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Abstract 

This thesis is motivated by the need to predict the mortality of patients in the Intensive 

Care Unit. The heart of this problem revolves around being able to accurately classify 

multivariate, multi-granular time series patient data. The approach ultimately taken in this 

thesis involves using Z-Score normalization to make variables comparable, Single Value 

Decomposition to reduce the number of features, and a Support Vector Machine to 

classify patient tuples. This approach proves to outperform other classification models 

such as k-Nearest Neighbor and demonstrates that SVM is a viable model for this project. 

The hope is that going forward other work can build off of this research and one day 

make an impact in the medical community.  

  



V 

 

 

 

 

Acknowledgements 

I would like to thank several people for their assistance with this thesis. First I would like 

to thank Dr. Li for inspiring me to take on this challenge; and for the guidance and 

wisdom she has provided throughout this endeavor. Without her help and insight this 

thesis would never have been possible. Next, I would like to thank Stu Steiner for his 

help navigating all the bureaucracy, paperwork, deadlines, and other politics involved 

with college. Without him I would have never started Grad School and certainly never 

finished.  

  



VI 

 

Table of Contents 

ABSTRACT .................................................................................................................................. IV 

ACKNOWLEDGEMENTS........................................................................................................... V 

LIST OF FIGURES ................................................................................................................... VIII 

1 INTRODUCTON ............................................................................................................... 1 

2 BACKGROUND ................................................................................................................. 3 

3 RELATED WORK ............................................................................................................ 6 

3.1 Existing Medical Solutions ......................................................................................................... 6 

3.2 Existing Classification Methods ................................................................................................. 7 

3.2.1 Support Vector Machine ................................................................................................................ 7 

3.2.2 Neural Network.............................................................................................................................. 8 

3.3 Existing Feature Reduction Methods ......................................................................................... 8 

3.4 Summary of Previous Work ..................................................................................................... 11 

4 METHODS USED............................................................................................................ 12 

4.1 Normalization ........................................................................................................................... 12 

4.2 Feature Reduction - PCA & SVD ............................................................................................ 16 

4.3 Classification - k-Nearest-Neighbor ......................................................................................... 20 

4.4 Classification - SVM ................................................................................................................. 21 

5 RESULTS ........................................................................................................................... 26 

5.1 Cross Validation & Scoring ..................................................................................................... 26 

5.2 Choosing a Kernel .................................................................................................................... 27 

5.3 Time Segments ......................................................................................................................... 31 

5.4 Single Value Decomposition ..................................................................................................... 35 



VII 

 

5.5 Undersampling ......................................................................................................................... 37 

6 CONCLUSION & FUTURE WORK .......................................................................... 40 

BIBLIOGRAPHY ....................................................................................................................... 44 

APPENDIX A .............................................................................................................................. 47 

VITA ............................................................................................................................................ 48 

  



VIII 

 

List of Figures 

FIGURE 3-1: HARR WAVELET ......................................................................................................... 10 

FIGURE 4-1: SVD EXAMPLE PART 1 .............................................................................................. 18 

FIGURE 4-2: SVD EXAMPLE PART 2 .............................................................................................. 18 

FIGURE 4-3: SVD EXAMPLE PART 3 .............................................................................................. 19 

FIGURE 4-4: SVD EXAMPLE PART 4 .............................................................................................. 19 

FIGURE 4-5: SVD EXAMPLE PART 5 .............................................................................................. 20 

FIGURE 4-6: SVM HYPERPLANE EXAMPLE ................................................................................... 22 

FIGURE 4-7: ONE DIMENSIONAL DATA .......................................................................................... 24 

FIGURE 4-8: MULTI DIMENSIONAL DATA ...................................................................................... 24 

FIGURE 5-1: SIGMOID KERNEL CHANGING � ................................................................................. 28 

FIGURE 5-2: SIGMOID KERNEL CHANGING C ................................................................................ 29 

FIGURE 5-3: RBF CHANGING � ...................................................................................................... 30 

FIGURE 5-4: RBF CHANGING C ..................................................................................................... 30 

FIGURE 5-5: COMPARISON OF KERNELS ........................................................................................ 31 

FIGURE 5-6: CHANGING NUMBER OF TIME SEGMENTS –MAJORITY VOTE ................................... 32 

FIGURE 5-7: CHANGING NUMBER OF TIME SEGMENTS - WEIGHTED - SEGMENT AVERAGED ...... 33 

FIGURE 5-8: CHANGING NUMBER OF TIME SEGMENTS - COMBINING SEGMENTS BEFORE SVM ... 34 

FIGURE 5-9: COMPARISON OF TIME SEGMENTATION METHODS ................................................... 35 

FIGURE 5-10: SVD - CHANGING THE NUMBER OF COMPONENTS ................................................. 36 

FIGURE 5-11: ACCURACY COMPARED TO NO SVD ........................................................................ 37 

FIGURE 5-12: BALANCED TRAINING SET ....................................................................................... 38 

FIGURE 5-13: SVM WITH DIFFERENT DATA DISTRIBUTIONS ....................................................... 39 

 



1 INTRODUCTON 
 

The field of medical research is rich with data. Through the use of medical technology massive 

amounts of information about every facet of a patient’s health can be recorded. This data is vital 

in understanding disease, developing new drugs, and preventing illness. Pure unprocessed data by 

itself is meaningless. Data Mining takes large data sets, finds interesting patterns and 

relationships, and transforms raw data into something meaningful [1]. One very useful form of 

data mining is “Classification”. Classification takes a training data set and builds a model which 

can then be used to accurately classify other previously unseen data into groups [1]. Often 

medical data is collected over a period of time; this type of information is called “Time Series” 

data. Time Series data adds a level of complexity because not only must the values of the data be 

considered, but also the timestamp when data is collected, and the frequency of collection. 

Mining this data involves several steps including data selection, pre-processing, model creation, 

and results analysis [2].  

Medical data is massive and complicated but through the process of data mining and 

classification this mountain of data can be transformed into meaningful information. This thesis 

attempts to data mine time series data as to classify mortalities in the Intensive Care Unit (ICU) at 

hospitals. Thirty-six (36) unique time series measurement variables and six (6) general 

description variables, collected during patients stay in the ICU, are used to accurately classify the 

survival and mortality of patients. The data being examined is multivariate and multi-granular. 

‘Multivariate’ refers to patients having multiple variables recorded and ‘multi-granular’ refers to 

the time series variables that are recorded multiple times.  The multivariate nature of the data 

adds a level of complexity because finding similarity measures between data becomes 

exponentially complicated as more dimensions (patient variables) are considered.  
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To complete the goal of multivariate multi-granular classification there are several objectives 

defined.  

1. Determine if all the variables have equal significance, or some are more important than 

others.  

