Eastern Washington University

EWU Digital Commons
EWU Masters Thesis Collection Student Research and Creative Works

2014

3D Image Acquisition System for Facial Recognition

James E. Pearson
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

6‘ Part of the Computer Sciences Commons

Recommended Citation

Pearson, James E., "3D Image Acquisition System for Facial Recognition" (2014). EWU Masters Thesis
Collection. 256.

https://dc.ewu.edu/theses/256

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.ewu.edu%2Ftheses%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/256?utm_source=dc.ewu.edu%2Ftheses%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

3D Image Acquisition System for Facial Recognition

A Thesis
Presented To
Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements
for the Degree

Master of Computer Science

By
James Pearson

Winter 2014

THESIS OF JAMES PEARSON APPROVED BY

Carol Taylor, PHD, GRADUATE STUDY COMMITTEE

DATE

Stu Steiner, ABD, GRADUATE STUDY COMMITTEE

DATE

MASTER’S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at
Eastern Washington University, | agree that the JFK Library shall make copies freely available for
inspection. | further agree that copying of this project in whole or in part is allowable only for
scholarly purposes. It is understood, however, that any copying or publication of this thesis for
commercial purposes, or for financial gain, shall not be allowed without my written permission.

Signature

Date

Abstract

Identification of an individual has been a long standing problem in human existence. It is
clear from the rising rates of identity theft and misappropriation of services that current
methods employed to identify individuals is ineffectual. The most common way people identify
other individuals is via recognition of the subjects face. The speed and accuracy with which one
person can identify another person is uncanny leading to the development automated facial
recognition systems. The vast majority of these systems use two-dimensional (2D) images
imagery to perform facial recognition with limited success. The use of 2D imagery has
limitations which cannot be overcome therefore three-dimensional (3D) facial recognition
systems have become the focus of study. The imaging systems used to capture 3D facial
imagery is complex, expensive and requires a degree of cooperation from the subject. This
paper proposes the use of older photogrammetry techniques to capture 3D facial imagery
thereby eliminating the need for specialized 3D imaging equipment. In addition the camera
system, once configured, does not require an operator nor does it require undo cooperation of

the subject.

Acknowledgements

The completion of this work would not have been possible without the encouragement and
help provided by Dr. Carol Taylor, Stu Steiner and Brian Kamp. Even though outside her area of
expertise Dr. Taylor easily saw the impact this work will have on computerized security systems.
The advice, assistance and direction Dr. Taylor offered was also invaluable for obtaining
materials from outside institutions which were necessary for the project’s completion. Dr.
Taylor and Stu Steiner provided invaluable assistance during the final reviews of this paper
improving both its content and quality. In addition Stu Steiner helped with the preparation of
the presentation through review and providing audiences to critique the presentation. Brain
Kamp assisted by permitting me access to the animation studio and the lighting systems

available there.

Vi

Table of Contents

FY o1 - [ot TP RT USRS iv
ACKNOWIEAZEMENTS. .. eeiiiiiiiiieciiee et e e e s s e e e s s b be e e e ssbaeesssbeeeesabeeesssbeeesannsenas v
TADIE OF FIGUIES .eteeii ittt e e et e e s sttt e e e sbteeessbeeeessbeeeessseaeessseaeessnnes viii
LISt OF TABIS ..ttt ettt st st st b e bt e s bt e s be e sae e et e e beenbeesbeesnnenas iX
T o)l =To [V 1 4 o] o Y-SR ix
N [o1 oo [¥ Lot i o] TR PPV PPTOURRPPPTO 1
D - - T <=4 o 1U] Vo IR USPUPUPRE 4
D2 N o U= o YA =Y [o =1 d o o P PSPPI 4
2.2. Human Failure to RECOZNIZE FACESuevieiuiiiieecieee ettt tee e et e e bae e e 5
2.3 BIOMELIICS weviiiiiiiie e 6

D S VoY o1 o o Yo 3 1 Y=Y o o PSP 6

3. Reliability Of BiOMELIICS ...uiiiiiiiiie it e e e sbre e e s b e e e snanreeeeas 8
3.1. Studies Showing Unreliability of Biometric Measurementsccccccveeeevcveeeseciieeeeenneen, 8
3.2. Studies Showing Reliability of Biometric Measurements.........ccccceevecieeeercieeeeccieeeeenns 10

4. Types of Facial BIometric Problems........cc.ueiiiiiii ittt e 11
4.1, FACE DELECLION ccoeieiiiiiiiieeeeee et 11
4.2, Face [dentification.......coeoiiiiiiiee et 12
v/ TR o Tol - I (= Tole) ={ Y o] o FOU PO PP PP PPPPPPPN 12
5. Automated Facial RECOZNITIONccccuuiiiiiiiiiie e aree e e areeas 12
5.1. 2D Facial Recognition Methodscccueiiiiiiiiiiciiie et 13
5.1.1. Feature Based Methods.........cc.ooiiiieiiiiieeeeete e 13
5.1.2. HOIISTIC MEENOOS ...t st 14
5.1.3. Limitations on 2D MEthOAS.cocueeiieeiieniieieeee et 14

5.2. 3D Facial Recognition Methodsccceiiiiiiiiiiiiiic et e e 15
6. Facial Landmark SElECTION.ccciiriieieerieree ettt 15
7. TheSiS DETAIIS ...eeeeiieiiieee e e 17
7.1. Development HardWare. ...ttt eretteee e e e e e enree e e e e e e ssbaaae e e e e e e esnnrnnes 18
2 R 10 A1 V=4 o T e AV | o USRSt 19
7.3, Software DevelOPMENTiiii e e eara e e e eaeee 19

7.3.1. Open Source Computer Vision Library.......ccccoccveeeecciee e 20

vii

7.3.2. Photogrammetry Software Developmentcceeeveiieeciiiieee e 20
7.3.2.1. Calibrating Individual Camerascccceveciieeeiriieee e 21
7.3.2.2. Calibrating the Stereo Pair for Photogrammetry........ccccocovviviiieeeccciiee e, 22

7.3.3. Image Capture and Depth Map Creation.........cccccuveeeeiiieeecciiee e 25
7.3.3.1. Creating Rectified IMagesccccvei i 25
7.3.3.2. Creating Depth Maps from Rectified IMages........ccccccevevvcveiivvcien e, 26

7.4, ImMage Manipulation ... e e e e s sbre e e e snee 28

7.4.1. Anthropometric 3D Point Detection Developmentcccocvvveevicieeeincieeeeeciieeeenns 30
7.4.1.1. N o TY I N1 o N ()) U ST 31
7.4.1.2. NOSE WiIdth (A — Q1) eeeeeeeeeeeeeeeeee e e 32
7.4.1.3. N XY=l = a T =< (g B TSR 34
7.4.1.4. EYE COrners (€N and €X)cccueeecuieeiieeeieeecteeeieeeeteeestveestee et e ste e enaeesanee s 35
7.4.1.5. MOULN COMNEIS (CR) vveeerieeiie ettt ettt e tee e sre e et e et e e s re e sbaeesaree s 37

7.4.2. Distance CalCUlatioNscoouieiiiiieeiee et 39
7.4.2.1. 3D EUClidean DiStAnCeSccoeeriiriieenieesiiesiee ettt sttt 39
7.4.2.2. GEOAESIC DISLANCES ...eeeuvieiieiieeite ettt st st e s 39

S T S oY1=t Y o F= 1Y £] PRSP 42
8.1. Photogrammetry SYStEMiii it e e e s e e e e sbre e e e eaeee 42

8.1.1. HAPAWAIE ..ttt e 42

8.1.2. Photogrammetry SOftWArEcccviiiieciiee et et 43

8.1.3. OpenCV StereoSGBM() ULIlity.....cceeccuieeeeeiiee et 43

8.2. Range and Portrait Image Modification..........ccccueiiieiiiii e 44
8.3, Facial POINT DELECTION c..eevuvieiiiieeieeriee ettt st st 45
0. RESUIES et st re e re e e e 46
10, FUTUIE WOTK ..ottt ettt s b e bt e s s e s eneenee 46
10, CONCIUSION ..ttt st ettt b e s bt s he e e at e et e e sbeesaeesaeesanesabeebeennes 47

AN o 01T o [t PSRRIt 49

viii

Table of Figures

Figure 6-1 “The 25 facial fiducial points associated with highly variable anthropometric facial
proportions on (a) a color image, and (b) a range image” GuUPLA [17]......ccceeecveeeeecceeeeeiiiieeeenn, 17
Figure 6-2 “The subset of 10 anthropometric facial fiducial points that were employed for the
final automatic Anthroface 3D algorithm depicted on a (a) color, and (b) range facial image”

GV o1 I I 4 U 17
Figure 7-1 Chessboard calibration pattern used during calibration of individual cameras and the
Y =] =0 N o o || GO TSP PP PRSPPI 21
Figure 7-2 Image showing the detected corners in the calibration pattern after refinement by
COTNEISUBPIX() oottt ettt e e e e e ettt e e e e eeessbaaaeeaeeeeeesaabraeresessennsareneeeeas 21
Figure 7-3 Example single camera calibration data showing the extrinsic (matrix) and intrinsic

