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Abstract

In this thesis, we seek to prove results about quadratic and cubic

reciprocity in great detail. Although these results appear in

many textbooks, the proofs often contain large gaps that may

be difficult for the average reader to follow. To achieve this

goal, we have built up to reciprocity theory from basic principles

of algebra, and whenever possible, we have tried to prove the

number theoretic results of reciprocity using ideas from group

theory. This thesis could potentially serve as a reference for a

student who desires to study quadratic or cubic reciprocity in

more detail, or as a foundation for studying higher reciprocity

laws.
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Chapter 1

Introduction

In mathematics, interesting topics seem to come from curious people asking

themselves questions about how things relate to each other. Pierre de Fermat

was interested in determining which prime numbers would divide numbers of

the form an � 1, and that question eventually gave rise to Fermat’s Little

Theorem [7]. Leonhard Euler took Fermat’s question one step further, and

wondered which primes would divide numbers of the form an � 1. This led

to extensive study of quadratic residues, which are defined to be integers a

that satisfy the congruence x2 � a mod p, for some prime p. More specifically,

Euler’s question was if q is a quadratic residue of p, then do we know whether

or not p is a quadratic residue of q [7], [10]? Euler answered his question in

the mid-1700s, but did not prove that his answer was actually correct [10].

In 1785, Adrien-Marie Legendre took Euler’s answer and rewrote it in
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a theorem called the Law of Quadratic Reciprocity. Legendre tried repeatedly

to prove this theorem, but was unable to come up with a proof that was

completely correct. He published several proposed proofs, but each was flawed

in some way [10]. Johann Carl Friedrich Gauss also discovered the Law of

Quadratic Reciprocity, apparently independently, when he was 18 years old

[10]. Gauss referred to this theorem publicly as the Fundamental Theorem, but

in his private diary entries, he called it the Theorema Aureum, or the Golden

Theorem [7], [8]. Gauss studied this topic for many years, and published

six different proofs during his lifetime. After his death, two more proofs were

found among his papers [7], [10]. He stated that his main reason for continuing

to prove the same theorem in so many different ways, was to try to find a way

to generalize it to higher powers. With his sixth proof, he was successful in

that endeavor, and this search for higher reciprocity laws led to a lot of the

results that comprise algebraic number theory today [7].

Each mathematician that worked on the Law of Quadratic Reciprocity

used his own notation and stated the theorem slightly differently. Legendre

developed what is known today as the Legendre symbol, to represent the

statement “x2 � a mod p”, and then Euler went one step further and came

up with Euler’s Criterion, that gives a formula for evaluating the Legendre

symbol [10]. Carl Gustav Jacob Jacobi defined a generalization of the Legendre

symbol, called the Jacobi symbol, that offered yet another tool for the task of
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determining whether or not quadratic congruences had solutions [18]. As of

2012, there are 240 known proofs of the Law of Quadratic Reciprocity, by a

multitude of different people. A current list is kept online and maintained by

Franz Lemmermeyer, a German mathematician [9].

Gauss noted in his first memoir that the theory of quadratic reciprocity

was discovered easily, but that the theory of cubic and biquadratic residues

is much more difficult [7]. He realized as he attempted to study these higher

reciprocities that principles of arithmetic were insufficient to build up the

general theory, and he further recognized that a theory of algebraic numbers

was going to be required [7]. He initially begin working in the ring of Gaussian

integers as the setting to prove results about cubic reciprocity, but noted in

a footnote in one of his papers on biquadratic reciprocity in 1832 that cubic

reciprocity is most easily handled in the ring of Eisenstein integers [14]. Jacobi

formulated several theorems that dealt with cubic residues, but did not publish

any proofs. He apparently presented some proofs in 1836 and 1837 in lectures

in Königsberg, but the first proofs to be published were credited to Ferdinand

Gotthold Max Eisenstein in 1844 [14].

The purpose of this thesis is to explore the theories of quadratic and

cubic reciprocity, and to this end, we have built up to reciprocity theory from

first principles of algebra. The reader who feels that he has a strong back-

ground in group theory and ring theory may want to skip the group theory
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and ring theory chapters. However, because of the way we have built these

ideas from the ground up, it might be helpful to begin with the basics chapter

and proceed through the thesis in its entirety, as a review of many concepts

that play important roles in reciprocity.

We have attempted to provide relevant examples to illustrate important

concepts wherever possible, and in many cases have built upon early examples

in later chapters, as a way to maintain a cohesive flow to this thesis. In

some instances, theorems have been stated as propositions and offered without

proof, but citations are given so that the reader may review particular proofs

if desired.
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Chapter 2

Basics

This chapter serves as a brief review of basic principles that will play key roles

later on in this thesis. We first examine the division algorithm for the integers

and define what it means for one number to divide another number. We

recall the usual definition of a prime number and then review the Fundamental

Theorem of Arithmetic. The definitions of least common multiple and greatest

common divisor are given, and then we prove two lemmas about least common

multiples that we will need later in this thesis. The fourth section in this

chapter reviews relations and partitions and defines equivalence classes, least

residues, and the idea of congruence modulo n. We conclude this chapter by

examining the Binomial Expansion Theorem and looking at two examples that

are similar to the way the theorem will be used later in this thesis.
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2.1 Division Algorithm

Proposition 2.1.1 (The Division Algorithm) Let a and n be integers with

n ¡ 0. Then there exist unique integers q and r such that

a � nq � r, with 0 ¤ r   n.

Example 2.1.2 For n � 3 and a1 � 11, the division algorithm indicates that

11 � 3 � 3� 2, so r1 � 2. Now let a2 � 12 and a3 � 13. We have 12 � 3 � 4� 0

and 13 � 3 � 4 � 1, so r2 � 0 and r3 � 1. Recall that the division algorithm

states that 0 ¤ r   3. This constraint is independent of the choice of a, so

there will always be a predictable set of remainders for a given n. In this

example, we have the remainders t0, 1, 2u.

If we choose some n P N and a P Z, then a � nq � r, by the division

algorithm. Since 0 ¤ r   n, the remainders left on division of a by n form the

set Zn � t0, 1, . . . , n� 1u, which is called the set of least residues.

Definition 2.1.3 Let a and b be integers, with a � 0. The phrase a divides

b means there exists k P Z such that ak � b, and is denoted a � b. If such a k

does not exist, we will say that a does not divide b and will denote it a � b. ♦

Example 2.1.4 Since 3 � 4 � 12, 3 � 12 and 4 � 12, but 5 � 12, since 5k � 12

implies that k � 12{5, and 12{5 R Z.
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2.2 Fundamental Theorem of Arithmetic

We will be giving a rigorous definition of a prime number in the ring theory

chapter, but for now when we refer to prime numbers, they will be integers not

equal to �1 whose only positive divisors are 1 and themselves. In other words,

this is the definition that most of us are familiar with. So by this definition, 3

and �11 are prime, but 8 is not, since its positive divisors are 1, 2, 4, and 8.

Proposition 2.2.1 (Fundamental Theorem of Arithmetic) Any integer

not equal to �1 can be written as a unique product (up to ordering and multi-

plication by �1) of prime numbers.

Example 2.2.2 We stated that 3 is prime, but it can be written as 3 � 31,

which is a trivial product of primes. 8 is a composite number, so it gives us a

better example, as it can be written as 8 � 2 � 2 � 2 � 23.

Generally speaking, when we talk about giving the prime factorization

of a number, we will use the notation 8 � 2 � 2 � 2 or a � p1p2 . . . pm, where the

pi are not necessarily unique. If we refer to the prime-power decomposition of

a number, the notation will be 8 � 23 or a � pa11 p
a2
2 . . . pamm , where the pi are

unique. Typically these factorizations or decompositions will be assumed to

be in order from smallest prime to largest prime, when read from left to right.
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2.3 LCM and GCD

Definition 2.3.1 The least common multiple of two nonzero integers a and

b is the smallest positive integer that is divisible by both a and b. The least

common multiple of integers a and b will be denoted by lcmpa, bq. ♦

Definition 2.3.2 Let a, b P Z. The greatest common divisor of a and b,

denoted gcdpa, bq, is d if and only if

1. d � a and d � b, and

2. if c � a and c � b, then c ¤ d. ♦

Lemma 2.3.3 Let p1, p2, . . . , pm be distinct primes. Then the least common

multiple of p1, p2, . . . , pm is the product p1p2 . . . pm.

Proof: Let a � p1p2 . . . pm and suppose that b is a common multiple

of p1, p2, . . . , pm with a � b. Let b � q1q2 . . . qn be the prime factorization of b,

where the pi and qj are distinct, positive primes.

Since b is a multiple of p1, p2, . . . , pm, clearly p1 � q1 . . . qn, which implies

that there exists k1 P Z such that p1k1 � q1 . . . qn. Since each of the pi and qj

are prime, p1 divides at least one of the qj. Without loss of generality, suppose

p1 � q1. Then p1l1 � q1, for l1 P Z. But p1 and q1 are prime, so l1 � 1 and

p1 � q1. Thus k1 � q2 . . . qn.

Similarly, p2 � q2 . . . qn, which implies that there exists k2 P Z, such

that p2k2 � q2 . . . qn. By the previous argument, p2 divides at least one of the
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remaining qj. Without loss of generality, suppose p2 � q2. Then p2l2 � q2 for

l2 P Z, which implies that l2 � 1 and p2 � q2. Thus k2 � q3 . . . qn.

Repeat this argument until we have pm � qm . . . qn. This implies that

there is km P Z such that pmkm � qm . . . qn. Again without loss of generality,

suppose that the qj that pm divides is qm. This will result in pm � qm, and

km � qm�1 . . . qn.

So now we have a � p1 . . . pm and b � p1 . . . pmkm. By assumption,

a � b, so km � 1. Thus a   b, since km is the product of positive primes, and

a � p1 . . . pm is the least common multiple of p1, . . . , pm as desired.

Lemma 2.3.4 Let a, b, and c be integers. Then

lcmpa, bq � c if and only if a � c and b � c.

Proof: Let l � lcmpa, bq and suppose l � c. Then since a � l, we have

a � c. By a similar argument, b � c.

Now suppose that

a � pa11 p
a2
2 . . . pann ,

b � pb11 p
b2
2 . . . p

bn
n ,

c � pc11 p
c2
2 . . . p

cn
n

are the prime-power decompositions of a, b, and c, where each pi is a unique

prime, the pi increase in size from smallest to largest, and some of the ai, bi,

or ci may be zero. Suppose a � c and b � c. Then for each i P t1, 2, . . . , nu,
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maxpai, biq ¤ ci, where the max function takes the value of the largest of a set

of numbers. Let l �
n¹
i�1

p
maxpai,biq
i . Then we have l � c as desired.

2.4 Relations and Partitions

Definition 2.4.1 A relationR on a set X is a subset of X�X, and is denoted

R � X �X. We say that x is related to y, denoted xRy, if px, yq P R. If R

satisfies the following three properties for all x, y, z P X, then R is called an

equivalence relation.

1. (Reflexivity) xRx.

2. (Symmetry) If xRy, then yRx.

3. (Transitivity) If xRy and yRz, then xRz. ♦

The following example establishes a relation on the integers that pro-

vides the structural framework of much of the remaining work done in this

thesis.

Example 2.4.2 Let n P N. Then for a, b P Z, define a relation R as follows:

aRb if and only if n � pa� bq.

We claim that the relation R is an equivalence relation.

Since a� a � 0 � n � 0, we have aRa, so R is reflexive.
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Suppose aRb. Then

n � pa� bq (Definition of R)

ðñ a� b � nq, for some q P Z (Definition of divides)

ðñ � nq � b� a, for some q P Z (Arithmetic)

ðñ np�qq � b� a, for some q P Z (Commutative Property)

ðñ n � pb� aq (Definition of divides)

ðñ bRa, (Definition of R)

so R is symmetric.

Now suppose that aRb and bRc. Then we have a � b � nq1 and

b� c � nq2 for some q1, q2 P Z. Adding these equations together yields

pa� bq � pb� cq � nq1 � nq2 ðñ a� c � npq1 � q2q.

Since pq1 � q2q P Z, we have shown that n � pa� cq by definition of divides, so

aRc and R is transitive.

It follows that R is an equivalence relation.

Note that in the example above, it is implied that if n � pb � aq, then

a and b leave the same remainder on division by n. This is clear if we write

a � nq1� r1 and b � nq2� r2. Then a� b � npq1� q2q� pr1� r2q, and it must

be the case that pr1 � r2q � 0. So we could restate the relation as aRb if and

only if the remainders of a and b are the same, or in other words, if and only

if a and b have the same least residue.
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Definition 2.4.3 A partition P of a set X consists of a potentially infinite

family of nonempty subsets of X, P � tA1, A2, . . . uiPI , for some index set I,

such that

1. For all i P I, Ai � ∅.

2.
¤
iPI

Ai � X.

3. For all i � j, Ai
�
Aj � ∅.

The subsets of P are called the cells of the partition, and for each

x P X, the cell containing x will be denoted by x or rxs. The two notations

are equivalent and will be used interchangeably. In this setting, x is not

unique, and a particular cell can be represented by any element in the cell.

This definition is illustrated with a simple partition of the integers.

Example 2.4.4 Let E � t. . . ,�2, 0, 2, . . . u and O � t. . . ,�3,�1, 1, 3, . . . u.

Note that neither E nor O is empty, E
�
O � t. . . ,�2,�1, 0, 1, 2, . . . u � Z,

and E
�
O � ∅, so all three properties are met. Thus P � tE,Ou is a

partition of Z by definition.

For any a P E, we can refer to E as a. Similarly, for any b P O, we can

refer to O as b. For instance, we could choose 0 P E as the representative, so

0 � E. Likewise, if we select 1 to represent O, then 1 � O.

Proposition 2.4.5 (Equivalence Relations and Partitions) Let S be a

nonempty set.
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1. If T is an equivalence relation on S, then there is an associated partition

PT defined by the equivalence classes a � tx P S : xT au.

2. If P is a partition of S, then there is an associated equivalence relation

TP , where aTPb if and only if a and b are in the same cell of the partition.

The proof of this proposition is omitted here, but can be found in [11].

Example 2.4.6 Each of the cells in a partition that arises from an equivalence

relation is known as an equivalence class. Recall that if we divide an integer

by a natural number n, the remainder is in the set t0, 1, . . . , n � 1u. For

each n P N, we can partition Z into n cells according to the value of the

remainder when an integer is divided by n. In Example 2.1.2, we saw that

for n � 3, the remainders formed the set t0, 1, 2u, so Z was partitioned into

three cells, 0, 1, and 2. These cells are called the residue classes modulo n in

Z and the remainders are called the least residues. The equivalence relation

that creates this partition of Z is called congruence modulo n and the set

of least residues modulo n is Zn � t0, 1, 2, . . . , n � 1u. This set is different

from Zn � t0, 1, 2, . . . n� 1u, which is the set of equivalence classes (or residue

classes) of least residues. Note that it is not standard to make a distinction

between Zn and Zn, but for the purpose of clarity in this thesis, we will consider

them to be as shown above. However, in other references, Zn is generally used

to mean both the set of least residues and the set of equivalence classes of least

residues.
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The statement a is congruent to b modulo n is denoted a � b mod n,

and it means that a and b leave the same remainder upon division by n. It is

important to note that if a � b mod n, then a and b are in the same equivalence

class in Zn. Thus, since we showed in Example 2.1.2 that 11 � 2 mod 3, 11

and 2 are both elements of 2 P Z3.

Notice also that if a, b P Zn then 0 ¤ a, b   n. The key idea is that

Zn contains only the n possible remainders of any integer divided by n. On

the other hand, the elements of Zn are equivalence classes, so for any a P Zn,

a � t. . . , a � 2n, a � n, a, a � n, a � 2n, . . . u. Furthermore, α � β mod n for

any α, β P a, since for α � a� jn and β � a� kn, where j, k P Z, we have

pa� jnq � pa� knq � pa� aq � pjn� knq

� npj � kq

� 0 mod n.

Thus, n � pα � βq and it follows that α � β mod n.

We have used the notation a to denote the equivalence class a P Zn.

Another notation that can be used interchangeably is ras P Zn, where

ras � ta� in : i P Nu � a.

We use both notations in this thesis, but will endeavor to make the meaning

clear when there is risk of ambiguity or confusion with a particular notation.
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There is an underlying idea here that may seem obvious, but is very

important in this thesis, so it bears special mention. For any a P Z and a

specific n P N, there are an infinite number of values of b for which a � bmod n.

In other words, if n � 4 and a � 11, then 11 � 3 mod 4. But any integer that

is of the form 4k � 3, where k P Z, will also have a least residue of 3 modulo

4. Thus for k P Z, 11 � p4k � 3q mod 4. Since there are an infinite number

of possible values of k to choose from in Z, this gives us an infinite number of

integers that have a least residue of 3 modulo 4.

The last thing we want to mention before moving on to the next section

is that there are several statements that are consequences of the work we have

done in this section. These three statements are equivalent and will be used

interchangeably in this thesis.

1. a� b � nq.

2. n � a� b.

3. If by the division algorithm, a � nq1�r1 and b � nq2�r2, then r1 � r2.

15



2.5 Binomial Theorem

Proposition 2.5.1 (Binomial Expansion Theorem) For all x, y P Z, the

binomial expansion formula is

px� yqn �
ņ

k�0

�
n

k



xn�kyk,

where the binomial coefficients are given by

�
n

k



� n!

k!pn� kq! .

Example 2.5.2 Let x, y P Z. We want to expand
�
x�y�5 using the binomial

theorem. First, we will determine the coefficients.

�
5

0



� 5!

0!p5� 0q! �
5!

5!
� 1

�
5

1



� 5!

1!p5� 1q! �
5 � 4!

4!
� 5

�
5

2



� 5!

2!p5� 2q! �
5 � 4 � 3!

2!3!
� 20

2
� 10

�
5

3



� 5!

3!p5� 3q! �
4 � 4 � 3 � 2!

3 � 2!2!
� 20

2
� 10

�
5

4



� 5!

4!p5� 4q! �
5 � 4!

4!1!
� 5

�
5

5



� 5!

5!p5� 5q! �
1

0!
� 1

Thus,

px� yq5 �
5̧

k�0

�
5

k



xn�kyk

� x5 � 5x4y � 10x3y2 � 10x2y3 � 5xy4 � y5.
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Example 2.5.3 Let x P Z and consider px� 1q5.

�
x� p�1q�5 � x5 � 5x4p�1q � 10x3p�1q2 � 10x2p�1q3 � 5xp�1q4 � p�1q5

� x5 � 5x4 � 10x3 � 10x2 � 5x� 1

This example is similar to the previous one, but note that 5 is a prime number,

and the first and last terms of our polynomial are not divisible by 5. However,

the coefficients of the middle four terms are all multiples of 5. We will look

at similar polynomials when we examine the Eisenstein Criterion later on. If

the constant term was divisible by 5 but not 25, then the polynomial would

be irreducible over the rational numbers. Of course that’s not the case here,

since the polynomial was in factored form to begin with.

We have reviewed a lot of basic concepts in this chapter, and they will

serve as a foundation to build upon. In the next chapter, we take a much

closer look at congruences and modular arithmetic.
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Chapter 3

Modular Arithmetic

In this chapter, we will explore in more detail some of the ideas of congruence

and modular arithmetic that were introduced in Chapter 2. We begin by

defining a new function and several operations that use these ideas, but that

strip away unnecessary notation and allow us to focus solely on the mechanics

of what is taking place in various settings. Initially we explore addition modulo

n for any integers, by defining and using a function LRn and its associated

operation �n. We then extend those concepts so that we can work first with

representatives of equivalence classes and then the elements of Zn, which are

already least residues modulo n.

Because modular arithmetic and congruences play such an important

role in this thesis, it’s crucial to establish a firm foundation before we proceed

into more complicated material.
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Definition 3.0.4 Let a, b P Z and n P N.

1. Define LRn : Z Ñ Z by LRnpaq � r, where a � nq � r by the division

algorithm, and r is the least residue of a modulo n.

2. Define �n : Z� ZÑ Z by a�n b � LRnpa� bq. ♦

Example 3.0.5 Consider the integers 17 and 6. Then 17�46 � LR4p23q � 3,

since 23 � 4 � 5� 3 by the division algorithm. Note that if we consider instead

16 and 12, then 16�4 12 � LR4p28q � 0, because 28 � 4 � 7� 0. In fact, it will

always be the case that LRnpknq � 0, for k P Z, since the remainder by the

division algorithm will be 0.

Theorem 3.0.6 Let a, b P Z and n P N. Then a�n b � LRnpaq �n LRnpbq.

Proof: Let a � nq1� r1 and b � nq2� r2, where 0 ¤ r1, r2   n, by the

division algorithm. There are two cases to consider.

Case 1: 0 ¤ r1 � r2   n

a�n b � LRnpa� bq (Definition 3.0.4)

� LRn

�
npq1 � q2q � pr1 � r2q

�
(Substitution)

� r1 � r2 (Definition 3.0.4)

� LRnpr1 � r2q (Definition 3.0.4)

� r1 �n r2 (Definition 3.0.4)

� LRnpaq �n LRnpbq (Definition 3.0.4)
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Case 2: n ¤ r1 � r2

Note that 0 ¤ r1, r2 ¤ n�1 implies that 0 ¤ r1� r2 ¤ 2n�2   2n�1.

But n ¤ r1 � r2, so n ¤ r1 � r2   2n� 1 ðñ 0 ¤ r1 � r2 � n   n� 1.

a�n b � LRnpa� bq (Definition 3.0.4)

� LRn

�
npq1 � q2q � pr1 � r2q

�
(Substitution)

� LRn

�
npq1 � q2 � 1q � pr1 � r2 � nq� (Addition of 0)

� r1 � r2 � n (Definition 3.0.4)

� LRnpr1 � r2q (Definition 3.0.4)

� r1 �n r2 (Definition 3.0.4)

� LRnpaq �n LRnpbq (Definition 3.0.4)

In both cases, we have a�n b � LRnpaq �n LRnpbq. Since a and b were

chosen arbitrarily, the result holds for all a, b P Z.