2. Find a model for classifying multivariate, multi-granular time series data.  

3. Decide what similarity measure should be used and what is an appropriate level of time 

segmentation.  

4. Discover the maximum level of accuracy in classification that can be achieved with the 

given data set.  

The contribution of this thesis is important because strategies involved with classifying data like 

this can be applied to similar projects in the future. Information that can be gained from this data 

holds the potential for giving medical professionals deeper insight into a patients stay in the ICU. 
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2 BACKGROUND 

 

With the advancement in medical technology, sophisticated patient monitoring systems are now 

commonplace in hospitals and these systems are typically first installed into  the ICU ward where 

patients require the closest observation [3]. While these systems are sophisticated and each 

records a large amount of data, the real benefit is derived from being able to mine the information 

gathered which can be used to increase patient care.  Thus, the goal of this thesis is to classify 

mortalities in the ICU at hospitals, based off of statistics collected during the first 48 hours of a 

patient’s stay. This research has been motivated by the desire to compare how well different 

medications work, hospital and care guidelines, and other methods of treatment [4]. Using data 

mining techniques and classification methods the goal is to predict with a high level of precision 

and sensitivity which patients will die in the ICU. This research is based off the “PhysioNet 

Computing In Cardiology” challenge of 2012. PhyisoNet’s goal  was “develop methods for 

patient-specific prediction of in-hospital mortality” [4].    

The data used in this challenge is from 12,000 medical records of adult patients during the first 48 

hours in the ICU. The patients had a wide variety of maladies including “cardiac, medical, 

surgical, and trauma” [4]. Forty-two variables are included in this data set although not all the 

data points are recorded for every patient.  Additionally, six of these variables are “general 

descriptors” such as age, gender, and weight, and are collected on patient’s entry into the ICU as 

shown in Table 2-1; while the remaining 36 variables are time series based as shown in Table 2-2. 

In addition to the 42 variables are 5 outcome-related descriptors that describe the final state of the 

patient including if the patient survived as shown in Table 2-3.   

All of the data is provided from the Computing in Cardiology challenge and is broken into three 

sets. Set A is the training set and includes the outcomes, while sets B and C do not contain the 
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outcomes therefore are used as Test Sets. Sets A, B and C each contain 4,000 records although 

only A and B are given to competition contestants and set C is used for judging. 

Table 2-1: General Descriptors 

RecordID A unique integer for each ICU stay 
Age Years 

Gender 0: female, or 1: male 

Height Cm 
ICUType 1: Coronary Care Unit, 2: Cardiac Surgery 

Recovery Unit, 3: Medical ICU, or 4: Surgical 

ICU 

Weight Kg 

 

Table 2-2: Time Series Variables 

Albumin g/Dl 

ALP Alkaline phosphatase (IU/L) 

ALT Alanine transaminase (IU/L) 

AST Aspartate transaminase (IU/L) 

Bilirubin mg/dl 

BUN Blood ureanitrogen 

Cholesterol Mg/dl 
Creatinine Serum creatinine (mg/dL) 
DiasABP Invasive diastolic arterial blood pressure 

(mmHg) 

FiO2 Fractional inspired O2 (0-1) 

GCS Glasgow Coma Score (3-15) 

Glucose Serum glucose (mg/dL) 

HCO3 Serum bicarbonate (mmol/L) 

HCT Hematocrit (%) 

HR Heart rate (bpm) 

K Serum potassium (mEq/L) 

Lactate mmol/L 

Mg Serum magnesium (mmol/L) 

MAP Invasive mean arterial blood pressure (mmHg) 

MechVent Mechanical ventilation respiration (0:false, or 

1:true) 

Na Serum sodium (mEq/L) 

NIDiasABP Non-invasive diastolic arterial blood pressure 

(mmHg) 

NIMAP Non-invasive mean arterial blood pressure 

(mmHg) 

NISysABP Non-invasive systolic arterial blood pressure 

(mmHg) 

PaCO2 partial pressure of arterial CO2 (mmHg) 
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PaO2 Partial pressure of arterial O2 (mmHg) 

pH Arterial pH (0-14) 

Platelets cells/nL 

RespRate Respiration rate (bpm) 

SaO2 O2 saturation in hemoglobin (%) 

SysABP Invasive systolic arterial blood pressure 

(mmHg) 

Temp Temperature (°C) 

TropI Troponin-I (μg/L) 

TropT Troponin-T (μg/L) 

Urine Urine output (mL) 

Weight (kg)* 

 

Table 2-3: Outcome Related Descriptors 

SAPS-I score Simplified Acute Physiology Score 
SOFA score Sequential Organ Failure Assessment 
Length of stay Days. Includes time outside of the ICU 
Survival Days after ICU stay that the patient died (if 

recorded and if dead) 

In-hospital death 0: survivor, or 1: died in-hospital 
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3 RELATED WORK 

 

The medical community uses different scoring systems which can be used to assign patients a 

score to access a patient’s health and severity of condition. These scoring systems are a good 

starting point to examine the current methodologies and to determine if a more effective solution 

is possible. From a data mining perspective, classification models must be examined to determine 

the appropriate algorithm for a multivariate multi-granular data set. Finally, given the large 

amount of features that this data set has and the level of complexity due to its time series features, 

it is necessary to investigate existing feature reduction techniques. 

3.1 Existing Medical Solutions 

 

A predictive scoring system is a system which assigns a patient a score that relates to severity of 

the patient’s illness and/or probability of death. Some common predictive scoring systems used 

by the medical community are Simplified Acute Physiology Score (SAPS), and Sequential Organ 

Failure Assessment (SOFA) [5].  

A patients SAPS value is found by taking the worst values of certain variables (within a 24 time 

period), inputting these values into the SAPS model which was originally defined using logistic 

regression, and finding the appropriate weights to assign variables [5]. There are 17 different 

health-related variables that SAPS takes into consideration and how “worst” is defined depends 

on each specific variable. For example, a patients “worst” temperature is the patients highest 

temperature over the preceding 24-hour period  [5].  The scale defined by SAPS can be used by 

doctors and other medical staff to gain insight into how a patients health is doing.  

SOFA works in a similar manner to SAPS but it is focused specifically on organ dysfunction [6]. 

The SOFA score is based on six parameters Respirationa, Coagulation, Liver, Cardiovascular, 

CNS, and Renal. Each of these is graded on a 0 to 4 scale where 0 represents normal functionality 
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and 4 represents abnormal behavior or failure [6]. Each variable has a predefined value range 

which specifies what value (0 through 4) that variables value should correlate to. After tallying all 

of the different parameters a minimum score of 0 and maximum score of 24 are possible. SOFA 

provides an easy scoring system that can give medical staff a clear view of how a patient’s organs 

are performing. 

