatures

With the prevalance of electronic documents in business and government,

the notion of a digital signature is of high importance. A digital signature

not only requires some method of assuring the signer is who she says she is,

but also must somehow be intrinsically tied to the corresponding document.

One scheme of digital signatures, developed by Elgamal, originally was im-

plemented over the multiplicative group of a finite field. We can extend the

algorithm easily to elliptic curves [1].

In order for Alice to sign a document she must first establish some form of

public key. Her key is made up of an elliptic curve E over some finite field

Fn, again choosing these so that the discrete log problem is hard on E(Fn).

She then chooses some point A ∈ E(Fn), as well as some integer a. Alice then

computes aA and names the resulting point B. Alice also picks some function

f : E(Fn) → Z. The only requirements on f are that its image be large, and

the number of inputs that yield any given output be small. Alice’s public infor-

mation is then A, B, E, Fn, and f . Alice keeps the integer a to herself, and this
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integer will serve to assure that the signed document is indeed signed by Alice.

Alice will then sign the document as follows:

1) Represent the item to be signed as some integer m. Also let N be the order

of the point A.

2) Choose k ∈ Z such that k and N are relatively prime. Compute kA and

call the result R.

3) Compute s ≡ k−1(m− af(R)) mod N .

4) The signed message to be sent then is (m,R, s).

Bob can then verify that Alice sent the message as follows:

1) Compute V1 = f(R)B +E sR.

2) Compute V2 = mA.

3) The signature is valid if V1 = V2.

This works since

V1 = f(R)B + sR = f(R)aA+ skA = f(R)aA+ (m− af(R))A = mA = V2

Example 6.3 Let Alice’s public key consist of the elliptic curve E over the

finite field of size 19, represented by the equation y2 = x3 + x+ 1. Let Alice’s

chosen point A = (9, 6). Her chosen integer a will be 7 and thus, B = (2, 12).

Alice’s function will be f(x, y) = x.

Alice’s public key is then:

E(F19), A = (9, 6), B = (2, 12), f(x, y) = x

Now, say she wishes to sign off on the integer 13. Now, from previous, we

know the order of (9, 6) is 21, and so we will pick as our k the number 2, since
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gcd(2, 21) = 1. R = 2(9, 6) = (7, 3). For s we then get:

s ≡ 11(13− 7 · 7) mod 21

s ≡ 3 mod 21

Alice then sends Bob the ordered triple (13, (7, 3), 3).

Bob then checks the authenticity as follows:

V1 = 7(2, 12) +E 3(7, 3) V2 = 13(9, 6)

= (2, 12) +E (15, 16) = (13, 8)

= (13, 8)

Therefore, Bob knows Alice sent the message.

It is worth noting that at no point did Alice mask the fact that she was send-

ing Bob the integer 13. If Alice wished to keep the contents of her message a

secret, she would also have to encrypt the plaintext using some other form of

encryption.

When using this method it is imperative that Alice use a different value of

k each time she signs a document. If two signed documents by Alice have the

same value k, Eve will immediately know it, since R will be the same in both

cases. If the first message is (m,R, s), call the second (m′, R, s′), Eve may

proceed as follows to ascertain a.

ks ≡ m− af(R) mod N and ks′ ≡ m′ − af(R) mod N

So: k(s− s′) = ks− ks′ ≡ m−m′ mod N

107



Eve knows both s and s′, and since she also knows that we are working

mod N , there are only finitely many possible values for k. In fact she need

only check gcd(s − s′, N) many values. Eve need only try each one of them

to ascertain which one satisfies R = kA. Once she knows k, Eve can narrow

down the possibilities for a and then use trial and error on B = aA till she

finds the one that works.

6.3 Messages as Points on Elliptic Curves

In the previous sections, Alice’s plaintext was a point on an elliptic curve.

Obviously, just sending a point is not relatively useful. As with most mathe-

matical crypto-systems, we first need a way of encoding our given language as

some sort of numbers. We can easily consult a convenient ASCII table, and

use that to map letters and punctuation to corresponding numerical values,

however in many cases this is not the most secure manner in which to encode

a message [3]. The following is an alternative method courtesy of Koblitz:

1) Pick an elliptic curve E over the finite field Fp where p is prime. This

method is extensible to any arbitrary finite field, but we will use a prime here

for simplicity.