(distortion coefficients) CAMEra MQALIICES.cccuueeeecueeeeeiiieeeeceieeeeeiee e e sae e e e srae e e eeraeeessnaaeaeas 22
Figure 7-4 Stereo calibration parameters with modified individual camera calibration data and
stereo rotation (Mat_R) and translation (Mat_T) MQLIICES.ccueeevueeiieeecieeesieeecieeesreesereeenns 24
Figure 7-5 Original image prior to reCtifiCationcocoueeccieeeeeciieee e eecee e e e e cae e e ereeas 26
Figure 7-6 Image from Figure 7-5 after rectifiCcationcccovueuvcueeeisciieeeeiiee e 26
Figure 7-7 is an example of a rectified stereo pair showing the regions of interest and
COITeSPONAENCE CPIlINES.veeeeeeee ettt e e e et e e e e e e e et e e e e ta e e sestaeeessteeesennbeeeeennrenas 26
Figure 7-8 Example disparity image after scaling showing a depth map produced from a

ol][]] go 0 =2e Y (=g =10l o Lo || TP 27
Figure 7-9 Depth map histograms. The upper histogram is before equalization; the lower
histogram is after @QUALIZATION.occcuueieeiciiiicciiee ettt e e e s rree e e s bae e e e sabee e s enreeas 28
Figure 7-10 Final portrait image after cropping, scaling, equalizing and sharpening................... 30
Figure 7-11 Final depth map after cropping, scaling, equalizing and sharpening........................ 30
Figure 7-12 Code segment from automatic.cpp showing the algorithm for finding the tip of the
Lo L= ()4) SRR 32
Figure 7-13 Image showing edges detected by the Canny Edge detectorccceeeeerueeeennnee.. 32
Figure 7-14 Code segment from automatic.cpp showing the algorithm for finding the right nose
width (al). The algorithm for the left nose Width is SImilar.ccccccoueecveeecieeeiieecieeeceeesnennn 33
Figure 7-15 Code segment from automatic.cpp showing the algorithm for finding the nose

T4 1o o T=3 (s 1 TSR 34
Figure 7-16 Image showing Canny detected edges with nose points prn, al, al and m’............... 35
Figure 7-17 Range image showing the location of the nose points prn, al, al and m’.................. 35
Figure 7-18 Code segment from automatic.cpp showing the algorithm for finding the eye corner
points (en and ex) based on the eye Center OCALIONScccoueeeeciueeeeecitieeeecieeeeecieeeeeeeeea e 36
Figure 7-19 Code segment from automatic.cpp showing the algorithm for finding the left and
FIGht MOULR COINEIS (CR) ..ooeeneeieeeeeee ettt e e s e et e e e et e e e e s abae e e e nabaeeeenreeas 38
Figure 7-20 Image showing the 45 Euclidean lines on a range image.cccocceeeeeeeeecccvvnnnenn. 40

Figure 7-21 Image showing the 45 geodesic lines (red) drawn on top of the Euclidean lines

file://netstorage/jpearson26/Thesis%20Project/Paper/3D%20Image%20Acquisition%20for%20Facial%20Recognition.docx%23_Toc381627925
file://netstorage/jpearson26/Thesis%20Project/Paper/3D%20Image%20Acquisition%20for%20Facial%20Recognition.docx%23_Toc381627925
file://netstorage/jpearson26/Thesis%20Project/Paper/3D%20Image%20Acquisition%20for%20Facial%20Recognition.docx%23_Toc381627929

Figure 7-22 Code segment from distances.cpp showing the algorithm for computing the path
DETWEEN WO POINTS .ottt ecte e e ettt e e tte e e e tae e e e st te e e s e abeeeeaaaaaeesensbeaeeanstaeesantaeesenrenas 41

List of Tables

Table 6-1 “The 23 most variable anthropometric facial proportions for adult humans along with
their standard deviation values (Farkas 1987). The corresponding fiducial points are presented in
Figure 6-1. N denotes nasal proportions, O denotes orbital proportions, L denotes proportions
related to the mouth region, and F denotes facial proportions” Gupta [17]......ccccccvveeeccrveeeennnn. 16

List of Equations

D= x1— x22+4+ y1 —y22+4+ (21 —22)2 EQUAtiON L...cccciririiiiieieieeeeeeee e 39

1. Introduction

Proving an individual’s identity has been an ongoing problem for centuries and continues to
be a difficult task today. In modern western societies identity creation is typically started at
birth through careful documentation, biometric data gathering and tagging with wristbands.
The initial identification is added to over the years through additional documentation, imagery
and further biometric data collection. Even with multiple means to identify an individual it can
still be a challenging task to prove an individual is who they claim to be. Documentation can be
destroyed, altered or falsely generated. Imagery can be manipulated and comparisons of such
may be accurate, ineffectual or simply wrong. Biometric comparisons can and do suffer from
the same problems as imagery and require an additional level of cooperation by the subject and
some degree of training for the person obtaining the biometric. In addition the more definitive
the biometric the longer it takes to process the data. Even with modern techniques, proving the
identity of an individual is problematic.

Proving the identity of an individual today is most commonly photographic and descriptive.
The individual’s identity typically revolves around a multitude of tokens. In the United States
the form of token most often used for identification is a driver’s license which has both a picture
of the individual and general physical description. Internationally the passport contains similar
information. Another common token is the bank or credit card which may or may not have a
picture of the authorized user and rarely has any other identifying information. Myriads of
other tokens (ID cards, insurance cards, key cards, etc.) also exist with little if any descriptive
information about the individual authorized to use it. The Internet and ecommerce use textual
tokens, most commonly in the form of a username and password, to gain access to personal,
financial, legal and medical information. The purchase of goods and services across the internet

also uses the ubiquitous username and password system to gain access to personal and financial

information, purchase histories and more. Automated token based systems pervasive in today’s
society have no ability to determine if the individual using the token is in fact the authorized
user. Automated token based systems only confirm the user of the token knows the secret to
gain access regardless of the user’s identity. The failure of token based systems confirming or
proving the identity of individuals is repeatedly confirmed by rising rates in identity theft and
fraudulent use of goods and services.

Automated facial recognition could replace the current token based systems with a new
token — the human face. The concept behind automated facial recognition, a type of biometric,
comes from the human ability to recognize individuals quickly simply by seeing the individual
either in person or via an image of the face. The ease, rapidity and accuracy with which people
can identify individuals is amazing however people at times misidentify individuals for many
reasons including environment, health and even failures in cognition. Still, the human ability to
naturally, quickly and most often accurately identify individuals has been the impetus to develop
automated systems to identify individuals. Beginning in the early 1980’s researchers began to
develop computer algorithms to identify individuals through analysis of pictures. Through more
advanced image processing techniques these early systems have been vastly improved to a
degree where there are now commercially viable image based identification systems.

Significant advances have been made in the field of facial recognition. Facial recognition
using photographic imagery (2D) is not 100% accurate and may be at its limits of capability.
Many studies have progressed to using three dimensional (3D) facial images obtained from
various sources as a means to overcome the limitations of 2D systems while others have
combined 2D systems with 3D systems. The initial research has been promising as 3D facial
recognition systems have proven to be more accurate and robust than existing 2D systems.

However imaging systems capable of capturing 3D imagery are expensive and require the

cooperation of the subject during image capture. A simple and inexpensive system to capture
3D images for use with facial recognition systems must be created.

Today the techniques, hardware and software exist to create an inexpensive 3D image
capture system. To create an inexpensive 3D imaging system three things are needed:
inexpensive and computer compatible cameras, a method to convert 2D images into 3D images
and software to manipulate the images. Inexpensive cameras compatible with computer
systems exist which create electronic images suitable for computer analysis and manipulation.
Photogrammetry has long been used to capture pairs of images that when viewed with special
lenses simulate a 3D image. Software tools have been developed to edit and manipulate images
in just about any way imaginable including converting 2D images into 3D images.

The primary focus of this master project is to explore the use of inexpensive cameras and
photogrammetry techniques to create 3D images for use in facial recognition systems.
Specifically, the research establishes a process showing how to use image processing software
to calculate individual camera properties, use those properties to compute the correspondence
between a pair of cameras and then use the correspondence information to create a 3D image
suitable for use in facial recognition programs. Although other research has been conducted in
this area no other research has attempted the process using inexpensive and highly available off
the shelf equipment as a basis of the 3D image capture system. Furthermore, and unlike
currently available 3D image capture systems, the image capture system should not require an
operator or more than casual cooperation of the subject and therefore extends the image

capture capabilities of 3D facial recognition systems in general.

2. Background

Background information on identity creation and validation, the ability of people to identify
specific individuals, biometrics and anthropometry are presented here to enhance
understanding of the fundamental concepts and terminology presented in this paper.

2.1. Identity Validation

Using documentation to validate the identity of a claimant requires the information
contained on the documents is verifiable, i.e. direct comparison of the height, weight, age,
picture or other identifying information to the claimant must be performed. However, correct
identification using documentation is still fallible for reasons listed above and by human error in
the identification process or even guile by the claimant. Using imagery for identification is also
problematic because imagery can be manipulated and comparisons of imagery, either by
individuals or automated means, may be accurate, ineffectual or simply wrong. Likewise
biometric identification requires comparisons similar to documentation and imagery but also
requires skilled operators and technicians to obtain and process the biometric data and also
requires an additional level of cooperation from the claimant seeking identification. For
biometrics, the more definitive the biometric, the longer it takes to process the data to either
confirm or deny the validity of an individual. All typical methods to validate the identification of
a claimant, documentation, imagery and biometric, have their flaws and problems.