Example 3.0.7 If we examine 6 and 15, we see that 6 �4 15 � 1, by Defini-

tion 3.0.4, but by the previous theorem, LR4p6q �4 LR4p15q � 2 �4 3 � 1. It

is in fact an immediate consequence of Theorem 3.0.6 that if LRnpaq � r and

LRnpbq � s, then a�n b � r �n s.

Recall that in Chapter 2, we defined ras P Zn to be the equivalence

class containing a, which is equivalent to a. We use the notation ras here

temporarily, to avoid confusion from an abundance of overlines.
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Theorem 3.0.8 Let ras, ra1s, rbs, rb1s P Zn. If ras � ra1s and rbs � rb1s, then

a�n b � a1 �n b
1.

Proof: Since ras � ra1s, we have LRnpaq � LRnpa1q, by the definition

of equivalence classes. Likewise, LRnpbq � LRnpb1q, and

a�n b � LRnpaq �n LRnpbq (Theorem 3.0.6)

� LRnpa1q �n LRnpb1q (Substitution)

� a1 �n b
1. (Theorem 3.0.6)

It follows that addition modulo n is well defined when working with represen-

tatives of equivalence classes.

Example 3.0.9 Since 17 and 6 leave the same remainder on division by 11,

they are in the same residue class. Likewise, r30s � r19s � r8s, so

6�11 19 � 6�11 8 � 17�11 30.

It will be useful to be able to use any convenient representative from an equiv-

alence class, and still obtain the same residue under the operation �n.

Theorem 3.0.10 Let a, a1 P Z and n P N. If LRnpaq � LRnpa1q, then

LRnpa� a1q � 0.

Proof: Let a � nq1 � r1 and a1 � nq2 � r2, by the division algorithm.

Suppose that LRnpaq � LRnpa1q. Then r1 � r2, so a � a1 � npq1 � q2q.
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Since LRn

�
npq1 � q2q

� � 0, it follows that when LRnpaq � LRnpa1q, we have

LRnpa� a1q � 0.

Example 3.0.11 We know that 17 and 6 are in the same residue class modulo

11, so LR11p17q � 6 � LR11p6q. Thus LR11p17� 6q � LR11p11q � 0.

In Definition 3.0.4, we defined �n to be addition of any two integers

modulo n. We want to examine a similar operation now, but instead of defining

the operation for all integers, we define it specifically for the elements of Zn,

or the least residues modulo n. Since the operations are defined for different

sets, we introduce a new symbol.

Definition 3.0.12 Let n P N and r, s P Zn. Define 9�n : Zn � Zn Ñ Zn by

r 9�ns � r �n s. ♦

Note that 9�n is well defined, since LRpaq P Zn.

Example 3.0.13 Choose two elements from Z5, say 3 and 4. Then by Defi-

nition 3.0.12, 3 9�54 � 3�5 4 � LR5p7q � 2.

Example 3.0.14 Let r, s P Zn. Then

r 9�ns � r �n s (Definition 3.0.12)

� LRnprq �n LRnpsq (Theorem 3.0.6)

� LRnprq 9�nLRnpsq. (Definition 3.0.12)

This result is analogous to the one established in Theorem 3.0.6.
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We want to define the operation of addition modulo n again, but this

time, we define it for equivalence classes. We again introduce a new symbol

for this operation, to avoid confusion.

Definition 3.0.15 Define �n : Zn � Zn Ñ Zn by ras�nrbs � ra �n bs, where

ras, rbs are the equivalence classes containing a and b respectively. ♦

Example 3.0.16 Let ras, ra1s, rbs, rb1s P Zn. Suppose ras � ra1s and rbs � rb1s.

Then

ras�nrbs � ra�n bs (Definition 3.0.15)

� ra1 �n b
1s (Theorem 3.0.8)

� ra1s�nrb1s, (Definition 3.0.15)

so �n is well defined.

Example 3.0.17 The equivalence classes r17s and r30s are in Z11, so

r17s�11r30s � r17�11 30s � rLR11p47qs � r3s.

But r6s � r17s and r8s � r30s, so if we choose 6 and 8 to represent our residue

classes instead, we have r6s�11r8s � r6�11 8s � r3s as well.

Recall that 9�n is the operation defined for least residues and �n is

defined for equivalence class representatives. Every least residue modulo n

is in a different equivalence class in Zn, so each of the least residues r is an

23



element in the associated equivalence class rrs. This means that because of

the way we defined �n, we could use it on the r instead of using 9�n.

Now that we have established that addition modulo n is well defined

regardless of whether we are working with elements of Z, Zn, or Zn, we will

simply use �n to denote addition modulo n. In later chapters, where the

context is clear, we will just use � for addition modular n.

We have established some very basic results about modular arithmetic

here. In Chapter 4, we review group theory and use these results about mod-

ular arithmetic to introduce some groups that will be useful to us later on.
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Chapter 4

Group Theory

This chapter serves as a general review of group theory that is relevant to

this thesis. We begin by recalling the definition of a group and then establish

some specific groups that we will be working with frequently. Next we define

nth roots of unity and introduce the Gaussian integers and Eisenstein integers.

These three concepts are going to be major players as we develop reciprocity

theory.

In Section 2, we define subgroups and do some examples using known

groups. We spend some time looking at cosets and normal subgroups as well.

Finally we review homomorphisms, isomorphisms, and permutation groups,

and then state Cayley’s Theorem.

Section 3 begins with a review of cyclic groups and generators. We give

a more rigorous definition of greatest common divisor here as well, and then
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establish several results about cyclic groups and greatest common divisor. We

also prove theorems that tie together the notions of divides and gcd, as well as

theorems that look at the relationships between gcd and modular arithmetic.

We introduce Euler’s ϕ-function in this section and then explore the group

of units. We wrap up the section by proving Fermat’s Little Theorem, an

associated corollary, and Euler’s Theorem, and then explore the notion of

primitive roots of a positive integer n.

4.1 Groups

We are used to performing operations on numbers, and we are certainly fa-

miliar with addition and subtraction. If we take two numbers and add them

together, the result is a single number. If we perform addition on a specific set

of numbers, say Z�, then adding two positive integers together yields another

positive integer. In other words, the result is also an element of Z�. Such an

operation is called a binary operation, and addition and multiplication are two

examples of binary operations. When the result is an element of the original

set, we say that we have closure under the operation. Note that if we subtract

4 from 3, the result is �1, which is not an element of Z�. Thus, subtraction

is not a binary operation on Z�, since �1 is not a positive integer. Similarly,

division is not a binary operation on Z�, since
3

4
is not an integer at all.
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Definition 4.1.1 A group xG, �y is a set G, closed under a binary operation

�, where a � b � ab, such that the following axioms are satisfied:

1. (Associativity of �) For all a, b, c P G, pabqc � apbcq.

2. (Identity element e for �) There is an element e in G, called the

identity of G, such that for all x P G, ex � x � xe.

3. (Inverse a�1 of a) For each a P G, there is a unique element a�1 in G,

called the inverse of a, such that aa�1 � e � a�1a.

A group G is called abelian if its binary operation is commutative. In

this case, a � b is usually denoted a� b. ♦

We will often refer to a group using only G, or some other set, rather

than using the longer notation xG, �y. When we use this abbreviated notation

for a group, the group operation will be made clear, and in fact the � is usually

suppressed, so that a � b is simply ab. We will occasionally denote the group

identity as eG and the group operation as �G, for the sake of clarity.

Example 4.1.2 Consider the set Zn � t0, 1, . . . , n� 1u and the operation �n

from Definition 3.0.4.

Based on our previous work, we can see that Zn is closed under the

operation �n.

For any r P Zn,

0�n r � LRnp0� rq � r � LRnpr � 0q � r �n 0,
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thus 0 is the additive identity for Zn.

Next we want to establish that each element has an inverse in Zn.

r �n pn� rq � LRnpr � n� rq (Definition 3.0.4)

� LRnpnq (Arithmetic)

� 0, (Example 3.0.5)

so pn � rq is the additive inverse for r modulo n, and it is unique since each

r P Zn is unique.

Associativity follows automatically, since a�n b � LRnpa� bq and � is

associative. Also �n is commutative, since � is. It follows that xZn,�ny is an

abelian group by definition. More specifically, it is the group of least residues

modulo n.

Using the other operations that we defined in Chapter 3, and a similar

approach, it can easily be shown that xZn, 9�ny and xZn,�ny are also abelian

groups. We will see in Section 4.3 that these three groups are isomorphic to

each other.

There is a similar group that we will explore later on, and that is the

group of units modulo n. It has the notation xZ�
n, �y, and is the set of integers

without 0, under the operation multiplication modulo n. Establishing that

the group of units satisfies the group axioms is similar to the work done in

Example 4.1.2, albeit more difficult.
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Example 4.1.3 Let ζ P C and n P N. Then ζ is called an nth root of unity if

ζn � 1. The nth roots of unity can be expressed as

1, e2πi{n, ep2πi{nq2, . . . , ep2πi{nqpn�1q.

Let Un � te2kπi{n : k � 0, 1, . . . , n � 1u � tζ0, ζ1, . . . , ζn�1u. For any

ζ i, ζj P Un, we have ζ i � ζj � ζ i�j. But ζn � 1, so ζ i � ζj � ζ i�nj, and Un is

closed under multiplication.

Associativity follows automatically by properties of exponents. Since

ζ0 � 1, the multiplicative identity is in Un. Again using properties of expo-

nents, it’s clear that ζn�k is the inverse of ζk. It follows that the nth roots of

unity form a group by definition.

Observe that ζ1 generates all of the nth roots of unity in the sense that

if α is an nth root of unity, then α � ζk for some k. The ζ that generate the

group of the nth roots of unity are called primitive roots of unity. An example

of a primitive nth root of unity is of the form ζ � e2πi{n.

We will explore the roots of unity more later on, but for now it is enough

to know that they form a group.

Example 4.1.4 In this example, we examine complex numbers of the form

a� bi, where a, b P Z. It is clear that ta� bi : a, b P Zu forms an abelian group

under ordinary addition, with 0 � 0i the additive identity and �pa � biq the

unique inverse of a� bi. The elements of this group have a special name, the
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Gaussian integers.

We will be working with the Gaussian integers more later on. There

is another subset of the complex numbers, called the Eisenstein integers, that

will play a major role in our work with cubic reciprocity toward the end of

this thesis.

Example 4.1.5 Recall from the definition of roots of unity that if ζ P C and

ζn � 1, then ζ is an nth root of unity. Consider the equation x3 � 1. Certainly

x3�1 � px�1qpx2�x�1q � 0. From Example 4.1.3, we know that a primitive

3rd root of unity has the form e2πi{3. Because the cube root of unity plays an

important role in mathematics, it is denoted by a special symbol, ω. Thus

ω � e2πi{3, and in fact it can be established by using the quadratic formula to

solve x2� x� 1 � 0 that ω � �1

2
�
?

3

2
i and ω2 � �1

2
�
?

3

2
i. Thus the three

roots of x3 � 1 are given by x � 1, x � ω, and x � ω2.

Example 4.1.6 Consider the complex numbers of the form a � bω, where

a, b P Z. It is clear that ta� bω : a, b P Zu forms an abelian group under

ordinary addition of complex numbers. The elements of this group are called

the Eisenstein integers. We will see in Chapter 5 that the Eisenstein integers

form a ring, and then we will establish some properties that will be useful in

our work with cubic reciprocity.
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Example 4.1.7 Consider the square with vertices numbered 1 through 4, as

shown below.

3 4

12

Consider the counterclockwise rotations of this square. We want to pay

close attention to where the numbered vertices get sent with each rotation.

3 4

12

ρ0

Rotate 0�

3 4

12

3 4

12

ρ1

Rotate 90�

2 3

41
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3 4

12

ρ2

Rotate 180�

1 2

34

3 4

12

ρ3

Rotate 270�

4 1

23

Next we examine the flips of our square. We first flip it about a hor-

izontal axis, then about a vertical axis. The last two flips will be about the

diagonals through vertices 2, 4 and vertices 1, 3 respectively.

3 4

12

µ14

Horizontal Axis

2 1

43

3 4

12

µ12

Vertical Axis

4 3

21
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3 4

12

δ24

Diagonal Axis

1 4

32

3 4

12

δ13

Diagonal Axis

3 2

14

If we consider each motion to be a function, then the operation on this

set is function composition, so for δ24ρ2, we would first rotate the square 180�

and then flip it along the diagonal through vertices 2 and 4.

The group table shows all combinations of motions of the square of the

form ab, where the entry in the top row is the first motion performed on the

square, and the entry in the lefthand column is the second motion.
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ρ0 ρ1 ρ2 ρ3 µ14 µ12 δ24 δ13

ρ0 ρ0 ρ1 ρ2 ρ3 µ14 µ12 δ24 δ13

ρ1 ρ1 ρ2 ρ3 ρ0 δ24 δ13 µ12 µ14

ρ2 ρ2 ρ3 ρ0 ρ1 µ12 µ14 δ13 δ24

ρ3 ρ3 ρ0 ρ1 ρ2 δ13 δ24 µ14 µ12

µ14 µ14 δ24 µ12 δ13 ρ0 ρ2 ρ1 ρ3

µ12 µ12 δ13 µ14 δ24 ρ2 ρ0 ρ3 ρ1

δ24 δ24 µ12 δ13 µ14 ρ3 ρ1 ρ0 ρ2

δ13 δ13 µ14 δ24 µ12 ρ1 ρ3 ρ2 ρ0

It can be seen easily that every motion appears exactly once in each row and

each column, so the set of motions on the square is closed under composition

of functions. However, the motions are not commutative, since δ24µ14 � ρ1

and µ14δ24 � ρ3.

Notice that for any b in the set, ρ0b � b � bρ0, so the identity element

is the rotation by 0�, or ρ0.

We can see that each of the rotations has a unique inverse that is

contained in the set, since each row and each column contains ρ0, thus we can

see exactly which elements combined to result in the identity in each case.

Because the operation is function composition, and composition of func-

tions is associative, we get the associative property automatically.
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It follows that this set of rotations and flips on a square forms a group,

and in fact it is called the dihedral group of order 8, which is denoted D4. It

might seem counterintuitive, but generally the dihedral group of order 2n is

denoted Dn, although some references will denote it as D2n. In this thesis, we

will use the former notation.

4.2 Subgroups

Definition 4.2.1 Let G be a group and let H be a nonempty subset of G. H

is a subgroup of G, denoted H ¤ G, if the following conditions are satisfied.

1. H contains eG.

2. If a, b P H, then a �G b P H.

3. If a P H, then a�1 P H. ♦

Example 4.2.2 Recall that Z8 � t0, 1, 2, 3, 4, 5, 6, 7u. Clearly t0, 2, 4, 6u is

a nonempty subset of Z8, and it contains 0, which is the identity of Z8. It

is easy to see that our subset is closed under addition modulo 8. Note that

2�8 6 � 8 � 0 mod 8 and 4�8 4 � 8 � 0 mod 8, so each nonidentity element

contains an inverse in the subset. Thus, t0, 2, 4, 6u is a subgroup of Z8.

Example 4.2.3 Recall that D4 � tρ0, ρ1, ρ2, ρ3, µ14, µ12, δ24, δ13u is the set of

rotations and flips of a square from Example 4.1.7. If we examine tρ0, µ14u,
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we see that this is a nonempty subset of D4, and it contains ρ0, which is the

identity motion. Clearly this subset is closed under the function composition

of D4, and µ14µ14 � ρ0, so µ14 is its own inverse. It follows that tρ0, µ14u is a

subgroup of D4.

Definition 4.2.4 Let H be a subgroup of a group G and let a P G. The

subset aH � tah : h P Hu of G is the left coset of H containing a and the

subset Ha � tha : h P Hu of G is the right coset of H containing a. ♦

Recall that we have suppressed the group operation in our general no-

tation, so ah � a � h if the group operation is addition and ah � a � h if the

operation is multiplication.

Example 4.2.5 Let G � Z8 and H � t0, 2, 4, 6u. The left cosets of H are

0�8 H � t0, 2, 4, 6u

1�8 H � t1, 3, 5, 7u

2�8 H � t2, 4, 6, 0u

3�8 H � t3, 5, 7, 1u

4�8 H � t4, 6, 0, 2u

5�8 H � t5, 7, 1, 3u

6�8 H � t6, 0, 2, 4u

7�8 H � t7, 1, 3, 5u.
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Note that when a P Z8 is even, a�8 H is a permutation of the elements in H

and when a P Z8 is odd, a�8 H is a permutation of the coset 1�8 H.

Likewise, it can be easily shown that the right cosets are permutations

of H when a is even and permutations of H �8 1 � t1, 3, 5, 7u when a is odd.

For any given a P Z8, the left and right cosets are identical. This will always

be the case when G is an abelian group, as Z8 is, since ah � ha for all a, h P G

when G is abelian. The cosets of H form a partition of Z8 into its even and

odd elements. Furthermore, the left and right cosets are the same size.

Proposition 4.2.6 Let H be a subgroup of a finite group G.

1. The cosets of H form a partition of G and the left and right cosets are

the same size. In fact, one of the cosets is H itself.

2. The order of H is a divisor of the order of G. (Lagrange’s Theorem)

The proof of this proposition is omitted here, but it can be found in [6].

Example 4.2.7 Let H � t0, 2, 4, 6u and let G � Z8. We saw previously that

H is a subgroup of G. Note that there are 8 elements in Z8, 4 elements in H,

and 4 � 8.

Definition 4.2.8 A subgroup H of a group G is normal if its left and right

cosets coincide, that is, if gH � Hg for all g P G. This will be denoted by

H �G. ♦
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H � t0, 2, 4, 6u is a normal subgroup of Z8, since we saw earlier that

the left and right cosets are identical.

Example 4.2.9 In Example 4.2.3, we showed that H � tρ0, µ14u is a sub-

group of D4. In Example 4.1.7, we saw that D4 is not an abelian group and

since δ24H � tρ0, ρ1u and Hδ24 � tρ0, ρ3u, the subgroup H � tρ0, µ14u is not

normal.

Theorem 4.2.10 Let H be a subgroup of a group G. Then left coset multi-

plication is well defined by the equation

paHqpbHq � pabqH

if and only if H is a normal subgroup of G.

Recall from Proposition 4.2.6 that the left cosets of H partition G, so

x P aH implies that xH � aH and y P H implies that yH � H.

Proof: Let H ¤ G and let a P G. Suppose first that left coset mul-

tiplication is well defined by paHqpbHq � pabqH. Our goal is to show that

aH � Ha, which implies that H is normal.

Let x P aH and let a�1 P a�1H. Then

pxHqpa�1Hq � pxa�1qH

and

paHqpa�1Hq � paa�1qH � eH � H.
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Since coset multiplication is well defined, pxa�1qH � H, which means that

xa�1 � h, for some h P H. This implies that x � ha for some h, so x P Ha, and

aH � Ha. By a symmetric argument, Ha � aH. It follows that aH � Ha,

so H is a normal subgroup of G.

Now suppose that H is a normal subgroup of G. Our goal is to show

that choosing different representatives from aH and bH does not yield different

cosets, and thus that left coset multiplication is well defined.

Let h1b P Hb. Since H is normal, Hb � bH. This implies that h1b P bH

as well, so h1b � bh3 for some h3 P H. Thus for bh2 P bH,

pah1qpbh2q � aph1bqh2 (Associative Property)

� apbh3qh2 (Substitution)

� pabqph3h2q. (Associative Property)

Since h3h2 P H, pabqph3h2q P pabqH, so ah1bh2 P pabqH and pabqH � pah1bh2qH.

Thus left coset multiplication is well defined. It follows that coset multiplica-

tion is well defined if and only if H is a normal subgroup of G.

Definition 4.2.11 Let G and G1 be groups and let ϕ : GÑ G1 be a function.

If the homomorphism property,

ϕpx �G yq � ϕpxq �G1 ϕpyq,

holds for all x, y P G, then ϕ is called a group homomorphism.
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If ϕ is both one-to-one and onto, then ϕ is an isomorphism. If such a

ϕ exists, then G and G1 are isomorphic structures, denoted G � G1. ♦

Note that if ϕ is an isomorphism, then there exists ϕ�1 : G1 Ñ G such

that ϕ � ϕ�1paq � a and ϕ�1 � ϕpbq � b.

Example 4.2.12 We saw in Example 4.2.5 that H � t0, 2, 4, 6u is a group

under the operation addition modulo 8. We claim that H is isomorphic to Z4.

Define ϕ : H Ñ Z4 by ϕphq � h

2
. Then ϕ is clearly one-to-one and onto.

Suppose a, b P H. Let a � 2i and b � 2j, where i, j P t0, 1, 2, 3u. Then

ϕpa� bq � ϕp2i� 2jq (Substitution)

� ϕ
�
2pi� jq� (Distributive Property)

� i� j (Definition of ϕ)

� ϕpaq � ϕpbq. (Definition of ϕ)

Thus the homomorphism property holds, and it follows that ϕ is an isomor-

phism by definition, so H � t0, 2, 4, 6u � Z4 as claimed.

Example 4.2.13 Let X be an arbitrary set and consider the set F of all

functions f : X Ñ X, such that f is both one-to-one and onto. Let f P F and

y P X. Then there is some x P X, such that fpxq � y, since f is onto.

Since f is a bijection, there exists f�1 : X Ñ X, such that

f � f�1pyq � fpxq � y
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and

f�1 � fpxq � f�1pyq � x.

Clearly f�1 is one-to-one and onto, so f�1 P F . Suppose there is another

function f 1 P F , such that f 1 � fpxq � x and f � f 1pyq � y. Then

f�f�1pyq � f�f 1pyq ðñ f�1�f�f�1pyq � f�1�f�f 1pyq ðñ f�1pyq � f 1pyq.

By a similar argument,

f 1 � fpxq � x � f�1 � fpxq ðñ f 1pyq � x � f�1pyq.

But y is arbitrary, so f�1 � f 1. Thus each function f P F has a unique inverse

f�1 P F .