2) Map your characters to numbers, either with an ASCII chart, or in some

other mutually agreed upon fashion.

3) Choose an integer k. Often used values of k can range anywhere from 20

to 100 or even larger, but really any positive integer will work here. Generally

speaking the larger your value of k the more likely you will be able to encode

your entire message properly.

4) For each character, let the plaintext value of that character be m. Now
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assign x = mk+ 1, and solve for y in the equation for the curve. Now, there is

no guarantee that there will be a valid solution, but if there is, then this point

is the point that will represent that character.

5) If step 4 failed to offer a valid point, re-evaluate the equation at x = mk+2,

and attempt to solve for y. If this fails, try x = mk + 3 and so on. In general

this process will yield a valid point before you reach x = mk + (k − 1).

6) Repeat for each character. The entire message then becomes a sequence of

points on E.

Now, in order to accommodate all possible characters, p needs to be at least

as large as the number of different characters you have times the size of your

integer k. Further, since the method is probabilistic, there is a chance that a

poorly chosen value for k will yield no feasible result. This is however unlikely

and the odds of not finding a valid point are 2−k (so larger values of k are

more likely to yield results) [1].

Now, one potential problem is that these values can get quite large. Fur-

ther, if Alice needs to sign each integer she sends Bob, this will triple the

amount of information she must send. One way of reducing the burden on the

system is by means of a cryptographic hash function.

Definition 6.4 A cryptographic hash function H is a function which takes

inputs of arbitrary length (perhaps millions of bits), and outputs values of

fixed lengths (128 bits for example). The Hash function H must possess three

qualities in order for it to be useful:

1) For a given input m, H(m) should be very quick to calculate.

2) Given H(m) = y, it is infeasible to determine m given the value of y.

109



3) It is computationally infeasible to find any two inputs m1 and m2 such that

H(m1) = H(m2).

In definition 6.4 if 2) is satisfied, we say that H is one-way or preimage resis-

tant. If 3) is satisfied, we say that H is strongly collision-free.

6.4 Elliptic Curve Integrated Encryption Scheme

Another way to encode messages proposed by Bellare and Rogaway goes by

the moniker Elliptic Curve Integrated Encryption Scheme, or ECIES for short.

ECIES is handy because it possesses much of the security of public key sys-

tems, but the message encryption is actually predominantly handled via a

symmetric encryption scheme. The setup is as follows:

Bob picks an elliptic curve E over a finite field Fn such that the discrete log

problem is hard. Also as with earlier setups, Bob will choose a point A ∈ E,

customarily such that the order of A (call this N) is a large prime. Bob will

then choose some secret integer s and compute B = sA. Bob’s public key

that Alice will need to encrypt her message then is (n,E,N,A,B). Bob keeps

the integer s to himself. Further, in order for this to work, there must also

be some previously agreed upon symmetric encryption function Ek, where k

is the key for this encryption. Two cryptographic hash functions H1 and H2

will also be required.

Alice Encrypts Her Message

1) Alice obtains all of Bob’s public key. She wishes to encrypt the message r.

2) Alice chooses an integer r such that 1 ≤ r ≤ N − 1.
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3) Alice computes R = rA and Z = rB.

4) Alice writes the output of H1(R,Z) as two keys k1 and k2 that are retrieved

from the result of the hash function in some predetermined manner.

5) Alice takes her message, m, and computes C = Ek1(m), using k1 as the

encryption key for E the symmetric encryption function, and t = H2(C, k2).

6) Alice sends Bob (R,C, t).

Bob Decrypts the Message

1) Bob computes Z = sR.

2) Bob computes H1(R,Z), just as Alice did to recover the two keys k1 and

k2.

3) Bob computes H2(C, k2). If it does not equal t, Bob stops and rejects the

ciphertext as not authentic.

4) Computes m = Dk1(C) where Dk1 is the appropriate decryption function

for Ek1 .

It is important to note here that the majority of the encryption here is being

done by the symmetric encryption function E. Only the key for E is being

encrypted via the public key code method. Further, Alice’s message does not

need to be represented as a point on an elliptic curve, nor does Bob need to

conduct repeated elliptic curve computations for each part of the ciphertext.