Exacerbating the validation of identity for claimants is the fact virtually none of the
electronic systems in general use today are capable of using documentation, imagery or
biometrics to validate the identity of a claimant. Rather, most use some form of a token; the
driver’s license, identification, bank or insurance cards are examples of tokens but other forms
exist. The use of a token alone is not enough to identify an individual because any claimant,

authorized or unauthorized, possessing the token may gain access to the systems to which the

token is connected. Whether or not a token is used, the vast majority of electronic systems use
a challenge and response or matched pair system to validate the identity of a claimant.
Challenge response systems involve the claimant being presented with a question to which a
response is given. A match between the response provided and the response expected grants
access to the claimant. Matched pair systems are almost universally username and password
systems where the claimant provides both username and password and the system confirms the
username exists and matches the password provided with the one stored for the username.
The principle problem with challenge response or matched pair identity validation systems is
any claimant knowing the correct response or matched pair is permitted access.
2.2, Human Failure to Recognize Faces

Human ability to recognize familiar faces is uncanny in its speed and accuracy. Itis also
highly fallible when the faces presented are unfamiliar, distorted or otherwise not clearly
viewable by the observer. Wilkinson reports ten percent of the December 2004 tsunami and
fifty percent of the Bali October 2002 bombing were misidentified citing decomposition and
physical alterations of the victim faces [1]. In judicial matters eyewitness testimony identifying
individuals is often wrong. Kleinberg states: “...eyewitness identification evidence is among the
least reliable forms of evidence...” [2]. Research by Davis reports identification of individuals
with whom the subject is familiar is highly reliable but other identifications are not [3].
Kleinberg states research conducted by Kemp, Towell and Pike showed cashiers had a difficult
time matching photographs on credit cards with the customers [2]. Gupta states that for 84%
of all DNA exonerations reported the wrongful convictions were due to false recognition by
witnesses [4]. The psychology of why people often misidentify an individual are many and
include things like distinctive morphology of the face, whether the face is attractive, similar in

race, time to observe, clarity due to lighting and many other factors. The reliability of people

correctly identifying individuals, especially unfamiliar individuals, is low having a dramatic and
costly impact on all aspects of a society. People’s poor rate of identifying unfamiliar individuals
is a major impetus for developing automated facial recognition systems which promise to better
reliability.
23. Biometrics

Biometrics from the Ancient Greek bios, “one's life,” and metron, “a measure,” is the
science of identifying individuals from common yet distinct physical attributes [5] [6]. Many
forms of biometrics exist some of which are the fingerprint, iris, palm print, hand geometry,
vascular patterns, gait, facial recognition and DNA [7]. The main goal of biometrics is the
identification of specific individuals. The first uses of biometrics were private concerns
regarding the identification of individuals in personal or business transactions. In the mid to late
1800’s scientific investigation of biometrics ensued resulting in the scientific fields of
dactlyoscopy (fingerprints) and anthropometry. Forensic identification became the primary
impetus for biometric study of both avenues of measurement from about 1880 onward. Though
most early forms of biometrics have fallen out of favor the two still in widespread use today are
photographs and fingerprints. In the late 1900’s DNA identification became the most
discriminatory biometric measurements and is a dominant form of identification for legal
systems and is used in conjunction with photographs and fingerprints.

24, Anthropometry

Anthropometry is the science that defines physical measures of a person’s size, form, and
functional capacities [8]. A French police officer, Alphonse Bertillon, is arguably the inventor of
modern anthropometry. His system, Bertillonage, revolutionized the identification of individuals
throughout the world [2]. The methods and reasons Bertillonage became the most popular

means to identify individuals is clearly stated by Moenssens:

“Bertillon’s system of anthropometrical measurements was based on three
ideas: the fixed condition of the bone system from the age of twenty until
death; the extreme diversity of dimensions present in the skeleton of one
individual compared to those in another; the ease and relative precision with
which certain dimensions of the bone structure of a living person can be
measured using simply constructed calipers.” [9]

Since Bertillion’s time anthropometry has fallen out of favor as a means of identification
having been replaced with more reliable methods such as dactlyoscopy and more recently DNA
analysis. Although dactlyoscopy and DNA analysis are both significantly better than previous
facial methods of anthropometric analysis neither is foolproof. Both dactlyoscopy and DNA
analysis require professional analysis wherein resulting analysis and identification of the
individual is related as a probability of an exact match based on the professional’s opinion.
Neither dactlyoscopy nor DNA analysis is able to positively and without error identify a specific
individual.

Because of the ever increasing need to correctly and positively identify individuals coupled
with the increasing rates of identity theft and the ease with which token based identification
systems are compromised, facial anthropometry is again a focus of research. The main failing of
Bertillonage was not the system Bertillion created but the inaccuracies in the measurements
taken by different individuals and changes to the Bertillonage system introduced by those same
individuals. Today, with the advent of automated processing, the errors introduced by the users
of Bertillonage can be avoided; accurate and repeatable measurements can be made. In
addition, using automated systems to capture images, facial anthropometry is non-intrusive
requiring little or no effort by the subject unlike the high level of cooperation needed from

subjects to acquire fingerprints or DNA samples [2].

3. Reliability of Biometrics

Many researchers have studied the reliability of biometric measurements. Some studies
determine the use of biometric measurements are not suitable for identification while others
indicate that when proper and careful measurements are taken biometric measurements are a
definitive means by which individuals may be identified. What follows are examinations of both
types of studies with some analysis of problems found in the studies and their contributions.
3.1. Studies Showing Unreliability of Biometric Measurements

In a study by Kleinberg it was found that the use of anthropometric measurement alone is
not sufficient for identifying specific individuals [10]. The study used video footage from
surveillance cameras and still photographs taken with a high resolution camera. Facial
measurements were made using the images from each camera system. The resulting
measurements from the video footage were compared to the measurements from high
resolution images. A minimal set of points was selected for measurement: ectocanthion
(bilaterally), stomian and nasion. Between these points distances and angles were measured
then proportions calculated from the measurements. Use of proportions compensates for slight
differences in size between images. The results of the study concluded anthropometric
measurements were inconclusive and unable to identify an individual. During the experiment
two photographs were found to have three identical proportions and three identical angles.
Later morphological results indicated the two pictures had different eye and eyebrow shapes in
addition to having different mouth and nose sizes.

The study is flawed in two ways. First far too few facial points were selected and second the
program used to select points required operators to place points on the photographs and video
images. With such a limited number of points from which to calculate angles and proportions,

the likelihood of having enough information to differentiate two individuals is unlikely.

Additionally the selection of stomian is a poor choice because it varies in position depending on
if the jaw is clenched or relaxed and with facial expression. Operator placement of points
introduces inter and intra operator variation of point placement. This variation skews the
resulting measurements. Invalidation of results occurs when taking anthropometric
measurements when inter and intra operator error of this type is allowed.

Another study by Kramer researched the width and height ratio of faces to determine its
validity for determination of sex. Kramer used 2D photographs, 3D scans and direct
anthropometric measurements with the latter two compared against the 2D photograph [11].
Results showed the width and height ratio not to be sexually dimorphic in nature and not
reliable for sex determination. In fact the difference in ratios between male and females was
statistically insignificant. Like Kleinberg, this study is also flawed by the choice of landmarks.
The vertical distance measurement the points selected were the highest point of the upper lip
and the highest point of the eyelids (averaged bilaterally) both of which are highly variable to
facial expression. Horizontally left and right zygions were used and are also influenced by facial
expression though much less so than the vertical measurement chosen. This study again
illustrates the failure of anthropometry’s usefulness in identification when a limited number of
measurements are used and when points are influenced by facial expression.

Another study by Davis used more facial points in the similarity analysis of faces. In this
study 38 facial landmarks and 14 profile landmarks were used to calculate Euclidean distances
and angular measurements; no proportions were used [12]. The results of the study were
similar to those of Kleinberg in that there is a great amount of similarity between
anthropometric facial measurements between different subjects. In conclusion, Davis stated

“...need for caution, when attempting to 'prove' an identity match beyond reasonable doubt.”

10

The Davis study also has flaws. Facial landmarks selected for use were arbitrary. Arbitrary
selection of landmarks includes measurements with high and low statistical deviations. The
inclusion of measurements with low statistical deviation does little to differentiate individuals
while also skewing matching results by returning false positive matches. Eliminating landmarks
with low statistical significance and the corresponding measurements will produce more reliable
results while using the same matching algorithms.

3.2. Studies Showing Reliability of Biometric Measurements

The reliability of direct anthropometric measurement is possible with training and practice.
The World Health Organization reported on the reliability of anthropometric measurements
taken in the study of child growth [3]. The key to reliable measurements is practice and training
of individuals taking biometric measurements. During this study measurements initially taken
were inaccurate and unreliable. Investigation showed persons taking measurements lacked
training and experience. After these individuals received training and had the repeated
opportunity to apply what they learned, the anthropometric measurements became both
accurate and reliable allowing the growth study to be completed. The World Health
Organization shows it is possible for individuals to obtain accurate and reliable direct
anthropometric measurements with training and practice. Likewise, computer algorithms
accurately and repeatedly determine the location of facial points.

Fourie performed a study using cadaver heads to evaluate the accuracy of anthropometric
measurements [13]. The study was an evaluation and direct comparison of three image
acquisition methods: laser surface scanning, cone beam computed tomography and 3D stereo-
photogrammetry. To ensure measurements from each of the camera systems used the same
physical location spheres were mounted to all facial landmarks used for anthropometric

measurements. Physical linear measurements were also taken for each computer-measured

11

distance for comparison and accuracy evaluation. Fourie found all three 3D methods of
anthropometric measurement to be highly accurate and reliable with an overall absolute error
of less than one millimeter. He concluded: “By analyzing human remains via 3D models, forensic
anthropologists can construct biological profiles using precise and accurate metrical data to
determine key aspects of identity.”

This type of anthropometric analysis was used in the work of Zhuang to build facial profiles.
In the study, the categorization of anthropometric measurements by gender, age and ethnicity
is used for the evaluation of face mask fitment [14]. The conclusions drawn were that a
selection of face masks should be made available to workers based on gender as the primary
sizing criteria followed by ethnicity. What makes this work significant is the use of
anthropometric measurements to differentiate between genders and ethnicity. Using
anthropometric measurements and correlations could be made between the measurements
and gender in addition to ethnicity.
4. Types of Facial Biometric Problems

Many people confuse or use interchangeably the terms detection, identification and
recognition when discussing different aspects of facial biometrics. While similar, each poses a
unigque problem for automated computer processing systems.

4.1. Face Detection

The lowest level is the detection of faces in imagery or videos [7]. A simple task for humans
of virtually all ages is to find a face in an image. However, a computer must use pattern-
matching algorithms to detect faces. Typically a machine learning algorithm is used to train the
system to locate and detect the patterns in the image which are then used to determine if a face

or multiple faces exist. There are a myriad of packages available, some at cost and others free,

12

which can perform face detection. There are also several open source detection packages
available.
4.2, Face Identification

Sometimes identification is called verification and the terms can be used interchangeably in
this context. Identification is a one to one matching problem. A system is presented with an
unknown claimant and known identity and asked to identify the claimant as being the identity
[4]. The system may or may not use face detection to locate the subject in the provided image
prior to matching depending on the algorithms used for face matching. There may exist
development packages or programs only performing identification. However, this author did
not find any during the search.
4.3. Face Recognition

Facial recognition is a one to many matching problem [15]. Presented with an unknown
face, a claimant, the system’s task is to find a matching identity from a data store of identities.
This process is an extension of identification. There exist numerous development packages and
software is available to perform facial recognition. The vast majority of facial recognition
packages use 2D methods for recognition. Most packages found are used for commercial
software and therefore require purchase to use although some have limited time evaluation
periods.

