
Eastern Washington University
EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

2014

Divide and Conquer G-Buffer Ray Tracing
Daniel Stokes
Eastern Washington University

Follow this and additional works at: http://dc.ewu.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for
inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact
jotto@ewu.edu.

Recommended Citation
Stokes, Daniel, "Divide and Conquer G-Buffer Ray Tracing" (2014). EWU Masters Thesis Collection. 244.
http://dc.ewu.edu/theses/244

http://dc.ewu.edu?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/student_research?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses/244?utm_source=dc.ewu.edu%2Ftheses%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

Divide and Conquer G-Buffer Ray
Tracing

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

By

Daniel Stokes

Winter 2014

Thesis of Daniel Stokes Approved by

DR. R. WILLIAM CLARK, GRADUATE STUDY COMMITTEE DATE

DR. PAUL H. SCHIMPF, GRADUATE STUDY COMMITTEE DATE

ii

Master’s Thesis

In presenting this thesis in partial fulfillment of the requirements for a masters degree
at Eastern Washington University, I agree that the JFK Library shall make copies
freely available for inspection. I further agree that copying of this project in whole or
in part is allowable only for scholarly purposes. It is understood, however, that any
copying or publication of this thesis for commercial purposes, or for financial gain,
shall not be allowed without my written permission.

SIGNATURE DATE

iii

Contents

1 Introduction 1

2 Background 2
2.1 Rasterized Rendering . 2
2.2 Ray Tracing . 3
2.3 Programmable Shaders . 5
2.4 G-Buffer . 5
2.5 Divide and Conquer Ray Tracing . 7

3 Related Work 9
3.1 GPU Ray Tracing . 9
3.2 G-Buffer Ray Tracing . 9

4 Renderer Details 10
4.1 Skipping Primary Rays . 10
4.2 Design Overview . 10
4.3 G-buffers . 12
4.4 Ray Tracer . 14
4.5 Rasterized Renderer . 18
4.6 Optimizations . 19

4.6.1 Pixel Buffer Objects . 19
4.6.2 Mixed Resolution Rendering 20
4.6.3 Interlacing . 21

5 Results 22

6 Conclusion 25

7 Future Work 27
7.1 Screen Space Lighting . 27
7.2 Multi-Threading . 27
7.3 Multiple Bounces . 28

A Libraries Used 32

List of Figures

1 The divide and conquer ray tracing algorithm as proposed by Benjamin
Mora [9] . 7

2 These images of Suzzane reflecting off of the interior surface of a sphere
with normals stored in 30 bits (left) and 48 bits (right) highlights
artifacts caused by storing normals in a low precision image format. . 14

3 The structures used to hold ray tracing data 16

iv

4 The struct that is passed to the rasterizer to render as points. 17
5 The Stanford Happy Buddha model rendered with a G-buffer resolution

of 100% (left) and 50% (right) . 20
6 The Stanford Happy Buddha model rendered with out interlacing (left)

and with (right) interlacing across two frames 21
7 System information of the environment used for testing 22
8 The effect on frame time of changing the G-buffer resolution on a scene

of 290,633 triangles . 23
9 The number of triangles in the scene also impacts the ray tracing time 24
10 The effects on frame time of using pixel buffer objects and interlacing

on the approximately 15,000 triangle Buddha model 25
13 With out multiple bounces in the ray tracing, self reflections are not

rendered correctly) . 28
11 The Stanford Happy Buddha model with 1,087,716 triangles (top) and

290,633 triangles (bottom) . 33
12 The Stanford Happy Buddha model with 65,590 triangles (top) and

14,765 triangles (bottom) . 34

v

1 Introduction

Real time computer graphics focuses on producing successive images fast enough to

give the appearance of motion. As real time computer graphics continue to improve,

some effects remain difficult to reproduce in a constantly changing, dynamic, scene.

Current real time techniques have a difficult time dealing with effects caused by

light interacting (reflecting and refracting) with multiple surfaces before reaching the

viewer. There are various techniques to simulate these effects in real time, but they

either do not work for dynamic scenes, or only work on specific surfaces or scenes.

When creating a still image or single frames of a video, other more physically

accurate rendering techniques are often used. These techniques are often quite slow,

making them impractical for use in real time rendering. One such technique is ray

tracing. Ray tracing works by following light from a light source and tracking its

interactions with the scene on its way to the viewer, and is able to much more naturally

handle effects such as reflections and refractions. In addition to being slow, ray tracing

can be unattractive for real time use as attempting to switch over to ray tracing

completely from existing real time techniques would require abandoning a large body

of existing real time techniques.

In the hope of merging the speed of real time rendering with the accuracy of ray

tracing, a hybrid rendering technique has been emerging. This technique goes by a

few different names, including hybrid rendering and G-buffer ray tracing. Since hybrid

rendering is an ambiguous term, this thesis uses the term G-buffer ray tracing. In

regard to using ray tracing in games (a real time graphics application)Jacco Bikker[1]

points out a few open issues. One being that many rays are needed for some effects,

and that “finding efficient schemes to reduce the number of rays will let ray traced

games use more realistic graphics”. Another problem Bikker notes is the transition

from rasterized rendering to ray tracing, as most game developers are mostly familiar

with the former. This thesis aims to improve upon these two issues by using G-buffer

ray tracing to reduce the number of rays required to render reflections, and to allow

compatibility with many rasterized rendering techniques.

Additionally, this thesis explores an alternative ray tracing algorithm known as

divide and conquer ray tracing for use on dynamic scenes to evaluate its effectiveness

for real time use. Scenes are usually processed before ray tracing to gather information

to improve the ray tracing performance. If the scene changes, this preprocessing step

needs to be redone or updated, making dynamic scenes more difficult to process.

Divide and conquer ray tracing attempts to make ray tracing dynamic scenes faster

and simpler.

2 Background

2.1 Rasterized Rendering

Rasterized rendering is an algorithm for producing 2D images of a 3D scene by ap-

plying transformations to the vertices of polygons and then filling in the area of those

resulting polygons. Vertex positions are typically transformed by 4x4 matrices to

match a virtual camera’s point of view and to project the 3D positions into a 2D

space. These 2D coordinates are then linearly mapped to screen pixels to produce

the final output.