This ultimately allows for a greater degree of speed without sacrificing security.

Additionally, the ”check” step that Bob conducts during decryption can aid

in defeating a common attack on these sorts of systems. An attacker might

send Bob ciphertexts with the intent of attacking the system through Bob’s
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decryption. While an attacker might pick a random value for k2, call it k′2, and

their own ciphertext, call this C, to send to Bob in the form of H2(C, k
′
2), the

attacker will not have known Z in advance, and thus this will in all likelyhood

not match up with Bob’s computation of H2(C, k2). As soon as this match

doesn’t occur, Bob knows that the ciphertext doesn’t come from a legitimate

user, and can simply refuse to decrypt the message.
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Chapter 7

Elliptic Curves and Complex

Numbers

As we mentioned back at the beginning, elliptic curves derived their name from

a notion of attempting to find the arc length of an ellipse. In this chapter we

will make that connection in more detail as well as look at some properties of

elliptic curves over the complex numbers.

7.1 The Arc Length of an Ellipse

From geometry, we know that the equation for a generic ellipse is

x2

a2
+
y2

b2
= 1 (7.1)

Further, we know we can find arc-length L as:

L =

∫
ds =

∫ √
dx2 + dy2 =

∫ √
1 +

dy

dx

2

dx
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Now, from (7.1) we get through implicit differentiation:

2x

a2
dx+

2y

b2
dy = 0

⇒dy

dx
=

(−2x)/a2

(2y)/b2
=
−xb2

ya2

⇒1 +
dy

dx

2

= 1 +
x2b4

y2a4
= 1 +

x2b4

b2(1− x2/a2)a4

⇒1 +
dy

dx

2

= 1 +
b2x2

a2(a2 − x2)

Figure 7.1: We want the arc length as indicated in red.

Thus, the arc length for the half-ellipse is:

L =

∫ √
1 +

b2x2

a4 − a2x2
dx

=

∫ √
a4 − a2x2 + b2x2

a4 − a2x2
dx

=

∫ √
a2 − (1− b2/a2)x2

a2 − x2
dx

Now, let k2 = 1− b2

a2
and conduct the following change of variables:
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x→ ax. We then get:

L = a

1∫
−1

√
1− k2x2
1− x2

dx

= a

1∫
−1

1− k2x2√
(1− x2)(1− k2x2)

dx (7.2)

Using (7.2), we can then rewrite as

L = a

1∫
−1

1− k2x2

y
dx (7.3)

where y2 = (1− x2)(1− k2x2). We call (7.3) an elliptic integral. Stated more

formally:

Definition 7.1 The integral
∫
R(x, y)dx is an elliptic integral when R(x, y)

is a rational function of the coordinates (x, y) on an elliptic curve. Specifically

(7.3) is referred to as an elliptic integral of the second kind.

An elliptic integral of the first kind looks like∫
dx√

(1− x2)(1− k2x2)

Notice now, that y2 is set equal to a quartic, which still doesn’t quite match up

with our previously established notion of elliptic curves. This can be resolved

with a change of variables courtesy of [8]:

y2 = (1− x2)(1− k2x2)

= 1− x2 − k2x2 + k2x4

Now, let

x1 =
2(y + 1)

x2

y1 =
4(y + 1) + 2(k2 + 1)x2

x3
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This change of variables will satisfy the equation:

y21 = x31 − (k2 + 1)x21 − 4k2x1 + 4k2(k2 + 1)

Which as we know from earlier chapters may be simplified to the Weierstrass

equation y2 = x3 + Ax+B for properly chosen constants A and B.

7.2 C/L as a Group

Before going futher, we will take some time to look further at the field of

complex numbers mod some lattice L. First, some definitions:

Definition 7.2 For ω1, ω2 linearly independent complex numbers over R, the

set L = {n1ω1 + n2ω2|n1, n2 ∈ Z} is called a lattice.

Proposition 7.3 The lattice L = {n1ω1 + n2ω2|n1, n2 ∈ Z} is a normal ad-

ditive subgroup of C.

Proof: First note that since C is an additive abelian group, then any

subgroup will be normal. It thus suffices to show closure and inverses in L.