Suppose hpxq � x for all x P X. Then h is clearly one-to-one and onto,

so h P F . Note that h � fpxq � hpyq � y and f � hpxq � fpxq � y, so h is the

identity function.

We know that the composition of functions is associative, so we have

associativity in F . Suppose f and g are two functions that are both one-to-one

and onto. Then f � g and g � f are both clearly one-to-one and onto. Thus

the composition of bijections is itself a bijection, so F is closed.

It follows that F is a group under function composition.

Definition 4.2.14 Let X be a set and let f : X Ñ X be a function. Then

a permutation group on X is a subgroup of the set of all functions f that are

both one-to-one and onto. ♦
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Example 4.2.15 Recall that we worked with the rotations and flips of a

square in Example 4.1.7. We want to think about that example in a slightly

different way now. Instead of working with vertices on a square, we want to

consider the set t1, 2, 3, 4u. If we define a function σ by

σp1q � 4

σp2q � 1

σp3q � 2

σp4q � 3,

then we have permuted the four elements. In standard notation, this is given

by

σ �

�
��� 1 2 3 4

4 1 2 3

�
��.

Each column is read from the top down, and it says 1 goes to 4, 2 goes to 1,

3 goes to 2, and 4 goes to 3. This same function written in cycle notation is

σ � p1 4 3 2q.

Then read from left to right, it also says 1 goes to 4, 4 goes to 3, 3 goes to 2,

and 2 goes back to 1.

If we take the vertices of the square from Example 4.1.7 and use cy-

cle notation to denote where each number (vertex) is sent, we will have the
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following eight elements.

ρ0 � p1qp2qp3qp4q

ρ1 � p1 2 3 4q

ρ2 � p1 3qp2 4q

ρ3 � p1 4 3 2q

µ14 � p1 4qp2 3q

µ12 � p1 2qp3 4q

δ24 � p1 3q

δ13 � p2 4q

These eight elements form a subgroup of the symmetric group on 4 elements,

which is denoted S4 and contains twenty-four elements in total. We’ve already

shown that the motions of the square form a group of order 8, and since we

can also write those motions using this notation, it is easy to see that they are

actually isomorphic to this subgroup of S4. This result leads nicely to Cayley’s

Theorem.

Proposition 4.2.16 (Cayley’s Theorem) Every group is isomorphic to a

group of permutations.

The proof of Cayley’s Theorem can be found in [6], but is omitted here.
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4.3 Cyclic Groups and the Greatest Common

Divisor

Example 4.3.1 Let a P G. Then consider xay � tan : n P Zu. Clearly

a0 � e P xay, so xay is nonempty and contains the identity element of G.

If an P xay, then a�n P xay is its unique inverse. Since anam � am�n and

m � n P Z, xay is closed. The associative property holds for elements of xay,

since it holds in G. Thus xay is a subgroup of G.

Definition 4.3.2 Let G be a group and let a P G. Then tan : n P Zu is called

the cyclic subgroup of G generated by a, and is denoted xay. If xay � G, then

we say that a generates G and is a generator for G, and G is called a cyclic

group. ♦

Lagrange’s Theorem says that the order of a subgroup divides the order

of the group, so |xay| divides |G|, since xay is a subgroup of G.

Theorem 4.3.3 Let G be a cyclic group with generator a. If the order of G

is infinite, then G is isomorphic to xZ,�y. If G has finite order n, then G is

isomorphic to xZn,�ny.

Proof: Assume that G is a cyclic group with generator a.

Suppose first that the order of G is infinite. Then there does not exist

m P N such that am � e. We claim that if j � k, for j, k P Z, then aj � ak.
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Suppose that aj � ak, and assume without loss of generality that j ¡ k. Then

we have

aj � ak

ðñ aja�k � e (Right multiplication by a�k)

ðñ aj�k � e. (Properties of exponents)

But G has infinite order and j � k P N, thus it can’t be true that aj�k � e,

so it must be the case that whenever j and k are distinct, aj and ak are also

distinct. This means that every element in G can be expressed as am for a

unique value of m in the integers. Thus we can define a map ϕ : G Ñ Z by

ϕpaiq � i for i P Z. This is everywhere defined by the given map and uniquely

defined based on our work above, so ϕ is a well defined function.

Now for aj, ak P G,

ϕpaj �G akq � ϕpaj�kq (Binary operation on G)

� j � k (Definition of ϕ)

� ϕpajq � ϕpakq, (Definition of ϕ)

so ϕ is a homomorphism.

Define a map ϕ : Z Ñ G by ϕ�1piq � ai. Since G is infinite, this map

is everywhere defined. It is also clearly uniquely defined by its definition, so

ϕ�1 is well defined, and is thus a function. Since

ϕ � ϕ�1piq � ϕpaiq � i
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and

ϕ�1 � ϕpaiq � ϕ�1piq � ai,

φ is both one-to-one and onto. It follows that ϕ is an isomorphism, so G � Z.

Recall that G � xay and suppose now that G has finite order n. Then

an � e. Let s P Z. By the division algorithm, s � nq � r, where 0 ¤ r   n.

Thus

as � anq�r � anqar � panqqar � eqar � ar.

Suppose without loss of generality that j, k P Z such that 0 ¤ k   j   n. As

we saw previously, if aj � ak, then aj�k � e, and since 0 ¤ k   j   n, we have

0   j�k   n. But since a is a generator of G, n is the smallest positive integer

such that an � e, thus it can’t be the case that aj � ak for distinct values of

j and k. It follows that the elements a0, a1, a2, . . . , an�1 are all distinct. Since

there are n such elements, they must be all of the elements in G, because

|G| � n. As we did above, define a map ϕ : G Ñ Zn by ϕpaiq � i, where

i P t0, 1, 2, . . . , n� 1u. This map is well-defined, as shown previously.

Let aj, ak P G. Then

ϕpaj �G akq � ϕpaj�kq (Binary operation on G)

� j �n k (Definition of ϕ)

� ϕpajq �n ϕpakq, (Definition of ϕ)

thus the homomorphism property holds for ϕ.
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Define a map ϕ�1 : Zn Ñ G by ϕ�1piq � ai. Since G is cyclic, this map

is everywhere defined. It is clear that it is also uniquely defined, and thus is a

well defined function. Since

ϕ � ϕ�1piq � ϕpaiq � i

and

ϕ�1 � ϕpaiq � ϕ�1piq � ai,

ϕ is both one-to-one and onto, and it follows that ϕ is an isomorphism. Thus

G � Zn.

Example 4.3.4 Let n � 4. Then x4y � t. . . ,�8,�4, 0, 4, 8, . . . u has infinite

order. The group x4y is denoted 4Z, and since every element in 4Z is an

integer, 4Z � Z. We can define ϕ : 4Z Ñ Z by ϕp4kq � k. It is easy to see

that ϕ is both one-to-one and onto, so by Theorem 4.3.3, 4Z � Z.

Example 4.3.5 xZn,�ny is a cyclic group, because 1 is always a generator,

for any n P N. To illustrate this, suppose n � 3. Then 1 �3 1 � 2 and

1�3 1�3 1 � 3 � 0 mod 3, so x1y � Z3.

Notice also that 2�3 2 � 4 � 1 mod 3 and 2�3 2�3 2 � 6 � 0 mod 3,

so 2 is a generator of Z3 as well.

Suppose now that n � 4. 1 is a generator for Z4, but now we have

2 �4 2 � 0 mod 4, 2 �4 2 �4 2 � 2 mod 4, and 2 �4 2 �4 2 �4 2 � 0 mod 4,

so 2 is not a generator. The difference here is that 2 and 4 are not relatively
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prime. If we look at 3, we see that 3 �4 3 � 2 mod 4, 3 �4 3 �4 3 � 1 mod 4,

and 3�4 3�4 3�4 3 � 0 mod 4, so x3y � Z4 � x1y.

In general, 1 will always generate Zn, and the other generators will be

the positive integers less than and relatively prime to n.

Example 4.3.6 In Chapter 3, we made the comment that xZn,�ny, xZn, 9�ny,

and xZn,�ny are all isomorphic to each other. We have seen that xZn, 9�ny and

xZn,�ny both have order n, so by Theorem 4.3.3, each of the two groups is

isomorphic to xZn,�ny, and thus they are isomorphic to each other.

Example 4.3.7 Recall that in Example 4.1.3, we showed that the nth roots

of unity form a group. We also mentioned that ζ1 generates Un for any n P N,

so Un is a cyclic group.

Theorem 4.3.8 A subgroup of a cyclic group is cyclic.

Proof: Let xay � G and let H be a subgroup of G. We must consider

two cases.

Case 1: H is the trivial subgroup.

Clearly H � teu � xey, so H is cyclic.

Case 2: H is non-trivial.

Since H � teu, G � xay, and H is closed under taking inverses, there is some

n P N such that an P H. Let m be the smallest such n.
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We claim that H � xamy, so we must show that every h P H is some

power of am. Since am P H, xamy � H, thus we need only show that H � xamy.

Let h1 P H. Since H ¤ G, h1 P G as well, so h1 � an for some n P N.

By the division algorithm, n � mq � r for some q, r P Z, where 0 ¤ r   m.

Then

an � amq�r � amqar � pamqqar.

But an � pamqqar ðñ ar � anpamq�q. Now, H is a group, and an, am P H,

so pamq�q and anpamq�q are both contained in H as well. Thus ar P H. But m

was the smallest positive integer such that am P H and 0 ¤ r   m, so r � 0.

Hence n � mq, and

h1 � an � amq � pamqq,

so h1 is a power of am. It follows that H is cyclic.

Example 4.3.9 Let a, b P Z� and consider S � tar � bs : r, s P Zu. Clearly

S � Z, and if r � 0 and s � 0, then 0 P S, so S is nonempty and contains

the additive identity. Also, for any ar� bs P S, the element �par� bsq P S as

well, so each element has a unique inverse in S. Closure under addition and

the associative property come along for free from Z, thus S is a subgroup of

Z, and by Theorem 4.3.8, S is cyclic. Hence, there is some d P S such that

xdy � tar � bs : r, s P Zu.

Definition 4.3.10 Let a and b be two positive integers. The positive genera-

tor d of the cyclic group xdy � tar � bs : r, s P Zu under addition is called the
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greatest common divisor of a and b. This will be denoted by d � gcdpa, bq. If

d � 1, then a and b are said to be relatively prime. ♦

We defined gcdpa, bq in Chapter 2. We state it as a theorem now, and

prove that the two conditions must hold if gcdpa, bq � d, for some d.

Theorem 4.3.11 Let a, b P Z�. Then gcdpa, bq � d if and only if

1. d � a and d � b

2. if c � a and c � b, then c � d.

Proof: Suppose gcdpa, bq � d. If r � 1 and s � 0, then a P xdy, so

d � a. Similarly d � b.

Now suppose that c � a and c � b. Then cj � a and ck � b, for some

j, k P Z. Since d P xdy, there exist r, s P Z such that d � ar � bs, so

d � ar � bs

� cjr � cks (Substitution)

� cpjr � ksq, (Distributive Property)

which implies that c � d by definition of divides.

Finally, suppose that the two conditions hold. Then d is a common

divisor of both a and b, and if c is another a common divisor of a and b,

c � d. So we have ck � d, for some k P Z. Since c and d are both positive
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by definition, and k � 0, this implies that c ¤ d. Thus, if d satisfies both

properties, it must be the greatest common divisor of a and b.

Theorem 4.3.12 If d � ab and gcdpa, dq � 1, then d � b.

Proof: Since gcdpa, dq � 1, there exist integers x and y such that

dx� ay � 1, by Theorem 4.3.11. Multiplying this equation by b on both sides

yields

bdx� bay � b

ðñ dbx� aby � b (Commutative Property)

ðñ dbx� dky � b (d � ab ðñ dk � ab for some k P Z)

ðñ dpbx� kyq � b. (Associativity Property)

Since the integers are closed under addition and multiplication, bx � ky P Z,

so by the definition of divides, d � b.

Lemma 4.3.13 If gcdpa,mq � 1 and a � b mod m, then gcdpb,mq � 1.

Example 4.3.14 Let a � 2, b � 11, and m � 9. Then gcdp2, 9q � 1 and

11 � 2 mod 9, as required. Since 11 is prime, gcdp11, 9q � 1.

Now let a � 6, b � 2, and m � 4. Then 6 � 2 mod 4, but this time

gcdp6, 4q � 2 � 1, and gcdp2, 4q � 2 � 1 as well. Thus, it is a necessary

condition to have gcdpa,mq � 1.
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Proof: Assume gcdpa,mq � 1. Then there exist x, y P Z such that

ax � my � 1. Assume also that a � b mod m. Then a � b � km for some

k P Z, and

ax�my � 1

ðñ pb� kmqx�my � 1 (Substitution)

ðñ bx�mkx�my � 1 (Distributive Property)

ðñ bx� pkx� yqm � 1, (Distributive Property)

so gcdpb,mq � 1, by Theorem 4.3.11.

Definition 4.3.15 (Euler’s ϕ-function) Let n be a positive integer. Then

ϕpnq denotes the number of positive integers k such that 1 ¤ k ¤ n and

gcdpk, nq � 1. This ϕ is called Euler’s ϕ-function. ♦

Example 4.3.16 Let n � 6. The positive integers a, such that 1 ¤ a ¤ 6

and gcdpa, 6q � 1 are 1 and 5, so ϕp6q � 2.

Let n � 7. Since 7 is prime, every positive integer less than 7 is

relatively prime to it, so ϕp7q � 6. In general, if p is prime, ϕppq � p� 1.

Example 4.3.17 Let Z�
n � ta : gcdpa, nq � 1u. We claim that Z�

n is a group

under the operation multiplication modulo n. Suppose a, b P Z�
n. Then we
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have ax1 � ny1 � 1 and bx2 � ny2 � 1, by Theorem 4.3.11. Thus

ax1 � bx2 � 1� ny2 � ny1 � n2y1y2 (Multiply the equations together)

ðñ abpx1x2q � 1� npy1 � y2 � ny1y2q (Commutative, Distributive Laws)

ðñ abpx1x2q � npy1 � y2 � ny1y2q � 1 (Arithmetic)

ðñ gcdpab, nq � 1. (Theorem 4.3.11)

From the work above, we can see that ab P Z�
n whenever a, b P Z�

n, so Z�
n is

closed under multiplication modulo n.

Clearly gcdp1, nq � 1, so 1 P Z�
n, thus the multiplicative identity is an

element of Z�
n.

Choose a P Z�
n. Then a � 0, gcdpa, nq � 1, and ax � ny � 1, for some

x, y P Z. This implies that ax � 1 � ny, so ax � 1 mod n. But ax � ny � 1

also implies that gcdpx, nq � 1. Thus both x and a are relatively prime to n,

so x P Z�
n, and the multiplicative inverse of a is x.

Since each a P Z�
n is an integer, and the operation is ordinary multipli-

cation modulo n, the associative property holds automatically, and it follows

that xZ�
n, �y is a group. Since every element in Z�

n is less than and relatively

prime to n, there are ϕpnq elements in Z�
n. We call Z�

n the group of units. The

order of the group of units is ϕpnq.

In general, Z�
n is not cyclic, although it is for certain values of n. For

example, Z�
8 � t1, 3, 5, 7u is not cyclic, since 32 � 52 � 72 � 1 mod 8, so none
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of the elements generate the entire group. On the other hand, Z�
6 � t1, 5u is

cyclic, since 51 � 5 and 52 � 1 mod 6. If p is prime, then Z�
p is always a cyclic

group [6].

Example 4.3.18 Suppose p is prime. Recall that the pp � 1qst roots of

unity are the p � 1 solutions to the equation xp�1 � 1, and are the elements

t1, ζ1, . . . , ζp�2u. We showed in Example 4.1.3 that Up�1 � t1, ζ1, . . . , ζp�2u is

a cyclic group. We also know from Example 4.3.17 that Z�
p � t1, 2, . . . , p� 1u

forms a cyclic group under multiplication modulo p, and thus there is some ele-

ment γ that generates Z�
p . Both groups have p�1 elements, and Theorem 4.3.3

states that a finite cyclic group of order n is isomorphic to Zn. Thus, Up�1 and

Z�
p are both isomorphic to Zp�1, so they are isomorphic to each other, and the

map ϕ : Z�
p Ñ Up�1 defined by ϕpγiq � ζ i is an isomorphism.

Theorem 4.3.19 If ac � bc mod m and gcdpc,mq � d, then a � b mod pm{dq.

Proof: By definition of congruence, m � pac� bcq ðñ m � cpa� bq.

Thus mk � cpa � bq for some k P Z. Since d � c, d � m, and d � 0, we can

divide both sides of the equation by d. This yields pm{dqk � pc{dqpa � bq, so

pm{dq � pc{dqpa � bq. But gcdpc{d,m{dq � 1, so
m

d
� c

d
, and pm{dq � pa � bq

by Theorem 4.3.12. It follows that a � b mod pm{dq.

Corollary 4.3.20 If ac � bc mod m and gcdpc,mq � 1, then a � b mod m.

Proof: This result follows immediately from Theorem 4.3.19.
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Theorem 4.3.21 Let a P Z and n P N. The following are equivalent.

1. gcdpa, nq � 1.

2. a is a generator of Zn.

3. a has a multiplicative inverse modulo n.

Proof: 1 ñ 2 Assume that gcdpa, nq � 1 and assume without loss of

generality that a   n. Our goal is to show that each element in ta, 2a, . . . , nau

is unique modulo n. Suppose that two of the elements are congruent modulo

n. Then ab � ac mod n, for some b, c P t1, 2, . . . , nu. By Corollary 4.3.20,

b � c mod n. But 1 ¤ b, c ¤ n, which implies that b � c. Therefore, each

of the least residues modulo n of ta, 2a, . . . , nau is unique. Since there are n

such elements, they are a permutation of t0, 1, . . . , n� 1u, and it follows that

a generates Zn.

2 ñ 3 Assume that a is a generator of Zn. Then xay � t0, 1, . . . , n�1u,

which implies that ak � 1 mod n, for some 1 ¤ k ¤ n� 1, since 1 P xay. But

ak � 1 mod n implies that a has a multiplicative inverse modulo n.

3 ñ 1 Assume that a has a multiplicative inverse modulo n. Then

a � a�1 � 1 mod n

ðñ a � a�1 � 1� kn, for k P Z (Definition of congruent)

ðñ a � a�1 � kn � 1 (Arithmetic)

ðñ gcdpa, nq � 1. (Theorem 4.3.11)
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It follows that the three statements are equivalent.

Lemma 4.3.22 If gcdpa, nq � 1 and r1, r2, . . . , rϕpnq are the positive integers

less than and relatively prime to n, then the least residues modulo n of

ar1, ar2, . . . , arϕpnq are a permutation of r1, r2, . . . , rϕpnq.

Proof: This is a direct consequence of the fact that Z�
n is a group. The

permutation is just one row of the group table, and as such, each element is

unique.

Theorem 4.3.23 (Fermat’s Little Theorem) If p is prime and

gcdpa, pq � 1, then

ap�1 � 1 mod p.

Proof: Suppose that gcdpa, pq � 1 for some a P Z and some prime p.

Without loss of generality, assume that a P Z�
p . If this is not the case, then

a � pq� r for some q, r P Z, which implies that a � r mod p, and we can just

work with r instead. Since the order of Z�
p is p� 1, ap�1 � 1 mod p.

Example 4.3.24 Let p � 3 and a � 8. Then gcdp3, 8q � 1. We want to

examine ap�1 modulo p, so we have 83�1 � 64 � 1 mod 3. The important

things to note are that 3 is prime and 8 and 3 are relatively prime, which gives

us the result we are looking for.

We repeat this example with p � 2 and a � 8. Again 2 is prime, but
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now gcdp2, 8q � 2 and 82�1 � 8 � 0 mod 2. In this example, 2 and 8 are not

relatively prime, and we do not get the desired result.

Now suppose p � 9 and a � 2. 9 is not prime, but gcdp9, 2q � 1. This

time 29�1 � 256 � 4 mod 9. In this third example, 2 and 9 are relatively

prime, but 9 is not prime, so the result is not 1.

Corollary 4.3.25 If p is prime, then ap � a mod p for all a.

Proof: If a � 0, then clearly ap � 0 mod p. Suppose that a � 0. If

gcdpa, pq � 1, then

ap�1 � 1 mod p (Fermat’s Little Theorem)

ðñ ap � a mod p, (Multiplication by a)

as desired.

Theorem 4.3.26 (Euler’s Theorem) Suppose n ¥ 1 and gcdpa, nq � 1.

Then aϕpnq � 1 mod n.

Proof: Let a P Z such that gcdpa, nq � 1. Then without loss of

generality, a P Z�
n. Since the order of Z�

n � ϕpnq, aϕpnq � 1 mod n.

Example 4.3.27 Let a � 7 and n � 6. Examination of 7ϕp6q modulo 6 yields

72 � 49 � 1 mod 6.

Definition 4.3.28 Let a P Z�
n. Then if xay � Z�

n, we say that a is a primitive

root of n, and ta, a2, . . . , aϕpnqu is a permutation of Z�
n. ♦
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Example 4.3.29 Recall that Z�
n is the group of units, and the group operation

is multiplication modulo n. The elements in Z�
n are the elements that have a

multiplicative inverse modulo n.

Consider Z�
19. Our goal is to find a generator of this group, if one exists.

k 1 2 3 4 5 6 7 8 9

2k mod 19 2 4 8 16 13 7 14 9 18

k 10 11 12 13 14 15 16 17 18

2k mod 19 17 15 11 3 6 12 5 10 1

It can easily be seen from the table that 2 generates every element of

Z�
19, thus x2y � Z�

19, so Z�
19 is a cyclic group. By similar calculations, the other

generators of the group are 3, 10, 13, 14, and 15. Each of these generators is

a primitive root of 19, by Definition 4.3.28.