Once all the transformations have been applied to the vertices of a scene, the

polygon they form, usually a triangle, needs to be filled in. This is done using an

algorithm known as scan conversion. Scan conversion fills in the pixels of a polygon

one row, or scan line, at a time. To determine the start and end of a scan line,

the edges of the polygon are found by linearly interpolating spatial and other data

between two vertices. While position is the most important data to interpolate, other

data such as color and surface normals can also be interpolated between vertices.

Once the edges of the polygon are found, the beginnings and ends of the scan line can

2

be found within those edges. Then it is simply a matter of linearly interpolating the

edge data from the beginning and end of the scanline. This process is commonly done

with triangles, rather than more complex polygons, as they simplify the algorithm and

have fewer special cases than other polygons. When drawing multiple polygons, care

must be taken that only visible pixels are drawn to the screen. For example, if one

triangle overlaps another, any pixels behind the first triangle should not be visible.

This is known as hidden surface removal. The most common hidden surface removal

technique for rasterized rendering is to store a pixel’s distance from the camera,

known as depth, into a memory buffer commonly referred to as a depth buffer. When

another pixel is being drawn to the same screen location, its depth is compared to

the existing depth, and the pixel that is closest to the camera is kept.

Rasterized rendering has become the dominant rendering algorithm for use in

real time applications, such as video games, because of its speed. It is a computa-

tionally fast algorithm that, especially with dedicated hardware support in the form

of graphics processing units (GPUs), can easily render graphics in real-time (more

than 30 frames per second). To access the GPU’s functionality, graphics application

programming interfaces such as Direct3D and OpenGL are commonly used.

2.2 Ray Tracing

Ray tracing is an algorithm for rendering a 3D scene that attempts to more closely

emulate the physical behaviour of light than rasterized rendering [2]. Light sources

emit photons that interact (reflect and refract) with and illuminate the objects they

collide with. Some of these photons eventually make it to the viewer’s eye. Ray

tracing focuses on simulating photons with rays. To focus only on the rays that make

it to the camera (the virtual eye), rays are processed backward starting at the camera

instead of the light sources. These rays fired from the camera are known as primary

rays. When a primary ray intersects with an object in the scene, it determines

3

the lighting and shading at that point, and returns it to the camera. To create a

more realistic image, secondary rays are often recursively cast from the point of the

primary ray’s intersection with scene geometry. These secondary rays may again

collide with a scene object, calculate the lighting and shading at that point, and

return the value to the primary ray. The primary ray can then mix the color at the

intersection point on the first object with the reflected color before sending the mixed

color back to the camera. Secondary rays are commonly used to create effects such

as reflection, refraction, and shadows. While ray tracing often produces more photo-

realistic results than rasterized rendering, it requires a great deal of computation to

find the intersection points of rays with the scene, making it too slow for real time

use.

How the primary rays are cast determine various camera properties. For example,

the number of rays used affects the resolution of the camera, and the angle at which

the rays are cast from the camera affects the camera’s field of view. Secondary rays, as

well as primary rays, are responsible for finding the closest scene intersection along the

ray (providing hidden surface removal), determining a color value at that intersection,

and possibly creating new rays at that intersection.

To improve the performance of ray tracing, scenes are often preprocessed and

stored into special data structures commonly referred to as acceleration structures.

These acceleration structures often represent the scene in a tree like structure allowing

a ray to process a logarithmic number of scene elements instead of all scene elements

to find an intersection. Two popular acceleration structures are the kd-tree [3] and

the bounding volume hierarchy [4]. While acceleration structures offer significant

performance improvements, they are not well suited for real time applications. Real

time applications often have dynamic scene elements that can be added, moved, or re-

moved over time. Whenever a change happens to the scene, the acceleration structure

becomes invalid. Some acceleration structures, such as bounding volume hierarchies,

4

can be updated, others, such as the kd-tree, need to be rebuilt from scratch. To

reduce the cost of rebuilding or updating the acceleration structure, two acceleration

structures can be used. One acceleration structure can store static scene data, such as

terrain, while the other stores the dynamic data, such as animated characters. This

reduces the amount of overhead for updating by leaving the acceleration structure

with the static scene data untouched.

2.3 Programmable Shaders

Graphics processing units (GPUs) process graphics data in parallel using dedicated

hardware. Modern GPUs allow certain parts of the graphics pipeline, such as vertex

and pixel processing, to be fully programmable. The ability to program these pipeline

stages offers a lot of possibilities for graphics programmer. The programs that are

run by the graphics card for these pipeline stages are called shaders. In OpenGL, the

graphics library used for this thesis, shaders are written in a language called OpenGL

Shader Language, or more commonly GLSL. GLSL is a language syntactically similar

to C, but has functionality, such as 3D math operations, built in to handle graphics

processing.

2.4 G-Buffer

To improve performance of rendering 3D images with post-processed enhancements,

Saito and Takahashi [5] proposed caching geometric information between renders.

This geometric surface data was put into geometric buffers, known as a G-buffer.

Each image of the G-buffer stored a different geometric property, such as position or

surface normals. While the G-buffer was stored as multiple 2D arrays processed by

the CPU, Saito and Takahashi still referred to each 2D array as an image. In order

to fill the G-buffer, the geometry was processed as usual for rasterized rendering, and

then the desired processed geometric properties were recorded in the G-buffer for each

5

resulting pixel instead of recording the typical shaded color for the pixel.

With today’s GPUs and graphics APIs, implementing a G-buffer in hardware is

simple to do. The data of the G-buffer, a 2D array of geometric properties, is most

easily stored on the GPU as an image, with the geometric properties being stored

in the images color channels (red, green, blue, and alpha). This is commonly done

using multiple render targets (MRTs) which allow multiple images to be written to in

parallel. In OpenGL, MRTs are setup by attaching multiple images to a framebuffer

object, and then controlling the output to each image with a shader. Writing to a

specific render target in the shader is as easy as writing to a specially named variable.

One problem that occurs with writing G-buffer data into images using MRTs is the

limit of how many render targets a GPU can write to at once. This limit is commonly

four render targets. Fortunately the work done in this thesis does not run into this

problem, but care should still be taken to limit the amount of G-buffer space used

to make this technique easier to combine with other techniques that may require

additional space in the G-buffer.

G-buffers have made a resurgence lately with their use in screen space lighting

techniques such as deferred shading [6], inferred lighting [7], and light prepass render-

ing [8]. These techniques start by filling a G-buffer with information needed to cal-

culate lighting, such as surface normals and material colors, and then render lighting

using the G-buffer. This approach offers performance benefits by avoiding calculating

lighting on pixels that do not make it into the final image and, with some slight ap-

proximations, by only calculating lighting on pixels within range of the light source.