Let n1ω1 + n2ω2, n3ω1 + n4ω2 ∈ L. Then (n1ω1 + n2ω2) + (n3ω1 + n4ω2) =

(n1 + n3)ω1 + (n2 + n4)ω2 ∈ L, so we have closure under addition.

Further, for a given a = n1ω1 + n2ω2 ∈ L, let −a = (−n1)ω1 + (−n2)ω2. We

then get that a+ (−a) = 0ω1 + 0ω2 = 0. We thus have inverses, and therefore

L is an additive normal subgroup of C.

Consider now the quotient group C/L. Elements will be of the form z +L for

z ∈ C. For purposes of representing the cosets, we define the following set:
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Figure 7.2
Definition 7.4

F = {a1ω1 + a2ω2|0 ≤ ai < 1, i = 1, 2}

This set is called the fundamental

parallelogram for the given lattice

L.

Note that opposite edges of the fun-

damental parallelogram are in the same equivalence class. This causes the

fundamental parallelogram to appear (abstractly) as the following topological

plane model which, as shown, is really just a torus:

Figure 7.3: Fundamental Parallelogram to Torus

It is worth noting that we could have constructed a similar picture with the

finite field of size 19 from chapter 4. In that case, the fundamental parallel-

ogram was really just the 19x19 square of points with integer coordinates in

quadrant 1 with the lower left corner at the origin.

Consider now, the torsion subgroups in C/L. While the previous definition of

Torsion in Chapter 3 was specific to elliptic curves, the more general definition
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is analgous: for a group G, the n-torsion points of G denoted G[n] is the set

of points P in G such that nP = I where I is the identity element of G.

Consider then the case of C/L[2]. This is pretty clearly

{0, ω1/2, ω2/2, (ω1 + ω2)/2}

. Similarly, we may find C/L[3] to be {0, ω1

3
, 2ω1

3
, ω2

3
, 2ω2

3
, ω1+ω2

3
, 2(ω1+ω2)

3
, 2ω1+ω2

3
, ω1+2ω2

3
}.

Figure 7.4: Pictorial representation of C/L[2] and C/L[3].

From these examples, we may determine a more general statement about

C/L[n].

C/L[n] =

{
lω1 +mω2

n

∣∣∣∣l,m ∈ Z, 0 ≤ l,m < n

}
(7.4)

7.3 Doubly Periodic Functions and Elliptic Curves

In this section, we will begin by looking at some properties of doubly periodic

functions, and then make the connection to elliptic curves To begin our dis-

cussion here first consider the result from calculus:

The circular integral
w∫
0

dx√
1−x2 = sin−1(w) has inverse function w = sin(z),

which is periodic over a period of 2π.
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Consider now an elliptic integral of the first kind after we transform our de-

nominator as in the section 7.1:
w∫
α

dx√
x3 + Ax+B

This integral is a complex line integral with all variables complex numbers.

The integral is along any curve from α to ω avoiding the zeroes of x3+Ax+B.

It turns out we can do a somewhat analgous thing here as with the circular

integral, where this integral has an inverse function, ℘(z), but this function is

doubly periodic, which is to say that it has two complex periods ω1 and ω2

such that:

℘(z + ω1) = ℘(z) = ℘(z + ω2)

This double period lines up with our previously established notion of lattices.

Further, note that by double periodicity the inputs for the ℘ function could

be taken to be elements of C/L.

Definition 7.5 A meromorphic function f : C → C ∪ ∞ such that

f(z + ω) = f(z) for all z ∈ C and all ω ∈ L is called a doubly periodic

function or elliptic function.

For future use it is also worth mentioning the following facts:

Proposition 7.6 Let f be a doubly periodic function with no poles in C. Then

f is constant.

This is really just an application of Liouville’s theorem from complex analysis,

which states that every bounded function, which is analytic everywhere on C,

is constant. In this case, since f is bounded on the funcamental domain and

f is doubly periodic, we get that it is analytic and bounded on C.
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Proposition 7.7 If f is a non-constant doubly periodic function, then f must

be surjective.

Proof: Assume f is not surjective. Then there is some ω not in the

image of f . We thus have that 1/(f(z)− ω), a doubly periodic function with

no pole. By Proposition 7.6, then 1/(f(z)− ω) is constant which implies that

f(z) is constant, hence f must have been surjective.