5. Automated Facial Recognition

What follows is a brief description of various techniques and methods employed in
automated facial recognition. Most of the techniques presented stem from lessons learned in
signal processing and later applied to image processing. Automated facial recognition is
accomplished using either standard 2D images or 3D range images. Two-dimensional facial

recognition is a long-standing area of study in many scientific areas but has received intense

13

attention from computer science research for more than thirty years. Many methods and
algorithms have been proposed to perform facial recognition from 2D imagery. Sources for 2D
images vary from mug shot style photographs to frame capture and analysis of video images.
More recently 3D facial recognition has been at the forefront of facial recognition research. The
reasoning for this is that 2D imagery does not have enough discriminatory information to
positively identify an individual. Three-dimensional images capture the same information as 2D
images plus an additional distance vector thereby providing more discriminatory information
than 2D images. It has been show 3D facial recognition systems are able to outperform 2D facial
recognition systems. Information about 2D automated recognition methods is presented here
because most 3D methods utilize techniques based on 2D algorithms.

5.1. 2D Facial Recognition Methods

Many methods have been applied to the problem of recognizing faces in 2D images.
Generally, these methods can be broken down into feature based or holistic measurement
techniques [16]. Both techniques perform about equally when compared to each other. Studies
combining feature based and holistic measurement techniques do not lead to significant
improvement in facial recognition results so typically they are not implemented at the same
time.

5.1.1. Feature Based Methods

Feature based methods use locations or features of the face such as the eyes, mouth, nose,
ears, etc. to define a set of points in 2D space. The points are used to calculate the distances
and or ratios between points and are stored as a vector. The vector is statistically compared
with other vectors stored in the system using standard pattern matching techniques. An
advantage of this method is the compactness of the data and the point detection process is

separate from the facial matching process. A similar feature based method is the elastic bunch

14

graph wherein the points are used to create a fully connected graph which has been shown to
be more accurate though much more computationally expensive. The selection of points to use
for feature based facial recognition is generally chosen at random with little thought to their
statistical contribution or significance.

5.1.2. Holistic Methods

In holistic analysis the entire image including the face is used as input and re-projected into
smaller spaces for classification. The two main holistic methods are Eigen Faces and Fisher
Faces. Eigen Faces uses principal component analysis projection for comparisons and work best
when single images of each individual are stored for comparison. Linear discriminate analysis is
used for Fisher Faces and works best when there are multiple images available for each
individual. Essentially both methods scan the 2D image to create a re-projection of its data into
a smaller coordinate system. The re-projected data is compared with similar data stored for
matching purposes. Advantages of both Eigen Faces and Fisher Faces are their ability to
reconstruct the original image from a limited number of re-projections and the compactness of
the data stored for comparison.

5.1.3. Limitations on 2D Methods

Systems relying on feature-based methods are frequently compromised by the
environment, physical positioning and size of the facial image. Other feature based
disadvantages are the similarity between individual faces makes specific identification of an
individual difficult and the accurate location of facial points. Holistic methods are able to
overcome some of the limitations of feature-based systems but the tradeoff is they are highly
susceptible to lighting differences and background noise. Both systems can be fooled using

static images because they rely on simple 2D imagery for data input. Current facial recognition

15

systems relying on solely on 2D imagery begin to fail by returning an increasing number of false
positives as the numbers of individuals in a system rise.

5.2. 3D Facial Recognition Methods

The methods used for analysis of 3D images are similar to 2D feature based methods [4].
What is different is an image depth or range map is used either alone or in conjunction with a
2D image. The depth map or range image is a 3D image containing similar information as a 2D
image but also includes a distance vector. The distance vector measures the distance from the
imaging system for each pixel in the image. The advantage of locating facial landmarks using 3D
images is it provides similar information as a 2D image, the x and y coordinate, plus the distance
vector, a z coordinate, to locate the facial point on three planes, x, y and z. A 3D image also
allows rotation of the 3D and the image about the axis of each plane without distortion to
overcome positioning issues hampering 2D feature based methods. A 3D image can also be
scaled accurately in all three planes to resize the 3D images to a standard size for image
processing. Normal 2D images taken with the same camera from the same perspective can also
be repositioned and resized using the 3D repositioning and resizing calculations. The ability to
rotate the both the 2D and 3D image on three axis permits the image map to be repositioned
into a canonical position for image analysis [4]. Another feature of 3D imagery is its invariance
to lighting conditions and background noise that are concerns of 2D holistic methods that tightly
control these attributes in order to improve image quality.

6. Facial Landmark Selection

The selection of landmarks for use in anthropometric work should distinguish between
individuals. Specifically the range and standard deviation of measurements, be they Euclidean
distances, geodesic distances or proportions, the landmark selection for measurements should

yield be the most diverse of measurements in order to better discern between distinct

16

S. No Anthropometric Proportion) S. No Anthropometric Proportion)
1. 03 = (ex — en, I)/(en —en) 7.75 13. N30 = (mf —mf)/(en —en) 6.06
2. 010 = (en —en)/(al — al) 8.29 14. N31 = (ex — m’syg,)/(en —en) 7.01
3. 012 = (en —en)(ch —ch) 6.02 15. N32 = (al —al)/ch —ch 5.04
4, F32 = (n -stol1)/(ex —ex) 5.30 16. N33 = (sn —prn)/(sn- stol) 138
5. N1 = (al —al)/(n —sn) 5.81 17. L1 = (sn —stol)/(ch —ch) 5.40
6. N2 = (mf - mf)/(al -al) 7.08 18. L4 = (sn —lIs)/(sbal - Is’, I) 10.2
7. N4 = (sbal =sn, | + r)/(al —al) 8.80 19. L5 = (sn —Is)/(sn —stol) 5.97
8. N6 = (ex —m’gyg, I)/(mf —mf 14.6 20. L6 = (Is — stol)/(sn —stol) 7.10
0. N7 = (sn— prn)/(al — al) 6.28 21. L7 = (Is = stol)/(sn —Is) 13.3
10. N8 = (sn— prn)/(sbal —=sn, | +) 12.8 22. L9 = (Is - stol)/(sto2 —li) 16.9
11. N15 = (en —m’ g, 1)/(sn— prn) 11.2 23. L14 = (sn—stol)/(n —sn) 5.10
12. N16 = (en —m’gyg,)/(en — m,I) 7.26

Table 6-1 “The 23 most variable anthropometric facial proportions for adult humans along with
their standard deviation values (Farkas 1987). The corresponding fiducial points are presented in
Figure 6-1. N denotes nasal proportions, O denotes orbital proportions, L denotes proportions
related to the mouth region, and F denotes facial proportions” Gupta [17].

individuals. Gupta, using a list created by Farkas and Munro, selected 23 anthropometric
proportions with the highest standard deviations (Table 6-1) resulting in a list of 25 facial
landmarks [17] [18].

The 25 landmarks still represented a large search space of 300 measurements. With further
analysis Gupta was able to reduce the number of points used to only ten which reduced the
search space even further resulting in 45 3D Euclidean and 45 geodesic distances. The ten
points used for identification are shown in Figure 6-2 and described below:

Exocanthion (ex): the point at the outer corner of the eye. [bilateral].
Endocanthion (en): the point at the inner corner of the eye [bilateral].

Nasion (m’): the point in the midline of both the nasal root and the nasofrontal
suture.

Alare (al): the most lateral point on each nostril contour [bilateral].
Pronasale (prn): the most protruded point of the nasal tip.

Cheilion (ch): the point located at each labial corner [bilateral].

17

(a) (b) () (b)

Figure 6-1 “The 25 facial fiducial points Figure 6-2 “The subset of 10

associated with highly variable anthropometric facial fiducial points that

anthropometric facial proportions on (a) a were employed for the final automatic

color image, and (b) a range image” Gupta Anthroface 3D algorithm depicted on a (a)

[17] color, and (b) range facial image” Gupta
[17]

After the reduction in the number of facial points, the experiments were run again to
confirm the system performed as before at acceptable performance levels. The automatic
system recognition rate only using ten points was 96.8% compared to the 97.9% of the 25
points. Additionally the Anthroface system performed significantly better than the holistic
methods tested on the same data set where the best performing holistic method only achieved
a 92.6% recognition rate [18].

7. Thesis Details

Previous studies have shown biometric measurements can be successfully repeated and by
using high resolution 3D imagery this method can discriminate between individuals [17].
Additionally, studies have shown different imaging systems may be used to capture 3D images
for use in facial recognition algorithms with equal reliability and recognition rates [13]. It has
also been demonstrated the selection of facial landmarks with a high degree of statistical
magnitude plays a significant role in accurate facial recognition. Gupta combined much of this

previous research to create an anthropometric 3D facial recognition system [17]. In Gupta’s

18

research an expensive and high resolution camera system was employed to capture both 2D and
3D images simultaneously and was the only source of images for the system.

The purpose of this thesis project extends Gupta’s original project to use images from an
alternative imaging system utilizing inexpensive components off the shelf (COTS). The original
plan was to reuse the code and images from the Gupta project as a starting point thereby
directly validating the original work along with a direct comparison of capabilities between the
new imaging system against the original system. While both the code and images were
originally promised only the images were provided. Therefore, this work also recreates the
anthropometric 3D facial recognition system based on the information provided in the
Anthropometric 3D Face Recognition paper by Gupta [17].

The alternative imaging system to be tested is a matched pair of web cameras arranged as a
stereo pair for photogrammetry. The cameras will be arranged as a horizontal pair. The
cameras are models currently available and inexpensive. The software package used to create
the imaging system is also currently available and is open source making it a no cost alternative
to a commercially available API.