 

While scoring systems like SAPS and SOFA are useful, they both utilize relatively few patient 

parameters, and do not take into consideration a patients change in health over time. The data 

used in this thesis has many different variables which SAPS and SOFA do not consider as well as 

time series information which allows for a much more intricate classification model to be created.   

3.2 Existing Classification Methods 

 

The challenge placed virtually no limits on how to classify this problem and thus a variety of 

different techniques were pursued. Since the contest already concluded it is possible to see how 

well these different methodologies compared. 

3.2.1 Support Vector Machine 

 

From the challenge, the team that had the best overall results used both time series and general 

descriptors as input to a quadratic Support Vector Machine (SVM). Since the number of patients 

who live after staying in the ICU greatly outweighs the number of patients who die, the winning 

team divided their training set into six parts. All of the dies examples from the data set were 

matched with an equal number of lives patient examples [7]. SVM uses a nonlinear mapping to 

transform data into a higher level dimension and then searches for a decision boundary, called a 

hyper-plane, which separates the classes [1].   SVM is known to handle noisy data and is well 

suited for large data sets. SVM is also excellent at handling data sets that have uninformative or 

redundant features [7]. 
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The winning team created a unique idea for handling the time aspect of the data. The team broke 

up the 48 hour period into two 24 hour chunks. Within each 24 hour period; the minimum, mean, 

and maximum of every variable was calculated, and then normalized on a scale from -1 to 1 [7]. 

This interesting solution allows for the improvement or decline of a patient to be tracked over 

time, and is at a level of resolution that helps minimize the effects of missing data. Missing data is 

a problem, but the team alleviated this problem by filling in missing daily information from either 

the proceeding or following day. 

3.2.2 Neural Network  

 

Other teams took an approach of implementing a neural network [3].  A neural network is a set of 

nodes with associated weights. A neural network is trained by adjusting the weight of these nodes 

to maximize the correctness of inputs to the class labels assigned as outputs [1]. While neural 

networks are good at handling noisy and complicated data sets, apparently a neural network does 

not perform as well with this data set. One reason for this underperformance is that while training 

the neural network the “optimization could often be stuck in local minima and result in very poor 

classification accuracy” [8]. There are strategies that address this issue such as training multiple 

neural networks and then using a “voting strategy”; but based on the findings of participants from 

the challenge the neural network tended to underperform other models [3][8]. 

3.3 Existing Feature Reduction Methods 

 

This data set is extremely complex and it is necessary to transform the data in some way to make 

it more manageable. Thirty-six of the 42 variables that each patient could potentially have are 

time series variables which have been sampled at various rates. The best method to transform and 

interpret this complex data set can be derived from examining the existing methodologies.  
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Discrete Wavelet Transform (DWT) takes the time/amplitude domain of data and transforms it 

into a time/frequency domain. “Mathematically speaking, the wavelet transform is a convolution 

of the wavelet function with the signal” [9]. Frequency information about a signal reveals 

important detail about the signal which provides a concise method for describing what is 

occurring. One common method for discovering frequency information about a signal is the 

Fourier Transform. The Fourier transform makes it possible to tell what frequencies occur within 

a single. If a signal is stationary, meaning that its frequency doesn’t change, then the Fourier 

transform is perfectly fine to use. On the other hand, if the frequencies within a signal change 

over the lifetime of the signal the Fourier transform will be of limited use. Unfortunately, the 

Fourier Transform does not give any information as to when a specific frequency occurred within 

a signals timeline [10].  

The Short Time Fourier Transform (STFT)  provides the ability to distinguish both when and 

what frequencies occur in a signal. STFT combines the concepts of the Fourier Transform with 

discrete windows of time [11]. The Heisenberg uncertainty principle states that it is impossible to 

know both the momentum and position of a particle in motion simultaneously, meaning it is 

impossible to know the precise frequency and time information of a signal at a given point. What 

can be found is what frequencies exist within a time range instead of at an exact moment [11].   

STFT breaks the signal into windows of time and applies the Fourier Transform on those 

windows. Through this process of using windows a more precise idea of what signals occur 

during which time periods can be calculated. 

While the STFT is useful it does have its drawbacks. The biggest drawback of the STFT is the 

window it uses for its calculations is of fixed size. The window size matters because the larger the 

window the better the frequency resolution, and the smaller the window the better the time 

resolution [11]. With a fixed sized window resolution can become a serious problem. The benefit 

of the DWT is that it provides Multi Resolution Analysis (MRA). With DWT filters of different 
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frequencies are used to analyze the signal at different scales (window sizes). This enables only the 

important parts of a signals to be viewed and the irrelevant frequencies can be discarded; 

therefore simplifying the complexity [11]. By using a system with MRA, accurate information 

about both what and when frequencies within a signal occur can be obtained.  

Before it is possible to understand how the Wavelet Transform works, a definition of what a 

wavelet is must be determined. A wavelet is just a function which integrates to zero. This means 

that if the function were graphed that as much of the function would exist above the x-axis as it 

does below, or in other words it’s “waving” above and below the x-axis [12].  The most basic 

example of a wavelet is the Harr wavelet shown in Figure 3-1. 

 

Figure 3-1: Harr wavelet 

Wavelets are used as basis functions, meaning that they can approximate or represent other 

functions. The Harr wavelet is an example of a Mother Wavelet. A Mother Wavelet acts as a 

starting point for representing a function. This mother wavelet can be translated and dilated 

depending on what function is trying to be approximated. Through translations, dilations, and 

different combinations any continuous function can be approximated by Haar functions [12]. 

The Wavelet in the Wavelet Transform acts like the window used in the STFT. Once a Mother 

Wavelet is chosen it is translated across the length of entire signal giving a specific resolution. 
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Next the Mother Wavelet is dilated and once again shifted across the entire signal. This process 

continues and as the wavelet shifts and changes size-different frequencies are detected within the 

window created by the wavelet. This process is what gives the Wavelet Transform its MRA [11].    

While DWT is a powerful tool it does have a major drawback. DWT is meant to be used on 

regularly sampled data. For example DWT would work on a patients temperature that is taken 

every five minutes. Conversely, DWT has issues when the data is being applied to has gaps or 

missing intervals [13]. To overcome the problem of gaps, interpolation can be used, but 

unfortunately the data used in this thesis has large missing intervals and it is also completely 

irregularly sampled thereby reducing the efficacy of these solutions or completely invalidating 

them. 

3.4 Summary of Previous Work 

 

• When dealing with time series data the level of resolution that can be accomplished is 

dependent on the amount of missing data, which in this instance is quite high.   

• The data is high dimensional, with each of these dimensions having a different scale, it is 

necessary to normalize each variable in some manner.  

• The data is irregularly sampled which makes using a transform such as DWT nearly 

impossible.  