In order to make the connection to elliptic curves we will need to introduce a

new doubly periodic function.

Definition 7.8 Given a lattice, L, define the Weierstrass ℘-function by

℘(z;L) =
1

z2
+

∑
ω∈L,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
(7.5)

While ℘ is really just a function of z, we include L in the argument to reinforce

the notion that this is defined over a specific given lattice.

For future use we will also define the following:

Definition 7.9 For k ≥ 3, let Gk be defined as follows:

Gk = Gk(L) =
∑
l∈L−0

l−k

Note that this series is absolutely convergent since k ≥ 3.

Further, using the notation in Definition 7.9 we get the following from [1].

Proposition 7.10 For 0 < |z| < minl∈L−0(|l|),

℘(z) = z−2 +
∞∑
j=1

(2j + 1)G2j+2z
2j
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While the Weierstrass ℘-function possesses many many nice properties, the

primary one which we are concerned with is the following:

Theorem 7.11 The Weierstrass ℘-function satisfies:

℘′(z)2 = 4℘(z)3 + A℘(z) +B

for properly chosen values of A and B.

Proof: This proof will pull heavily from some results in analysis out-

lined in [1]. From Proposition7.10, we get the following for z 6= 0 but suffi-

ciently close to 0:

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + ...

℘′(z) = −2z−3 + 6G4z + 20G6z
3 + ...

Cubing and squaring (respecitvely) yields:

℘3(z) = z−6 + 9G4z
−2 + 15G6 + ...

℘′2(z) = 4z−6 − 24G4z
−2 − 80G6 + ...

Now, define f(z) as

f(z) = ℘′2(z)− 4℘3(z) + 60G4℘(z) + 140G6 (7.6)

Using the results above, we find that f(z) = c1z + c2z
2 + ... for constants

c1, c2, .... f(z) is thus a power series, with no negative powers of z nor any

constant term. Since f(z) is just a sum of multiples of ℘ and ℘′, the only

possible poles of f(z) will be the poles of ℘(z) or ℘′(z). We can see by the

definition of ℘ and ℘′ that these poles (if they exist) will have to be elements

of the lattice L.Since 0 is not a pole by (7.6), then f(z) has no poles. Now,
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from Proposition 7.6, f(z) must be constant. Noting that f(0) = 0 then f(z)

must be identically 0. Thus,

℘′(z)2 = 4℘(z)3 + A℘(z) +B

for A = 60G4 and B = 140G6.

This in hand, we may now consider the main point of this section:

Theorem 7.12 For a given lattice L = {n1ω1 +n2ω2|n1, n2 ∈ Z}, and Weier-

strass ℘-function on that lattice, as well as a given Elliptic Curve E(C) de-

scribed by y2 = 4x3 + Ax + B, the map Φ : C/L → E(C) is an isomorphism

of groups, where Φ is defined by:

z → (℘(z), ℘′(z)) for z 6= 0

0→∞

Proof: For Φ to be a homomorphism, we must have that, Φ(z1 +z2) =

Φ(z1)+E Φ(z2). In order to utilize the previously established notions of elliptic

curve addition, we will need to eliminate the coefficient on the x3 term. Via

the change of variables y → y/2, we get a new curve:

E1(C) : y2 = x3 + A1x+B1

where A1 = A/4 and B1 = B/4.

Note that E1 and E are isomorphic via the map (x, y)→ (x, y/2). Thus, if we

can show that C/L is isomorphic to E1 we will get the desired result. To do

this we need a new map Φ1:

z →
(
℘(z),

℘′(z)

2

)
for z 6= 0

0→∞
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In order to show E1(C) ' C/L we will need to look at multiple cases.

Case 1: z1 = z2 = 0

Φ1(0 + 0) = Φ1(0) =∞ =∞+E ∞ = Φ1(0) +E Φ1(0)

Case 2: z1 = 0 and z2 6= 0

Φ1(0 + z2) = Φ1(z2) =∞+E Φ1(z2) = Φ1(0) +E Φ1(z2)

Case 3: z1 = z2 6= 0

Since Φ1(z) = (℘(z), ℘′(z)/2) and E1 is defined by y2 = x3 + A1x + B1, we

may now use the addition formulas for the Weierstrass equation.