7.1. Development Hardware

The primary system used for the project is a Dell Latitude E6430 with an Intel Core i5-3340M
CPU running at 2.7 GHz, 8GB of system memory and the operating system is Windows 7
Enterprise 64 Bit Service Pack 1. Two cameras were used during the development of the image
capture and facial recognition software. One camera was a Logitech Webcam C250. This is a
low quality manual focus style web camera with a USB interface. The maximum true image size
is 640x480 VGA style image on a CMOS sensor. The field of view is 63° and the Webcam C250
has a 2mm focal length. The second web camera was a Microsoft LifeCam VX-3000. This

camera is also a low quality manual focus camera with a USB interface. The maximum image

19

size is also 640x480 VGA using a CMOS sensor. The field of view is less at 55°. The lens focal
length is not available for the camera. Both cameras are USB 1.1 devices.

Though not a matched pair of cameras their purpose was to provide inputs for the
development of the photogrammetry software. The cameras provided a platform to enable the
development of the individual camera calibration routines and the stereo calibration of a pair of
cameras. No images from these cameras were used for facial point detection or range image
creation during the project.

7.2. Testing Hardware

The same computer and operating system was used for the testing. Two Logitech C310 USB
web cameras were used for image capture and range image creation. The C310 cameras have a
fixed focus eliminating a calibration issue with different focal distances between the cameras.
The native true image capture size is 1280x960 using a CMOS sensor with a focal length of
4.4mm and field of view is slightly smaller at 60°. The video capture image size is still 640x480
VGA.

The C310 camera is a vast improvement in image quality over the previous cameras. The
lenses of the new cameras are much more uniform having less distortion than the development
cameras. The true image capture size is also much larger and although for video capture the
image size is downsized to 640x480 the increased size of the CMOS sensor is apparent in the
image quality. Video capture is used over single image capture to provide a live preview of the
subject during the capture process in order to ensure the subject appears appropriately in the
frame of both cameras.

7.3. Software Development
The development of the software was accomplished as two separate modules. The first

module was to create an imaging system capable of creating range images using

20

photogrammetry and the second part is an image processing component used to detect facial
points. Developing these modules independently and separately permitted isolating the
imaging system setup from the image capturing routine and depth map creation. The software
is written in C++ and is compiled into a single menu driven program for operational simplicity.

7.3.1. Open Source Computer Vision Library

The Open Source Computer Vision Library (OpenCV) is a computer library of image
processing functions. Officially launched by Intel in 1999 as a computer vision project OpenCV
has since expanded to over 2500 algorithms many of which are optimized. It is now freely
available under the Berkeley Software Distribution (BSD) license. OpenCV has C++, C, Python,
Java and MATLAB interfaces and supports Windows, Linux, Android and Mac OS making it a
versatile and portable choice for developing computer software which could be widely
distributed. OpenCV has utilities to perform the complex calculations to create a stereo pair of
cameras suitable for photogrammetry and also has utilities to convert photogrammetry images
into depth maps. These properties of OpenCV made it an obvious choice to use for the
development of imaging manipulation software.

7.3.2. Photogrammetry Software Development

There exist several code examples and tutorials describing various aspects of
photogrammetry using OpenCV, however, none are complete solutions. The creation of a
photogrammetry system in OpenCV is called creating a stereo pair. The creation of a stereo pair
requires three main parts. First each camera must be individually calibrated to obtain the
intrinsic properties of the camera®. Next, the cameras as a pair must be calibrated to each other

to rectify the images taken by each camera. Finally the rectified images are used to create a

! Intrinsic camera properties are the geometric distortions introduced by the camera’s lens and the
distortions introduced by the alignment of the focal plane with the lens.

21

range image or depth map from the stereo pair which is detailed in section 7.3.3.1 later in this

paper.
7.3.2.1. Calibrating Individual Cameras

The first step of creating a stereo pair is to calculate each camera’s intrinsic properties.
Cameras of most types have lenses which tend to distort images. These distortions are unique
to each camera and the distortions must be removed from images taken by the camera prior to
the image rectification process. OpenCV camera calibration uses a pin hole camera model for
calibration. The real world when viewed through a lens is radially distorted, that is the center of
the lens at its focal length has no distortion but moving away from the center distorts the image.
Lens distortion is commonly seen as the fish-eye effect. Ideally the focal plane of the camera is
perpendicular to the lens but if not, a tangential distortion is introduced to the image.
Tangential distortions must also be removed from images captured by the camera prior to
processing the images. The camera calibration provides the intrinsic and extrinsic camera
properties and must be completed on each camera individually. The process tocalibrate the
camera starts with capturing images of a calibration pattern, it then records the calibration

pattern points and finally calculates the calibration parameters.

Figure 7-1 Chessboard calibration pattern Figure 7-2 Image showing the detected
used during calibration of individual corners in the calibration pattern after
cameras and the stereo pair refinement by cornerSubPix()

22

<?xml version="1.0"?>
<opencv_storage>
<calibration_Time>"02/10/14 17:41:12"</calibration_Time>
<Camera_©@ Matrix type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>
8.2893656874672467e+002 0. 3.3605186008494741e+002 0.
8.3343473661358769e+002 2.1526694019300902e+002 0. 0. 1.
</data></Camera_0_Matrix>
<Camera_0_Distortion_Coefficients type_id="opencv-matrix">
<rows>1</rows>
<cols>8</cols>
<dt>d</dt>
<data>
1.4965613227198144e+001 2.0567968369298391e+000
-1.3526565029281793e-002 7.9077444540528678e-003
-3.1622035238879118e+001 1.5029913940334481e+001
2.6033090951437354e-001 -2.3602277330033541e+001
</data></Camera_0_Distortion_Coefficients>
</opencv_storage>

Figure 7-3 Example single camera calibration data showing the extrinsic (matrix) and
intrinsic (distortion coefficients) camera matrices.

OpenCV uses either a circle or square chessboard pattern for the calibration process. The
camera is used to capture a series of images showing the calibration pattern. Only a small
number of images are needed to calibrate a camera, however a larger number of images
provides better calibration results. An OpenCV utility function, findChessboardCorners(),
locates the calibration pattern in the image and determines the pixel coordinates of the pattern.
These coordinates are then refined to a sub pixel accuracy using another utility,
cornerSubPix (), which are saved in a matrix. Once all the images have been processed and
calibration points saved they are passed to the calibrateCamera() utility which computes
the intrinsic and extrinsic camera properties to remove lens distortions. The camera properties
are saved and used in the calibration of the stereo pair or to remove the distortion from
individual images.
7.3.2.2. Calibrating the Stereo Pair for Photogrammetry

To create a stereo pair of cameras the physical geometry between the cameras must be
determined. Even with great care it is not possible to perfectly align both the principle point

and focal plane exactly between two or more cameras, therefore, calibration is required. The

23

parameters produced by the calibration process virtually align the principle points of the
cameras vertically and virtually align the focal planes to lie on the same plane. The calibration
process is similar to single camera calibration involving the calibration pattern, nearly
simultaneous image capture by both cameras, image pattern detection and finally the stereo
rectification parameters are calculated.

Much like single camera calibration either the circle or square chessboard pattern is used in
the calibration. Although the calibration algorithms in OpenCV can initially estimate the
individual camera parameters during calibration, better results are obtained by using the pre-
computed intrinsic and extrinsic camera properties obtained from performing the single camera
calibration. Like single camera calibration, larger numbers of captured images containing the
calibration pattern provides better calibration of the stereo pair than just a few images. Image
capture for stereo calibration requires simultaneously capturing the same scene. Though it is
not possible to perform a truly simultaneous image capture, programmatically, OpenCV has an
alternative two-step image capture process which first captures the raw camera data without
processing the data into an image format. Capturing the raw camera data is very fast providing
nearly simultaneous data capture. The raw data is then processed into images later for the rest
of the calibration sequence.

Each camera image is processed by the same utility functions used for single camera
calibration to locate the calibration pattern and to refine the sub-pixel coordinates. The data
generated is saved separately for each camera. Once all captured images have been processed
and data stored, the stereo calibration utility, stereoCalibrate(), is called which produces
the rotation and translation matrices required to later rectify stereo images for 3D image

processing. The stereo calibration utility with the correct parameters may also modify the

<?xml version="1.0"?>
<opencv_storage>
<calibration_Time>"02/12/14 13:23:58"</calibration_Time>
<Camera_©@ Matrix type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>
8.2198494105684244e+002 0. 3.0500031186848827e+002 0.
8.2735997321004834e+002 2.2472876340869371e+002 0. 0. 1.</data></Camera_0_Matrix>
<Camera_1_Matrix type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>
8.2199380050031164e+002 O. 2.9813647364329819e+002 0.
8.2758558726540582e+002 2.2778843221502066e+002 0. 0. 1l.</data></Camera_1_Matrix>
<Camera_0_Distortion_Coefficients type_id="opencv-matrix">
<rows>1</rows>
<cols>8</cols>
<dt>d</dt>
<data>
1.9654826992518516€-002 2.6734744590365449e+000
-1.0149620955787142e-002 -5.5092494605702988e-003
1.6290982698817487e+001 -1.5004422819375411e-002
2.9728485743185833e+000
1.5257190064722012e+001</data></Camera_0_Distortion_Coefficients>
<Camera_1_Distortion_Coefficients type_id="opencv-matrix">
<rows>1</rows>
<cols>8</cols>
<dt>d</dt>
<data>
-2.8679209812347844e-001 -1.0167566231306061e+001
-1.1080473508340231e-002 -1.0758234181904417e-002
9.8855694132002981e+001 -2.9426755497812901e-001
-1.0638115575374641e+001
1.0222729773977079e+002</data></Camera_1_Distortion_Coefficients>
<Mat_R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>
9.9958598010511335e-001 -2.3332255256444109e-002
1.6836693319891821e-002 2.3456548099032862e-002
9.9969876461324936e-001 -7.2229067570324214e-003
-1.6663094807919429e-002 7.6148470366228004e-003
9.9983216360348759e-001</data></Mat_R>
<Mat_T type_id="opencv-matrix">
<rows>3</rows>
<cols>1</cols>
<dt>d</dt>
<data>
-7.4036862143921354e+001 -3.5048814343695756e-001
1.3532140664111973e+000</data></Mat_T>
</opencv_storage>

Figure 7-4 Stereo calibration parameters with modified individual camera calibration
data and stereo rotation (Mat_R) and translation (Mat_T) matrices.