Note that there are six generators of Z�
19 and since Z�

19 contains eighteen

elements, Z�
19 � Z18, where Z18 has ϕp18q � 6 generators.
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Chapter 5

Ring Theory

Chapter 5 serves as a review of ring theory and examines at various properties

of rings and fields. We begin with the definition of a ring and then provide

a list of small definitions that pertain to rings. We give a more rigorous

definition of prime in this section, and then examine the notion of irreducible.

We define Unique Factorization Domains and then explore specific rings and

fields. We conclude the first section with a proof of the Eisenstein Criterion

that deals with reducibility of polynomials with integer coefficients over the

rational numbers.

In Section 2, we define subrings and ideals, and then spend some time

reviewing ring homomorphisms and isomorphisms. We look at the definitions

of kernel and factor rings and then prove the Fundamental Homomorphism

Theorem for rings. We wrap up the chapter with a look at prime and maximal
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ideals and several related theorems.

Section 3 begins by defining a Euclidean domain and then looking at

division algorithms for specific rings, before defining the Euclidean algorithm.

We also establish the Euclidean algorithm for the ring of Gaussian integers,

Zris.

The fourth section is devoted to an in-depth examination of the ring of

Eisenstein integers, Zrωs. Because this ring plays such an important role in

cubic reciprocity, it is crucial that we develop a solid foundation to use later.

We define the specific complex conjugate for an Eisenstein integer and then

define the norm in this setting. We develop a Euclidean algorithm for Zrωs

as well, and then conclude the section with a theorem that establishes the six

units in this ring.

The final section of Chapter 5 defines algebraic numbers and algebraic

integers and then states a proposition that is given without proof in this thesis.

We conclude with a theorem about algebraic integers that we will need later.

Throughout this chapter, we have tried to tie examples back into previous

work, to forge connections and develop content that will be used in the future.

5.1 Rings

Definition 5.1.1 A ring xR,�, �y is a set R together with two binary opera-

tions, � and �, defined on R such that the following axioms are satisfied:
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1. xR,�y is an abelian group.

2. Multiplication is associative.

3. For all a, b, c P R,

(a) a � pb� cq � pa � bq � pa � cq (left distributive property), and

(b) pa� bq � c � pa � cq � pb � cq (right distributive property). ♦

Example 5.1.2 Consider the set Zn � t0, 1, . . . , n� 1u together with the op-

erations addition and multiplication modulo n. Recall that in Example 4.1.2,

we showed that xZn,�y was an abelian group. The associative and distribu-

tive properties hold when working in the integers under multiplication, so they

hold in Zn as well. Thus xZn,�, �y is a ring, where the operations are both

modulo n.

The following is a collection of small definitions concerning rings. They

have been put together for the sake of organization and compactness.

Definition 5.1.3 Let R be a ring. The following definitions apply to R.

• R is a commutative ring if the multiplication in R is commutative.

• If R has a multiplicative identity element, then R is a ring with unity

and the multiplicative identity element 1 is called unity. Note that 1 is

just the notation for the identity.
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• If a, b P R are both nonzero and a � b � 0, then a and b are called zero

divisors or divisors of zero.

• An integral domain is a commutative ring with unity 1 � 0 containing

no zero divisors.

• If R is a ring with unity 1 � 0, an element a P R has a multiplicative

inverse a�1 if there exists an a�1 P R such that aa�1 � 1 � a�1a. If such

an a�1 exists, it is unique.

• If R is a ring with unity 1 � 0, an element u P R is a unit of R if it has

a multiplicative inverse in R.

• If R is a ring, a, b P R are associates if a � bu, where u is a unit in R.

• If every nonzero element of an integral domain is a unit, then R is a field.

• If there exists a positive integer n, such that n � a � 0 for all a P R, then

the least such positive integer is the characteristic of R. If no such n

exists, then R is characteristic 0. ♦

Theorem 5.1.4 Let R be a ring and let a, b, c P R with a � 0. Then the

cancellation laws hold if and only if R contains no zero divisors.

1. If ab � ac, then b � c. (Left cancellation law)

2. If ba � ca, then b � c. (Right cancellation law)
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Proof: Suppose that the cancellation laws hold in R. Suppose also

that ab � 0 for some a, b P R. If a � 0, then a � b � a � 0 implies that b � 0.

Likewise, if b � 0, then a � b � 0 � b implies that a � 0. Thus, there are no zero

divisors in R if the cancellation laws hold.

Suppose now that R contains no divisors of zero, and suppose also that

ab � ac, where a � 0. Then

ab � ac

ðñ ab� ac � 0 (Subtraction Property of Equality)

ðñ apb� cq � 0, (Distributive Property)

but a � 0 and R has no zero divisors, so b� c � 0, which implies that b � c.

Suppose that ba � ca, where a � 0. By a symmetric argument, we

have b � c � 0, so again b � c. It follows that if R has no zero divisors, the

cancellation laws hold.

Probably the most familiar ring to most of us is Z. Since multiplication

is commutative in the integers, Z is a commutative ring. The integer 1 is the

multiplicative identity, so the integers are a ring with unity 1. There are no

zero divisors in the integers, so the cancellation laws hold. Thus by definition,

the integers are an integral domain whose only units are 1 and �1. We will

explore this idea a bit more with the following definitions and examples.

We are now in a position to offer a more rigorous definition of prime

than the one that we have been using up to this point.
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Definition 5.1.5 Suppose p is a nonzero nonunit element of an integral do-

main D. Then p is prime if for all a, b P D, p � ab implies that either p � a or

p � b. ♦

Definition 5.1.6 Let p be a nonzero nonunit element of an integral domain

D. Then p is an irreducible of D if every factorization p � ab in D has the

property that either a or b is a unit. ♦

The definition of prime in this setting is a bit different from what we

are used to, but the definition of irreducible probably looks familiar, as it is

more like our “typical” definition of prime. Because primes are going to play

a huge role in the reciprocity chapters of this thesis, it’s very important that

the notions of prime and irreducible are clear.

Definition 5.1.7 An integral domain D is a unique factorization domain,

abbreviated UFD, if the following conditions are satisfied.

1. Every nonzero, nonunit element of D can be factored into a product of

a finite number of irreducibles.

2. If p1p2 . . . pr and q1q2 . . . qs are two factorizations of the same element of

D into irreducibles, then r � s and the qj can be renumbered so that pi

and qi are associates. ♦

Example 5.1.8 Suppose p is a prime element in a unique factorization do-

main, D. Assume that p � ab, where a, b P D. Then clearly p � ab, so either
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p � a or p � b. Without loss of generality, assume that p � a. Then pk � a for

some k P D. Thus p � ab � pkb. Since D is a ring, the cancellation laws hold,

thus p � pkb implies that 1 � kb, which implies that b is a unit. Thus p is

irreducible, and it follows that if p is a prime element in a unique factorization

domain, then p is irreducible.

Example 5.1.9 Assume that D is a unique factorization domain and suppose

p is irreducible in D. Let a, b P D and assume that p � ab. Then pk � ab for

some k P D. Since D is a unique factorization domain, we can factor ab into a

product of irreducibles, so pk � p1p2 . . . prq1q2 . . . qsu, where u is a unit in D.

But p is irreducible, so p is either one of the pi or one of the qj, which implies

that p � a or p � b, thus p is prime in D. It follows that if p is irreducible in a

unique factorization domain, then p is prime.

Recall that in Chapter 2, we stated the Fundamental Theorem of Arith-

metic. Essentially it said that given any a P Z, where a � �1, a � p1p2 . . . pk

is the unique product of prime numbers, up to ordering and multiplication by

�1. Now that we have seen that prime implies irreducible in a unique factor-

ization domain, this could be restated. If a is a nonzero, nonunit element in a

ring, R, then a � p1p2 . . . pk is the unique product of irreducibles. In each of

the unique factorization domains that we will be working in throughout this

thesis, primes and irreducibles will be the same.

Example 5.1.10 Let a, b, c be elements in a unique factorization domain, D.
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Assume that a is irreducible and suppose that a � bc. Then there exists k P D,

such that ak � bc. Let b � p1p2 . . . pm, c � q1q2 . . . qn, and k � r1r2 . . . rl be

the prime factorizations of b, c, and k. Then a
l¹

i�1

ri �
m¹
i�1

pi

n¹
i�1

qi.

Now each side of the equation is a product of irreducibles in D. Since

factorization in D is unique, a (or a unit multiple of a) must be one of the

irreducible factors on the right hand side of the equation. Thus a � b or a � c,

and a is prime. Hence, if a is an irreducible element in a unique factorization

domain, then a is prime.

Example 5.1.11 Let a P Z, such that a � �1. Then by the Fundamental

Theorem of Arithmetic, a � p1p2 . . . pk is the unique product of k irreducibles.

Since a was chosen arbitrarily, this result holds for any such a P Z. Thus the

integers are a unique factorization domain, by definition.

Theorem 5.1.12 In the ring Zn, the divisors of zero are precisely the nonzero

elements that are not relatively prime to n.

Proof: Let a P Zn, with a � 0. Suppose first that gcdpa, nq � d, where

d � 1. Then

an

d
� an

d
(Identity)

ðñ a
�n
d

	
�
�a
d

	
n (Associative Property)

ðñ a
�n
d

	
� 0 mod n. (Example 3.0.5)
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But a � 0 and
n

d
� 0 since n is nonzero, therefore a is a zero divisor in Zn.

Suppose now that a P Zn and gcdpa, nq � 1. If there is b P Zn such

that ab � 0 mod n, then n � ab. Since gcdpa, nq � 1, we have n � b by

Theorem 4.3.12. But b P t0, 1, . . . , n� 1u, so b � 0, thus a is not a zero divisor

in Zn.

Recall that Theorem 4.3.21 states that gcdpa, nq � 1 if and only if a

has a multiplicative inverse. We know that if a has a multiplicative inverse in

a ring, then a is a unit. Thus the units in a ring can not be zero divisors.

Example 5.1.13 Let p be a prime and consider Zp � t0, 1, . . . , p � 1u. Cer-

tainly xZp,�, �y is a ring, and since the elements are integers, the multiplication

is commutative and the multiplicative identity is the usual integer 1. The el-

ements in Zp are all less than and relatively prime to p, so by Theorem 5.1.12

Zp can contain no zero divisors. Thus Zp is an integral domain by definition.

For any a � 0 P Zp, gcdpa, pq � 1, so by Theorem 4.3.21, a has a multiplicative

inverse. But since we chose a arbitrarily, every nonzero element of Zp has a

multiplicative inverse and thus is a unit. It follows that for any prime p, Zp is

a field.

Corollary 5.1.14 If p is prime, then Zp has no zero divisors.

Proof: This result follows immediately from Example 5.1.13.

We are going to do a fair bit of work with fields in general, but we
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will also need to use the rational numbers, so we use the following example to

establish that Q is a field.

Note that the rational numbers, Q, the real numbers, R, and the com-

plex numbers, C are all fields that we are familiar with.

Example 5.1.15 Recall that in Example 4.1.4, we proved that the Gaussian

Integers, Zris � C form an abelian group. Since multiplication is associative

in C and the distributive laws hold in C, both hold in Zris as well, and it

follows that Zris is a ring.

If we look at Qris instead, then the elements are of the form
a

b
� c

d
i,

where
a

b
,
c

d
P Q. This set is also a subset of the complex numbers, and as such,

all of the properties of C hold. Thus Qris, the Gaussian Rationals, is a ring

under complex addition and multiplication.

Similarly, we saw in Example 4.1.6 that the Eisenstein Integers, Zrωs,

form an abelian group under addition. It is easy to see that Zrωs is closed

under multiplication, since ω2 � �1 � ω. Again, this is a subset of C, so it

also forms a ring.

If we consider Qrωs, where the elements are of the form
a

b
� c

d
ω, with

a

b
,
c

d
P Q, then we have a ring under complex addition and multiplication, and

we call this ring the Eisenstein Rationals.
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5.1.1 Rings of Polynomials

Let F be a field. Then Frxs is the set of all polynomials in x with coefficients

from the field F. For example,
1

2
x2 � 2x � 3

4
and x3 � 5x2 � 2x � 7 are both

contained in Qrxs. Since Q is an abelian group under addition and addition of

polynomials is commutative, Qrxs is abelian under polynomial addition. We

know from experience that polynomial multiplication is associative and that

the distributive laws hold when working with polynomials, thus Qrxs forms a

ring. The fact that Qrxs is a ring isn’t unique to Q, and in fact Frxs forms a

ring for any field F.

We are going to work with rings of polynomials to establish some results

that will be useful later.

Theorem 5.1.16 If fpxq P Frxs is a polynomial of degree n, then fpxq � 0

has at most n roots.

Example 5.1.17 Let fpxq � x2 � 2x � 15. Then fpxq P Qrxs. Using basic

algebra to factor fpxq yields fpxq � px� 3qpx� 5q. Thus

x2 � 2x� 15 � 0

ðñ px� 3qpx� 5q � 0.

But there are no zero divisors in Q, so either x � 3 � 0 or x � 5 � 0. The

first equation yields x � 3, and the second yields x � 5. There are no other

solutions.
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Proof: Let fpxq � anx
n�an�1x

n�1�� � ��a0 be a degree n polynomial

in Frxs. We use induction on n.

Suppose n � 1. Then fpxq � a1x � a0 � 0 has exactly one solution,

namely x � �a0
a1

, which is unique by properties of F.

Assume that the result holds for polynomials of degree n�1 and suppose

that fpxq is a degree n polynomial. There are two possibilities, either fpxq � 0

has no solution, or it has at least one solution.

Suppose first that fpxq � 0 has no solution. Then the result holds,

since 0   n.

Suppose next that fpxq � 0 has at least one solution, and call it r.

Then px � rq is a factor of fpxq, so fpxq � px � rq � gpxq � 0, where gpxq is

a polynomial of degree n � 1. By our inductive assumption, gpxq � 0 has at

most n � 1 solutions, and x � r � 0 has exactly one solution. It follows that

fpxq � 0 has at most n solutions.

Proposition 5.1.18 (Division Algorithm for Polynomials in Frxs) Let

fpxq and gpxq be two polynomials in Frxs, where the degree of gpxq is greater

than 0. Then there are unique polynomials qpxq and rpxq in Frxs, such that

fpxq � gpxq � qpxq � rpxq, where either rpxq � 0 or the degree of rpxq is less

than the degree of gpxq.

This proof is omitted here, but it can be found in [6].

Definition 5.1.19 A nonconstant polynomial fpxq P Frxs is irreducible over
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F, or is an irreducible polynomial in Frxs, if fpxq cannot be expressed as a

product gpxq � hpxq of two polynomials gpxq and hpxq in Frxs both of lower

degree than the degree of fpxq. If fpxq P Frxs is a nonconstant polynomial

that is not irreducible over F, then fpxq is reducible over F. ♦

Note that this definition of irreducible polynomial is analogous to the

definition of irreducible element, since the constant polynomials are the units

in Frxs.

Example 5.1.20 Let fpxq � x2 � 1 P Qrxs. We know that one factorization

of this polynomial is x2� 1 � px� iqpx� iq, but we want to establish that this

factorization is unique. Suppose x2� 1 � px� rqpx� sq for some r, s. Observe

that

x2 � 1 � px� rqpx� sq, for some r, s

� x2 � pr � sqx� rs.

But there is no x term in x2�1, which implies that r�s � 0, and thus r � �s.

We also know that rs � 1, so combining these results implies that

rs � 1

ðñ � r2 � 1 (s � �r)

ðñ r2 � �1 (Multiplication Property of Equality)

ðñ r � �i. (Square Root Property)
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So in this instance, x2 � 1 � px � iqpx � iq is a unique factorization in Crxs.

Since i,�i R Q, x2 � 1 is irreducible in Qrxs.

Proposition 5.1.21 If F is a field and fpxq P Frxs, then fpxq factors uniquely

in Frxs.

This proof is omitted here, but it can be found in [6].

Example 5.1.22 Let fpxq � x3 � 1 P Qrxs. We can use the difference of

cubes factoring method to come up with fpxq � px � 1qpx2 � x � 1q. Thus

fpxq is reducible over Q by definition, and this factorization is unique by

Proposition 5.1.21.

Now we want to examine the second polynomial factor from above, so

let gpxq � x2�x�1 P Qrxs. This factors as gpxq � px�ωqpx�ω2q, which is also

unique, and is thus irreducible over Q, since the complex numbers ω, ω2 R Q.

Recall that we previously defined ω to be the cube root of unity, or a root of

the equation x3 � 1.

Proposition 5.1.23 Let fpxq P Zrxs. Then fpxq is reducible in Zrxs if and

only if it is reducible in Qrxs.

This is stated without proof in this thesis, but the proof can be found

in [6].

Example 5.1.24 If we refer to fpxq � x2 � 1 from Example 5.1.20, we know
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already that it is irreducible over the rationals, but i,�i R Z, so it is also

irreducible over the integers.

Theorem 5.1.25 (Eisenstein Criterion) Let p be a prime. Suppose that

fpxq � anx
n � an�1x

n�1 � � � � � ax� a0 P Zrxs, where

• an � 0 mod p

• ai � 0 mod p for all 0   i   n

• a0 � 0 mod p2.

Then fpxq is irreducible over Q.

Example 5.1.26 Let p � 5 and let fpxq � x3 � 5. Then if we examine the

coefficients, 1 � 0 mod 5, �5 � 0 mod 5, and �5 � 0 mod 25. Clearly 3
?

5 is

one root of fpxq, so x� 3
?

5 is a factor. Polynomial long division reveals that

we can factor fpxq as

fpxq � �
x� 3

?
5
��
x2 � 3

?
5x� 3

?
25
�
,

and we could then use the quadratic formula on the second factor. However,

it’s clear that none of the coefficients are rational, thus fpxq is reducible over

the irrationals, but is irreducible over Q.

Proof: Let p be prime. Suppose that fpxq � anx
n�. . . ax�a0 P Zrxs is

a polynomial such that an � 0 mod p, a0 � 0 mod p2, and each ai � 0 mod p,
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for 0   i   n. By Proposition 5.1.23, if fpxq is reducible in Qrxs, it is also

reducible in Zrxs, so by contraposition, it is sufficient to show that fpxq is

irreducible in Zrxs.

Assume that fpxq is reducible in Zrxs into nontrivial factors, and let

fpxq � gpxq � hpxq be that factorization. Let gpxq � brx
r � � � � � b0 and

hpxq � csx
s � � � � � c0. Then we know that br, cs � 0, r � s � n, and neither

r � 0 nor s � 0, so 0   r, s   n. But a0 � 0 mod p2, which implies that

b0 � 0 mod p and c0 � 0 mod p are not both true, since a0 � b0 � c0.

Suppose without loss of generality that b0 � 0 mod p and c0 � 0 mod p.

We know that an � 0 mod p, so it must be the case that br � 0 mod p and

cs � 0 mod p, since an � br � cs. Let m be the smallest value of i such that

ci � 0 mod p. Then if we examine am, we have

am � b0cm � b1cm�1 � � � � �

$'''&
'''%
bmc0, if r ¥ m

brcm�r, if r   m.

Recall that b0 � 0 mod p and cm � 0 mod p, so am � 0 mod p, since

cm�1, . . . , c0 � 0 mod p. But ai � 0 mod p for 0   i   n, so it must be

the case that m � n. This forces s � n as well, because m was the smallest i

for which ci � 0 mod p, which contradicts the fact that s   n. It follows that

our assumption that fpxq is reducible into nontrivial factors in Zrxs must have

been false, and thus fpxq is irreducible over Z. Hence, by Proposition 5.1.23,

fpxq is also irreducible over Q.
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Lemma 5.1.27 Let F be a field and let fpxq P Frxs. If c P F and fpx� cq is

irreducible in Frxs, then fpxq is irreducible in Frxs.

Proof: Suppose fpxq P Frxs is reducible over F. Then there exist

polynomials gpxq, hpxq P Frxs, such that fpxq � gpxq � hpxq. This also means

that fpx� cq � gpx� cq � hpx� cq, where gpx� cq and hpx� cq have the same

degrees as gpxq and hpxq, respectively. Thus, gpx � cq and hpx � cq are both

nontrivial polynomials, so fpx� cq is reducible over F whenever fpxq is. Thus,

by contraposition, it follows that if fpx� cq is irreducible over F, then fpxq is

irreducible over F.

We see this Lemma at work in the proof of the following theorem.

Theorem 5.1.28 Let p be prime. Then the polynomial

fpxq � xp � 1

x� 1
� xp�1 � xp�2 � � � � � x� 1

is irreducible over Q.

Proof: By Proposition 5.1.23, it is sufficient to show that fpxq is

irreducible over Z. Consider fpx� 1q.

fpx� 1q � px� 1qp � 1

px� 1q � 1
(Substitution)

� pxp � pxp�1 � � � � � px� 1q � 1

x
(Binomial Expansion Theorem)

� xp�1 � pxp�2 � � � � � p. (Polynomial division)
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Recall that by the Binomial Expansion Theorem, the coefficients of every term

in the final polynomial above are of the form

�
p

k



� p!

k!pp� kq! �
p � pp� 1q!
k!pp� kq! � p � pp� 1q!

k!pp� kq! ,

which implies that p divides every coefficient except the first one, which is 1.

So since 1 � 0 mod p and p � 0 mod p2, the conditions are met to apply Eisen-

stein’s Criterion. Thus fpx � 1q is irreducible over Q, and by Lemma 5.1.27,

fpxq is irreducible over Q as well.

Recall from our work with roots of unity that ω, the cube root of unity,

is a root of ppxq � x3 � 1. In fact, the three roots of this polynomial are ω,

ω2, and 1. In the theorem, we started with the polynomial qpxq � xp � 1,

which has the pth root of unity as one of its roots. In fact, the p roots are

1, ζp�1, ζp�2, . . . , and ζ, where ζ is the pth root of unity.

After dividing xp�1 by x�1, we are left with fpxq � xp�1�� � ��x�1,

which has ζp�1, ζp�2, . . . , and ζ as its roots. Since each of these is a complex

number, it should make sense that this polynomial is not reducible over Q.