For the x-coordinate of 2Φ1(z), we may look at the doubling formula (part 3 of

Definition 2.7) with x1 = ℘ and y1 = ℘′/2. We thus get that the x-coordinate

for 2Φ1(z) is (with the arguments ommitted for clarity):(
3℘2 + A1

℘′

)2

− 2℘

We would like to show that this is in fact the same as the x-coordinate of

Φ1(2z), specifically we must show that

℘(2z) =

(
3℘2 + A1

℘′

)2

− 2℘

From [11], we have that

℘(2z) =
1

4

℘′′2(z)

℘′2(z)
− 2℘(z) (7.7)

Recall that ℘′(z)2 = 4℘(z)3 + A℘(z) +B so differentiation gives us:

d

dz
℘′(z)2 =

d

dz
(4℘(z)3 + A℘(z) +B)

2℘′℘′′ = 12℘2℘′ + A℘′

℘′′(z) = 6℘2 + 2A1 (7.8)
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Combining (7.7) with (7.8) gives:

℘(2z) =
1

4

(6℘2 + 2A1)
2

℘′2
− 2℘

=

(
3℘2 + A1

℘′

)2

− 2℘

Thus, the x-coordinate of 2Φ1(z) is the same as the x-coordinate of Φ1(2z).

With regards to the y-coordinate of 2Φ1(z), we again use our doubling for-

mulas from Definition 2.7, which yields:(
3℘2 + A1

℘′

)(
3℘−

(
3℘2 + A1

℘′

)2
)
− ℘′

2

Since the y-coordinate of Φ1(2z) = ℘′(2z)/2 we must show that

℘′(2z)/2 =

(
3℘2 + A1

℘′

)(
3℘−

(
3℘2 + A1

℘′

)2
)
− ℘′

2

To do this, we will need a grasp of ℘′(2z):

d

dz
℘(2z) =

d

dz

[(
3℘2 + A1

℘′

)2

− 2℘

]

2℘′(2z) = 2

(
3℘2 + A1

℘′

)
6℘℘′2 − ℘′′(3℘2 + A1)

℘′2
− 2℘′

℘′(2z) =

(
3℘2 + A1

℘′

)(
6℘− (6℘2 + 2A1)(3℘

2 + A1)

℘′2

)
− ℘′

=

(
3℘2 + A1

℘′

)(
6℘− 2(9℘4 + 6A1℘

2 + A2
1)

℘′2

)
− ℘′

= 2

(
3℘2 + A1

℘′

)(
3℘− (3℘2 + A1)

2

℘′2

)
− ℘′

We thus get that

℘′(2z)

2
=

(
3℘2 + A1

℘′

)(
3℘− (3℘2 + A1)

2

℘′2

)
− ℘′

2

Combining these results gives us that:

2Φ1(z) = (℘(z), ℘′(z)/2) +E (℘(z), ℘′(z)/2) = (℘(2z), ℘′(2z)/2) = Φ1(2z)
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Case 4: z1 6= z2 and neither is 0.

For this case, we want to show that the x and y coordinates of Φ1(z1) +E

Φ1(z2) and Φ1(z1 + z2) are the same. For the x-coordinates, again appealing

to Definition 2.7, we get that the x-coordinate of Φ1(z1) +E Φ1(z2) is(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2)

We want this to be equal to ℘(z1 + z2), the x-coordinate of Φ1(z1 + z2).

A result from [11] states that:

℘(z1 + z2) =
1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2) (7.9)

Consider then for Φ1(z1 + z2), the x-coordinate will look like (7.9), giving us:

1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2)

=

(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2)

which is precisely the x-coordinate of Φ1(z1) +E Φ2(z2).

The y-coordinate of Φ1(z1) +E Φ1(z2) will look like:(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)[
2℘(z2)−

(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)2

+ ℘(z1)

]
− ℘′(z2)

2

We want to show that this is in fact equal to ℘′(z1 + z2)/2. We will proceed

by starting with (7.9), and differentiating with respect to z2.