This thesis aims to take advantage of G-buffers in a similar way allowing smoother

integration with existing rasterized rendering pipelines.

6

2.5 Divide and Conquer Ray Tracing

The initial implementation of the ray tracer for this thesis used naive ray tracing. In

other words, it tested every triangle with every ray. This requires many unnecessary

and slow ray-triangle intersection tests and scales very poorly to large numbers of

rays and triangles. As mentioned previously, acceleration structures are a common

method used to improve performance and scalability. However, this thesis explores

an alternative solution. Divide and conquer ray tracing aims to achieve similar per-

formance as using an acceleration structure with out the use of one by using a divide

and conquer algorithm [9]. Removing the need to maintain an acceleration struc-

ture makes divide and conquer ray tracing appealing for interactive use where the

acceleration structure would require constant updates.

Figure 1: The divide and conquer ray tracing algorithm as proposed by Benjamin
Mora [9]

Mora’s divide and conquer ray tracing algorithm (outlined in Figure 1) is organized

into a recursive function that accepts as input a set of rays and a set of primitives

(e.g. triangles). The first step in this function is to subdivide the list of primitives

into disjoint subsets. Then the set of rays is tested against a bounding volume of each

7

triangle subset in a step called ray filtering. The rays that intersect the bounding

volume are passed along with the triangle subset associated with the bounding volume

into another recursive call of the function. The base case for the recursion occurs when

the list of rays or primitives becomes sufficiently small. At this point the remaining

rays and primitives are tested naively against each other for intersections.

In Mora’s implementation the primitives are triangles and the triangle set is split

into two disjoint subsets. The choice of how to split the set is similar to those choices

available to kd-tree construction. The simplest option is to choose an axis, find the

median triangle along that axis, and partition the triangles around that median in a

quicksort like fashion with triangles appearing before the median moved to the front

of the list, and triangles appearing after the median moved to the back of the list.

The axis to split on is chosen by finding the axis with the longest dimension. Ray

filtering is often done by finding the axis aligned bounding box of the triangles of a

given subset, and testing rays against that axis aligned bounding box.

Improvements can be made on Mora’s initial implementation as pointed out by

Áfra [10]. Afra focuses on using single instruction multiple data (SIMD) instruction

sets, such as SSE and AVX, and optimal cache usage to improve performance. SSE

and AVX are expansions to the x86 assembly instructions that make use of large

registers that can hold an entire vector. Using SSE and AVX gives programmers

the ability to perform operations on vectors in a single CPU instruction. Another

use for SSE and AVX is to process multiple items at a time from a stream of data

(e.g. rays and triangles). A simple example of this would be if two arrays needed

to be added together with their results stored in a third array. Multiple elements

from both the first and second array could be loaded into two CPU registers, and

then a single instruction can add the individual elements in those to registers at once.

The results are then moved from the result register into the third array. To improve

cache performance,Áfra proposes storing rays and moving the entire ray in memory

8

when necessary, as opposed to Mora’s implementation where indexes into the ray

list were reordered. This allows the rays to always be accessed linearly for better

cache performance. Áfra also describes compact ways to represent the most vital

information for rays and triangles to ease memory transfers and to better fit the data

into SSE registers.

3 Related Work

3.1 GPU Ray Tracing

A popular area of research to improve the performance of ray tracing is to leverage

the power of GPUs. GPU Ray tracing often makes use of APIs such as OpenCL or

CUDA to write a ray tracer that can be run on the GPU. Two recently published

theses from this university explored GPU ray tracing[11][12]. GPU ray tracing offers

significant performance gains to CPU ray tracing, but requires algorithms specialized

to work on GPUs. Continued research in GPU ray tracing could yield results that

are useful for some games, but it does not offer an easy transition from current real

time rendering techniques.

3.2 G-Buffer Ray Tracing

An approach to real time ray tracing similar to the one presented in this thesis was

published last year by Sabin et al.[13]. Sabin et al. propose using G-Buffers to

mitigate the cost of primary rays. This allows for more resources to be used on the

secondary rays responsible for the lighting effects that allow ray tracing to achieve

more photo realistic results than rasterization. Sabin et al. go on to further propose

heuristics for prioritizing rays that will have the most visual impact on the scene.

This allows for better visual effects with fewer rays. The approach proposed in this

thesis differs in its handling of secondary rays, by attempting to reduce the number

9

of rays needed to complete a frame rather than dropping the ones that are deemed

less important. These two approaches to handling secondary rays are not mutually

exclusive, and may be usable together to yield even better performance by further

reducing the number of rays needed. Among other topics, Cabeleira[14] also discusses

using a G-buffer to create real-time reflections. However, his work did not give much

attention to dynamic scenes, other than to mention using an acceleration structure

that supports updates such as a bounding volume hierarchy.

4 Renderer Details

4.1 Skipping Primary Rays

Ray tracing’s primary rays need to accomplish four things: determine camera proper-

ties, find the closest point of intersection with scene geometry, determine a color value

at the point of intersection, and determine the origin and direction of any secondary

rays. The first three can be easily handled by rasterized rendering using transforms

(e.g. perspective transform) to handle camera properties, depth buffering to handle

finding the pixel closest to the camera along each ray, and using shaders to determine

a color value for each pixel. This leaves only the task of determining the origin and

direction for a secondary ray. This last step can be accomplished through the use of

G-buffers. The data necessary to create secondary rays at each intersection point can

be stored in the G-buffer as each pixel in the G-buffer can be seen as an intersection

of a primary ray with the scene. What data is stored into the G-buffer and how it is

processed is detailed in the following sections.

4.2 Design Overview

The renderer used in this thesis combines rasterized rendering on the GPU using

OpenGL with ray tracing done on the CPU. The GPU is used to create a G-buffer,

10

create an R-buffer, and to render the final output. The R-buffer is a color buffer

that represents the color that a reflected ray from a given pixel would return. The

values in the R-buffer assume that surfaces are perfect mirrors, and therefore may

need to be mixed based on surface properties to produce a final color value. The

CPU is responsible for processing the data stored in the G-buffer, performing the ray

tracing, and gathering ray tracing results into a format the GPU can use to create

the R-buffer. This process requires the scene to be rendered twice, and requires one

transfer of data from the GPU to the CPU, and one transfer of data from the CPU

to the GPU. An overview of the steps taken to produce the result of a single frame

is given below.