5.2 Subrings and Ideals

Definition 5.2.1 Let R be a ring whose binary operations are � and �. Let

H be a subset of R. Then H is a subring of R if the following properties hold.

1. xH,�y is an abelian group.
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2. If a, b, c P H, a � pb � cq � pa � bq � c.

3. For all a, b, c P H,

a � pb� cq � pa � bq � pa � cq (Left Distributive Law) and

pa� bq � c � pa � cq � pb � cq (Right Distributive Law). ♦

In general, to prove that H is a subring of R, it is only necessary to

show that H is closed under addition and multiplication, and that H is an

abelian group under addition. The associative and distributive laws hold from

the ring R.

Recall that in Definition 4.2.11, we introduced homomorphisms and iso-

morphisms. The definition deliberately referred to algebraic binary structures

in general, because these morphisms apply to rings as well as groups. The

only real difference between homomorphisms of groups and rings is that when

working with rings, the homomorphism property must hold under multiplica-

tion as well as addition. In other words, for all a, b P R, ϕpa� bq � ϕpaq�ϕpbq

and ϕpabq � ϕpaqϕpbq.

We previously showed that Zn is a ring under the operations addition

and multiplication modulo n. We now revisit the function LRn that was

introduced earlier.

Example 5.2.2 Recall the function LRn that was defined in Chapter 3. We

said that LRn : Z Ñ Zn, where LRnpaq � r and r is the remainder left upon
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division of a by n. We saw previously that for a, b P Z,

LRnpa� bq � LRnpaq �n LRnpbq.

Let a � nq1�r1 and b � nq2�r2, by the division algorithm for integers.

Then ab � npnq1q2 � q1r2 � q2r1q � r1r2, so

LRnpabq � LRnpr1r2q (Definition of LRn)

� LRn

�
LRnpaqLRnpbq

�
(Substitution)

� LRnpaq �n LRnpbq, (Definition of LRn)

which is in Zn. Thus LRn : ZÑ Zn is a ring homomorphism.

Theorem 5.2.3 Let H be a subring of the ring R. Multiplication of additive

cosets of H is well defined by the equations

pa�Hqpb�Hq � ab�H and pH � aqpH � bq � H � ab

if and only if ah, hb P H for all a, b P R and h P H.

Proof: Suppose first that multiplication of additive cosets of H is well

defined by the given equations. Let a P R and consider the coset product

pa�Hqp0�Hq. If we take a P pa�Hq and 0 P p0�Hq, we have

pa�Hqp0�Hq � a0� aH �H0�HH (Substitution)

� 0�H (H is closed)

� H. (Additive Identity)
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If we choose h P H instead of 0, then

pa�Hqph�Hq � ah� aH �Hh�HH � ah�H,

so ah P H for all h P H, since multiplication is well defined. A similar argument

using p0�Hqpb�Hq shows that hb P H for all h P H.

Suppose that ah, hb P H for all a, b P R and all h P H. Let h1, h2 P H.

Then a � h1 and b � h2 are representatives of the cosets a � H and b � H

containing a and b respectively. Multiplying these representatives together

yields

pa� h1qpb� h2q � ab� ah2 � h1b� h1h2.

But ah2 P H, h1b P H, and h1h2 P H, so pa � h1qpb � h2q P ab � H. By a

symmetric argument, ph1�aqph2�bq P H�ab. Thus multiplication of additive

cosets is well defined when H is a subring of R.

Definition 5.2.4 An additive subgroup N of a ring R satisfying the proper-

ties

aN � N and Nb � N for all a, b P R

is called an ideal. ♦

This definition of an ideal means that we could reword Theorem 5.2.3

to state that multiplication of additive cosets of H is well defined if and only

if H is an ideal.
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Example 5.2.5 Z8 forms a ring, and H � t0, 2, 4, 6u is a subgroup of Z8

under addition modulo 8, by Example 4.2.2. Suppose a P Z8 and b P H. Then

ab is even, since b is, so ab P H. Similarly, ba P H, so H is an ideal of Z8.

Definition 5.2.6 Let ϕ : RÑ R1 be a ring homomorphism. The subring

ϕ�1r01s � tr P R : ϕprq � 01u � kerpϕq

is called the kernel of ϕ. ♦

The kernel of any homomorphism is just the set of all elements in the

first structure that get mapped to the additive identity of the second structure.

Example 5.2.7 Consider the ring homomorphism LRn : Z Ñ Zn. By the

definition of kernel, kerpLRnq � ta P Z : ϕpaq � 0u. Recall that Zn, contains

only the elements t0, 1, . . . , n � 1u, so all of the integers that are multiples of

n are equivalent to 0 modulo n. Thus kerpLRnq � tkn : k P Zu.

Being able to work with the kernel of a homomorphism can be very

handy at times. It can sometimes be tricky to show that a homomorphism is

one-to-one, but showing that the kernel contains only the identity element is

another way to establish one-to-oneness.

Theorem 5.2.8 Let N be an ideal of a ring R. Then γ : RÑ R{N given by

γpxq � x�N is a ring homomorphism and kerpγq � N .
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Proof: γ is a function, so we need only show that it is also a homo-

morphism.

γpr � sq � pr � sq �N (Definition of γ)

� pr �Nq � ps�Nq (Addition of cosets)

� γprq � γpsq (Definition of γ)

and

γprsq � prsq �N (Definition of γ)

� pr �Nqps�Nq (Multiplication of cosets)

� γprqγpsq. (Definition of γ)

Thus the homomorphism property holds for both addition and multiplication,

and it follows that γ is a homomorphism. Since N � r0s and homomorphisms

always map identity elements to identity elements, clearly kerpγq � N .

Theorem 5.2.9 (Fundamental Homomorphism Theorem) Suppose that

ϕ : R Ñ R1 is a ring homomorphism with kerpϕq � H. Then the additive

cosets of H form the factor ring R{H whose binary operations are defined by

choosing representatives. That is, the sum of two cosets is defined by

pa�Hq � pb�Hq � pa� bq �H,

and the product of two cosets is defined by

pa�Hqpb�Hq � pabq �H.
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The map µ : R{H Ñ ϕrRs defined by µpa � Hq � ϕpaq is an isomorphism

and if γ : R Ñ R{H is the homomorphism given by γprq � r � H, then

ϕprq � µγprq for each r P R.

R R1

R

H

γ µ

ϕ

Proof: Let h1, h2 P H. Consider pa�h1q P a�H and pb�h2q P b�H.

pa� h1q � pb� h2q � pa� bq � ph1 � h2q.

We know from group theory that addition is well defined if and only if xH,�y

is abelian, which we have by definition. Also, we know from Theorem 5.2.3

that coset multiplication is well defined if and only if H is an ideal. Thus it is

sufficient to show that kerpϕq � H is an ideal of R.

Let a P kerpϕq and r P R. Then we know that ϕpaq � 0, and we need

to show that ra P kerpϕq.

ϕpraq � ϕprqϕpaq (Homomorphism Property)

� ϕprq � 01 (a P kerpϕq)

� 01,
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so ra P kerpϕq as required, and kerpϕq is an ideal, so coset multiplication is

well defined.

It remains to show that R{H is a ring. We’ve already shown that R{H

is closed under addition and multiplication, and since xR,�y is an abelian

group, xR{H,�y is as well. Thus, we need only show that multiplication is

associative and that the left and right distributive laws hold.

Let a, b, c P R and h1, h2, h3 P H. Then

�pa� h1qpb� h2q
�pc� h3q

� pab� ah2 � h1b� h1h2qpc� h3q (Distributive Property)

� abc� abh3 � ah2c� ah2h3 � h1bc� h1bh3 � h1h2c� h1h2h3

(Distributive Property)

� pa� h1qpbc� bh3 � h2c� h2h3q (Distributive Property)

� pa� h1q
�pb� h2qpc� h3q

�
, (Distributive Property)

and multiplication is associative.

Finally, for a, b, c P R and h1, h2, h3 P H, we have

pa� h1q
�pb� h2q � pc� h3q

�
� pa� h1qpb� c� h2 � h3q

� ab� ac� ah2 � ah3 � h1b� h1c� h1h2 � h1h3 (Distributive Property)

� ab� ah2 � h1b� h1h2 � ac� ah3 � h1c� h1h3 (Commutativity)

� pa� h1qpb� h2q � pa� h1qpc� h3q, (Distributive Property)
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so the left distributive law holds. A similar calculation shows that the right

distributive law holds as well, and it follows that R{H is a ring, as desired.

Now we need to examine the map µ that is described in the hypothesis.

We have µ : R{H Ñ ϕrRs defined by µpa � Hq � ϕpaq. This is everywhere

defined by the given map, so suppose pa�Hq � pb�Hq. From group theory,

we know that pa �Hq � tx : ϕpxq � ϕpaqu � ras. So since the cosets ras and

rbs are equal, b P pa �Hq. Now, µ
�ras� � ϕpaq and µ

�rbs� � ϕpbq, and since

b P pa�Hq, ϕpbq � ϕpaq, so µ is uniquely defined, and is thus well defined.

We need to show that the homomorphism properties hold for µ. Sup-

pose a, b P R. Then

µpa� bq � ϕpa� bq � ϕpaq � ϕpbq � µpaq � µpbq

and

µpabq � ϕpabq � ϕpaqϕpbq � µpaqµpbq,

so µ is a ring homomorphism.

To show that µ is one-to-one, we will examine kerpµq. Suppose that for

some ras P R{H, µ
�ras� � 0. Then

µ
�ras� � 0

ðñ ϕpaq � 0 (Definition of µ)

ðñ a P H (Definition of kerpϕq)
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But ras is the zero coset when a P H, so ras is the identity in R{H, and µ is

one-to-one.

To show that µ is also onto, let ϕprq be an arbitrary element in ϕrRs.

Then r � H P R{H and µpr � Hq � ϕprq by the definition of µ, so µ is

onto. It follows that µ is an isomorphism as desired. By Theorem 5.2.8, γ is

a homomorphism, so ϕprq � µγprq for each r P R.

Example 5.2.10 Let ϕ : Z Ñ Zn be as in Example 5.2.7. Let a P Z, so by

the division algorithm, a � nq�r P Z, and ϕpaq � r. From our previous work,

we know that ϕ is a ring homomorphism with kerpϕq � tkn : k P Zu � nZ.

So by the Fundamental Homomorphism Theorem, µ is an isomorphism,

Z Zn

Z
nZ

γ µ

ϕ

which implies that
Z
nZ

� Zn.

Definition 5.2.11 An ideal N � R in a commutative ring R is a prime ideal

if ab P N implies that either a P N or b P N for a, b P R. ♦

Our current definition of a prime element of an integral domain bears

a striking similarity to the definition of prime ideal. Recall that our definition
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of prime says that if p � ab, then either p � a or p � b. We can relate this to

the Gaussian integers, since we know that 2 � p1 � iqpi � iq, but 2 � p1 � iq

and 2 � p1� iq.

Example 5.2.12 Let n � 12. Then 12Z is an ideal of Z and 12 P 12Z.

However, neither 3 nor 4 is an element of the ideal since it contains only

integer multiples of 12, thus 12Z is not a prime ideal.

Suppose now that n P N is prime. Then nZ is an ideal of Z. Suppose

ab P nZ, where a, b P Z. Then ab � kn, for some k P Z, so
ab

n
� k, which is

an integer, and at least one of either a or b must have been a multiple of n to

begin with since n is prime, which means that either a P nZ or b P nZ.

Theorem 5.2.13 Let R be a commutative ring with unity, and let N � R be

an ideal in R. Then R{N is an integral domain if and only if N is a prime

ideal in R.

Proof: ñ Suppose R{N is an integral domain. Let a, b P R. If

ab P N , then rabs � rasrbs � r0s, which implies that either ras � r0s or

rbs � r0s. This in turn implies that either a P N or b P N , and it follows that

N is a prime ideal.

ð Suppose N is a prime ideal and rasrbs � r0s. Then rabs � r0s,

which implies that ab P N . But N is a prime ideal, so either a P N or b P N ,

which implies that ras � r0s or rbs � r0s, and it follows that R{N is an integral

domain.
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Example 5.2.14 Consider ϕi : Zrxs Ñ C. ϕi is an evaluation homomor-

phism, and it basically replaces each x in a polynomial with i.

The kernel of ϕi is the set of all polynomials in Zrxs that are mapped

to 0 P C. Thus it is the set of all polynomials with integer coefficients that

have i as a root. Since complex roots of polynomials that have real coefficients

come in conjugate pairs, if i is a root, then �i is also a root. If i and �i are

roots of a polynomial in Zrxs, then it follows that x2 � 1 is a factor of the

polynomial, thus we can denote the kernel of ϕi by

kerpϕiq �
 
P pxq � px2 � 1q : P pxq P Zrxs(.

But this is the ideal generated by x2 � 1, which is denoted xx2 � 1y. The

polynomial of smallest degree in this set is x2�1 itself, since x2�1 is irreducible

in Zrxs, and so we can say that the coset containing x2 � 1, is equal to the

zero coset, or rx2 � 1s � r0s. So

rx2 � 1s � r0s

ðñ rx2s � r�1s

ðñ rxs behaves like
?�1.

In other words, in this setting, x � ?�1, which implies that x2 � �1. Now,

if we look at
Zrxs

xx2 � 1y , we can essentially replace every x2 that appears in any

polynomial in Zrxs with �1, thus the cosets in
Zrxs

xx2 � 1y are all of the form

ra� bxs.
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But if ϕi replaces each leftover x with an i, then for any representative

of ra � bxs P Zrxs
xx2 � 1y , we have µ

�ra � bxs� � ϕipa � bxq � a � bi. Thus

the image of ϕi is given by ta � bi : a, b P Zu � C. The result is that

Zrxs
xx2 � 1y � Zris � ta� bi : a, b P Zu.

We can also see this using the Fundamental Homomorphism Theorem,

Zrxs C

Zrxs
kerpϕiq

γ µ

ϕi

where µ is the isomorphism from Zrxs into C.

Example 5.2.15 Recall that ω is the cube root of unity. We want to examine

a variation of the previous example. Let ϕω : Zrxs Ñ C be an evaluation

homomorphism. The kernel of ϕω is the set of all polynomials in Zrxs that are

mapped to 0 P C. Thus, it is the set of polynomials that have ω as a root. In

Example 4.1.5, we stated that it can be shown via the quadratic formula that

ω and ω2 are the roots of x2�x� 1. We will explore the relationship between

ω and ω2 more in Section 5.4, but for now assume that whenever ω is a root

of a polynomial in Zrxs, ω2 is another root. It follows then that if ω is a root

of a polynomial in Zrxs, then x2 � x � 1 is a factor of the polynomial. Thus
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we can denote kerpϕωq by

kerpϕωq �
 
P pxq � px2 � x� 1q : P pxq P Zrxs(.

But this is the ideal xx2 � x � 1y, generated by x2 � x � 1. The smallest

polynomial in this set is x2 � x � 1 itself, since x2 � x � 1 is irreducible in

Zrxs, so it is a prime ideal. But since x2 � x � 1 is in the kernel, we have

rx2 � x� 1s � r0s. So

rx2 � x� 1s � r0s

ðñ rx2s � r�x� 1s.

Thus, we can take any polynomial from Zrxs and replace every x2 with �x�1,

so that every coset in
Zrxs

xx2 � x� 1y is of the form ra� bxs.

Then ϕω takes polynomials of the form a � bx and evaluates them at

x � ω. So for any representative of ra�bxs, µ�ra�bxs� � ϕωpa�bxq � a�bω.

Thus the image of ϕω is given by ta � bω : a, b P Zu � C. Recall that this

set is called the Eisenstein integers. Since we can repeat this process for any

polynomial in Zrxs, the result is that
Zrxs

xx2 � x� 1y � Zrωs � ta�bω : a, b P Zu.

If we apply the Fundamental Homomorphism as in the previous exam-

ple, we have
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Zrωs C

Zrxs
kerpϕωq

γ µ

ϕω

where µ is again the isomorphism from Zrωs into C.

Definition 5.2.16 Let R be a ring. If M is a proper ideal of R such that no

other proper ideal in R contains M , then M is a maximal ideal. ♦

Proposition 5.2.17 Let R be a commutative ring with unity. Then M is a

maximal ideal of R if and only if R{M is a field.

The proof of this proposition can be found in [6].

Example 5.2.18 We previously showed that Z{nZ � Zn, and that Zn is a

field only when n is prime. If we put these two results together, then in Z, the

maximal ideals are strictly the nZ for which n is prime.

Theorem 5.2.19 Every maximal ideal in a commutative ring R with unity is

a prime ideal.

Proof: Suppose that M is a maximal ideal of a ring R. Then by

Proposition 5.2.17,
R

M
is a field. By Definition 5.1.3, this implies that

R

M
is

an integral domain, and by Theorem 5.2.13, M is a prime ideal.
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Theorem 5.2.20 An ideal xppxq � 0y of Frxs is maximal if and only if ppxq

is irreducible over F.

Proof: ñ Suppose xP pxqy is not a maximal ideal of Frxs. Then

xP pxqy � xRpxqy � Frxs,

which implies that P pxq � RpxqSpxq, so P pxq is reducible over F. Thus not

maximal implies not irreducible.

ð Suppose that P pxq is reducible over F. Then P pxq � RpxqSpxq,

which implies that xP pxqy � xRpxqy � Frxs, so xP pxqy is not maximal. Thus

not irreducible implies not maximal.

5.3 Euclidean Domains

Definition 5.3.1 A Euclidean norm on an integral domain D is a function ν

mapping the nonzero elements of D into the nonnegative integers such that

the following conditions are satisfied:

1. For all a, b P D with b � 0, there exist q and r in D such that a � bq� r,

where either r � 0 or νprq   νpbq.

2. For a, b P D, where neither a nor b is 0, νpaq ¤ νpabq.

An integral domain D is a Euclidean domain if there exists a Euclidean norm

on D. ♦
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Example 5.3.2 Let a, b P Z and b � 0. By the division algorithm for integers,

there exist q and r such that a � bq � r. If a is a multiple of b, then r � 0.

Otherwise, note that since 0 ¤ r   b, we have |r|   |b|, where this is the usual

absolute value function. Thus Condition 1 is satisfied.

Now, if a � 0 as well, then |a| ¥ 1, so |ab| � |a| � |b|, and |ab| ¥ |a|.

This satisfies condition 2. It follows that for a � 0 P Z, if we define νpaq � |a|,

then absolute value is a Euclidean norm on Z.

The following proposition is a generalization of Theorem 5.2.20.

Proposition 5.3.3 In a Euclidean domain D, an ideal xay is maximal if and

only if a is irreducible in D.

The proof of this proposition can be found in [6].

Proposition 5.3.4 A Euclidean domain is a unique factorization domain.

The proof of this proposition can be found in [6].

Recall that the elements in Zrxs are polynomials with integer coeffi-

cients with unknown x. We want to work in a similar setting, but instead of

polynomials, we want to work with the Gaussian integers, a � bi P C, where

a, b P Z. We denote this as Zris, where the elements are all Gaussian integers.

The following example runs through the properties that define a Euclidean

norm, and we establish that such a norm exists here, and thus that the Gaus-

sian integers form a Euclidean domain.
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Example 5.3.5 Let α � a�bi P Zris. Define Npαq � pa�biqpa�biq � a2�b2.

Let β � c � di � 0. Then Npβq � c2 � d2, so Npβq ¥ 1. For all

α, β � 0 P Zris, Npαq � a2 � b2 and

Npαβq � N
�pa� biqpc� diq� (Substitution)

� N
�pac� bdq � pad� bcqi�

(Distributive, Associative, Commutative Properties)

� pac� bdq2 � pad� bcq2 (Definition of N)

� pacq2 � 2abcd� pbdq2 � padq2 � 2abcd� pbcq2

(Distributive Property)

� pacq2 � pbdq2 � padq2 � pbcq2 (Arithmetic in Z)

� pa2 � b2qpc2 � d2q (Distributive Property)

� Npa� biqNpc� diq (Definition of N)

� NpαqNpβq. (Substitution)

So

Npαβq � NpαqNpβq ¥ Npαq

since Npβq ¥ 1, thus Property 2 of a Euclidean norm is satisfied.

Showing that Property 1 holds is equivalent to showing that there is

a division algorithm in this setting. Let α, β P Zris, with α � a � bi and

β � c � di � 0. We need to find γ, ρ P Zris so that α � βγ � ρ, where either
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ρ � 0 or Npρq   Npβq. Note that this resembles the division algorithm for Z.

α

β
�
�
a� bi

c� di


�
c� di

c� di



(Multiply by complex conjugate)

� ac� bd

c2 � d2
� bc� ad

c2 � d2
i.

(Distributive, Associative, Commutative Properties)

Let r � ac� bd

c2 � b2
and s � bc� ad

c2 � d2
, so

α

β
� r � si. Recall that the division

algorithm is looking for something of the form α � βγ� ρ, where either ρ � 0

or Npρq   Npβq. Thus we examine ρ � α � βγ.

Choose t, u P Z so that the integers t and u are as close as possible to

the rational numbers r and s respectively. Let γ � t� ui and ρ � α � βγ. If

ρ � 0, then we’re finished. Otherwise, observe that
��r� t�� ¤ 1

2
and

��s�u�� ¤ 1

2

by the construction of our γ. So

N

�
α

β
� γ



� N

�pr � siq � pt� uiq� (Substitution)

� N
�pr � tq � ps� uqi�

(Distributive, Associative, Commutative Properties)

� pr � tq2 � ps� uq2 (Definition of N)

¤
�

1

2


2

�
�

1

2


2

(Substitution)

� 1

2
. (Arithmetic in Q)
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Thus taking the norm of both sides of ρ � α � βγ yields

Npρq � Npα � βγq (Substitution)

� N

�
β

�
α

β
� γ


�
(Distributive Property)

� Npβq �N
�
α

β
� γ



(By work above)

¤ Npβq � 1

2
, (Substitution)

so Npρq   Npβq, which is the desired result. Thus Property 1 of a euclidean

norm holds, and it follows that N is a Euclidean norm on Zris. By this division

algorithm on Zris, we can express α P Zris in the form α � βγ � ρ.