℘′(z1 + z2) =
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)(
−℘′′(z2)(℘(z1)− ℘(z2)) + ℘′(z2)(℘

′(z1)− ℘′(z2))
(℘(z1)− ℘(z2))2

)
− ℘′(z2)

=
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)(
−(6℘2(z2) + 2A1)(℘(z1)− ℘(z2)) + ℘′(z2)(℘

′(z1)− ℘′(z2))
(℘(z1)− ℘(z2))2

)
− ℘′(z2)

=
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)(
−(6℘2(z2) + 2A1)(℘(z1)− ℘(z2)) + ℘′(z2)(℘

′(z1)− ℘′(z2))
(℘(z1)− ℘(z2))2

)
− ℘′(z2)
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Looking at just the numerator of the middle, we get:

6℘3(z2) + 2A1℘(z2)− 6℘2(z2)℘(z1)− 2A1℘(z1) + ℘′(z2)(℘
′(z1)− ℘′(z2))

=6℘3(z2) + 2A1℘(z2)− 6℘2(z2)℘(z1)−
1

2
(℘′2(z1)−

4℘3(z1)−B) + ℘′(z2)(℘
′(z1)− ℘′(z2))

=2℘3(z2) + 2A1℘(z2) +
B

2
+ 4℘3(z2)− 6℘2(z2)℘(z1)−

1

2
℘′2(z1) + 2℘3(z1) + ℘′(z2)(℘

′(z1)− ℘′(z2))

=
1

2
℘′2(z2) + 4℘3(z2)− 4℘2(z2)℘(z1)−

1

2
℘′2(z1) + 2℘3(z1)−

2℘2(z2)℘(z1) + ℘′(z2)(℘
′(z1)− ℘′(z2))

=
1

2
℘′2(z2) + 4℘3(z2)− 4℘2(z2)℘(z1)−

1

2
℘′2(z1) + 2℘(z1)[℘

2(z1)− ℘2(z2)]−

℘′2(z2) + ℘′(z2)℘
′(z1)

=− 1

2
℘′2(z2) + ℘′(z2)℘

′(z1)−
1

2
℘′2(z1) + 4℘3(z2)−

4℘2(z2)℘(z1) + 2℘(z1)[℘
2(z1)− ℘2(z2)]

=− 1

2
(℘′(z1)− ℘′(z2))2 + 2℘(z1)[℘

2(z1)− ℘2(z2)] + 4℘3(z2)− 4℘2(z2)℘(z1)

=− 1

2
(℘′(z1)− ℘′(z2))2 + 2℘3(z1)− 4℘(z2)℘

2(z1) + 2℘(z1)℘
2(z2)

+ 4℘3(z2)− 8℘2(z2)℘(z1) + 4℘(z2)℘
2(z1)

=− 1

2
(℘′(z1)− ℘′(z2))2 + 2℘(z1)(℘(z1)− ℘(z2))

2 + 4℘(z2)(℘(z1)− ℘(z2))
2

This results in

℘′(z1 + z2) =
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)(
2℘(z1) + 4℘(z2)−

1

2

(℘′(z1)− ℘′(z2))2

(℘(z1)− ℘(z2))2

)
− ℘′(z2)

Dividing by 2 yields

℘′(z1 + z2)

2
=

(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)[
2℘(z2)−

(
℘′(z1)/2− ℘′(z2)/2
℘(z1)− ℘(z2)

)2

+ ℘(z1)

]
− ℘′(z2)

2
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Therefore Φ1(z1) +E Φ1(z2) = (℘(z1 + z2), ℘
′(z1 + z2)/2) = Φ1(z1 + z2).

It remains to show that Φ1 is one to one and onto.

For this we will need a Complex Analysis result from [1]:

Proposition 7.13 Let f be a doubly periodic function for the lattice L, and

let F be a fundamental parallelogram for L. If n is the sum of the orders

of the poles of f in F and z0 ∈ C, then f(z) = z0 has n solutions counting

multiplicities.

Let (x, y) ∈ E1(C). From [1] we have that ℘(z)−x has a double pole, implying

it has zeroes. Thus there exists some z ∈ C such that ℘(z) = x. Consider that

by our definition for ℘, we get that ℘(z) = ℘(−z).