1. Render the scene into the G-buffer to record surface properties

2. Transfer G-buffer data from the GPU to the CPU

3. Process G-buffer data into rays

4. Cast rays into the scene to find intersections

5. Collect data about the intersections

6. Process intersection data into a GPU friendly format

7. Transfer intersection data from the CPU to the GPU

8. Use intersection data to draw reflected color values into R-buffer

9. Render scene using the R-buffer to lookup reflected color values to mix with the

material.

How the surface of an object looks, including how reflective the surface is, is defined

by a material. Materials are a collection of data representing surface properties such

as diffuse color. Material shaders make use of this data to perform calculations

11

that determine the final color of a pixel on that surface. There is a many-to-many

relationship between materials and shaders as materials are used as input for the

shader’s calculations. In this thesis two shaders are used, one to write out surface

properties to the G-buffer, and another that calculates the actual color of the surface.

This second shader is used to fill the R-buffer as well as producing the results of the

final render to achieve visual consistency between when an object is viewed directly

and when it is viewed in a reflection.

4.3 G-buffers

The G-buffer is created by setting up render targets (i.e. images) for data we want

to collect, and writing that data to the render targets by rendering the scene with

a shader dedicated to this rendering pass. To define a ray, the origin and direction

of the ray are needed. The origin of a secondary ray is position of the intersection

that created it. The direction for a reflected ray is found by reflecting the vector

from the camera to the pixel about the pixel’s normal using equal angle reflection.

Since the positions are stored in view space, this reflected vector can be found easily

with the formula P − 2(PṄ)N with P being the view space position and N being

the surface normal. This reflection calculation can be done on the GPU and stored

into the G-buffer, or the normal can be stored in the G-buffer with the reflection

calculation being done on the GPU when the G-buffer data gets processed. While

doing the reflection calculation on the GPU would be faster, most techniques that use

G-buffers also need the normal stored in the G-buffer. By calculating the reflected

vector on the CPU, we can make use of the normal data that may already be saved for

a different use. The implementation for this thesis stores the normal in the G-buffer

for better compatibility with other techniques that use the G-buffer. One more piece

of information needs to be stored in the G-buffer, a reflectivity bit. The reflectivity bit

is used to determine if ray tracing needs to be done for that pixel. If the reflectivity

12

bit is false, the G-buffer data for that pixel is ignored when processing the data for

ray tracing.

With the G-buffer being stored as an image, it is important to look at OpenGL

image format specifications [15]. The image format is used to describe how data is

stored into an image. The image format name can be broken into three parts. First

is the list of components stored by the image. These can also be seen as the color

channels the format supports, though arbitrary data can be stored into an image

that may not represent colors. The next part of the image format name is how many

bits are used to store each component. Using more bits per component offers more

precision, but at the cost of slower reads and writes to the image. The third part of

the image format name describes the data type of the data stored in the image. If only

the components and size are listed in the name, then the data is stored as an unsigned

normalized integer. A suffix of “F” denotes the image data is stored as a floating point

number. While storing data as floats into an image can be convenient, floating point

image formats are often slow to read and write to, making integer formats preferred

if the data can be represented in one of the integer formats. OpenGL also supports

some special image formats that do not strictly follow this naming convention. An

example of this is the RGB10 A2 format. This format uses 10 bits for the red, green,

and blue components, but only 2 bits for the alpha component. More details about

image formats can be found on the OpenGL wiki [15].

For the G-buffer used in this thesis, the surface normals are stored at 16bits per

channel into an RGBA16 image format. The only data currently stored in the alpha

channel of the normal image is the reflectivity bit, leaving plenty of room to store

other flags and data. Originally a RGB10 A2 image format was used, but the low

precision normals caused rendering artifacts in ray tracing results (Figure 2). The

increased precision to remove the artifacts is worth the trade off in GPU performance

for this thesis as the rendering tends to be CPU bound. In other words, the GPU is

13

Figure 2: These images of Suzzane reflecting off of the interior surface of a sphere
with normals stored in 30 bits (left) and 48 bits (right) highlights artifacts caused by
storing normals in a low precision image format.

waiting for things to do as the CPU is finishing its tasks, such as ray tracing. The

view space positions are stored in an RGB16F image format. The positions could

be stored in a normalized integer format by dividing the positions by the dimensions

of the scene, however the floating point format is easier to work with and the GPU

performance is not critical for this thesis. Alternatively, rather than saving out the

view space positions of pixels, the view space positions can be reconstructed from

the depth buffer as described in [16]. This frees up an entire render target that can

either be used for other data, or omitted to improve GPU performance. However, this

requires more work to be done on the CPU as it will need to handle the reconstruction

of the position data.

4.4 Ray Tracer

After the G-buffer is filled, it needs to be transferred from the GPU to the CPU.

With OpenGL this can be accomplished with a glReadPixels call. Once the data is

moved to the CPU, it can be processed for the ray tracer. This stage produces two

lists, the normals and positions read from the G-buffer. Only pixels that require ray

tracing (those with their reflectivity bit set) make it into these lists. At this point the

normals, which are stored in an unsigned image format, are brought back into the -1

14

to 1 range using linear remapping. Although an integral image format is used for the

normals, OpenGL can handle the conversion to floating point numbers when doing

the memory transfer.

Along with the rays, triangles also need to be processed before ray tracing. The

scene’s triangles are reprocessed every frame. This means the ray tracer makes no

assumptions about the previous state or existence of triangles from previous frames,

allowing it to handle changes to the mesh information during run time. This process

could potentially be improved by caching known static triangles in between frames.

When the triangles are processed a bounding box, a box that completely encloses

the triangle as tightly as possible, is found along with the triangle’s centroid, the

average of the positions of the three vertices that make up the triangle. These pieces

of information are used later for the ray tracing.

The data for each ray and triangle are stored into two separate structures each as

illustrated in Figure 3. The Ray struct contains the information necessary to perform

the part of the divide and conquer ray tracing that requires the most movement of

the rays in memory. This helps to decrease the cost of constantly moving the rays

around in memory. A second struct, RayResult, contains the information related to

the intersection of a ray with a triangle. The appropriate RayResult is found by

storing an id on the Ray that acts as an index into the array of RayResult structs.

Similarly the Triangle struct acts as a minimal representation for a single triangle,

and contains the axis aligned bounding box of the triangle and an id to match it with

the appropriate FullTriangle struct.