• The classification model chosen is very important. Several teams that chose to use a 

neural network consistently underperformed while other models such as SVM performed 

well.  
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4 METHODS USED 
 

The methods used in this thesis are discussed below. With 42 potential different variable types 

per patient it is necessary to comprise methods to use the variables in a model without variable 

scale altering the applied weights for that variable. This is where the technique of normalization 

comes into play. The curse of dimensionality is an issue, therefore some feature reduction is 

important to utilize. A classification model must be chosen which can accurately predict the 

morality of patients such as K-Nearest Neighbor or Support Vector Machine.  

4.1 Normalization 

 

With 42 different types of patient variables being recorded and all 42 variables having different 

scales it is important to compare the variables without the scale of the variables interfering with 

the comparison. For example both a patient’s cholesterol and temperature are recorded but since 

the variables have different scales if a similarity measure such as Euclidean distance is used to 

compare variables then the variable with the greater scale will have a larger weight. 

Normalization is used to rescale the variables so that all the variables have a common scale.  

Previous work illustrates the use of Gaussian normalization which scaled all of the variables 

between negative one and one and transformed all the variables so that their distributions would 

match that of the standard Gaussian distribution [7]. To accomplish this, the outliers of each 

variable were clipped between the first (1
st
) and ninety-ninth (99

th
) percentiles. This process 

involves sorting each occurrence of a specific variable from least to greatest. Then, the empirical 

quantile of each value is found with equation 4-1. 

�� =  � −  12�  �� 1 ≤ � ≤ � (Equation 4-1) 
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Where �� is the empirical quantile value, � is the index of the sorted values, and � is the total 

number of occurrences of a variable.  The index of the 1
st
 percentile can be found by determining 

the smallest empirical quantile value that is greater than .001; which would therefore correlate the 

first percentile (��). The index of the 99
th
 percentile (��), corresponds to the largest empirical 

quantile that is smaller than .99 as illustrated in equation 4-2.  

�� = min�� | �� >  .01} 
�� = max�� | �� <  .99} 

(Equation 4-2) 

The variable value of the 1
st
 percentile,  � =   �! , and the variable value of the 99

th
 percentile 

 � =   �" are found and saved to be used in the next step. A Nx3 matrix of reggressors R and a 

Nx1 vector # are found as illustrated in equation 4-3. 

$ = %1,  �, log*1 +  �),     -./   # =  
012 *34)5     �� �� < � <  �� 

(Equation 4-3) 

Where 6*. )is the Cumulative Distribution Function (CDF) of the standard Gaussian Distribution.  

The CDF gives the accumulated probability from negative infinite up to a point   of a 

distribution [14]. This means that CDF represents the probability of a random point falling 

between negative infinite and   of a given distribution. In the case of the standard Gaussian 

distribution this can be represented mathematically as illustrated in equation 4-4.  

6*7) = 8 1√2:*;<= ) />?
@A  (Equation 4-4) 

Where for the purposes of this thesis 7 =  ��. 
For each variable class a vector B (B is a 1x3 vector) of weighting coefficients was found as 

illustrated in equation 4-5 [7].   

B = *$C $)@D *$C #) 
(Equation 4-5) 
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To normalize each variable occurrence > the corresponding values of  � ,  � and  vector B are 

retrieved and > is clipped between  � ,  � .  The clipped version of > is then passed into the final 

equation where it is transformed using the weighted values of B and its normalized value, 7, is 

returned as illustrated in equation 4-6.  

7 = BD + B= +  B5 EF*1 + >)  
(Equation 4-6) 

Once the normalization process is complete all the normalized values now fall between a range of 

-1 to +1. With all the variables on the same scale they can now be compared. 

After implementing the Gaussian normalization process and using it with the classification model 

chosen for this thesis the classification results were poor. One possible explanation is a limiting 

factor of the programming language. The language chosen was python version 2.7.  When taking 

the integral of 6*7) = G D√=H*I<< ) />?@A  Python could not handle the complexity of taking the 

integral from negative infinite to 7. Since the range being considered was from the 1
st
 percentile 

to the 99
th
 percentile the decision was made to change the lower bound on the integral from 

negative infinite to the value  �. While this solved the problem of python not being able to handle 

negative invitee it is a deviation from the original equation and could be a possible reason that the 

transformation performed poorly.   

Another possible reason that Gaussian transformation did not perform as well as anticipated is 

when solving for B it is often impossible to take the inverse of *$C $). This is because not all 

matrices have an inverse [15]. For a matrix to have an inverse it must meet the following 

requirement as illustrated in equation 4-7: 

The matrix J is invertible if there exists a matrix J@D such that  

J@DJ = K  -./ JJ@D = K  
(Equation 4-7) 
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Where K is the identity matrix. A matrix inverse is similar to an inverse of a number. For instance 

if the number 2 is multiplied by the number 8 the result is 16. If that result is multiplied by the 

inverse of 8, 1/8, then it returns the original number 2. The same is true for a matrix inverse. If the 

identity matrix is transformed by matrix J then transforming that result by J@D should return the 

original identity matrix [15].  

Unfortunately the paper on which this Gaussian transformation procedure was based on was 

vague and did not cover what to do in these instances. Thus the decision was made that when 

taking the inverse *$C $) proved impossible the pseudo inverse would be taken. The pseudo 

inverse of a matrix is an approximation of J@D [15]. When multiplying J by its pseudo inverse 

the identity matrix is not returned but instead a best approximation matrix to the identity matrix is 

returned. The use of the pseudo inverse was a logical choice however it did not allow the 

Gaussian transformation to perform as intended.      

While the Gaussian transformation implementation was unsuccessful, the outlier clipping was 

useful. Instead of using a Gaussian transformation the more commonly used Z-score 

transformation (also known as “zero-mean normalization) was used in conjunction with the 

variable clipping from the 1
st
 to 99

th
 percentiles.   Z-score transformation works by transforming a 

number into a value that represents how many standard deviations the original value is away from 

the mean of that variables population [1]. The transformed data has a mean value of zero and a 

standard deviation of one. Thus if a transformed value has a result of  zero, this means that the 

original value was equal to the mean, and if instead the value was two then the value was two 

standard deviations above the mean.  The equation for the z-score is illustrated in equation 4-8: 

L� = * � − M)N  
(Equation 4-8) 
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Where  � is the value being normalized, M is the mean of the values population, and N is the 

standard deviation.  The z-score normalization worked well at normalization for the variables 

discussed in this thesis.   

4.2 Feature Reduction - PCA & SVD 

 

Dimensionality is a problem that needs to be addressed. Originally there were approximately 40 

variables which represented patient variables. To help reduce the dimensionality of the data both 

Principle Component Analysis (PCA) and Singular Value Decomposition (SVD) were considered 

[16]. Both techniques accomplish the same goal of taking high dimensional data and reducing it 

to a lower dimensional space. Both techniques transform the data into new dimensions which 

better define the data based on eigenvalues and eigenvectors. The two techniques are so similar 

that the names are often used interchangeably and some refer to SVD as a form of PCA [17]. 