From Theorem 7.11, and our change of variables in this proof, we get that:(
℘′(z)

2

)2

= y2

We may thus say that ℘′(z)/2 = ±y. If ℘′(z)/2 = y, we’re done, and if

℘′(z)/2 = −y, then, ℘′(−z)/ = y. Recalling that ℘(−z) = x in this case

finishes the proof that Φ1 is onto, as we have either z → (x, y) or −z → (x, y).

Note: By the definition of Φ1, we have that the kernel of Φ1 is {0}. Since Φ1

is onto, and the kernel is 0, we have via the first isomorphism theorem that

Φ1 is one to one.

Therefore, Φ1 is an isomorphism of groups, and we may thus say that C/L '

E(C).

Of interest is the fact that while the map from C/L to E(C) is realtively

straightforward, the inverse bijection from E(C) to C/L is non-trivial to de-

termine. What’s more, the torsion groups of C/L were much more straightfor-

ward to determine than their counterparts in E. Topologically speaking, we’ve
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already seen that C/L forms a torus, however, E itself is a complex algebraic

curve.

At the end of the day, the ease with which one can work with the complex plane

modded out by a lattice as compared to the same procedures on an elliptic

curve proves to be one of the primary reasons elliptic curves can create such

strong encryption. Elliptic curves inherently display properties of a classic

trapdoor function (a function that is easy to do one way, but very difficult to

determine its inverse without some special information). While this trapdoor

isomorphism does not exist for finite fields, many of the motivating concepts

for elliptic curves and their use in encryption stem from the behavior of C/L.

128



Bibliography

[1] Washington, Lawrence C. Elliptic Curves: Number Theory and Cryp-

tography. 2nd ed.Boca Raton, FL: Chapman & Hall/CRC, 2008.

Print.

[2] ”Algebraic Curve.” Wikipedia. Wikimedia Foundation, 07 Sept. 2012.

Web. 17 July 2012. ¡http://en.wikipedia.org/wiki/Algebraic curve¿.

[3] Bh, Padma, D. Chandravathi, and P. Prapoorna Roja. ”Encod-

ing And Decoding of a Message in the Implementation of Elliptic

Curve Cryptography Using Koblitz’s Method.”International Journal

on Computer Science and Engineering 02.05 (2010): 1904-907. Google

Docs. Web. 17 July 2012.

[4] Segal, Sanford L. ”Chapter 8.” Nine Introductions in Complex Anal-

ysis, Revised Edition. Amsterdam: Elsevier, 2008. 300. Print.

[5] Rosen, Kenneth H. Elementary Number Theory and Its Applications.

5th ed. Boston: Pearson/Addison Wesley, 2005. Print.

[6] Hankerson, Darrel R., Scott A. Vanstone, and A. J. Menezes. Guide

to Elliptic Curve Cryptography. New York: Springer, 2011. Print.

129



[7] Elgamal, T. ”A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms.” IEEE Transactions on Information

Theory 31.4 (1985): 469-72. Print.

[8] Connell, Ian. Elliptic Curve Handbook. N.p., Feb. 1999. Web. July

2012. ¡http://www.ucm.es/BUCM/mat/doc8354.pdf¿.

[9] Laval, Philippe B. ”Cyclic Groups.”

N.p., 15 Mar. 2010. Web. 2 Nov.2012

¡http://science.kennesaw.edu/ plaval/math4361/groups cyclic.pdf¿

[10] Fulton, William. ”Algebraic Curves.” Math.lsa.umich.edu.

N.p., 28 Jan. 2008. Web. 14 Jan. 2013.

¡http://www.math.lsa.umich.edu/ wfulton/CurveBook.pdf¿.

[11] Du Val, Patrick. ”The Weierstrass Functions.” Elliptic Functions and

Elliptic Curves. Cambridge Eng.: University, 1973. N. Print.

130



Vita

Author: Samuel L. Wenberg

Place of Birth: Seoul, South Korea

Undergraduate Schools Attended: Gonzaga University

Degrees Awarded: Bachelor of Science, 2010, Gonzaga University


	Eastern Washington University
	EWU Digital Commons
	2013

	Elliptic curves and their cryptographic applications
	Samuel L. Wenberg
	Recommended Citation


	tmp.1408398531.pdf.iJrIH

