Eastern Washington University EWU Digital Commons

EWU Masters Thesis Collection

Student Research and Creative Works

2013

A genetic screen to identify novel Helicobacter pylori virulence factors using Saccharomyces cerevisiae as a model eukaryotic cell

Amelia M. Bothwell *Eastern Washington University*

Follow this and additional works at: http://dc.ewu.edu/theses Part of the <u>Biology Commons</u>

Recommended Citation

Bothwell, Amelia M., "A genetic screen to identify novel Helicobacter pylori virulence factors using Saccharomyces cerevisiae as a model eukaryotic cell" (2013). *EWU Masters Thesis Collection*. 96. http://dc.ewu.edu/theses/96

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact jotto@ewu.edu.

A genetic screen to identify novel *Helicobacter pylori* virulence factors using *Saccharomyces cerevisiae* as a model eukaryotic cell.

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fullfilment of the Requirements

for the Degree

Master of Science

By

Amelia M. Bothwell

Fall 2013

THESIS OF AMELIA M. BOTHWELL APPROVED BY

DATE _____

Andrea Castillo, Ph.D., GRADUATE STUDENT COMMITTEE

DATE _____

Prakash Bhuta, Ph.D., GRADUATE STUDENT COMMITTEE

DATE _____

Nicholas Burgis, Ph.D., GRADUATE STUDENT COMMITTEE

MASTER'S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Eastern Washington University, I agree that the JFK Library shall make copies freely available for inspection. I further agree that copying of this project in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission.

Signature _____

Date _____

ABSTRACT

Helicobacter pylori is a spiral, gram-negative bacterium that colonizes the stomachs of approximately 50% of the World's population overall and is a major etiological agent of human gastric adenocarcinoma. Of infected individuals, only 10-15% develop severe gastric disease due to environmental factors, host genetic factors, and more significantly, genetic differences in the infecting *H. pylori* strains. Type I strains of H. pylori contain a 40-kb cytotoxin-associated pathogenicity island (cag PAI) that encodes and secretes the CagA protein into host epithelial cells via a type IV secretion system. To date, CagA is the only identified effector protein of the *cag* PAI. The goal of this study was to identify novel *H. pylori* virulence factors, to further elucidate their role in *H. pylori* virulence and their potential as novel effectors of the *cag* PAI. In the work presented here, we generated an *H. pylori* genomic plasmid library and screened this library in Saccharomyces cerevisiae for toxic effects. We initially identified 2 candidate *H. pylori* virulence factors, however, after further analysis these candidates were not toxic to S. cerevisiae and are no longer genes of interest. To identify novel H. pylori virulence factors, others in the lab are addressing pitfalls found in this study to conduct a better-structured screen that we believe will be successful in identifying *H. pylori* genes of interest.

ACKNOWLEDGMENTS

I thank Dr. Andrea Castillo for her guidance and support. Christopher Hansen and Nathan Phillips for their technical assistance. We thank John Geiser of Western Michigan University for the pJG482 plasmid and Sue Biggins for the *S. cerevisiae* W303 strain.

This work was supported by a mini-grant from the Eastern Washington University Biology Department.

ABSTRACT	iv
ACKNOWLEDGEMENTS	V
LIST OF FIGURES AND TABLES	viii
INTRODUCTION	1-22
1.1 <i>H. pylori</i> infection of humans, good or bad	1-2
1.2 <i>H. pylori</i> prevalence and transmission	2-4
1.3 <i>H. pylori</i> infection, diverse disease outcomes	4-5
1.4 Diversity of the <i>H. pylori</i> genome	5-6
1.5 One clinically important variation among <i>H. pylori</i> strains is the presence or absence of type IV secretion systems (T4SS's)	6-8
1.6 The translocation of CagA into host epithelial cells	8-9
1.7 CagA affects on host cells	9-10
1.8 Additional H. pylori virulence factors	10-11
1.9 Host immune response to <i>H. pylori</i>	11=16
1.10 <i>H. pylori</i> diagnosis and treatment	16-18
2.1 Identification and function prediction of bacterial effector proteins	18-19
2.2 Using <i>Saccharomyces cerevisiae</i> as a model to identify and examine novel bacterial virulence proteins	19-21
2.3 Successful use of <i>S. cerevisiae</i> to identify novel virulence factors	21-22
MATERIALS AND METHODS	23-28
Bacteria strains, growth conditions, media and antibiotics	23-24
The pJG482 plasmid	24
<i>H. pylori</i> pJG482-m library construction	25
pJG482-m <i>H. pylori</i> library analysis	25-26
Screening the pJG482-m H. pylori library for toxicity in S. cerevisiae	26
Identification of candidate pJG482-m H. pylori library clones	26-27
Identification of H. pylori genes that inhibited S. cerevisiae growth	27
Analysis of candidate H. pylori virulence factors	27-28

TABLE OF CONTENTS

RESULTS	28-39
pJG482-m H. pylori genomic library	28-32
Screening the pJG482-m H. pylori library for toxicity in S. cerevisiae	33-36
Identity of toxic H. pylori genes	37-38
Library vector, pJG482-m without insert conferred growth defects in S. cerevisiae	38-39
DISCUSSION	40-49
S. cerevisiae potential to identify novel H. pylori virulence factors	40-41
S. cerevisiae model system identified virulence proteins in many bacterial species	41
Incomplete screen of the <i>H. pylori</i> genome	42-43
Small TYCs	43-44
S. cerevisiae growth defects independent of H. pylori DNA insert expression	44-45
pJG482-m alone isolated in S. cerevisiae toxicity screen	45-46
pJG482-m recombination with S. cerevisiae	46-47
Future direction	47-49
Conclusions	49
SUPPLEMENTARY INFORMATION	50-53
LITERATURE CITED	54-62
VITA	63

LIST OF FIGURES AND TABLES

FIGURES	
1. Stomach gastritis introduced by <i>H. pylori</i> infection	13
2. pJG482-m construction	29
3. Isolation of <i>H. pylori</i> genomic DNA fragments	30
4. Construction of the pJG482-m H. pylori genomic library in E. coli	31
5. H. pylori pJG482-m genomic library analysis	32
6a. Mechanism for H. pylori DNA fragment expression	33-34
6b. Replica plate technique used to assay <i>H. pylori</i> pJG482-m clones expressed in <i>S. cerevisiae</i>	34
7. Analysis of TYCs in S. cerevisiae	35
8. Final anlysis of TYCs toxicity in <i>S. cerevisiae</i>	36
9. PCR of toxic yeast candidates (TYCs)	37
10. Re-analysis of candidate H. pylori virulence factors	39
TABLES	
1. Identification of <i>H. pylori</i> genes	38