While both traditional PCA and SVD accomplish the same goals, the math behind them is a bit 

different. In order to discuss PCA and SVD it is important to understand the fundamental 

mathematical concepts applied in PCA and SVD. 

An important concept of PCA and SVD are eigenvectors and eigenvalues. An eigenvector is 

simply a direction and an eigenvalue is a value which describes the amount of variance in the data 

in that direction [16]. For every eigenvector there is a corresponding eigenvalue.  The number of 

eigenvectors that a set of data can have is equal to the number of dimensions the data is in. 

Eigenvectors are used to project the original data into a new set of orthogonal dimensions [16]. 

The mathematical definition of an eigenvector is illustrated in equation 4-9. 

EOP J QO - R�S-�O T-P��> �>�.  U �R -. O�FO.V-WSO � J �� PℎO�O O>�RPR - ..7O� VOYP� VZ RSYℎ Pℎ-P: 
 

JVZ =  UVZ (Equation 4-9) 
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This equation states that J is a square matrix, VZ is the eigenvector, and U is a scalar which is the 

corresponding eigenvalue to the eigenvector. To find the eigenvalues and eigenvectors of a square 

matrix, treat the matrix as a system of linear equations and solve for the variables within the 

linear equation [18]. Using this technique an �>� matrix will result in �  eigenvectors being 

found.  

PCA works by finding the covariance matrix between all the preexisting dimensions of the 

dataset and then calculating the eigenvectors from this matrix and ranking them by eigenvalues 

[19]. SVD breaks a matrix  down into the product of matrices \, ], and ^ where \ is an 

orthogonal matrix, ] is a diagonal matrix, and ^ is the transpose of an orthogonal matrix [18].  

The equation for SVD is illustrated in equation 4-10: 

J_` =  \__]_`^̀C̀  
(Equation 4-10) 

 “Where \C\ = K, ^C^ = K; the columns of \ are orthonormal eigenvectors of JJC, the columns 

of ^ are orthonormal eigenvectors of JCJ, and ] is  a diagonal matrix containing the square roots 

of eigenvalues from \ or ^ in descending order” [18]. 

PCA and SVD both use the same eigenvectors and eigenvalues to define new dimensions and 

rank these dimensions by importance. The main difference between these two techniques is SVD 

allows for the use of sparse matrices since it can operate directly on the data; In contrast PCA 

requires a covariance matrix to be created first [20]. Thus, SVD was chosen for this thesis since 

much of the data is extremely sparse.    

Figures 4-1 to 4-5 demonstrate a step by step example of a SVD transform of data points from 

their original dimensions into a new eigenvector space.  
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Step 1: The data is normalized so all dimensions use the same scale. The data is plotted along its 

original dimensions. Figure 4-1 illustrates this sample data set initially has two dimension 

denoted by and y.  

 

Figure 4-1: SVD Example Part 1 

Step 2: Find the first eigenvector. This eigenvector has the highest eigenvalue indicating that 

dimension has the most amount of variance. As illustrated in Figure 4-2 the solid line represents 

the eigenvector/eigenvalue, where the eigenvector determines the direction of the line and the 

eigenvalue determines its scale. 

 

 

Figure 4-2: SVD Example Part 2 

Step 3: Figure 4-3 illustrates the second eigenvector after it is found. This second eigenvector, 

presented by the dotted line, is orthogonal to the first one and has a smaller amount of variation. 
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Figure 4-3: SVD Example Part 3 

Step 4: Using all the eigenvectors/eigenvalues the data is projected onto the new eigenvector 

space. Figure 4-4 illustrates the example data set after its projection onto the eigenvector space.  

 

 

Figure 4-4: SVD Example Part 4 

Step 5: The data is in the new dimensional space and the dimensions are ranked by importance 

with regards to variation. To reduce the dimensionality of original data the less variation 

dimensions can be removed. From the example, most of the variation comes from eigenvector1 

thus eigenvector2 could be removed and the data points are projected into one dimensional points 

along the eigenvector1 dimension as illustrated in Figure 4-5.  
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Figure 4-5: SVD Example Part 5 

Using SVD the dimensional complexity of a data set can be greatly reduced while at the same 

time maintaining most of the original structure [18].  Discussed in Section 5, by using SVD the 

number of features is dramatically reduced with only a small loss in accuracy. SVD was a useful 

technique for feature reduction that can greatly helped alleviate the problems of dimensionality.  

 

4.3 Classification - k-Nearest-Neighbor  

 

After completing the preprocessing steps of data selection and transformation, the next step in the 

knowledge mining process is to choose an appropriate data mining model. The first classification 

method used in this thesis was the k-Nearest-Neighbor (KNN). KNN is a Lazy Learner which 

means that when the algorithm receives training tuples it simple stores those tuples and doesn’t 

apply calculations until after a test tuple is provided [1]. A Lazy Learner completes all the 

calculations on the fly when presented with a test tuple that needs to be classified. KNN works by 

searching for the k closest training tuples to a given test tuple. These closest tuples are called the 

“nearest neighbors” [1]. After the k nearest neighbors are found a vote is taken to determine into 

which category the test tuple is classified.  

To determine the “closeness” of tuple the similarity measure Euclidean distance was used. 

Euclidean distance finds the distance between two points  D and  =of n dimensions by using the 

formula as illustrated in equation 4-11.  

abcd*ef, eg) = hi*jfb − jgb)gk
blf  

(Equation 4-11) 
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KNN didn’t provide the accuracy desired and because lazy learners are typically slow and 

computationally expensive it was decided that an “Eager Learner” solution would be used. An 

Eager Learner takes training tuples and then builds a model that can be used to classify new 

testing tuples. This approach allows for a single model to be built and then used to classify any 

number of testing tuples. Since there are thousands of training and testing tuples, an Eager 

Learner allowed for a single prebuilt model resulting in calculations that were not 

computationally expensive. 

4.4 Classification - SVM 

 

The challenge was a binary classification problem in which patients must be classified into either 

“lies” or “dies”. To accomplish this a supervised learning algorithm is appropriate since the 

classes are known for the training tuples. Since a lazy learner algorithm has been ruled not 

acceptable the classification model for this thesis will be an eager learner. Additionally, the 

solution chosen must be well suited to multi-dimensional data. Therefore, the model chosen is 

“Support Vector Machine” (SVM).  

The SVM algorithm was designed by Boser, Guyon, and Vapnik in 1992. Some of SVM’s 

strengths include the ability to handle high-dimensional and diverse sources of data with high 

classification accuracy [21]. SVM involves the “optimization of convex function” meaning that it 

has no false minima like a neural network [21] It is able to handle multidimensional data better 

than other models [1]. SVM is a model that is easily understandable as compared to other models 

such as neural networks [21].   