24

input individual camera calibration intrinsic values. For this project the stereo calibration utility

was set to modify the individual camera calibration intrinsic values.

25

7.3.3. Image Capture and Depth Map Creation

After calibration, the stereo camera pair is ready for image capture. The process of creating
a depth map from a pair of images is again accomplished using a variety of OpenCV utilities.
First, the images must be rectified to each other. Once rectified, the two images are combined
to produce a depth map suitable for use in the facial recognition portion of the project. Image
rectification and depth map creation are discussed in detail below.
7.3.3.1. Creating Rectified Images

To create a range image from a stereo pair the images from each camera must be rectified
to each other. This process re-projects each image to lie on the same coordinate plane. The
rectification process also aligns the pixels in the resulting images so each pixel row in the first
image has corresponding pixels in the same row of the second image. Rectifying the images in
this way simplifies depth map creation so only a single row of pixels is considered for
correspondence.

The first step is to compute the x and y coordinate matrices for the re-projection using
OpenCV’s initUndistortRectifyMap() utility which uses each camera’s intrinsic and
extrinsic camera properties (modified by the stereo calibration) along with the rotation and
translation matrices in the computation. The x and y coordinate matrices are calculated for
each camera independently. Each captured image is then remapped using the x and y
coordinate matrices through another OpenCV utility, remap (), which performs the image
manipulations to produce rectified images. At this point each image is rectified and ready for
use to create a depth map. Figure 7-5 below shows an image prior to the rectification process;

Figure 7-6 shows the same image after rectification.

26

Figure 7-5 Original image prior to Figure 7-6 Image from Figure 7-5 after
rectification rectification

Correspondence lines are the lines of pixels in one image that are on the same row as pixels
in the second image. A region of interest is also computed and saved as a rectangle object. The
region of interest includes all pixels from one rectified camera image also appearing in the
second rectified camera image on the same correspondence row. The regions of interest are
the same size and contain only pixels on the same correspondence epilines; pixels not on the
same correspondence line in both images are excluded.
7.3.3.2. Creating Depth Maps from Rectified Images

Rectified images are used to create a depth map. The OpenCV has two utility methods
which may be used to create a disparity map both of which are block matching algorithms. The

first is the StereoBM() utility and the second is the StereoSGBM() utility. Of the two the

f i 1 = 7= /3 e
] il / : | |
g 1y 7 7 1 \ [

Figure 7-7 is an example of a rectified stereo pair showing the regions of interest and
correspondence epilines.

27

utilities the second is a semi-global block matching method having better overall results but the
tradeoff is that the algorithm is slower. For this project, since speed is not a consideration, the
StereoSGBM() utility is used to create the disparity map. The disparity map produced contains
the data necessary to create the depth map but the data converted to image format produces a
seemingly blank image. To make the disparity map visible for interpretation the disparity map is
scaled to enhance the visibility of the disparity regions. The scaling is what creates a usable
depth map. The disparity image can also be used to create a point cloud where each pixel
coordinate then contains a distance from the stereo cameras. Although the calculated distances
are not used in this project due to different means of calculating the z coordinate the calculated

distances produced from the disparity image may be useful in other facial recognition systems.

Figure 7-8 Example disparity image -after scaling showing a depth map produced from a
calibrated stereo pair.

28

7.4. Image Manipulation

For the facial detection algorithm to work, both a color portrait image and a grayscale depth
map are needed. To better approximate the range images contained in the Texas 3D Face
Recognition Database (3DFRD) the images captured by the photogrammetry system needed to
be cropped, scaled and modified. Some modifications were made to make the images work
better with the fiducial point detection algorithm created for this project while other
modifications were used to clean up the images®. For the portrait image, the left camera
rectified image was used because the face position in the image was identical in size and
position to the face image in the depth map.

The depth map produced by the StereoSGBM() utility is poor, visually, even after scaling.
Analyzing the image showed it had a deficiency in the histogram where most of the spectrum
was grouped around the central area of the spectrum. Equalizing an image remaps the image

spectrum in a way that spreads the spectrum as much

as possible over the entire range of values and also
flattens the histogram curve. Equalizing the histogram
also has the effect of bringing out the details contained
in an image. The scaled depth maps were first
converted to grayscale images and then equalized

using the OpenCV equalizeHist () utility. Doing this

Figure 7-9 Depth map histograms.
The upper histogram is before
equalization; the lower histogram is
after equalization.

produced a depth map with more definition better

representing the face. Similarly the portrait image was

> The fiducial points used are detailed in section 6 above and the algorithms used to detect the points are
detailed in sections 7.4.1.1 thru 7.4.1.5 below.

29

also equalized but it was converted to a YCrCb color space®. The image channels were split
apart and the luminosity component, Y, was equalized. The channels were recombined to
restore the color portrait image and reconverted to the BRG color space.

To bring out more detail in the images, a sharpening step was utilized. The method of
unsharp masking has been used for many years to increase the apparent resolution of an image.
The unsharp masking process used was a simplistic two step procedure. The first step is to blur
the original image which is done with the OpenCV GaussianBlur() utility. Using a Gaussian
blur function can potentially eliminate some of the edges which may be present in the image in
a sharpened final image with fewer edges. The second step is to add original and blurred
images together weighting each image independently. The original image is given a positive
weighting while the blurred image is given a negative weighting. The overall result is a
sharpened image which looks as if it was taken at a higher resolution. Unsharp masking was
performed on both the depth map and the portrait image.

The next step in the image processing is to detect the facial region and blacken everything
outside the face. OpenCV has built-in machine learning capabilities however it also has prebuilt
classifiers. Using the CascadeClassifier() utility and loading the already trained data
contained in the haarcascade_frontalface_alt.xml file it was a simple matter to locate
the face in both the depth map and portrait image. In some cases more than one face was
found in the depth map or portrait image; in such cases the larger of the two facial regions was
retained as the final facial region. The rectangular facial regions returned for the depth map and
portrait image are compared and the larger of the two was again retained. All pixels outside the

detected facial region are set to black using the final retained rectangle.

* The YCrCb color space separates luminance, or brightness, from color. Luminance is represented by the
Y component. The Cr and Cb components are color scales. The Cr component is the red-cyan color
contribution while Cb component is the blue-yellow contribution.

30

Figure 7-10 Final portrait image after Figure 7-11 Final depth map after cropping,
cropping, scaling, equalizing and sharpening scaling, equalizing and sharpening

The resulting images were now a closer match to those contained by the 3DFRD dataset.
However, captured images still differed significantly in size. The facial region previously used to
blacken the area outside the face was again used to crop the images. The facial region was
expanded by fifteen pixels on each side to retain a black border around the face. Both the depth
map and color portrait images were cropped from the original images using the expanded facial
region. Both cropped images are then scaled to be the same width as the 3DFRD images leaving
them to differ in size only by height. As a final step in the image modification process both the
range and portrait images are again equalized and sharpened as previously described.

7.4.1. Anthropometric 3D Point Detection Development

Unable to obtain the original software written by Gupta it was necessary to create a facial
landmark detection system. Using Gupta’s work on choosing which landmarks to include in the
facial recognition process and the order of detection, work ensued to detect each facial
landmark. The major difference between this detection system and the Gupta system are the

methods used to locate each facial landmark. Gupta frequently used a Gaussian curvature

31

algorithm in locating specific features like prn, the tip of the nose. OpenCV does not have a
Gaussian curvature function so alternative methods were employed. The techniques used
include scanning images for average or specific values, using sliding windows and employing
various OpenCV utilities. Like Gupta both range and portrait images were used in the feature
detection process. Prior to trying to locate each feature general observation of both the range
and portrait images along with the data they contained was considered for solving the feature
location problem. The ideas and development for locating each facial feature are detailed
below.

7.4.1.1. Nose Tip (prn)

To locate the nose tip it was observed in both the range and portrait images that the tip of
the nose was a bright region in each image. The data contained in the portrait image is color
intensity information for each of the color channels in the image while the range images held
only a single intensity value. A problem with using the intensity value is any single pixel may
have a higher intensity value than any pixel in the nose tip so a sliding window was used. A
sliding window over the portrait image alleviates the single pixel problem but still would not
work because the white in the eye sclera has a higher intensity than that of the tip of the nose.
The range image is a greyscale image which does not have the problems of the color portrait. In
the range image the nose tip is the brightest portion of the image although it still suffers from
the single pixel problem, here though, the sliding window does solve the single pixel problem.

To locate the nose tip a sliding window is passed over the entire image and the sum of the
intensities for the pixels within the box is calculated. The size of the sliding window is set to
nine pixels but can be as small as three. However, it must always be an odd number in order for
it to have a central pixel. The current sum is compared to the maximum value thus far obtained

with one of three possible results. The first result is when the current sum is smaller than the

32

Finds PRN (nose tip)

Goes through entire range image and looks for brightest spet using a sliding box.