Example 5.3.6 The above example gave us a division algorithm for the Gaus-

sian integers. So consider 3 � 2i and 1 � i. Np3 � 2iq � 9 � 4 � 13 and

Np1�iq � 1�1 � 2. We want to find γ, ρ P Zris such that 3�2i � p1�iqγ�ρ.

As shown in the previous example, we either need ρ � 0 or Npρq   Np1� iq.

3� 2i

1� i
�
�

3� 2i

1� i


�
1� i

1� i



(Rationalize the denominator)

� 3� 3i� 2i� 2

1� p�1q (Distributive Property)

� 5� i

2
(Arithmetic)

� 5

2
� 1

2
i. (Arithmetic)

So
3� 2i

1� i
� 5

2
� 1

2
i. Now we need to find integers t and u that are as close

as possible to
5

2
and �1

2
respectively. Let t � 3 and u � 0. Then using the

95



process described in Example 5.3.5, γ � 3 and ρ � p3� 2iq � p1� iqp3q � �i.

Now Np�iq � 1, which is less than Np1� iq � 2, as required. Thus

3� 2i � p1� iqp3q � i

by the division algorithm for the Gaussian integers.

Proposition 5.3.7 (Euclidean Algorithm) Let D be a Euclidean domain

with a Euclidean norm ν, and let a and b be nonzero elements of D. Let r1

be as in Condition 1 for a Euclidean norm, that is a � bq1 � r1, where either

r1 � 0 or νpr1q   νpbq. If r1 � 0, let r2 be such that b � r1q2�r2, where either

r2 � 0 or νpr2q   νpr1q. In general, let ri�1 be such that ri�1 � riqi�1 � ri�1,

where either ri�1 � 0 or νpri�1q   νpriq. Then the sequence r1, r2, . . . must

terminate with some ri � 0. If r1 � 0, then b is the gcd of a and b. If r1 � 0

and rs is the first ri � 0, then the gcd of a and b is rs�1. Furthermore, if

gcdpa, bq � d, then there exist s and t in D such that as� bt � d.

This proof can be found in [6].

Example 5.3.8 We want to examine polynomials in Qrxs and show that a

division algorithm exists in this setting. Let fpxq � anx
n�an�1x

n�1�. . . a0 and

gpxq � bmx
m� bm�1x

m�1� � � � � b0 P Qrxs, where an and bm are both nonzero

rational numbers and m ¡ 0. We claim that if these things are true, then there

exist unique polynomials qpxq, rpxq P Qrxs, such that fpxq � gpxq �qpxq�rpxq,

where either rpxq � 0 or the degree of rpxq is less than m.
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Let S �  
fpxq � gpxq � spxq : spxq P Qrxs(. If 0 P S, then there

exists some spxq such that fpxq � gpxq � spxq � 0, so fpxq � gpxq � spxq. If

qpxq � spxq and rpxq � 0, then we have established the existence of qpxq and

rpxq. Otherwise, let rpxq P S be a polynomial with the smallest degree in S.

There may be multiple polynomials of this same lowest degree, so just choose

one of them. Then fpxq � gpxq � qpxq � rpxq for some qpxq P Qrxs. We need

to show that the degree of rpxq is less than m.

If rpxq � clx
l � cl�1x

l�1 � � � � � c0, with each ci P Q and cl � 0, then if

l ¥ m,

fpxq � gpxq � qpxq � rpxq

ðñ fpxq � gpxq � qpxq �
�
cl
bm



xl�m � gpxq � rpxq �

�
cl
bm



xl�m � gpxq.

The right side of this equation is a polynomial of degree less than l, of the

form rpxq� clxl�ppxq, with the degree of ppxq less than l. But we can rewrite

the left side of the equation as fpxq � gpxq
�
qpxq �

�
cl
bm



xl�m

�
, thus it is

contained in S. However, rpxq was a polynomial of lowest degree in S, and

since rpxq�clxl�ppxq is of degree smaller than l, this is a contradiction. Thus

l   m as desired.

It remains to show that qpxq and rpxq are unique, so suppose that

fpxq � gpxq � q1pxq � r1pxq and fpxq � gpxq � q2pxq � r2pxq. Then subtracting

one from the other yields

gpxq � q1pxq � r1pxq � gpxq � q2pxq � r2pxq � 0.
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This implies that gpxq�q1pxq�q2pxq� � r2pxq�r1pxq. But recall that either the

degrees of r1pxq and r2pxq are less than the degree of gpxq or r2pxq�r1pxq � 0.

So either deg
�
gpxq�q1pxq � q2pxq

�	 ¡ deg
�
r2pxq � r1pxq

�
, or both sides of

the equation are zero. The first case is clearly impossible since the two sides

are equal. Thus q1pxq � q2pxq � 0, which implies that q1pxq � q2pxq and

r2pxq � r1pxq � 0, which implies that r1pxq � r2pxq. It follows that qpxq and

rpxq are unique.

Definition 5.3.9 Let R be a commutative ring with unity and let a, b P R.

If there exists c P R, such that b � ac, then a divides b, or a is a factor of b.

We denote this a � b. ♦

Since we’ve shown previously that we have a Euclidean norm in Zris,

we can use the Euclidean algorithm to find a greatest common divisor of two

Gaussian integers.

Example 5.3.10 We want to find a greatest common divisor of 6 � 10i and

1�5i in Zris using the division algorithm that we established in Example 5.3.5.

6� 10i � p1� 5iqp2� iq � p�1� iq

1� 5i � p�1� iqp2� 3iq � 0.
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So

α � 6� 10i

β � 1� 5i

ρ1 � �1� i

ρ2 � 0.

Thus, �1� i is a greatest common divisor of 6� 10i and 1� 5i.

5.4 The Ring Zrωs

Recall from our previous work that ω is the cube root of unity, and is thus a

solution to the equation x3 � 1. We are going to work extensively with Zrωs

in the cubic reciprocity chapter, so now that we know that it forms a ring, we

want to establish some properties and other nice things for it. This will make

our work later a lot more straightforward, since we will be able to refer back

to this section.

Definition 5.4.1 Let α � a � bω P Zrωs, where a, b P Z. Then the complex

conjugate of α is α � a � bω � a � bω2 � pa � bq � bω, and the norm of α is

given by

Npαq � αα � a2 � ab� b2,

where ω � �1�?�3

2
, ω2 � �1�?�3

2
, and ω3 � 1. ♦
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Note that Npa� bωq � |a� bω|2.

Example 5.4.2 Let α � a � bω � 0. Then Npαq � a2 � ab � b2 by Defini-

tion 5.4.1. We claim that Npαq ¥ 1.

Npαq � a2 � ab� b2 (Definition of N)

�
�
a2 � ab�

�
b

2


2
�
� b2 �

�
b

2


2

(Complete the square)

�
�
a� b

2


2

� 4b2

4
� b2

4
(Factor)

�
�
a� b

2


2

� 3b2

4
, (Arithmetic)

which is clearly nonnegative as long as α � a� bω � 0.

Theorem 5.4.3 Let α, β P Zrωs. Then Npαβq � NpαqNpβq.

Proof: Let α, β P Zrωs. Then

Npαβq � αβ � αβ (Definition of N)

� αβαβ (Properties of conjugates)

� ααββ (Commutativity in C)

� NpαqNpβq, (Definition of N)

which is the desired result.

Example 5.4.4 We claim that the norm N given by Definition 5.4.1 is a

Euclidean norm.
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Property 2 of Euclidean norms requires that for all α, β P Zrωs, where

α, β � 0, Npαq ¤ Npαβq.

Let α � a� bω � 0 and β � c�dω � 0. We know Npαβq � NpαqNpβq

by Theorem 5.4.3. We also know that Npαq, Npβq ¥ 1 by Example 5.4.2 and

Npαq, Npβq P Z by Definition 5.4.1, thus

Npαq ¤ NpαqNpβq � Npαβq.

To show that Property 1 holds, let α � a� bω and β � c�dω � 0. We

need to find γ, ρ P Zrωs, such that α � βγ � ρ with ρ � 0 or Npρq   Npβq.

Since β � 0, we can examine
α

β
.

α

β
� a� bω

c� dω
� pc� dq � dω

pc� dq � dω
(Multiply by conjugate; Definition 5.4.1)

� ac� ad� bd

c2 � cd� d2
� bc� ad

c2 � cd� d2
ω. (Arithmetic)

Let r � ac� ad� bd

c2 � cd� d2
and s � bc� ad

c2 � cd� d2
. Then

α

β
� r � sω. Recall that

the division algorithm is looking for something of the form α � βγ � ρ, where

either ρ � 0 or Npρq   Npβq. Thus we examine ρ � α � βγ.

Choose t, u P Z such that the integers t and u are as close as possible

to the rational numbers r and s respectively. Let γ � t� uω and ρ � α� βγ.

If ρ � 0, then we’re finished. Otherwise, we have
��r � t

�� ¤ 1

2
and

��s� u
�� ¤ 1

2
,
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by the construction of γ. So

N

�
α

β
� γ



� N

�pr � sωq � pt� uωq� (Substitution)

� N
�pr � tq � ps� uqω� (Arithmetic)

� pr � tq2 � pr � tqps� uq � ps� uq2 (Definition of N)

¤
�

1

2


2

� pr � tqps� uq �
�

1

2


2

(Substitution)

� 1

2
� pr � tqps� uq. (Arithmetic)

But
��r � t

�� � ��s� u
�� ¤ 1

2
� 1

2
is equivalent to �1

4
¤ pr � tqps� tq ¤ 1

4
. Thus we

have 0   N

�
α

β
� γ



¤ 3

4
.

Now, since ρ � α � βγ,

Npρq � Npα � βγq (Apply N to both sides)

� N

�
β

�
α

β
� γ


�
(Distributive Property)

� NpβqN
�
α

β
� γ



(Theorem 5.4.3)

¤ Npβq � 3

4
, (Substitution)

which implies that Npρq   Npβq, and Property 2 is satisfied. It follows that N

is a Euclidean norm, by definition, and now we will be able to express α P Zrωs

in the form α � βγ � ρ.

Example 5.4.5 The previous example allows us to represent the Eisenstein

integers in the form α � βγ � ρ, which is very similar to a � bq � r by the
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division algorithm in Z. Let α � 6 � ω and β � 5 � 2ω. Then by the process

laid out above,
6� ω

5� 2ω
� 20

19
� 7

19
ω.

Now we need to choose t, u P Z to be as close as possible to
20

19
and

7

19
,

respectively, so let t � 1 and u � 0. Then ρ � p6�ωq�p5�2ωqp1�0ωq � 1�ω

and γ � 1� 0ω. Thus 6� ω � p5� 2ωqp1� 0ωq � p1� ωqloooooooooooooooooooooomoooooooooooooooooooooon
α�βγ�ρ

.

Example 5.4.6 Let α � 6 � ω and β � 5 � 2ω as in the previous example.

We want to take our work one step further and find a greatest common divisor

of α and β. We need to continue the process outlined in Example 5.4.4.

6� ω � p5� 2ωqp1q � p1� ωq

5� 2ω � p1� ωqp3� 2ωq � ω

1� ω � p�ωqp2� ωq � 0

Thus

α � 6� ω

β � 5� 2ω

ρ1 � 1� ω

ρ2 � �ω

ρ3 � 0.

It follows that �ω is a greatest common divisor of 6� ω and 5� 2ω.

Theorem 5.4.7 Let α P Zrωs. Zrωs is a Euclidean domain with Npαq � αα.
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Proof: In Example 5.1.15, we showed that Zrωs is a ring. Since Zrωs

is a subset of C, some of the properties of C are “inherited”. Multiplication

is commutative and there is a multiplicative identity in Zrωs, specifically the

element 1�0ω. Since there are no zero divisors in C, there are no zero divisors

in Zrωs. Thus Zrωs is an integral domain, and since by Example 5.4.4, we have

established a Euclidean norm, Zrωs is a Euclidean domain by definition.

Since Zrωs is a Euclidean domain, by Theorem 5.3.4, it is also a unique

factorization domain. This is important, because it means that the notions of

prime and irreducible are interchangeable in this setting.

Recall that the units in a ring are the elements that have multiplicative

inverses in the ring. In the integers, the units are 1 and �1, but there are

actually six units in Zrωs, and this theorem finds them all and gives a criterion

for establishing whether or not an element in Zrωs is a unit.

Theorem 5.4.8 Suppose α P Zrωs. Then α is a unit in Zrωs if and only if

Npαq � 1. Furthermore, the units in Zrωs are 1, �1, ω, �ω, ω2, and �ω2.

Proof: ñ Assume α, α P Zrωs and suppose Npαq � 1. Then αα � 1,

which implies that α is the multiplicative inverse of α, so α is a unit by

definition.

ð Suppose α is a unit. Then there exists β P Zrωs, such that αβ � 1,

by definition of unit. We can take the norm of both sides of this equation, and

since Npαβq � Npαq �Npβq, this yields Npαq �Npβq � 1. But by definition of
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norm, both Npαq and Npβq are positive integers, thus Npαq � 1.

It remains to establish the units in Zrωs. Suppose that α � a� bω is a

unit. Then, by the work above, Npαq � a2 � ab� b2 � 1. Now we have

a2 � ab� b2 � 1

ðñ 4a2 � 4ab� 4b2 � 4 (Multiplicative Property of Equality)

ðñ 4a2 � 4ab� b2 � 3b2 � 4 (Arithmetic)

ðñ p2a� bq2 � 3b2 � 4. (Distributive Property)

This last equation gives us several possibilities.

If b � 0, then 2a � �2, which implies that a � �1 and α � 1 � 0ω or

α � �1� 0ω.

If b � �1, then 2a � b � �1. Note that b can not be larger, since

|b| ¡ 1 implies that p2a� bq2 � 3b2 ¡ 4. Solving these four equations gives us

the remaining four units. When b � 1, α � 1� ω or α � ω and when b � �1,

α � �ω or α � �1�ω. But ω2�ω�1 � 0, so ω2 � �1�ω and �ω2 � 1�ω.

Thus, the six units are 1, �1, ω, �ω, ω2, and �ω2.

We will see in Chapter 10 that if α P Zrωs and Npαq � p, for some

prime p P Z, then α is irreducible in Zrωs. We haven’t yet developed all of the

tools that we need to prove this, so for now we make do with a simple example

and the assumption that it is true, and we will provide a proof later.

Example 5.4.9 Consider 2� ω. By Definition 5.4.1, Np2� ωq � 3. Suppose
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2� ω � αβ for α, β P Zrωs. Then

3 � Np2� ωq

� Npαβq (Substitution)

� NpαqNpβq. (Theorem 5.4.3)

But 3 is prime, so this implies that one of Npαq or Npβq is a unit. As we will

see in Chapter 10, this means that either α or β is itself a unit, and it follows

that 2�ω is irreducible in Zrωs. A similar argument reveals that 3�ω is also

irreducible.

Example 5.4.10 We want to construct a particular ring that will be useful in

the cubic reciprocity chapter. Let 1�ω P Zrωs and note that it is prime, since

Np1�ωq � 3. We have worked a little bit with factor rings already, and now we

want to consider
Zrωs

p1� ωqZrωs . Recall that p1� ωqZrωs is all of the Eisenstein

multiples of 1 � ω. Since the elements of factor rings are cosets, and we are

modding the Eisenstein integers out by 1� ω, it follows that r1� ωs � r0s. In

other words, the coset containing 1� ω is the same as the coset containing 0.

We can do arithmetic on cosets, so that r1 � ωs � r0s implies that r1s � rωs.

Thus, since every coset in this ring is of the form ra� bωs, we can essentially

substitute 1 for ω, and then every coset can be written as ra � bωs � ra � bs.

Since in the Eisenstein integers, a, b P Z, this means that every coset can be

reduced to contain only integers.
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Consider the map ϕ : Z Ñ Zrωs
p1� ωqZrωs , defined by ϕpnq � rns. Then

kerpϕq �  
n P Z : p1�ωq � n(. Note that if p1�ωq � n, then Np1�ωq � Npnq.

But Np1 � ωq � 3 and Npnq � n2, so this implies that 3 � n2. Since 3 is

prime, it must be the case that 3 � n. Thus the kernel of ϕ contains all integer

multiples of 3, so for any k P Z, r3ks � r0s.

Conversely, since 3 � p1 � ωqp1 � ωq, ϕ sends 3 to r0s, so the kernel of

ϕ is 3Z. Thus by the Fundamental Homomorphism Theorem, we have

Z3 � Z
3Z

� Zrωs
p1� ωqZrωs .

This result is huge, because we have reduced cosets containing ω to

cosets containing only integers, and now every multiple of 3 is in the 0 coset,

so there are only three equivalence classes in this ring, specifically r0s, r1s, r2s.

This idea will show up again when we start exploring cubic reciprocity.

5.5 Algebraic Numbers and Algebraic Integers

Definition 5.5.1 An algebraic number is a complex number α that is a root of

a polynomial a0x
n�a1xn�1�a2xn�2�� � ��an � 0, where a0, a1, a2, . . . , an P Q,

and a0 � 0. An algebraic integer ω is a complex number that is a root of a

polynomial xn � b1x
n�1 � � � � � bn � 0, where b1, b2, . . . , bn P Z. ♦

Proposition 5.5.2 Let α be an algebraic number and ω be an algebraic inte-

ger.
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1. The set of algebraic numbers forms a field.

2. The set of algebraic integers forms a ring, which will be denoted by Ω.

The proof of this proposition is omitted here, but can be found in [8].

Theorem 5.5.3 If ω1, ω2 P Ω and p P Z is a prime, then

pω1 � ω2qp � ωp1 � ωp2 mod p.

Proof: By the binomial expansion theorem,

pω1 � ω2qp �
p̧

i�0

�
p

i



ωp�i1 ωi2.

But recall that

�
p

i



� p!

i!pp� iq! , so p clearly divides every term that has a

coefficient of the form

�
p

i



for each 1 ¤ i ¤ p� 1. Thus we are left with only

the first and last terms, so pω1 � ω2qp � ωp1 � ωp2 mod p.

Example 5.5.4 Let ξ1, ξ2 P Ω and suppose p � 3. Then

�
ξ1 � ξ2

�3 � 3̧

i�0

�
3

i



ξ3�i1 ξi2 (Binomial expansion theorem)

� ξ31 � 3ξ21ξ2 � 3ξ1ξ
2
2 � ξ32

� ξ31 � ξ32 mod 3.

This example demonstrates that we can add non-integers together modulo

some prime integer. This idea is going to be set aside for now, but we will

need to use it in a later chapter.
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Chapter 6

Solutions to Congruences

We begin Chapter 6 by exploring the solvability of specific congruences. We

look at linear congruences first and establish when solutions will exist. We

then briefly look at the solutions of a quadratic congruence modulo p, where

p is prime. We also begin to examine higher power congruences and then

prove Wilson’s Theorem, which gives criteria for establishing whether or not a

number is prime. We wrap up Section 0 with a definition of nth power residues.

In Section 1, we develop some results about congruences and then use

them to prove the Chinese Remainder Theorem. One of the results gives us

a method to take a congruence of the form xn � a mod m and write it as a

system of nth power congruences. This system resembles the system from the

Chinese Remainder Theorem, but in this case they are not restricted to being

linear congruences. We end this chapter by beginning to explore solvability of
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particular nth power congruences.

Theorem 6.0.5 If gcdpa,mq � d, then ax � b mod m has a solution if and

only if d � b. If a solution exists, there are exactly d of them.

Proof: Let m P N and let a, b P Zm. Suppose that s is a solution to

ax � b mod m. Then

as � b mod m (s is a solution)

ðñ as� b � km, for some k P Z (Definition of congruent)

ðñ b � as� km. (Arithmetic)

But we know that d divides both a and m, since d � gcdpa,mq, thus d divides

the right side of the above equation. This implies that d divides b as well.

Hence, if we have a solution to the congruence, then d divides b.

Suppose now that d divides b. Let a � a1d, b � b1d, and m � m1d,

where a1, b1,m1 P Z. Then

as � b mod m (s is a solution)

ðñ as� b � km (Definition of congruent)

ðñ a1ds� b1d � km1d (Substitution)

ðñ dpa1s� b1q � dkm1 (Distributive Property)

ðñ a1s� b1 � km1. (Left cancellation in Z)
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Notice that this indicates that as� b is a multiple of m if and only if a1s� b1 is

a multiple of m1. Thus the solutions of ax � b P Zm are the elements modulo

m1 that yield solutions to a1x � b1 mod m1.

Since gcdpa1,m1q � 1, a1 is a unit in Zm1 , so pa1q�1b1 is a solution, and

pa1q�1b1 P Zm1 is unique. Let s be this unique solution to a1x � b1 mod m1.

Since s � ps� jm1q mod m1 for any j P Z, the solutions in Zm are exactly the

integers

s, s�m1, s� 2m1, . . . , s� pd� 1qm1.

We know that d� 1 and m1 are both less than m, by the way m was defined,

and since m � dm1, the integer pd� 1qm1 is also less than m. Thus, there are

exactly d solutions to the congruence ax � b mod m.

Example 6.0.6 Let a � 48, b � 36, and m � 72. Then gcdp48, 72q � 24.

We want to find solutions to 48x � 36 mod 72, if they exist. By the theorem,

there will be exactly 24 solutions if and only if 24 � 36. Since 24 clearly does

not divide 36, the congruence has no solution.

Theorem 6.0.7 x2 � 1 mod p has exactly two solutions, x � 1 and x � p�1.

Proof: Assume p is prime.

x2 � 1 mod p

ðñ x2 � 1 � 0 mod p (Subtraction Property of Equality)

ðñ px� 1qpx� 1q � 0 mod p, (Factorization)

111



so 1 and �1 are solutions, and by Theorem 5.1.16, since Zp is a field, these

are the only two solutions.

Example 6.0.8 Let p be prime. Then Z�
p contains ϕppq � p�1 elements and

ap�1 � 1 mod p for all a P Z�
n. There are exactly p � 1 such elements a P Z�

p

to choose from, thus xp�1 � 1 mod p has exactly p� 1 solutions.