In order to understand SVM imagine a data set in which all the inputs, X,  have class value Y = -1 

or +1 as show in the Figure 4-6. Furthermore, imagine that this data set is linearly separable; 

meaning that the two classes allow a straight line drawn between them for two dimensional data, 

or hyperplane for multidimensional data [22]. For multidimensional data there are several 
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hyperplanes that are potential solutions. SVM finds the “Maximum Marginal Hyperplane” 

(MMH) [1], which is the hyperplane with the maximum distance from itself to the nearest points 

of each class. These nearest points are called “Support Vectors” (SV) and are used to define the 

boundaries of the MMH with the hyperplane being in the center.  

 

Figure 4-6: SVM Hyperplane Example 

 

 

Support vectors are unique and in the SVM model and are the only points that matter because any 

non-support vector points can be removed without changing the MMH. This SVM feature is very 

useful because the complexity of the model is not based on the number of inputs but based on the 

number of support vectors.  

Up to this point it has been assumed that the data is linearly separable, but with real world data 

sets this is often not the case. To classify non-linearly separable data a SVM model can take two 
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approaches, soft margins or shifting the data to a higher dimension. Soft margins allow points to 

be on the wrong side of the margin. For each point a penalty is assigned. This penalty is 

calculated by the number of points that violate the margin and the distance those points are from 

the margin. For soft-margin constant, m, on the decision boundary, a small value of m means the 

SVM will have a larger margin and will allow more points to be ignored that are near the decision 

boundary [21]. Since m controls the balance between the margin size and penalty received, this is 

a tuning parameter that can be used to maximize performance and handle outliers. 

Shifting data into a higher dimension in which a decision boundary can be found is an alternative 

means to handling non-linearly separable data. Unfortunately, explicitly computing these non-

linear features can prove to be quite computationally expensive.  When shifting into a higher 

dimension there is a quadratic increase in both the time and memory required to complete the 

computations [21].  Based on the quadratic increase in time and the memory required explicitly 

shifting the data is not feasible for this thesis.  

To handle non-linearly separable data, a Kernel function was used. A Kernel function acts as a 

scalar product on the higher dimension which implicitly trains a SVM on the space defined by the 

kernel [23]. The Kernel function maps  the data points into an alternative feature space through a 

replacement:    � ∗  o  →  q* �) ∗  q* o) [21]. This replacement is the inner product between 

pairs of points in the higher dimensional feature space [21]. Once in the new higher dimensional 

space it is possible to find a decision boundary between two classes which was impossible at the 

lower dimension.  

For example presume there is a one dimensional data set that contains data points ranging from -

10 to 10 and all the points are sorted in ascending order. Furthermore let the squares represent one 

class of data while the triangles represent another class. As illustrated in figure 4-7 the data points 

of the two classes are impossible to separate. 
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Figure 4-7: One Dimensional Data 

By using a Kernel function and mapping the data into a higher dimensional space the data is 

separable. As illustrated in figure 4-8 the X dimension remains unchanged; however the Y 

dimension is transformed by squaring each X value.  

 

Figure 4-8: Multi Dimensional Data 

The kernel function for each SVM model depends on the type and distribution of the data. A 

kernel is chosen through a process of trial and error in which cross-validation is used to discover 

which kernel elicits the best results. Popular kernels include linear, polynomial, radial basis 

function (RBF), and sigmoid [23].  A kernel acts as a similarity measure and the points belonging 

to the same class will have a higher kernel level and points belonging to different classes will 

have a lower kernel level  [23]. 
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Once a kernel has been chosen the SVM model is constructed. The accuracy of the model 

depends upon many factors including the chosen Kernel and the values for the tuning parameters. 

The dimension in which the SVM is trained and the size of the margin determine the key 

characteristics of the SVM. In summary, the SVM is a versatile classification model that is well 

suited for multi-dimensional data and binary classification problems. The SVM model was 

chosen for this thesis.  
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5 RESULTS 

 

 “Cross-validation & scoring” is used to ensure that the results collected are reliable and not 

biased. Specific changes to the overall model are examined to see how the outcome is affected. 

The different kernel choices are analyzed to compare the impact on performance of the support 

vector machine. Different time slicing techniques are investigated based on the time series aspect 

of the data. Single Value Decomposition is studied for the impact it has on reducing the number 

of features. 

5.1 Cross Validation & Scoring 

 

For results to be meaningful, it is important to guarantee the results collected are accurate 

unbiased. K-fold cross validation was used in this thesis when doing any testing.  K-fold cross 

validation breaks the data set up into K parts (folds). One fold is designated to be the test set and 

the other K  - 1 folds are designated to be the training sets [1]. The experiments are run and the 

results are collected. Once again, the process is repeated with a new fold chosen to be the test set 

and the remaining folds used for training. This process continues K times and then the results are 

averaged to give the final score. Using K-fold cross validation this helps to prevent overfitting 

and bias [1]. For this thesis a 10-fold cross validation was chosen. Meaning 10 percent of the data 

at any one time is used for testing and the other 90 percent is used for training. A 10-fold cross 

validation technique is very common in data mining and it has proven to be reliable and return 

more accurate results [1].   

The overall goal for this challenge is to maximize the Score1 result which is the minimum of the 

sensitivity (Se)  and precision (+P).  Se represents the fraction of in-hospital deaths that are 

predicted and precision +P represents the fraction of correct predictions of in-hospital deaths. Se, 

+P, and Score 1 are determined with the following equations where TN = True Negatives, TP = 
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True Positives, FN = False Negatives, and FP = False Positives as illustrated  in equation 5-1, 5-2, 

and 5-3.  

]O = rsrs + t� 
(Equation 5-1) 

 

+s = rsrs + ts 
(Equation 5-2) 

 

]Y�O 1 = min *]O, +s) (Equation 5-3) 

5.2 Choosing a Kernel 

 

Before handling the time series aspect of the data the Support Vector Machine needs to be tuned 

to work well with the data set. The most important choice to make when using a SVM is what 

type of Kernel to use. The Kernel acts like a similarity measure for SVM [23] and the kernel 

choice is derived from the type and distribution of data. Using the “Kernel Trick” it is possible to 

replace the dot product between two vectors with the kernel function. This substitution allows 

values can to mapped to higher dimensions without having to compute the mapping explicitly 

[21].   

The first kernel tested was the Linear Kernel. The Linear Kernel is different from the other 

Kernels because it doesn’t actually change the dimension. The Linear Kernel is only useful in 

cases where the data is linearly separable within the current dimension. While the Linear Kernel 

is of limited use its performance can be improved by using the SVM tuning parameter "Y". Y  sets 

how fuzzy the decision surface is between classes [24]. Equation 5-4 is the Linear Kernel where x 

and y are the two vectors under consideration.  
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v*>, w) =  >Cw (Equation 5-4) 

The data in this thesis is of high dimensionality therefor the the Linear Kernel performed poorly 

and returned a constant 0.0 Score1 result no matter what Y value was chosen for the decision 

margin.   