Adds a1l pixels together in order to come up with s value for the box. If the new
box value is larger then all old points are dropped and new center point selected.
If the values are the same a new center point is added to the vector. If more

** than one point is found the x values are averaged and the y values are averaged to
** determine the location of PRN.

78 for(int i = @; i + BOX_SIZE < image_range_gray.cols; i++){ /7 walk through image making sure not to go outside of image boundary
71 for(int j = @; j + BOX_SIZE < image_range_gray.rows; j++)q{

72 sum = 8;

73 for(int x = @3 x < BOX_SIZE; x++){ // Loop through the box and calculate a new sum of pixel walues
74 for{int y = 8; y < BOX_SIZE; y++){

75 unsigned char curr = data[(image range_gray.cols * (i +y)) + (5 + x)1;

76 sum += (int)curr;

77 H

79 if(max < sum){ // Dump all previous peints for new brighter center

) points.clear();

81 points.push_back(Point(j + (BOX_SIZE / 2), i + (BOX_SIZE / 2)));

82 max = sum;

83 else if(max == sum){ // Add new point to vector of points with same brightness
24 points.push_back(Point(j + (BOX_SIZE / 2), i + (BOX_SIZE / 2))):

85 }

86 }

88 for(size t i = 8; i < points.size(); i++){ /7 Sum up x and y values for located points

89 pra.x += points[i].x;

% prn.y += points[i].y;

91 }

a2 prn.x = pro.x / (int)points.size(); // Divide by number of points to get average

93 pra.y = prn.y / (int)points.size();

95 facial_points_result.push_back(prn); // Add peints to result vector

@

Figure 7-12 Code segment from automatic.cpp showing the algorithm for finding the tip of the
nose (prn).

maximum it is simply discarded. The second option is when the current sum is the same as the
maximum the location of the central pixel from the window is saved. The last option is when
the current sum is larger than the maximum it then discards all previously saved points and
saves the current window’s central pixel location. After the range image scan has completed,
the saved central pixel locations x and y coordinate positions
are averaged to compute the nose tip x and y coordinate
location.
7.4.1.2. Nose Width (al — al)

The width of the nose alar is clearly visible in both the
range and portrait images. The outer shape of the nose in this
area presents as a smooth curved line suitable for edge

detection. Using OpenCV’s Canny Edge Detection algorithm

both the range and portrait images produced lines in this Figure 7-13 Image showing

edges detected by the Canny
area. However the range image presented a cleaner and Edge detector

33

101 7 e
162 [/! Finds right AL location (nose width)

183 /! * Using range image run it through the Canny edge detector to locate the nose width

184 I * putline. Starting with PRN go right until white pixel is found. Once found keep

1@5 /! * going right one pixel at a time until a column with no white pixels is found.

1e6 I Locate right AL in center of last white line.

1e7 /o =

183 dst = detect_canny_edges(image_range, lowThreshold, kernel _size); // detect edges in range image

1@9 cviColor(dst, dst_gray, CV_BGR2ZGRAY);

118 data = (unsigned char*)dst_gray.data;

112 al_right = prn;

113 x_stop = prn.x - SEARCH; // set stop value, in pixels

114 if(x_stop < @)x_stop = @; // stop must not be less than zero

115 y_start = prn.y - SEARCH_AL; // set start value - in pixels

116 if(y_start < @)y_start = @; // start value must not be less than zero

117 y_stop = prn.y + SEARCH_AL; // set stop value - in pixels

118 if(y_stop > dst_gray.rows)y_stop = dst_gray.rows; // stop vlaue must not be larger than picture he
19

12 for(int x = pro.x; x > x_stop; x--){ J/ move right of prn until white pixel is found
121 if{(int)data[(dst_gray.cols * prn.y) + x] == GRAYSCALE WHITE){

122 al_right.x = x;

123 break;

124 1

125 1

126

127 count = 8; /f for finding al, exit when value is 3

128 for{int x = al_right.x; x > x_stop; x--){ // look further right for column of pixels with
129 int top = -1, bottom = -1; /f top and bottom of white line

13e for(int y = y_start; y < y_stop; y++){ // look down column for white pixel

131 int curr = (int)data[(dst_gray.cols * y) + x];

132 if(curr == GRAYSCALE_WHITE &% top == -1){ [/ found top of white line

133 top = y;

134 bottom = y;

135 Jelse if(curr == GRAYSCALE WHITE && top != -1){ // found bottom of white line

136 bottom = y;

137 3}

138 1

139 if(top = -1){ // found white pixels in column

148 al_right.x = x; ff set new column value

141 al_right.y = top + ((bottom - top) / 2); // set new row value half way down white line
142 count = @;

143 Jelse{

144 if(count == 3)break;

145 count++;

146 1

147 T

148

149 facial points result.push back(al right); // add point to results

Figure 7-14 Code segment from automatic.cpp showing the algorithm for finding the right nose
width (al). The algorithm for the left nose width is similar.

distinct image. By observation, the left and right alar are both lateral of and normally below the

tip of the nose. Therefore, a vertical search region was set to be forty pixels above and below

the detected nose tip. The horizontal search region stops 85 pixels from the nose tip. The

detection of the right nose alar is accomplished by moving to the right of the previously

detected nose tip until a line of white pixels is found. Once a line is found, vertical columns of

pixels are scanned for the continuation of the line. Each column where a line is detected, the

line center is calculated and the point for the right alar is set. Scanning columns continues until

three columns of pixels are scanned where no line was found at which time the algorithm exits.

Locating the left alar uses a similar process but obviously searches the opposite direction.

34

7.4.1.3. Nose Bridge (m’)

The point for the nose bridge, m’, is located at the juncture of frontal suture and nasal bone
suture. Obviously it is not possible to directly locate this point on living subjects therefore it is
approximated to be the lowest point of the nose bridge above the nose tip. Only the range
image can provide this information so it was used to determine this point. A starting point for
the search was offset twenty pixels above the nose tip while a stopping point was selected to be
150 pixels above the nose tip. The algorithm simply moves directly upwards in the range image
checking sequentially for lower locations. Locations having the same height are simply counted.
Once a location is found that is higher it stops and calculates the y coordinate of the nose

bridge. If the count is greater than one, one half of the count is subtracted from the current y

198 /! * Finds (nose bridge)

199 // * Using range image move up from the tip of the nese which should always be darker

208 // * than the tip. Then when it starts climbing stop, move left and right from that

281 // * point lecking for highest point.

282 17 [P

283 m_prime = prn;

284 data = (unsigned char*)image_range_gray.data;

285 y_start = prn.y - 28; // set start value

286 if(y_start < @)y _start = 8; // start value must not be less than zero
287 y_stop = prn.y - 158; // set stop value, in pixels

288 if(y_stop < @) y_stop = @; // stop value must be no less than zero
2@e9 last = GRAYSCALE_WHITE;

21e count = 8;

211 for(; y_start > y_stop; y_start--){ /{ move up from prn to find low spot
212 int curr = {int)data[(image_range_gray.cols * y_start) + m_prime.x];

213 if(last == curr){ /{ no change in height

214 count++;

215 telse if{last > curr){ /! moved lower

216 count = 1;

217 last = curr;

218 telse if(last < curr){ // moved higher, set y and exit loop
219 m_prime.y = y start + (count / 2);

2268 break;

221 }

222 }

223

224 x_start = prn.x - BRIDGE_SEARCH; // set start value

225 if(x_start < @) x_start = @; // start value must not be less than zero
226 x_stop = prn.x + BRIDGE_SEARCH; // set stop value

227 if(x_stop » image_range_gray.cols)x_stop = image_range_gray.cols; // stop value must not be wider than image
228 last = GRAYSCALE_BLACK;

229 count = 8;

238 for(;x_start < x_stop; x_start++)q{ // move left to right to find high spot
231 int curr = {int)data[(image_range_gray.cols * m_prime.y) + x_start];

232 if(last == curr){ // no change in height

233 count++;

234 telse if{last > curr){ // moved lower, set x and exit loop
235 m_prime.x = x_start - (count / 2);

236 break;

237 telse if(last < curr){ f/{ moved higher

238 count = 1;

239 last = curr;

248 }

241 }

242

243 facial points_result.push_back(m_prime}; // add m_prime to vector of facial points

Figure 7-15 Code segment from automatic.cpp showing the algorithm for finding the nose
bridge (m’)

35

Figure 7-16 Image showing Canny detected Figure 7-17 Range image showing the
edges with nose points prn, al, al and m’ location of the nose points prn, al, al and m

coordinate. The x coordinate is located similarly by moving to the right of the current location
by fifty pixels but this time the algorithm is locating the highest point.
7.4.1.4. Eye Corners (en and ex)

The eye corners are more clearly observable in the portrait image than in the range image
therefore the portrait image was used. Through observation of the eye portion of the portrait
image it was clear the iris and pupil formed a distinct feature essentially round in nature and
approximately the same height in the image as the eye corners and centrally located between
the eye corners. It was also observed the eye centers were closely aligned with the previously
detected nose bridge, m’. Locating the eye centers was therefore considered important in
locating the eye corners. The algorithm for locating the eye corners for the left and right eyes is

the same although starting and ending search locations are different. The algorithm is the most

36

complex of all the facial point detection algorithms. The algorithm first estimates the pupil
centers followed by locating the eye corners using the estimated pupil centers.

A similar approach to finding the noses tip was applied to locating the center of the pupil.
As a starting point the nose bridge location is used to create vertical search regions forty pixels
above the nose bridge to fifty pixels below the nose bridge. Horizontally the search region is
offset from the nose bridge by 200 pixels. A search window is this passed over the search region

looking for the least luminescent region. A region with a higher luminosity value than the

408 [/ FHEEEEEEEeEeesiesor
491 | // **** Find eye corners

492 | /f =**= Locates the en and ex using the grayscale portrait image. Method uses the same

493 | // **** goodFeaturesToTrack methed to locate peints of interest in the image. Points found
494 | // **** gre then reduced to those around the eye region with the final points seleted as the
495 | // **** gye corners (en and ex).