The ray tracing is done using a divide and conquer approach based on Mora’s

implementation [9] with a few ideas borrowed from Afra’s implementation [10]. For

each recursive iteration of the divide and conquer function, the set of triangles is split

into two subsets, the rays are filtered against those subsets, and a recursive call to

the divide and conquer function is made for each subset and the rays that passed the

15

struct Ray {
f loat o r i g i n [3] ;
f loat d i r e c t i o n [3] ;
f loat
unsigned int id ;

} ;

struct RayResult {
f loat uv [2] ;
unsigned int t r i i d ;
f loat o r i g i n [3] ;
f loat d i r e c t i o n [3] ;
f loat t ;

} ;

struct Tr iang l e {
f loat aabb [2] [3] ;
unsigned int id ;

} ;

struct Fu l lTr i ang l e {
f loat vertex0 [3] ;
f loat vertex1 [3] ;
f loat vertex2 [3] ;
f loat normal0 [3] ;
f loat normal1 [3] ;
f loat normal2 [3]
f loat texcoord0 [2] ;
f loat texcoord1 [2] ;
f loat texcoord2 [2] ;
f loat edge0 [3] ;
f loat edge1 [3] ;
f loat c en t r o i d [3] ;
Mater ia l ∗mate r i a l ;

} ;

Figure 3: The structures used to hold ray tracing data

filtering step. The splitting method used in thesis is a simple median cut. The axis

with the largest range of values is found, and the median triangle along that axis

(based on the triangle centroids) is chosen. The centroid of that median triangle is

used as the point along the chosen axis to split. The median triangle is found using

nth element function from the C++ standard library which finds the median in linear

time and conveniently sorts the set of triangles such that the median is in the middle

of the set, the values below the median are in the first half of the set, and the values

above the median are in the second half of the set. This allows the set, stored as

an array, to be treated as two disjoint subspaces. Next the axis aligned bounding

boxes, a bounding box that only has planes perpendicular to the world axis, for each

subspace are found. The set of rays passed into the divide and conquer function are

then tested against the axis aligned bounding box. The rays that pass the intersection

test with a given subspace are passed along with the triangles of that subspace into

16

another iteration of the divide and conquer function.

The recursion stops when either the size of the set of triangles or the size of the

set of rays falls below a threshold. The value of 8 was used for both thresholds as

suggested by Áfra [10]. At this point each triangle is tested against each ray using

the classic Möller Trumbore ray-triangle intersection [17]. When an intersection is

found, the results are recorded in the corresponding ray’s RayResult structure.

struct DrawRay {
f loat o r i g i n [3] ;
f loat p o s i t i o n [3] ;
f loat normal [3] ;
f loat texcoord [2] ;
f loat pad [5] ;

} ;

Figure 4: The struct that is passed to the rasterizer to render as points.

After all the necessary ray-triangle intersection tests have been completed, the

results for each ray are processed in order to gather the information necessary for the

rasterized renderer to fill the R-buffer with the result. In this structure (Figure 4), two

different position values are stored (origin and position). The origin is the origin of

the ray and is used to determine where to draw the result in the R-buffer, whereas the

position is the position the ray intersected with the triangle and is used for shading.

Normal and texcoord are also from the intersection point and are used for shading.

The position, normal, and texcoord are all found by using the barycentric coordinates

computed from the Möller Trumbore ray-triangle intersection. Extra bytes of padding

are added to the end of the struct as some GPUs, especially those made by AMD,

prefer drawing data to be aligned to 32 bytes. The ray results are converted into

this format, skipping any results that did not have an intersection, and sorted into

buckets by material. This bucketing is done by using a C++ standard library map

keyed by material pointers. Once all the results have been processed into buckets,

the buckets are emptied into an array with all results of the same material being in

17

contiguous memory. This allows the rasterized renderer to handle all results of the

same material at once.

4.5 Rasterized Renderer

The rasterized renderer is responsible for getting the ray tracing results into the R-

buffer. When working with manipulating color values, it is important to know the

difference between linear (not gamma corrected) and non-linear (gamma corrected)

color spaces. GPU Gems 3 Chapter 24[18] does a great job explaining the problem,

and how to fix it. In short, images are often stored in a non-linear color space to appear

correctly on monitors. However, using non-linear colors can cause errors in shader

calculations. This means any non-linear color input must be converted to a linear

color space before using it for any calculations, and any output should be converted

back to a non-linear color space to display correctly. To allow these conversions to

happen on the GPU, the R-buffer data is stored in a GL SRGB8 image format.Values

read from an sRGB image format are automatically converted to a linear color space,

and any values written to an sRGB image format are automatically converted to a

non-linear color space.

To handle the transfer of data from the CPU to the GPU, a special buffer is

created. This is a buffer that allows vertex attributes to be uploaded to a GPU and

is called a vertex buffer object in OpenGL. Each ray result is uploaded as a vertex so

that it can be drawn as a single pixel in the R-buffer. To avoid needing to recreate

the vertex buffer object (often a slow operation), it is initialized to a size equal to the

number of pixels in the G-buffer (the R-buffer is the same size). This leaves enough

room in the vertex buffer object in the case that all pixels from the G-buffer require

reflection. Every frame the ray data is loaded into the front of the vertex buffer object

using a glBufferSubData call. For each material present in the ray tracing results,

the shader is set up and the portion of the vertex buffer object that corresponds to

18

that material is rendered. This is accomplished by taking advantage of glDrawArray’s

ability to choose a start and end point, and is why the ray tracing results were ordered

into contiguous groups based on material.

Once the R-buffer is filled, the scene is rendered making use of the R-buffer. The

final shader can use the position of the pixel it is currently processing to look up the

appropriate color value from the R-buffer, and mix it with the final color based on

the material properties.

4.6 Optimizations

4.6.1 Pixel Buffer Objects

To ease the overhead of transferring image data between the CPU and GPU, OpenGL’s

pixel buffer objects[19] can be used. Pixel buffer objects allow for asynchronous trans-

fer of image data between the CPU and GPU. This means that the CPU can continue

to do work while image data is being transferred, unlike glReadPixels which blocks

until the transfer is complete. In order to take advantage of this asynchronous be-

havior, the CPU actually needs something to do while the data transfer occurs. If

image data is immediately needed, the data can be written into one pixel buffer object

while reading from a second pixel buffer object. During the next frame, the roles are

swapped and the first pixel buffer object is read from while the second one is written

to. Using two pixel buffer objects in this way causes a minor problem on the first

frame when nothing has been written into either pixel buffer object. This means there

is no data to read while one of the pixel buffer objects is filled. To handle this, either

the CPU can wait for the first transfer to complete, or simply use the empty buffer

(in the case of G-buffer ray tracing this means no reflections on the first frame).