The next kernel tested was the Hyperbolic Tangent (Sigmoid Kernel). The Sigmoid Kernel is also 

used for neural networks and when using the Sigmoid Kernel with SVM it is similar to using a 

“two-layer, perceptron neural network” [25]. The equation for the Sigmoid Kernel is illustrated in 

equation 5-5 where � determines how much influence an individual training example has on the 

determination of which class it and its surrounding data points are classified as. 

v*>, w) = tanh *�>Cw) (Equation 5-5) 

After testing the kernel and adjusting both � and c it was found that the best � value is 0.1 and the 

best value for c is 1000 and returns a Score1 value of 0.226. These results are illustrated in Figure 

5-1 and 5-2. 

 

Figure 5-1: Sigmoid Kernel Changing ���� 
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Figure 5-2: Sigmoid Kernel Changing C 

The Sigmoid Kernel performed as poorly as the K-Nearest Neighbor. 

The polynomial kernel was chosen next. The polynomial kernel can be raised to any degree / that 

is higher than the number of dimensions of the data as illustrated in equation 5-6 [21]. The SVM 

tuning parameter Y value can also be manipulated to increase performance. The polynomial 

kernel returned very poor Score1 results. Using a dimension value / of 2 to 5 degrees higher than 

the number of data dimensions performed better, however the results were still poor. 

v*>, w) = *>Cw)z (Equation 5-6) 

The best results were from the Gaussian Radial Basis Function (RBF).  RBF is a versatile kernel 

function that adapts well to many different types of data sets. Its flexibility stems from the use of 

an infinite-dimensional feature space which allows the data to be separable [23]. RBF behaves 

similarly to a density based clustering algorithm allowing it to find multiple groupings of unique 

shapes. The equation for RBF is illustrated in equation 5-7. 

{*>, w) = exp *−�~|> − w|~=) (Equation 5-7) 
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After adjusting the values of � and Y within the SVM and RBF kernel it was found that a � value 

of 0.01 and Y value of 1000 worked best and returned an average score 1 value of .324 as 

illustrated in Figures 5-3 and 5-4. 

 

Figure 5-3: RBF Changing � 

 

Figure 5-4: RBF Changing C 
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performance as it relates to the SVM. The Liner Kernel performed poorest and the RBF kernel 

performed best.  

 

Figure 5-5: Comparison of Kernels 

5.3 Time Segments 

 

Now that a kernel has been chosen the time aspect of the data must be considered. One approach 

is to break the time into segments of equal length. After breaking the data into equal time 

segments the z-score normalization was applied. To reduce the dimensionality SVD was used and 

classification predictions were made for each time segment using SVM. This approach used a 

majority voting system amongst the time segments to determine the final overall patient 

prediction. In the case of a tie the outcome would be randomly chosen with 7 to 1 odds of living 

vs dying respectively since this was close to actual distribution outcome of the data.  

After applying the time segment majority vote to the time segments it is clear that as the number 

of time segments were increased the overall accuracy of the model decreased as figure 5-6 

illustrates. The best Score1 value for the different time segments was from 1 time segment. 
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Figure 5-6: Changing Number of Time Segments –Majority Vote 

 The next attempt to improve performance involved changing the voting between segments. 

Instead of giving equal weight to all the segments each segment was assigned a weight according 

to its accuracy. Every time segment was individually tested to determine its particular overall 

individual accuracy at classifying patient outcomes. This determined accuracy was recorded and 

used for weighting the time segments. With the new weighted data for the time segments the tests 

were re-run with the new voting scheme.  The results illustrated that as the data was segmented 

into smaller time chunks the overall accuracy of the mod declined.  

In the previous attempts, each time segment was treated completely independently. Every time 

segment had its own z-score normalization, and PCA was applied before making a prediction 

based on its own SVM model. This approach meant that depending on the distribution of data 

within a time segment the components transformed by SVD for one time segment could be 

different from those within another time segment. The SVM model was built upon only the 

limited information within each time segment and thus as the number of time segments increased 

and the window width of the time segment decreased the overall accuracy decreased. 
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Figure 5-7: Changing Number of Time Segments - Weighted - Segment Averaged 

 

To solve the problem of independent time segments, the data was broken up into individual time 

segments and normalized using the standard z-score normalization technique; however the z-

score normalization the average value used in the formula was based on the overall average from 

all the time segments for each variable. This allowed the components for SVD to be based on the 

data holistically instead of single time segments. These changes allowed all of the components 

from the different time segments to be the same transformed spaces after applying SVD. Stated 

concisely the SVD would determine the most important features of the data, as a whole, and then 

apply these features to each time segment. The SVM now uses the most important features over 

the entire length of time. For example, if the number of components from PCA was 15 and the 

number of time segments was 3, then the SVM would receive 45 data points for each patient 

where values 1, 16, and 31 would all represent the same variable but at different points in time.   
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The approach of recombining the data before applying the SVM did show an improvement 

however it also showed a decline in accuracy with an increase in time segments as illustrated in 

Figure 5-8. 

 

Figure 5-8: Changing Number of Time Segments - combining segments before SVM 

All the techniques showed a decrease in Score1 value  as the number of windows increased as 

illustrated in Figure 5-9. 
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Figure 5-9: Comparison of Time Segmentation Methods 

5.4 Single Value Decomposition 

Recall there are 42 variables that describe a patient. After removing the patient ID and MechVent 

there were 40 variables remaining. With 40 different variables and thousands of patients 

dimensionality is a problem. To reduce the number of variables the SVM must handle, Singular 

Value Decomposition (SVD) was applied. 

SVD is able to define new dimensions to describe the data and then rank those dimensions by 

variation  [18]. Using this technique, high dimensional data can be described using fewer 

dimensions while still maintaining a high level of accuracy. SVD was applied to the normalized 
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components. These results are illustrated in Figure 5-10. 
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were added. There was only a 3 percent increase in Score1 value from 15 to 35 components. For 

this thesis a SVD reduction down to 15 components was chosen.  

 

Figure 5-10: SVD - Changing The Number of Components 

Figure 5-11 illustrates the “comparative performance” which refers to the percentage difference 

between using SVM with SVD compared to using SVM without SVD. When viewing the Score1 
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Figure 5-11: Accuracy Compared to no SVD 

 

 

5.5 Undersampling  

 

After applying SVM and the time segmentation techniques, the Score1 value was still rather low. 
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doubled the previous highest Score1 value of .324. The results of using an undersampled data set 

are illustrated in Figure 5-12.   