496 | // **** Input: Point center - the approximated center location of the eye

497 | [J) wEEE int side - ® indicates left, 1 indicates right

493 | /) FrEE Mat image - grayscaled portriat image

499 | /f =*== Returns: Vector<Point» corners - the located eye corners ordered inside (en) then

sea | Jf TEE= outside (ex)

SEL | FEEEEEE SR

582 [vector<Point> find_eye_corners(Point center, int side, Mat image){

583 vector<Point> corners; // holds the located eye corners

Sed vector<Point2f> good_corners, temp_corners; // temporary containers for holding pessible cc
585 goodFeaturesToTrack({image, good_corners, 388, .81, 28.8, noArray(), 5, false, ©.84);

586

587 // Add found corners to temp_corners

588 for{unsigned int i = @; i < good_corners.size(); i++){ /4 Go threugh found corners and find all those
589 if(goed_corners[i].x <= center.x + 7@ &% good_corners[i].x »= center.x - 7@){ // horizontal region around eye center

518 if(good_corners[i].y <= center.y + 3@ && good_corners[i].y »= center.y - 3@){ // vertical region around eye center

511 temp_corners.push_back(good_corners[i]); // save corners in eye region

512 3}

513 }

514 3

515

516 good_corners.clear(); /4 clear all found corners

517 good_corners.swap(temp_corners); // replace with those from eye region

518

519 do{ // Find two corners cleses to the eye center we
528 unsigned int smallest = UINT_MAX;

521 int distance = INT_MAX;

522 for(unsigned int i = @; i < (unsigned int)good_corners.size(); i++){

523 if(cvRound(abs(center.y - good_corners[i].y)) < distance){

524 if(good_corners[i].x < center.x - 25 || good_corners[i].x » center.x + 25){ // corner must be outside of the iriz region
525 smallest = i;

526 distance = cvRound{abs(center.y - good_corners[i].y));

527 1

528 }

529 }

538 temp_corners.push_back(good_corners[smallest]); // save corner with smallest vertical distance
531 good_corners.erase(geod_corners.begin() + smallest); // delete the found corner from the source vect
532 twhile((int)temp_corners.size() < 2); // stop when two corners are found

533

534 if(side == LEFT){ // order eye corners by inside then outside
535 if{temp_corners[8].x < center.x){

536 corners.push_back({temp_corners[@]);

537 corners.push_back{temp_corners[1]);

538 telse{

539 corners.push_back(temp_corners[1]);

548 corners.push_back(temp_corners[@]);

541 1

542 telse{

543 if(temp_corners[@].x < center.x){

544 corners.push_back{temp_corners[1]);

545 corners.push_back{temp_corners[@]);

546 telse{

547 corners.push_back(temp_corners[@]);

543 corners.push_back(temp_corners[1]);

549 1

550 3

551 return corners;

552 |}

Figure 7-18 Code segment from automatic.cpp showing the algorithm for finding the eye corner
points (en and ex) based on the eye center locations

37

current value is skipped while a region with a lower luminosity value causes the new value to
replace the current value and all previously stored center points are discarded; if the region is
the same luminosity then the central point of the search window is stored. The final location of
the eye center is averaged from all the located least luminous points found.

To locate the eye corners the OpenCV goodFeaturesToTrack() utility is used to identify
all points in the portrait image which may be of interest. The resulting list of points is trimmed
to contain only those within seventy horizontal pixels and thirty vertical pixels of the eye center.
The reduced set is iterated over to locate the two points with the smallest difference in vertical
distance from the eye center and also outside the iris region set to be a 25x25 pixel box around
the detected eye center. A point selected to be an eye corner is removed from the reduced set
of points and the process repeats until two eye corners are found. The process of locating the
eye corners is run separately for the left and right eyes.

7.4.1.5. Mouth Corners (ch)

While working on the eye corners algorithm using the portrait image it was observed that
the OpenCV goodFeaturesToTrack() method also detected two points, /s and sto1 in Figure
6-1. Looking at the images it was clear the points Is and stol could be used to detect the mouth
corners, ch, because they are nearly vertically inline and below the already detected nose tip,
prn. In addition sto1 is nearly horizontally aligned with the left and right mouth corners being
sought. A final benefit of OpenCV’s goodFeaturesToTrack() method is that it also correctly
located the two mouth corners, ch.

The point set returned by OpenCV’s goodFeaturesToTrack() method are first reduced
to three subsets of points using the already detected nose tip as a reference point. The first set
contains all the points 130 pixels horizontally offset to the left and right of the nose tip and 50 to

170 pixels vertically below the nose tip. The second and third sets of points are left and right

38

divisions of the first set again using the nose tip x coordinate as the determinant. The first set of

points is then searched for the two points with the smallest horizontal difference from the nose

tip; the point with the lowest vertical location is retained as stol. The left subset is searched for

the point most closely matching the vertical height of sto1 which is identified as the left mouth

corner. The right mouth corner is located similarly using the right subset of points.

Figure 7-19 Code segment from automatic.cpp showing the algorithm for finding the left and
right mouth corners (ch)

7/ S
HH Find mouth corners

/i Locates the left and right mouth corners using the portrait image. Starting with
/i prn and using gocdFeaturesToTrack() points are located in & region of interest

/i around the mouth. The nose tip, prn is used to locate stol and sto2. The point

HH
HH
goodFeaturesToTrack(image_gray, good_corners, 3@@, @.81, 28.@, noArray(), 4, false, @.@4);

sto2 is used to locate both mouth corners, ch.
ook e

for{unsigned int 1 = @; i < good_corners.size(); i++){ // o through found corners and find all those
if(good_corners[i].x <= prn.x + 138 && good_corners[i].x »= prn.x - 13@){
if(good_corners[i].y »= prn.y + 5@ &8 good_corners[i].y <= prn.y + 17@){
temp_corners.push_back(good_corners[i]); // add all corners in meuth regicn to temp_corr
if(good_corners[i].x »= al_left.x)left_corners.push_back(good_corners[i]); // add all corners in mouth region and left of
if{goed_corners[i].x <= al_right.x)right_corners.push_back{good_corners[i]);// add all corners in mouth region and right of

}
}
1
good_corners.clear(); /f Clear all found corners and replace with the
good_corners.swap(temp_corners); /f empty temp into good
do{ /f Find two corners closest to PRN horizontally
smallest = UINT_MAX; 17 reason is they were always detected anc
distance = INT_MAX;
for(unsigned int 1 = @; i < (unsigned int)good_corners.size(); i++){
if{cvRound{abs{prn.x - good_corners[i].x)) < distance){
smallest = i;
distance = cvRound(abs(prn.x - good_corners[i].x));
}
}
temp_corners.push_back(geod_corners[smallest]); // add smallest to temp
good_corners.erase(good_corners.begin() + smallest); // remove smallest from vector
Jwhile((int)temp_corners.size() < 2); // exit when two points are found
if(temp_corners[@].y < temp_corners[1].y){ // determine stomian (where lips meet at center
stomian = temp_corners[1];
Jelse{
stomian = temp_corners[8];
1

smallest = UTNT_MAX;
distance = INT_MAX;
for(unsigned int 1 = @; i < left_corners.size(); i++){ /f find point in left corners closes to stomian
if(cwRound{abs({stomian.y - left_corners[i].y)) < distance){
smallest = ij
distance = cvRound(abs(stomian.y - left_corners[i].y));

}
ch_left = left_corners[smallest];

smallest = UINT_MAX;
distance = INT_MAX;
for(unsigned int 1 = @; i < right_corners.size(); i++){ // find point in left corners closes to stomian
if(cvRound{abs(stomian.y - right_corners[i].y)) < distance){
smallest = i;
distance = cvRound(abs(stomian.y - right_corners[i].y));

}
}
ch_right = right_corners[smallest];
facial_points_result.push_back(ch_left); // add mouth corners to the facial points
facial_peints_result.push_back(ch_right); // add mouth corners to the facial points

39

7.4.2. Distance Calculations

To replicate the Gupta method for facial recognition the calculation of distances between

detected points is used. Both the Euclidean and geodesic distances are computed for each pair
of points®. Choosing all pairs of points (475) resulted in a total of 45 3D Euclidean and 45

geodesic distances to be used later for facial recognition

7.4.2.1. 3D Euclidean Distances

Once all the facial points are located, the 3D Euclidean distances between each pair of
points is calculated. The calculation of a Euclidean distance in 3D space is a straightforward
extension of a 2D Euclidean distance, see Equation 1. The x and y values used for the calculation
were the pixel x and y coordinates. For the z value the intensity value of the range image at the
pixel coordinate was used without modification. The Euclidean distances are saved as a vector

for storage.

D= (x;— x)2+ (31 — ¥2)2 + (21 — 25)? Equation 1

7.4.2.2. Geodesic Distances

The distance between pixels in a range image is regular and discrete forming a grid of rows
and columns. A line drawn between any two pixel locations may cross discrete row and column
locations but is more likely to cross between discrete row and column locations complicating
path creation. This project used a simple geodesic distance approximating the path of the
straight line between the end points to calculate the geodesic distance. The first task is to
create a path between each pair of points which as closely as possible follows the straight line
path between the two end points. Once the path is determined the geodesic distance is

calculated by summing the 3D Euclidean distances from one point to the next along the path.

‘A geodesic distance is the distance between two points in three-dimensional space following the surface
curvature of the space.

40

Figure 7-20 Image showing the 45 Figure 7-21 Image showing the 45 geodesic
Euclidean lines on a range image. lines (red) drawn on top of the Euclidean
lines (green)

The resulting distance closely approximates the distance along the surface between the two
points.

To create a path of discrete points, a simple distance technique was used to select individual
points along the path. The first step is to reduce the problem to a 2D problem by only
considering the (x, y) coordinate plane and ignoring the z values. Also, to create a path at most
the change in the x and y coordinate can be only one pixel at any time in one or both directions.
Considering a coordinate plane with start and destination points A and B any change in xor y
coordinates of the start location more distant from the x and y coordinates of the destination
are in the wrong direction. This information is used to create three candidate points which are
all closer to the destination but only one pixel away from the start location. Using the start and

end points to define a line AB the distance to each candidate point along a line perpendicular to

41

AB is calculated. The candidate point having the shortest distance to the line AB is retained as a

point along the path, the start position is updated and the algorithm repeats.

RIORDORD ORI RD
R S e)
W0 o oo

221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237
238
239
24

241
24

24

264
265
266
267
268
269
278
271
272
273
274
275
276
277
278
279
258
281
282
283
284

=/*

=/

t

Return: vector{vector<{vector<Point> > » paths

The method follows the line segments found in vector<Point» facial points_