19

Figure 5: The Stanford Happy Buddha model rendered with a G-buffer resolution of
100% (left) and 50% (right)

4.6.2 Mixed Resolution Rendering

One of the most computationally expensive parts of ray tracing is the ray-triangle

intersection testing. The number of ray-triangle intersection tests needed is controlled

in part by the number of rays being traced. The number of rays needed is in turn

controlled by the number of reflective pixels in the G-buffer. It is possible to render the

G-buffer at a lower resolution to reduce the number of pixels in the G-buffer and the

number of rays produced from the G-buffer. Because the R-buffer is highly dependent

on the G-buffer data, it is created at the same resolution as the G-buffer. By lowering

the resolutions of the G-buffer and R-buffer, some blurring in the reflections can occur

as the lower resolution images are now effectively stretched across larger surfaces.

Furthermore, the sampling required to stretch the lower resolution textures across a

larger surface can cause artifacts in areas that have discontinuities, such as the edges of

objects. This is caused by some of the data from one side of the discontinuity bleeding

into the other, and could potentially be fixed by a smarter approach to sampling the

lower resolution buffers, such as the discontinuity sensitive filtering used by Kircher

20

et al[7].

4.6.3 Interlacing

Figure 6: The Stanford Happy Buddha model rendered with out interlacing (left)
and with (right) interlacing across two frames

The number of rays that require tracing per frame can be further reduced by only

processing a portion of the rays per frame. This can be accomplished by interlacing

the ray tracing results over multiple frames. The rendering into the R-buffer can

be interlaced by not clearing the R-buffer between draws, and only processing every

nth ray and storing its result into the R-buffer, where n is the number of frames to

interlace between. As an example, on one frame half of the rays could be processed

with their results stored into the R-buffer, with the other half of the pixels in the R-

buffer remaining in their previous state. On the next frame the other half of the rays

can be processed with their results stored into the R-buffer, and this time leaving the

results from the first half of the rays in their previous state. This can have a significant

impact on performance, but at the cost of temporal artifacts. These artifacts appear

as banding in areas that have changed significantly between frames. These artifacts

21

become less noticeable as the frame rate improves and there is less difference between

two frames.

5 Results

OS Arch Linux 64bit using the 3.12.9 Linux kernel

Compiler gcc 4.8.2

CPU Intel Core i5-2410M CPU @ 2.30GHz

GPU AMD Radeon HD 6330m

Memory 6GB DDR3

Figure 7: System information of the environment used for testing

Testing was performed using the system outlined in Figure 7, and all images were

rendered at a resolution of 1280x720. Four images demonstrating the Happy Buddha

model at four mesh resolutions from the Stanford 3D Scanning Repository[20] with

no interlacing and a full resolution G-buffer can be found in Figure 11 and Figure 12.

22

0

100

200

300

400

500

600

700

800

10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Fr
am

e
Ti

m
e

in
 M

ill
is
ec

on
ds

Percent of Final Render Output

Effect of G-buffer Resolution on Frame Time

Figure 8: The effect on frame time of changing the G-buffer resolution on a scene of

290,633 triangles

Figure 8 shows the effect of changing the G-buffer resolution on frame time. The

percentage indicates the ratio of the G-buffer resolution to the final image resolution

(1280x720 for these images). This means a G-buffer resolution of 50% contains half

the number of pixels as the final output, and also uses half the number of rays of a G-

buffer resolution of 100%. This data suggests that a linear relationship exists between

the number of rays (or pixels in the G-buffer) and the frame time. Furthermore this

demonstrates that it is possible to trade quality (G-buffer resolution) for performance

(frame time).

23

0

200

400

600

800

1000

1200

1400

1600

1800

0 200000 400000 600000 800000 1000000 1200000

Fr
am

e
Ti

m
e

in
 M

ill
is
ec

on
ds

Number of Triangles

Effect of Triangle Count on Frame Time

Figure 9: The number of triangles in the scene also impacts the ray tracing time

The number of triangles in the scene also has a significant impact on the per-

formance of the ray tracing as seen in Figure 9. While there are not enough data

points to draw a definitive conclusion, it appears the number of triangles also has a

linear effect on the frame time once a certain threshold of triangles is reached. The

performance of ray tracing an acceleration structure often scales logarithmically to

the number of triangles. This means using an acceleration structure for static scene

elements could improve the performance of this technique for larger scenes with many

static elements. However, the scenes used for testing were almost entirely dynamic,

with only the twelve triangles making up the background being static, meaning ac-

celeration structures would likely not improve the performance of the test scene. It is

important to note that high triangle counts already cause performance problems in

rasterized rendering, meaning artists already try to make efficient use of triangles to

improve performance.

24

Figure 10 shows the effect of two different optimizations on a scene containing the

14,765 triangle Buddha model with a full resolution G-buffer. Pixel buffer objects

(PBOs) improved the performance of transferring data from the GPU to the CPU,

but most of the time spent creating the R-buffer is in the ray tracing itself. This is

why adding interlacing has a larger impact on the frame time, as it cuts the number

of rays used in half.

0

50

100

150

200

250

300

Base Base + PBO Base + PBO + Interlacing

Fr
am

e
Ti

m
e

in
 M

ill
is
ec

on
ds

Effects of Pixel Buffer Objects and Interlacing

Figure 10: The effects on frame time of using pixel buffer objects and interlacing on
the approximately 15,000 triangle Buddha model

6 Conclusion

This thesis aimed to provide insight into a means of combining rasterization and ray

tracing in the hopes of achieving real time dynamic reflections on arbitrary meshes

in the near future. Specifically, the goals of this thesis were to reduce the number of

rays needed to ray trace a scene, determine if this solution can produce ray traced

25

reflections at better than 30 frames per second, and to evaluate the ease of integrating

this solution into existing real time applications.