 

Figure 5-12: Balanced Training Set 

As evidenced in Figure 5-13, SVM with an undersampled data set did not have the same 

continual decline in Score1 value as SVM with the normal data distribution. Instead, after an 

initial drop the Score1 value levels out at approximately .60. These results indicate that using a 

balanced data set has a significant improvement on classification performance. 

While the time segmentation still showed no improvement over treating the data holistically the 

work was still considered a success based on the Score1 results of using SVM with SVD and 

undersampling. 
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Figure 5-13: SVM With Different Data Distributions 
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6 CONCLUSION & FUTURE WORK 

 

Today’s modern Intensive Care Units (ICUs) are full of sophisticated machinery capable of 

monitoring and recording a wide variety of patient statistics. Despite having a great deal of data 

available it is possible to be “data rich but information poor” [1]. To solve the data rich vs 

information poor dilemma, knowledge mining can be applied. Knowledge Mining uses “raw 

data” and mines useful information from that data. This thesis focuses on a particular type of 

Knowledge Mining called “Classification”. Classification finds a model that can then be used to 

predict the class of previously unseen data [1].  The data in this thesis is comprised of thousands 

of patient records from the ICU and the goal is to use a classification model applied to previously 

unseen patient data to predict mortality.  

The abilities to predict the mortality of patients is a challenging task. The magnitude of diversity 

amongst patients and the ailments that afflict them only compounds the challenges. Within this 

data set there were 42 variables used to describe patients. There was no guarantee of the number 

of variables per patient meaning two patients could have completely different variables with no 

overlap. The only guaranteed variable that the patient had was the “Record ID” which uniquely 

identified the patient.  Furthermore 6 of the variables were “general variables” such as age, 

gender, etc, with the rest of the variables being “time series” meaning that they were sampled 

over time adding an additional layer of complexity. The time series variables were not guaranteed 

to be sampled at regular intervals. If a particular variable was sampled at a certain interval, that 

same variable for another patient could be sampled at another rate or completely sporadically. 
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There are four main areas where significant insight was made in regards to the problem presented 

by this thesis: data reduction and cleaning, selecting an appropriate classification model, selecting 

a time series technique, and using a balanced data set.  

“Data reduction and cleaning” is extremely important to this thesis because given the number of 

patients and number of variables each patient has; there is a problem posed by dimensionality. 

When dealing with a data set of this size the data is dirty meaning there are errors which cause 

outliers that shouldn’t exist and potentially skew the classification process. To overcome these 

challenges this thesis used a clipping process which bounded each variable to the 1
st
 and 99

th
 

percentiles of that variables group. Z-score normalization was used so that variables with 

different scales could be compared to one another. To reduce the number of overall features 

Single Value Decomposition a form of Principle Component Analysis was used to transform the 

data and find the components that represented the greatest deviation in the set. After removing 

uninformative features and applying SVD the overall number of components was reduced from 

42 to 15 while maintaining a reduction of 3 percent accuracy in classification.  

Choosing an appropriate classification model is critical in predicting the mortality of patients. 

Several classifications models were considered and tested. The “k-Nearest-Neighbor” (KNN) 

model which relies on clustering and similarity measures to equate how similar an unseen tuple 

is, to previously seen tuples, and base its class on its nearest neighbors was tested. KNN was able 

to successfully classify patients; however its accuracy was not desired and because KNN is a 

“lazy learner” not performing calculations until the test tuple is given it indicated that it would not 

scale well to larger data sets [1].  

The Support Vector Machine classification model was also tested. SVM is an eager learner and 

handles multi-dimensional data well. SVM works by finding decision boundaries between 

different classes. SVM transforms the data into a new feature space, higher dimension, where the 
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data can be separated. Shifting data to higher dimension can be computationally expensive but 

SVM uses a “Kernel Trick” to bypass having to explicitly map each tuple and thus solves the 

complexity [1]. The “Kernel Trick” allows points to be compared in a feature space through each 

points inner products without having to explicitly map them into that space [21]. The kernel 

chosen for the SVM determines how SVM performs. By testing different kernels it was 

determined the Linear Kernel and Polynomial Kernel performed subpar while the Radial Basis 

Function Kernel (RBF) performed well. Each kernel had the SVM tuning parameters � and Y  

tested which affect the weight of a tuple and the fuzziness of the margin respectively. After 

comparing SVM to other models the decision was that SVM was appropriate model for this 

thesis.  

Choosing the correct time series handling technique was critical to this thesis. The Discrete 

Wavelet Transform (DWT) was considered for use. DWT takes the time/amplitude domain of 

data and transforms it into a time/frequency domain. DWT gives multi-resolution analysis 

making it a powerful tool for transforming time series information and a better option than related 

methods such as the Short Time Fourier Transform [11]. The drawback of DWT was it required 

the time series data to be regularly sampled. As previously stated the data stated the data in this 

thesis was not regularly sampled.  

The technique for handling time series data of use by “windows” was considered. By segmenting 

the data into time chunks of a determined size it is possible to see the changes between windows. 

For this thesis several different windowing techniques were used. Including majority voting, 

weighted time chunks, and reassembly of data before passing it to the SVM. While some of the 

tested techniques provided some working data each suffered from degradation as time 

segmentation was applied. 
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A balanced data set was considered which dramatically improved the classification performance. 

Using undersampling to balance the number of patients who lived versus who died, when 

building the classification model, more than doubled the Score1 value as compared to a 

unbalanced data set. While time segmentation still suffered degradation, this degradation was not 

continuous; where an unbalanced data set was continually degrading.  

After completing the research the best results were achieved from creating a balanced data subset, 

removing the outliers by clipping each variable’s range between its 1
st
 and 99

th
 percentiles, and 

using a Standard Z-score normalization. A Single Value Decomposition was applied to reduce the 

number of variables to 15 and a Support Vector Machine using a Radial Basis Function Kernel 

with a � value of 0.01 and Y value of 1000. The success of the classification model was based on 

the highest Score1 value received. Score1 is the minimum of the sensitivity (Se) and precision 

(+P). Se represents the fraction of in-hospital deaths that are correctly predicted, and +P 

represents the fraction of correct predictions of in-hospital death among all the predicted death 

cases. By using this methodology a Score1 value of .675 was achieved.  

Although a great deal has been accomplished there is future work to be done. Focus needs to be 

placed on effectively segmenting the time series data. Support Vector Regression with Trend 

Analysis to determine how a patient’s health fluctuates over time can build off this research [23]. 

An additional option is an Ensemble Method where multiple classification methods of various 

types can be used to classify data and then vote on the outcome [1]. In conclusion, the work done 

here illustrates using SVD and SVM on medical data can be an effective method for 

classification.  
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Appendix A 

The source code and test results are provided on the attached CD. Note: the source code was 

written in Python 2.7 
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