Example 6.0.9 The congruence xϕpnq � 1 mod n has exactly ϕpnq solutions

modulo n, since aϕpnq � 1 mod n for all a P Z�
n. Note that if b P Z is such that

gcdpb, nq ¡ 1, then bk � 1 for any k, otherwise b would have a multiplicative

inverse, and thus would be an element of Z�
n.

Lemma 6.0.10 If d � pp � 1q and p P Z is prime, then xd � 1 mod p has

exactly d solutions.

Proof: Assume p is prime and suppose d � pp� 1q, for some d P Z. By

Fermat’s Little Theorem, we know that if gcdpa, pq � 1, then ap�1 � 1 mod p.

Thus, for each of the a P t1, . . . , p� 1u, x � a is a solution to xp�1 � 1 mod p.

Factorization of xp�1 � 1 yields

xp�1 � 1 � pxd � 1qpxp�1�d � xp�1�2d � � � � � 1q mod p

� pxd � 1q � gpxq mod p (Relabel second polynomial)

� 0 mod p, (xd � 1 mod p)

where gpxq is of degree p � 1 � d. By Theorem 5.1.16, gpxq � 0 has at most

p�1�d solutions. Since xp�1�1 � 0 mod p has p�1 solutions, it follows that
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xd�1 � 0 mod p has at least d solutions. But if we consider xd�1 � 0 mod p

on its own, we see that it has at most d solutions. In order for both outcomes

to be true, it must be the case that it has exactly d solutions.

Example 6.0.11 Let p � 17. Suppose d � 4 and consider x4 � 1 mod 17.

Clearly x � 1 is a solution, so x � 16 is also a solution. Fairly simple com-

putations reveal that x � 4 and x � 13 are also solutions, and it can easily

be verified that the other twelve elements in t1, 2, . . . , 16u do not satisfy the

congruence.

Theorem 6.0.12 (Wilson’s Theorem) p is a prime if and only if

pp� 1q! � �1 mod p.

Example 6.0.13 Let p � 5. Then we have p5 � 1q! � 24 � �1 mod 5. Next

let p � 6. Then p6� 1q! � 120 � 0 mod 6.

The main thing to note with these examples is that when p is not prime,

pp� 1q! will contain factors of p, thus the result is a multiple of p. When p is

prime, this does not happen, and our result is nonzero.

Proof: ñ Suppose first that p � 2. Then p2 � 1q! � 1 � �1 mod 2.

Now suppose that p is an odd prime.

pp� 1q! � pp� 1q � pp� 2q . . . 2 � 1

Set p� 1 and 1 aside for a moment and consider the rest of the product. For

each a P t2, . . . , p�2u, there exists a�1, since gcdpa, pq � 1. There are an even

113



number of elements in the set when p is odd, so they pair up since no element

is equal to 1 or �1. Thus 2 � 3 . . . pp� 2q � 1 mod p, and it follows that

pp� 1q! � pp� 1q � pp� 2q . . . 3 � 2 � 1

� pp� 1q mod p

� �1 mod p

ð Suppose that p ¡ 1 is not prime. We must consider two cases.

Case 1: Let p � ab for a, b P Z. Without loss of generality, assume

b ¡ a. Then

pp� 1q! � pp� 1qpp� 2q . . . b . . . a . . . 2 � 1

� abk, for some k P Z

� 0 mod p.

Case 2: Let p � a2, so a   p. If p � 4, then 3! � 6 � �1 mod 4. If

p � 4, we have pp � 1q! � 2a2k � 0 mod p, since a and 2a are both less than

p� 1. Thus by contraposition, if p is not prime, then pp� 1q! � 1 mod p.

Lemma 6.0.14 If n is an odd integer, then

n2 � 1 � 0 mod 8.

Proof: Recall that Z�
8 � t1, 3, 5, 7u. It is clear that k2 � 1 mod 8 for

each k P Z�
8 . Furthermore, every odd integer n is congruent to one of the four

elements of Z�
8 modulo 8. Thus n2 � 1 � 0 mod 8 for each odd n P Z.
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This is a very useful result in number theory and we will use it when

we look at reciprocity.

Theorem 6.0.15 Let gcdpa,mq � 1 and suppose that a has order t modulo

m. Then

1. an � 1 mod m if and only if t � n.

2. t � ϕpmq.

Proof: Assume gcdpa,mq � 1 and at � 1 mod m.

1. ñ Suppose an � 1 mod m. By the division algorithm, n � qt � r,

where 0 ¤ r   t. Thus

an � 1 mod m

ðñ aqt�r � 1 mod m (Substitution)

ðñ aqt � ar � 1 mod m (Properties of Exponents)

ðñ patqq � ar � 1 mod m (Properties of Exponents)

ðñ ar � 1 mod m. (at � 1 mod m)

But since 0 ¤ r   t, we will only have ar � 1 mod m if r � 0. It follows

that an � 1 mod m only if t � n.
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ð Suppose now that t � n. Then n � tk, for some k P Z. So

at � 1 mod m

ùñpatqk � 1k mod m (Power Rule)

ðñ atk � 1 mod m (Properties of Exponents)

ðñ an � 1 mod m, (Substitution)

as desired.

2. We know that the order of Z�
m is ϕpmq. Lagrange’s Theorem states that

the order of an element divides the order of the group, and since a P Z�
m

has order t, it follows that t � ϕpmq.

Theorem 6.0.16 Let the order of a P Z�
n be t. Then

1. ar � as mod n if and only if r � s mod t.

2. ak has order t if and only if gcdpk, tq � 1.

Proof: Assume that a P Z�
n is order t modulo n.

1. ñ Since a is an element of the group of units, a has a multiplicative

inverse modulo n. Suppose that ar � as mod n, and without loss of

generality, assume that r ¥ s. Then

ar � as mod n

ðñ ar � a�s � as � a�s mod n (Multiplication Property of Equality)

ðñ ar�s � 1 mod n. (Properties of exponents)
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But a has order t, which means that t is the smallest positive integer

such that at � 1 mod n. Thus, t � r � s, so pr � sq � kt for some k P Z,

and pr � sq � 0 mod t. It follows that r � s mod t, by definition of

congruent.

ð Now assume that r � s mod t. Then r � s � kt for some k P Z, so

ar � as�kt � asakt � aspatqk � as mod n.

2. ñ Suppose that a and ak both have order t modulo m. Assume that

gcdpk, tq � d, for some d P Z�. Then 1 � at � patqk{d � pakqt{d mod m.

But ak has order t, thus by Theorem 6.0.15, t{d is a multiple of t. So for

some l P Z, we have

t{d � tl

ðñ t � dtl (Multiplication Property of Equality)

ðñ 1 � dl (Division Property of Equality)

But d P Z� and l P Z, so d � 1. Thus gcdpk, tq � 1.

ð Suppose that gcdpk, tq � 1, for some k P N. Let ak have order s

modulo m. Then since a has order t, 1 � patqk � pakqt mod m. But

Theorem 6.0.15 states that t is a multiple of s, since ak has order s.

Thus, t � js for some j P Z, and so s � t.

It is also true that pakqs � aks � 1 mod m, so by Theorem 6.0.15, ks is

a multiple of t, since a has order t. Thus t � ks. But by the hypothesis,
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gcdpk, tq � 1, thus by Theorem 4.3.12, t � s.

Now we have s � t and t � s, which clearly implies that s � t, since both

s and t are natural numbers. Thus ak has order t modulo m as desired.

It follows that ar � as mod n if and only if r � s mod t and ak has order t if

and only if gcdpk, tq � 1.

Recall that if a P Z�
n and xay � Z�

n, then a is said to be a primitive root

of n. We will prove in Chapter 7 that every prime p has ϕppq primitive roots,

where ϕ is Euler’s ϕ-function. For now we assume that any given prime p has

at least one primitive root, and we use this assumption to prove the following

Corollary.

Corollary 6.0.17 If xgy � Z�
p for a prime p, then xgky � Z�

p if and only if

gcdpk, p� 1q � 1.

Proof: Assume that g is a primitive root of a prime p. Then g has

order ϕppq � p�1. So gp�1 � 1 mod p. By Theorem 6.0.16, gk has order p�1

modulo p if and only if gcdpk, p�1q � 1. In order for the least residue of gk to

be a primitive root of p, we must have 0 ¤ gk mod p   p and the order of gk

modulo p must be ϕppq. Both of those conditions are met if gcdpk, p� 1q � 1,

in which case the least residue of gk will be a primitive root of p.

Definition 6.0.18 Let m,n be positive integers and let a be any integer, such

that gcdpa,mq � 1. Then we say that a is an nth power residue modulo m if
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xn � a mod m has a solution. ♦

There are two specific cases of nth power residues that we are concerned

with in this thesis. We say that a is a quadratic residue if x2 � a mod m has a

solution. Similarly, if x3 � a mod m has a solution, then a is a cubic residue.

Example 6.0.19 Let m � 6, n � 2, and a � 2 and consider x2 � 2 mod 6.

12 � 1 mod 6

22 � 4 mod 6

32 � 3 mod 6

42 � 4 mod 6

52 � 1 mod 6

Thus 2 is not a quadratic residue modulo 6, since x2 � 2 mod 6 does not have

a solution.

Now suppose that m � 7 and consider x2 � 2 mod 7.

12 � 1 mod 7

22 � 4 mod 7

32 � 2 mod 7

42 � 2 mod 7

52 � 4 mod 7

62 � 1 mod 7
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We see that 3 and 4 are solutions, so 2 is a quadratic residue modulo 7. This

idea of quadratic residues and nonresidues is going to play a key role in the

quadratic reciprocity chapter.

Recall that if a P Z�
n and xay � Z�

n, then a is a primitive root of n.

Theorem 6.0.20 Let m be a positive integer that possesses primitive roots

and let gcdpa,mq � 1, for a P Z. Then a is an nth power residue modulo m if

and only if aϕpmq{d � 1 mod m, where d � gcd
�
n, ϕpmq�.

Proof: Suppose m is a positive integer and d � gcd
�
n, ϕpmq� for some

n P N. Let g be a primitive root of m and let a � gj and x � gk, for positive

integers j and k. Then

xn � a mod m

ðñ gnk � gj mod m (Substitution)

ðñ nk � j mod ϕpmq. (Theorem 6.0.16)

Since d � n and d � ϕpmq, Theorem 6.0.5 tells us that nk � j mod ϕpmq

has a solution if and only if d � j. Furthermore, if a solution exists, there are

exactly d of them. Suppose d � j. Then

aϕpmq{d � pgjqϕpmq{d (Substitution)

� �
gϕpmq

�j{d
(Properties of exponents)

� 1 mod m. (g is a primitive root of m)
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Thus if a is an nth power residue, aϕpmq{d � 1 mod m.

Suppose now that aϕpmq{d � 1 mod m. Then

pgjqϕpmq{d � pgϕpmqqj{d (Properties of exponents)

� 1 mod m.

This implies that jϕpmq{d is a multiple of ϕpmq, by Theorem 6.0.15. Thus,

j{d P Z, so d � j.

Note that this theorem really says that xn � a mod m is solvable if

and only if aϕpmq{d � 1 mod m. It also indicates that if a solution exists, then

there are exactly d � gcd
�
n, ϕpmq� of them. We are going to revisit this idea

in Chapter 8.

6.1 Chinese Remainder Theorem

Theorem 6.1.1 If a � b mod m1, a � b mod m2, . . . , a � b mod mk, for

a, b P Z and m1,m2, . . . ,mk P Z�, then

a � b mod
�
lcmpm1,m2, . . . ,mkq

�
.

Proof: Suppose a � b mod m1, a � b mod m2, . . . , a � b mod mk.

Then by the definition of congruent, m1 � pa�bq,m2 � pa�bq, . . . ,mk � pa�bq.

By Lemma 2.3.4,

lcmpm1,m2, . . . ,mkq � pa� bq.
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Thus, by the definition of congruent,

a � b mod
�
lcmpm1,m2, . . . ,mkq

�
.

Corollary 6.1.2 Let a and b be integers and let m1,m2, . . . ,mk be positive

integers such that for any i, j P t1, . . . , ku and i � j, gcdpmi,mjq � 1. Then

a � b mod m1, a � b mod m2, . . . , a � b mod mk

if and only if

a � b mod pm1m2 . . .mkq.

Proof: Assume that a and b are integers and m1,m2, . . . ,mk are pos-

itive integers that are pairwise relatively prime.

ñ Suppose a � b mod mi, for each i P t1, . . . , ku. By Lemma 2.3.3,

lcmpm1,m2, . . . ,mkq � m1m2 . . .mk, since themi are pairwise relatively prime.

Thus, by Theorem 6.1.1,

a � b mod pm1m2 . . .mkq.

ð Suppose that a � b mod pm1m2 . . .mkq. Then for each mi, a is b

more than a multiple of mi. Thus a � b mod mi for each mi.

Note that the only restriction on a in this Corollary is that a P Z.

Thus we can extend this result so that xn � b mod pm1m2 . . .mkq if and only

if xn � b mod mi for each mi and n P N. Thus we have a tool that allows us

to break congruences up into a system of equations. We are going to use this

result in our work with reciprocity in later chapters.
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Lemma 6.1.3 If a1, a2, . . . , ak are all relatively prime to n, then a1a2 . . . ak is

also relatively prime to n.

Proof: Assume that a1a2 . . . ak is not relatively prime to n. Then there

exists some prime p such that p � n and p � a1a2 . . . ak. Since p is prime, p

must divide some ai, which implies that gcdpai, nq � 1.

Lemma 6.1.4 If a and b divide n and gcdpa, bq � 1, then ab divides n.

Proof: Assume that gcdpa, bq � 1 for some a, b P Z. Then ar� bs � 1,

for some r, s P Z, by Definition 4.3.10. This implies that arn � bsn � n. But

a � n means that al � n for some l P Z. Likewise, since b � n, there is some

k P Z, such that bk � n. Thus

arn� bsn � n

ðñ arbk � bsal � n (Substitution)

ðñ abprk � slq � n. (Commutative, Distributive Properties)

Since rk � sl P Z, it follows that ab � n by definition of divides.

Lemma 6.1.5 Suppose that each of a1, a2, . . . , ak divide n and gcdpai, ajq � 1

for i � j. Then a1a2 . . . ak � n.

Proof: Assume that each of a1, a2, . . . , ak divide some n and assume

also that gcdpai, ajq � 1 for i � j. We use induction on k, where the base
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case, k � 2, is handled by Lemma 6.1.4. Assume that the result holds for some

k � 1, and consider k. Set a � a1a2 . . . ak�1 and b � ak. Then a � n by the

induction hypothesis and gcdpa, bq � 1, so by Lemma 6.1.4, ab � a1a2 . . . ak

divides n.

Theorem 6.1.6 (Chinese Remainder Theorem) Suppose m � m1m2 . . .mk

and gcdpmi,mjq � 1 for i � j. Let b1, b2, . . . , bk be integers and consider the

system of congruences:

x � b1 mod m1

x � b2 mod m2

...

x � bk mod mk.

This system always has solutions, and any two solutions differ only by a mul-

tiple of m.

Proof: Let ni � m

mi

. Then ni is a product of integers that are all

relatively prime to mi, thus by Lemma 6.1.3, gcdpmi, niq � 1. By Theo-

rem 4.3.11, there exist xi, yi P Z such that mixi � niyi � 1. Let ei � niyi.

Then mixi � ei � 1, which implies that ei � 1 � mixi, so ei � 1 mod mi

by definition of congruent, and ei � 0 mod mj, since gcdpmi,mjq � 1 for all

j � i.

Set x0 �
ķ

i�1

biei. Then x0 � biei � bi mod mi, and x0 is a solution.

124



Suppose that x1 is any other solution. Then x1 � x0 � 0 mod mi, for

i P t1, 2, . . . , ku, or in other words, each of the mi divides px1 � x0q. Then

by Lemma 6.1.5, we have m � px1 � x0q, and it follows that the given system

of congruences always has solutions, and any pair of solutions differs by some

multiple of m.
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Chapter 7

Multiplicative Functions

We begin this chapter by defining multiplicative functions and relatively mul-

tiplicative functions. Each of the three sections of Chapter 7 is then devoted

to a particular type of multiplicative, or relatively multiplicative, function.

Section 1 explores two functions that pertain to the divisors of an integer and

several results are established here as well. In Section 2, we examine Euler’s ϕ-

function and show that it is relatively multiplicative. We conclude the chapter

by defining characters and then exploring their multiplicativity. Characters

are going to show up again when we look at Gauss and Jacobi sums and cubic

reciprocity.

Definition 7.0.7 Let R and R1 be rings with Euclidean domains and consider

f : RÑ R1.

• f is a multiplicative function if fpabq � fpaqfpbq.
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• f is a relatively multiplicative function if whenever gcdpa, bq � 1, then

fpabq � fpaqfpbq. ♦

Example 7.0.8 We’ve seen several examples of multiplicative functions al-

ready. In Example 5.3.2, we saw that |ab| � |a| � |b| for a, b P Z, so the absolute

value function is multiplicative. We looked at norms in Zris and Zrωs as well.

By Example 5.3.5, the norm function on Zris is a multiplicative function. Sim-

ilarly, by Theorem 5.4.3, the norm on Zrωs is multiplicative as well.

Example 7.0.9 Let a � 3 and b � 4. Recall that ϕpnq is Euler’s ϕ-function,

and it tells us how many positive integers are between 1 and n that are also

relatively prime to n. So ϕp3q � 2, since 1 ¤ 1, 2 ¤ 3 and both 1 and 2 are

relatively prime to 3. Similarly, ϕp4q � 2 since 1 and 3 are the only positive

integers less than and relatively prime to 4. If we look at ϕp12q, we have

ϕp12q � ϕp3 � 4q � 4, since 1, 5, 7, and 11 are the only integers less than and

relatively prime to 12. But this is exactly ϕp3qϕp4q. We will shortly see that

in general Euler’s ϕ-function is a relatively multiplicative function.

Theorem 7.0.10 Let n P Z and let the prime-power decomposition of n be

given by n � pe11 p
e2
2 . . . pekk . Then fpnq � f

�
pe11

�
f
�
pe22

�
. . . f

�
pekk

�
if and only if

f is a relatively multiplicative function.

Proof: If fpnq � f
�
pe11

�
f
�
pe22

�
. . . f

�
pekk

�
, then it follows immediately

that f is a relatively multiplicative function. On the other hand, simple in-
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duction on k reveals that if f is a relatively multiplicative function, then

fpnq � f
�
pe11

�
f
�
pe22

�
. . . f

�
pekk

�
.

7.1 Divisors of an Integer

Definition 7.1.1 Let n be a positive integer. Then denote the number of

positive divisors of n (including 1 and n) by dpnq. In other words,

dpnq �
¸
d�n

1.

Also, denote the sum of the positive divisors of n by σpnq, where

σpnq �
¸
d�n

d.

The notation
¸
d�n

means to sum over all of the positive divisors of n. ♦

Example 7.1.2 Let n � 48. It is fairly straightforward to find that the

divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48, so dp48q � 10. However,

if we consider the factorizations 48 � 6 � 8 and 48 � 12 � 4, we see that

dp6q � dp8q � 4 � 4 � 16 and dp12q � dp4q � 6 � 3 � 18. Since neither of these

results agree with dp48q, we can see that dpnq is not multiplicative. We shall

see soon, however, that it is a relatively multiplicative function.

Similarly, we can see that σp48q � 124, but σp6q � σp8q � 12 � 15 � 180

and σp12q � σp4q � 28 � 7 � 196. Thus σpnq is not multiplicative, but we will

prove shortly that it is relatively multiplicative.
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Theorem 7.1.3 If n � pe11 p
e2
2 . . . pekk is the prime-power decomposition of n,

then

1. dpnq � d
�
pe11

�
d
�
pe22

�
. . . d

�
pekk

�

2. σpnq � σ
�
pe11

�
σ
�
pe22

�
. . . σ

�
pekk

�
.

Proof: Let n � pe11 p
e2
2 . . . pekk be the prime-power decomposition of n.

We use induction on k to prove parts 1 and 2 simultaneously.

Consider the base case k � 1. This yields n � pe11 , so dpnq � d
�
pe11

�
and σpnq � σ

�
pe11

�
. Hence the two results hold. Assume that both results

hold for some k.

Now consider N � pe11 p
e2
2 . . . p

ek�1

k�1 � np
ek�1

k�1 . Let t1, d1, d2, . . . , dtu be the

set of divisors of n. Since gcdpn, pk�1q � 1, the divisors of N are as follows.

1 d1 d2 . . . dt

pk�1 d1pk�1 d2pk�1 . . . dtpk�1

...

p
ek�1

k�1 d1p
ek�1

k�1 d2p
ek�1

k�1 . . . dtp
ek�1

k�1

First note that the number of columns represents the number of divisors

of n, and the number of rows gives us the number of divisors of p
ek�1

k�1 . Thus

there are dpnq columns and d
�
p
ek�1

k�1

�
rows, for a total of dpnqd�pek�1

k�1

�
divisors

of N . But by the inductive assumption, dpnq � d
�
pe11

�
d
�
pe22

�
. . . d

�
pekk

�
, so

dpNq � d
�
pe11

�
d
�
pe22

�
. . . d

�
pekk

�
d
�
p
ek�1

k�1

�
.
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Now observe that p1� d1 � d2 � � � � � dtq
�
1� pk�1 � � � � � p

ek�1

k�1

�
yields

the sum of all of the divisors of N . Thus

σpNq � p1� d1 � d2 � � � � � dtq
�
1� pk�1 � � � � � p

ek�1

k�1

�
(Definition of σ)

� σpnqσppek�1

k�1 q. (Definition of σ)

But σpnq � σ
�
pe11

�
σ
�
pe22

�
. . . σ

�
pekk

�
by the inductive assumption, so it follows

that σpNq � σ
�
pe11

�
σ
�
pe22

�
. . . σ

�
p
ek�1

k�1

�
.