The first goal was certainly met through the use of G-buffer ray tracing. By re-

moving the primary rays, an image with a resolution of 1280x720 avoids tracing over

900,000 rays (1 ray per pixel). The number of rays can be further reduced by reducing

the resolution of the G-buffer and with interlacing. G-buffer ray tracing clearly works

for reducing the number of rays required to add reflections to a scene. Unfortunately

the implementation in this thesis was not fast enough achieve the desired minimum

frame rate of 30 frames per second on complicated scenes. However, this is likely in

large part due to insufficient optimizations. When comparing the performance of the

divide and conquer ray tracing done in this thesis to the performance of Afra’s[10]

implementation, there is nearly an order of magnitude of difference in millions of rays

per second on a single thread. While part of the performance difference comes from

the difference in CPUs, there is obviously room for more optimization. Furthermore,

separating static and dynamic geometry could offer significant performance improve-

ments. The dynamic geometry could continue to use divide and conquer ray tracing,

whereas the static geometry could be preprocessed into an optimized acceleration

structure. This would add more complexity to the implementation, but the perfor-

mance benefit would likely be a worthwhile trade off. Even with these optimizations,

G-buffer divide and conquer ray tracing may still not be enough for real time needs,

but it is certainly a step in the right direction. The third goal, easy integration with

existing solutions has been met. This solution works well with existing shaders and

many real time rendering techniques, though it may require some extra effort to work

with screen space lighting techniques such as deferred shading and inferred lighting.

While the techniques in this thesis do not reach the desired goal of dynamic real

time reflections on arbitrary meshes, they do show a potential road map to achieving

it. The use of a G-buffer and divide and conquer ray tracing provide a way to

26

drastically reduce the number of rays needed and allow a way to handle dynamic

geometry, and show promise for use in real time applications such as video games.

By turning down the quality of the scene and the reflections, it is possible to achieve

ray traced reflection in real time (greater than 30 fps).

7 Future Work

7.1 Screen Space Lighting

Throughout this thesis, decisions were made for compatibility for screen space lighting

techniques, such as storing normals instead of reflected ray directions in a G-buffer.

However, the current implementation of the rasterizer uses traditional forward ren-

dering; it calculates lighting per material. The methods used in this thesis can be

expanded to work with screen space lighting. The following proposed solutions as-

sume deferred shading is used. The first possible solution is to draw the rays directly

into the G-buffer instead of creating a separate color buffer with the reflection results.

This makes it difficult to blend reflections with the material color, but should work

for perfect mirrors. Instead, it may be better to follow the entire render process when

creating the R-buffer. This means creating a G-buffer from the ray traced results and

compositing lighting into it for a final color buffer.

7.2 Multi-Threading

Another area of improvement is the use of multi-threading to improve performance.

The ray tracing in this thesis is done on a single CPU thread, using more CPU

threads would better utilize modern CPUs and effectively throw more hardware at

the problem. Unfortunately the divide and conquer ray tracing algorithm may not

parallelize as well as standard ray tracing with an acceleration structure as hinted

at in [10]. In order to parallelize this thesis’ ray tracer, the rays could be divided

27

amongst available threads and each thread could perform the divide and conquer ray

tracing algorithm on its own subset of rays. Unfortunately, this would require copying

the triangle list to each thread, or using extensive thread synchronization, since the

triangle data is rearranged in memory. A subset of triangles could be determined

for each core by following the divide and conquer algorithm to create a number of

subspaces equal to the number of available threads. Another possibility is for each

recursive call to the divide and conquer ray tracing function to be performed on a new

thread until all available threads are used. At that point the threads would continue

as usual and stop creating new threads.

7.3 Multiple Bounces

Figure 13: With out multiple bounces in the ray tracing, self reflections are not

rendered correctly)

Currently reflections containing reflective objects do not work well, as can be seen in

Figure 13 where the Buddha model’s material was set to be 100% reflective and parts

of the Buddha model are in the reflections. Furthermore, transparent objects aren’t

28

rendered correctly in reflections. To fix these issues, new rays need to be created when

a reflective or transparent (i.e. refractive) object are hit during ray tracing. To handle

these multiple collisions, or bounces, the R-buffer will need to be rendered multiple

times per frame. When performing the ray tracing, a new ray can be created and

added to a set for the next bounce. In this way multiple sets of rays can be created,

one for each bounce. Each set of rays is then rendered into the R-buffer starting with

the last bounce, and rendering each ray set in reverse order to the first bounce using

the previous result as input to the current bounce.

29

References

[1] J. Bikker, “Real-time ray tracing through the eyes of a game developer,” in
Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, ser. RT
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/RT.2007.4342584

[2] T. Whitted, “An improved illumination model for shaded display,” Commun.
ACM, vol. 23, no. 6, pp. 343–349, Jun. 1980. [Online]. Available:
http://doi.acm.org/10.1145/358876.358882

[3] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975. [Online].
Available: http://doi.acm.org/10.1145/361002.361007

[4] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchies,” ACM Trans. Graph., vol. 26, no. 1, Jan.
2007. [Online]. Available: http://doi.acm.org/10.1145/1189762.1206075

[5] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d shapes,” in
Proceedings of the 17th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH ’90. New York, NY, USA: ACM, 1990, pp.
197–206. [Online]. Available: http://doi.acm.org/10.1145/97879.97901

[6] M. Hargreaves, Shawn Harris, “Deferred shading,” https://developer.nvidia.
com/sites/default/files/akamai/gamedev/docs/6800 Leagues Deferred Shading.
pdf, accessed: 01/03/2013.

[7] S. Kircher and A. Lawrance, “Inferred lighting: fast dynamic lighting
and shadows for opaque and translucent objects,” in Proceedings of
the 2009 ACM SIGGRAPH Symposium on Video Games, ser. Sandbox
’09. New York, NY, USA: ACM, 2009, pp. 39–45. [Online]. Available:
http://doi.acm.org/10.1145/1581073.1581080

[8] W. Engel, “Light pre-pass renderer,” http://diaryofagraphicsprogrammer.
blogspot.com/2008/03/light-pre-pass-renderer.html, accessed: 01/03/2013.

[9] B. Mora, “Naive ray-tracing: A divide-and-conquer approach,” ACM Trans.
Graph., vol. 30, no. 5, pp. 117:1–117:12, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2019627.2019636

[10] A. T. Áfra, “Incoherent ray tracing without acceleration structures.” in
Eurographics (Short Papers), C. Andújar and E. Puppo, Eds. Eurographics
Association, 2012, pp. 97–100. [Online]. Available: http://dblp.uni-trier.de/db/
conf/eurographics/eg-short2012.html#Afra12

[11] T. Pitkin, “Gpu ray tracing with cuda,” Master’s thesis, Eastern Washington
University, 2013.

30

http://dx.doi.org/10.1109/RT.2007.4342584
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/1189762.1206075
http://doi.acm.org/10.1145/97879.97901
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/6800_Leagues_Deferred_Shading.pdf
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/6800_Leagues_Deferred_Shading.pdf
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/6800_Leagues_Deferred_Shading.pdf
http://doi.acm.org/10.1145/1581073.1581080
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://doi.acm.org/10.1145/2019627.2019636
http://dblp.uni-trier.de/db/conf/eurographics/eg-short2012.html#Afra12
http://dblp.uni-trier.de/db/conf/eurographics/eg-short2012.html#Afra12

[12] C. Soss, “Ray traced rendering using gpgpu devices,” Master’s thesis, Eastern
Washington University, 2013.

[13] T. L. Sabino, P. Andrade, E. W. Gonzales Clua, A. Montenegro, and
P. Pagliosa, “A hybrid gpu rasterized and ray traced rendering pipeline
for real time rendering of per pixel effects,” in Proceedings of the
11th international conference on Entertainment Computing, ser. ICEC’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 292–305. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33542-6 25

[14] J. P. G. Cabeleira, “Combining rasterization and ray tracing techniques to ap-
proximate global illumination in real-time,” Master’s thesis, Instituto Superior
Técnico, Lisbon, Portugal, 2010.

[15] O. Wiki, “Image format,” http://www.opengl.org/wiki/Image Format, accessed:
02/06/2014.

[16] M. Pettineo, “Scintillating snippets: Reconstructing position
from depth,” http://mynameismjp.wordpress.com/2009/03/10/
reconstructing-position-from-depth/, accessed: 02/06/2014.

[17] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,”
J. Graph. Tools, vol. 2, no. 1, pp. 21–28, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1080/10867651.1997.10487468

[18] L. d. E. Gritz, “The importance of being linear,” http://http.developer.nvidia.
com/GPUGems3/gpugems3 ch24.html, accessed: 02/27/2014.

[19] T. K. G. Inc., “Arb pixel buffer object,” http://www.opengl.org/registry/specs/
ARB/pixel buffer object.txt, accessed: 02/13/2014.

[20] S. University, “The stanford 3d scanning repository,” graphics.stanford.edu/
data/3Dscanrep/, accessed: 02/26/2014.

[21] “Open asset import library,” http://assimp.sourceforge.net/, accessed:
02/13/2014.

[22] “Freeimage,” http://freeimage.sourceforge.net/, accessed: 02/26/2014.

[23] “freeglut,” http://freeglut.sourceforge.net/, accessed: 02/13/2014.

[24] “Eigen,” http://eigen.tuxfamily.org/, accessed: 02/13/2014.

31

http://dx.doi.org/10.1007/978-3-642-33542-6_25
http://www.opengl.org/wiki/Image_Format
http://mynameismjp.wordpress.com/2009/03/10/reconstructing-position-from-depth/
http://mynameismjp.wordpress.com/2009/03/10/reconstructing-position-from-depth/
http://dx.doi.org/10.1080/10867651.1997.10487468
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt
graphics.stanford.edu/data/3Dscanrep/
graphics.stanford.edu/data/3Dscanrep/
http://assimp.sourceforge.net/
http://freeimage.sourceforge.net/
http://freeglut.sourceforge.net/
http://eigen.tuxfamily.org/

Libraries Used

The following libraries were used to facilitate development of the renderer:

Assimp 3.0.1270 [21]
Assimp is an open source library for loading 3D model formats. It loads various
well known formats into a uniform structure. It was chosen for its ease of use
and wide support of formats. Assimp also offers many post-processing options
to make the imported data easier to use and more uniform.

FreeImage 3.15.4 [22]
FreeImage is used to load image files into byte arrays that are passed into
OpenGL as textures.

Freeglut 2.8.1 [23]
FreeGLUT is an open source alternative to the popular but depricated GLUT
library. It simplifies the process of creating a window and setting up an OpenGL
context. It was chosen for its simplicity and many easy to find examples.

Eigen 3.2.0 [24]
Eigen is a linear algebra library with many features beyond simple 3D math. It
uses expression templates and SIMD optimizations to provide a fast and easy
to use feature set. It was chosen for its performance to handle the performance
sensitive ray tracing.

32

Figure 11: The Stanford Happy Buddha model with 1,087,716 triangles (top) and
290,633 triangles (bottom)

33

Figure 12: The Stanford Happy Buddha model with 65,590 triangles (top) and 14,765
triangles (bottom)

34

Vita

Daniel Stokes

Education

• Associate of Arts, 2009, Spokane Falls Community College

• Bachelor of Science in Computer Science, 2012, Eastern Washington University

Honors and Awards

• Graduated with Honors, 2009, Spokane Falls Community College

• Graduated Summa Cum Laude, 2012, Eastern Washington University

Work Experience

• Computer Science Graduate Assistant, 2012-2014, Eastern Washington
University

Taught Computer Literacy Applications course

• Google Summer of Code Student, 2013, Blender Foundation

Fixed bugs and implemented a level of detail system for the Blender Game
Engine

• Computer Science Lab Tutor, 2010-2012, Eastern Washington University

Assisted students with topics including basic programming, data structures,
Python, Java, and C

• Google Summer of Code Student, 2011, Blender Foundation

Improved the user interface and implemented various small features into the
Blender Game Engine including improved font support, vertex buffer objects,
and collision masking

35

	Eastern Washington University
	EWU Digital Commons
	2014

	Divide and Conquer G-Buffer Ray Tracing
	Daniel Stokes
	Recommended Citation

	Introduction
	Background
	Rasterized Rendering
	Ray Tracing
	Programmable Shaders
	G-Buffer
	Divide and Conquer Ray Tracing

	Related Work
	GPU Ray Tracing
	G-Buffer Ray Tracing

	Renderer Details
	Skipping Primary Rays
	Design Overview
	G-buffers
	Ray Tracer
	Rasterized Renderer
	Optimizations
	Pixel Buffer Objects
	Mixed Resolution Rendering
	Interlacing

	Results
	Conclusion
	Future Work
	Screen Space Lighting
	Multi-Threading
	Multiple Bounces

	Libraries Used