7.2 Euler’s ϕ-function

Theorem 7.2.1 ϕ is relatively multiplicative.

Proof: Assume that a and b are positive integers and gcd a, b � 1.

Without loss of generality, assume that b ¡ a. Consider the integers from 1 to

ab, laid out as follows.

1 2 3 . . . a

a� 1 a� 2 a� 3 . . . 2a

2a� 1 2a� 2 2a� 3 . . . 3a

...

pb� 1qa� 1 pb� 1qa� 2 pb� 1qa� 3 . . . ba

Note that in the first row, there are a total of ϕpaq elements that are

relatively prime to a.
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Consider the rth column of the array.

r

a� r

2a� r

...

pb� 1qa� r

If gcdpa, rq � d and d ¡ 1, then d � r and d � a. But this implies that

d � ka� r for each 0 ¤ k ¤ b�1. Thus, none of the elements in such a column

is relatively prime to ab. Hence, the elements relatively prime to ab can only

be found in columns whose first element is relatively prime to a. Since there

are ϕpaq such columns, it remains only to show that there are exactly ϕpbq

elements that are relatively prime to ab in each of those columns.

Consider the b elements in the rth column modulo b. Choose two ar-

bitrary elements from the column, say ka � r and ja � r and suppose that

ka� r � ja� r mod b. Then the congruence reduces to ka � ja mod b. But

since gcdpa, bq � 1, this can be further simplified to k � j mod b, by Corol-

lary 4.3.20. However, 0 ¤ j, k ¤ b � 1, so this can only be the case if k � j.

Thus if k and j are distinct, then ka � r � ja � r mod b. Since they were

chosen arbitrarily, no pair of distinct elements in the rth column is congruent

modulo b, so their least residues modulo b must be a permutation of the b

elements 0, 1, . . . , b�1. Since exactly ϕpbq of these least residues are relatively
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prime to b, there are ϕpbq such elements in each of the ϕpaq columns of the

array.

Thus, there are exactly ϕpaqϕpbq elements from 1 to ab that are rela-

tively prime to ab, so ϕpabq � ϕpaqϕpbq when gcdpa, bq � 1.

Example 7.2.2 We know that 8 and 9 are relatively prime, and by the the-

orem above, ϕp72q should be the same as ϕp8qϕp9q. It is easy to see that

ϕp8q � 4 and ϕp9q � 6, so ϕp8qϕp9q � 24. It can be verified by listing the

numbers 1 to 72 and checking each of them, that there are exactly 24 that are

relatively prime to 72.

Theorem 7.2.3 If p is prime, then ϕppnq � pn�1pp� 1q for all n P N.

Proof: Assume p is prime and n is a positive integer. By definition of

Euler’s ϕ-function, ϕppnq is the number of integers a, such that 1 ¤ a ¤ pn

and gcdpa, pnq � 1. Since p is prime, the only integers in t1, . . . , pnu that are

not relatively prime to pn are the multiples of p, namely tp, 2p, . . . , ppn�1qpu.

Since there are pn�1 such integers and a total of pn integers in t1, . . . , pnu,

ϕpnq � pn � pn�1 � pn�1pp� 1q.

Example 7.2.4 We have already seen that ϕp9q � 6, but if we apply the

theorem, then we have ϕp32q � 32�1p3� 1q � 3 � 2 � 6 as well.

It is a tedious exercise to list the numbers from 1 to n when n starts

to get big, so it’s easy to see how these theorems can save a lot of time when
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trying to find ϕpnq of something like 13615. Certainly 1361 is a relatively small

prime when compared to some of the known primes, but 13615 is a 16 digit

number, and it would take a huge amount of time to determine this result by

hand.

Corollary 7.2.5 If n has a prime decomposition given by n � pe11 p
e2
2 . . . pekk ,

then ϕpnq � pe1�1
1 pp1 � 1qpe2�1

2 pp2 � 1q . . . pek�1
k ppk � 1q.

Proof: Since n � pe11 p
e2
2 . . . pekk , gcd

�
peii , p

ej
j

� � 1 for any pair i � j,

and ϕ is relatively multiplicative, then ϕpnq � ϕ
�
pe11

�
ϕ
�
pe22

�
. . . ϕ

�
pekk

�
. But we

can apply Theorem 7.2.3 to the terms in the right hand side of the equation,

which yields ϕpnq � pe11 pp1 � 1qpe2�1
2 pp2 � 1q . . . pek�1

k ppk � 1q, as desired.

Example 7.2.6 Let n � 830, 297. Then

ϕp830, 297q � ϕp173 � 132q � 172 � 16 � 13 � 12 � 721, 344,

by Corollary 7.2.5

Corollary 7.2.7 If n � pe11 p
e2
2 . . . pekk is the prime decomposition of n, then

ϕpnq � n

�
1� 1

p1


�
1� 1

p2



. . .

�
1� 1

pk



.
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Proof: Let n � pe11 p
e2
2 . . . pekk , where each pi for i P t1, . . . , ku is prime.

From Corollary 7.2.5, we have

ϕpnq � pe1�1
1 pp1 � 1q � pe2�1

2 pp2 � 1q . . . pek�1
k ppk � 1q

� pe11 pp1 � 1q
p1

� p
e2
2 pp2 � 1q

p2
. . .

pekk ppk � 1q
pk

� pe11

�
1� 1

p1



� pe22

�
1� 1

p2



. . . pekk

�
1� 1

pk




� pe11 � pe22 � pekk
�

1� 1

p1


�
1� 1

p2



. . .

�
1� 1

pk




� n

�
1� 1

p1


�
1� 1

p2



. . .

�
1� 1

pk



,

as desired.

Example 7.2.8 Suppose n � 830, 297, as in the previous example. Then we

have seen that ϕp830, 297q � 721, 344. Applying Corollary 7.2.7 yields

ϕp830, 297q � 830, 297 � 16

17
� 12

13
� 721, 344,

which agrees with our previous result.

Theorem 7.2.9 If n ¥ 1, then

¸
d�n

ϕpdq � n.

Example 7.2.10 Let n � 6. The divisors of 6 are 1, 2, 3, and 6, and ϕp1q � 1,

ϕp2q � 1, ϕp3q � 2, and ϕp6q � 2. So
¸
d�6

ϕpdq � 1� 1� 2� 2 � 6.

Proof: Assume n ¥ 1. Consider the integers α P t1, 2, . . . , nu. Re-

call that we defined partitions in Definition 2.4.3. We want to use a similar
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notion in this proof, and for each α P t1, . . . , nu, place α in Cd if and only if

gcdpα, nq � d. In other words, each of the Ci is going to be a cell containing

one or more divisors d of n, and together they will form a partition of the set

of divisors.

To illustrate this idea, consider n � 8. Then α P t1, 2, . . . , 8u and

the divisors of n are d P t1, 2, 4, 8u. Thus, we will have four subsets, where

C1 � t1, 3, 5, 7u, C2 � t2, 6u, C4 � t4u, and C8 � t8u.

So α P Cd if and only if gcdpα, nq � d. But gcdpα, nq � d if and only

if gcdpα{d, n{dq � 1. Thus, α P Cd if and only if α{d is relatively prime to

n{d. But by definition, the number of elements β such that 1 ¤ β ¤ n{d and

gcdpβ, n{dq � 1 is ϕpn{dq. Thus, there are ϕpn{dq elements in Cd, for each d.

Also, there is exactly one cell Cd for each divisor d of n, so the total number of

elements in all of the Cd is given by
¸
d�n

ϕpn{dq � n. But
¸
d�n

ϕpn{dq �
¸
d�n

ϕpdq,

since the set of all n{d is a permutation of the set of all d. Hence, we have¸
d�n

ϕpdq � n, as desired.

Recall that if a P Z�
n and xay � Z�

n, then a is a primitive root of n.

Theorem 7.2.11 Every prime p has ϕpp� 1q primitive roots.

Example 7.2.12 Let p � 3. Then we have ϕpp�1q � ϕp2q � 1, so we should

expect 3 to have one primitive root, with order ϕppq � ϕp3q � 2. 11 � 1 mod 3,

but 21 � 2 mod 3 and 22 � 1 mod 3, thus the only primitive root of 3 is 2.

Now suppose that p � 7. Then ϕpp � 1q � ϕp6q � 2. So we are
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expecting two primitive roots, whose orders are ϕp7q � 6. It can quickly be

seen that 1, 2, 4, and 6 will not work, because they do not have the correct

orders. But checking 3 and 5 gives

31 32 33 34 35 36 51 52 53 54 55 56

3 2 6 4 5 1 5 4 6 2 3 1

where the bottom row is the least residue of each of the entries in the top row,

modulo 7. Both 3 and 5 have order 6, and thus both are primitive roots of 7.

This together with the previous work tells us that in fact, 3 and 5 are the only

two primitive roots of 7.

Proof: Assume p is prime. By Theorem 7.2.11, we know that p has

at least one primitive root, so suppose that g is a primitive root of p. By

Corollary 6.0.17, we know that an element gk is a generator of Z�
p if and only

if gcdpk, p�1q � 1. Since there are ϕpp�1q such k, there are ϕpp�1q primitive

roots of p.

7.3 Multiplicative Characters

We are going to be working in the field Z{pZ, which is isomorphic to Zp. Recall

that both Z�
p and C� are cyclic groups under multiplication. More specifically,

Z�
p is the group of units, and the elements are t1, 2, . . . , p� 1u.

Definition 7.3.1 Assume p P Z is prime. A multiplicative character on Z�
p is
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a group homomorphism χ : Z�
p Ñ C�, where χpabq � χpaqχpbq for all a, b P Z�

p .

The trivial multiplicative character is ε, where εpaq � 1 for all a P Z�
p . We can

extend the domain of our characters to all of Zp if for χ � ε we have χp0q � 0

and εp0q � 1. ♦

Theorem 7.3.2 (Properties of multiplicative characters) Let χ be a

multiplicative character and let a P Z�
p. Then

1. χp1q � 1.

2. χpaq is a pp� 1qst root of unity.

3. χpa�1q � �
χpaq��1 � χpaq.

Before we prove this theorem, note that in Property 1, the 1 on the left

hand side is the unity element of Z�
p , and the 1 on the right hand side is the

complex number 1. Also, in Property 3, the bar is used to denote the complex

conjugate of χpaq.

Proof: Assume p is prime. Suppose χ is a multiplicative character and

let a P Z�
p .

1. This is a direct consequence of the fact that χ is a homomorphism, since

homomorphisms preserve identity.

2. Since p is prime and a P t1, 2, . . . , p � 1u, p � a, so by Fermat’s Little
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Theorem, we have ap�1 � 1 mod p. So

1 � χp1q (Property 1 of multiplicative characters)

� χpap�1q mod p (ap�1 � 1 mod p)

� �
χpaq�p�1

mod p, (Homomorphism Property)

and χpaq is a pp� 1qst root of unity by definition.

3. Since homomorphisms preserve inverses, χpa�1q � �
χpaq��1

, thus we

have χpaq�χpaq��1 � 1. Recall that χpaq and χpaq�1 are elements of C�.

From our work with norms in Zris in Example 5.3.5, we know that for

α P C, Npαq � αα. Also, each χpaq is a root of unity, so N
�
χpaq� � 1.

Putting these two things together gives us

N
�
χpaq� � 1 � χpaqχpaq.

But χpaq�χpaq��1 � 1 as well, which implies that
�
χpaq��1 � χpaq,

which is the desired result.

Theorem 7.3.3 Let χ be a multiplicative character and extend the domain to

include all of Zp as discussed in Definition 7.3.1. Then

p�1̧

t�0

χptq �

$'''&
'''%

0, χ � ε

p, χ � ε.

Proof: Suppose χ � ε. Then χpaq � 1 for all a P Zp and
p�1̧

t�0

χptq � p.

Suppose χ � ε. Then there exists at least one element a P Zp such that

138



χpaq � 1. Let
p�1̧

t�0

χptq � T . Then

χpaq � T �
p�1̧

t�0

χpaqχptq

�
p�1̧

t�0

χpatq.

Since a, t P t0, 1, . . . , p � 1u, the set of all at as t ranges from 0 to p � 1 is a

permutation of t0, 1, . . . , p � 1u, thus
p�1̧

t�0

χpatq � T . So we have χpaq � T � T

and χpaq � 1, and it follows that T � 0 as desired.

Recall that if we have two multiplicative characters χ and γ, then their

function multiplication is given by
�
χγ

�paq � χpaqγpaq. In addition,

χpbnq � �
χpbq�n � χnpbq.

Theorem 7.3.4 The set of characters on Zp is a cyclic group of order p � 1

under the usual function multiplication. If a P Z�
p and a � 1, then there is a

character χ such that χpaq � 1.

Proof: Let χ and λ be characters on Zp and let a, b P Z�
p . Then

�
χλ

�paq � χpaqλpaq,
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by function multiplication. Also, since χpaq, λpaq P C� and C� is a group,

χpaqλpaq P C�. Now,

�
χλ

�pabq � χpabqλpabq (Function multiplication)

� χpaqχpbqλpaqλpbq (Multiplicative Characters)

� χpaqλpaqχpbqλpbq (Commutative Property in C�)

� �
χλ

�paq�χλ�pbq, (Multiplicative Characters)

thus χλ is a multiplicative character.

To show that there is an identity in this set, note that

�
χε

�paq � χpaqεpaq (Function multiplication)

� χpaq � 1 (Definition of ε)

� χpaq (1 is the unity element in C)

� 1 � χpaq

� εpaqχpaq (Definition of ε)

� �
εχ

�paq. (Function multiplication)

To show that each element has a unique inverse, first define

χ�1paq � 1

χpaq .
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Then

χ�1pabq � 1

χpabq (Definition of χ�1)

� 1

χpaqχpbq (χ is multiplicative)

� 1

χpaq
1

χpbq (Fraction multiplication)

� χ�1paqχ�1pbq, (Definition of χ�1)

so χ�1 is multiplicative. Also, since χ�1paq, χ�1pbq P C�, their product is

clearly in C� as well, so χ�1 is a character. Finally,

�
χχ�1

�paq � χpaqχ�1paq (Function multiplication)

� χpaq
χpaq (Definition of χ�1paq)

� 1 (Arithmetic in C)

� εpaq. (Definition of ε)

Thus χ�1paq is the inverse of χpaq.

We know that function multiplication is associative, so that comes along

for free. Thus the set of characters forms a multiplicative group.

It remains to show that this is a cyclic group. First recall that Z�
p is a

cyclic group, thus h : Z�
p Ñ C� is completely determined by what it does to a

generator g of Z�
p . Let hpgq � e2πi{pp�1q. Then for gl P Z�

p , hpglq � e2lπi{pp�1q,

which is a pp� 1qst root of unity, thus h is a character.
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Now suppose that χ is a character. Then χpgq is something of the form

e2kπi{pp�1q for some k, so

χpgq � e2kπi{pp�1q

� �
e2πi{pp�1q

�k
(Properties of exponents)

� �
hpgq�k.

But by the definition of the group operation on characters,
�
hpgq�k � hkpgq,

thus χ � hk, and it follows that the group of characters is cyclic.

The fact that the group has order p � 1 comes directly from Theo-

rem 7.3.2, since there are p� 1 roots of unity.

Now suppose a � 1, where a P Z�
p . Then a � gj for some j, where

pp� 1q � j. This yields

hpaq � �
hpgq�j (Substitution)

� e2jπi{pp�1q (Definition of h1pgq)

� 1,

since j is not a multiple of p� 1.

Corollary 7.3.5 Let a P Z�
p, where a � 1. Then

¸
χ

χpaq � 0, where the sum

is over all characters.
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Proof: Assume a P Z�
p and a � 1. Let

¸
χ

χpaq � S. By Theorem 7.3.4,

there exists a character λ such that λpaq � 1. So

λpaq � S �
¸
χ

λpaqχpaq (Multiply both sides by λpaq)

�
¸
χ

�
λχ

�paq (Function multiplication)

� S,

since as we sum over all of the characters, the λχ are just a permutation of the

elements in the group of characters. Thus, we have λpaq �S � S and λpaq � 1,

so it follows that S � 0.

Theorem 7.3.6 Let a P Z�
p and choose n P N such that n � p � 1. Then if

xn � a is not solvable, there is a character χ such that

1. χn � ε.

2. χpaq � 1.

Proof: Let g be a generator of Z�
p . Define a function λ as in Theo-

rem 7.3.4 by λpgkq � e2πik{pp�1q, and set χ � λpp�1q{n. Then

χn � �
λpp�1q{n

�n
(Definition of χ)

� λp�1 (Properties of exponents)

� ε, (Lagrange’s Theorem)

which satisfies Part 1.
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To prove Part 2, observe that

χpgq � �
λpgq�pp�1q{n

(Definition of χ)

� λ
�
gpp�1q{n

�
(Homomorphism Property)

� e2πipp�1q{npp�1q (Definition of λ)

� e2πi{n, (Properties of exponents)

and e2πi{n has order n in C�. Since g generates Z�
p and a P Z�

p , there is some

j, such that a � gj. But xn � a is not solvable, so n � j. Thus

χpaq � χpgjq (Substitution)

� �
λpgjq�pp�1q{n

(Definition of χ)

� �
e2πij{pp�1q

�pp�1q{n
(Definition of λ)

� 1,

since j is not a multiple of n.

The use of characters plays a key role in regard to determining whether

or not solutions to equations exist. Suppose a P Z�
p and consider xn � a.

Recall from Theorem 6.0.20 that solutions to this equation exist if and only

if app�1q{d � 1, where d � gcdpn, p � 1q. Furthermore, there are exactly d

solutions. For now, the assumption will be made that n � p� 1, so d � n.

We need to define a new notation before we look at the next theorem.

If a P Zp, then denote the number of solutions to the equation xn � a by

N pxn � aq. When n � p� 1, then we have the following result.
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Theorem 7.3.7 Let a P Z�
p and n P N such that n � p� 1. Then

N pxn � aq �
¸
χn�ε

χpaq,

where the sum is over all characters whose order divides n.

Proof: Suppose g generates Z�
p . Then if

�
χpgq�n � ε, the value of χpgq

must be an nth root of unity, so there are exactly n such characters.

Recall from the proof of Theorem 7.3.6 that there is a character λ with

λpgq � e2πi{n. Because of the uniqueness of roots of unity, λ, λ2, . . . , λn � ε

are n distinct characters whose order divides n.

Now, if a � 0, then xn � 0 has exactly one solution, x � 0. Also,

¸
χn�ε

χp0q � χp0q � χ2p0q � � � � � χn�1p0q � εp0q (Expansion of the sum)

� 0� 0� � � � � 0� 1 (Definition 7.3.1)

� 1.

So N pxn � aq � 1 �
¸
χn�ε

χp0q.
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Suppose now that a � 0 and assume that xn � a is solvable. Then

there is some b P Z�
p such that bn � a. If χn � ε, then

χpaq � χpbnq (Substitution)

� �
χpbq�n (χ is multiplicative)

� χnpbq (Definition of function multiplication)

� εpbq (χn � ε)

� 1. (Definition of ε)

Since there are n such χ,
¸
χn�ε

χpaq � n. By Theorem 6.0.20, there are exactly

d � gcdpn, p � 1q solutions, but since n � p � 1, we have d � n, so there are

exactly n solutions, which agrees with the value of the sum.

Finally, suppose that a � 0 and assume that xn � a is not solvable.

Set T �
¸
χn�ε

χpaq. By Theorem 7.3.6, there is a character λ, such that λn � ε

and λpaq � 1. So T �
¸
χn�ε

χpaq implies that

λpaq � T � λpaq �
¸
χn�ε

χpaq (Multiply both sides by λpaq)

�
¸
χn�ε

λpaq � χpaq

�
¸
χn�ε

λχpaq. (Function multiplication)

But observe that the characters that satisfy χn � ε forms a subgroup of

the group of characters. The identity element is present, since εn � ε, and

certainly if χn � ε and λn � ε, then ε � χnλn � pχλqn, so there is closure
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under multiplication of characters. Also,
�
χ�1

�n � �
χn

��1 � ε, so each such

character has an inverse element that is also contained in the set. Associativity

comes for free from the group of characters, thus we have a subgroup. Hence

it follows that as we sum λχpaq over all characters that satisfy χn � ε, the

result is one row of the group table for the subgroup, so λpaq �T � T . But this

implies that T � 0, since λpaq � 1. Therefore, N pxn � aq � 0 �
¸
χn�ε

χpaq.
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Chapter 8

Quadratic Reciprocity

We begin our exploration of quadratic reciprocity by defining quadratic residues

and establishing results about solvability of quadratic congruences. We define

Euler’s Criterion as it pertains to solvability, and then establish a couple of

results about the solvability of nth power congruences.

In Section 2, we define the Legendre symbol and then prove several

properties about it. We conclude the section by examining two examples that

allow us to use the properties of the Legendre symbol to evaluate it.

The third section is devoted to the Law of Quadratic Reciprocity. We

begin by stating the three parts of the theorem and then establish results to

prove the first two parts. We offer up two different versions of the second part

of the Law of Quadratic Reciprocity. Finally we prove the third part and then

prove that several different forms of the theorem are in fact equivalent.
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In section four, we define another symbol, the Jacobi symbol, and then

prove several useful properties about it. We also compare and contrast the

Jacobi symbol to the Legendre symbol, and conclude the section by proving

the Reciprocity Law for the Jacobi symbol.

We wrap up Chapter 8 by looking at some of the more common ap-

plications of quadratic residues and the Law of Quadratic Reciprocity. These

applications are in areas such as acoustics, cryptography, and graph theory.

8.1 Quadratic Residues

Definition 8.1.1 If gcdpa,mq � 1, a is called a quadratic residue modulo m if

the congruence x2 � a mod m has a solution. Otherwise a is called a quadratic

nonresidue modulo m. ♦

For the sake of simplicity in this chapter, quadratic residues may some-

times be referred to as residues, and quadratic nonresidues may be referred to

as nonresidues.
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Example 8.1.2 Consider the congruence x2 � a mod 7.

12 � 1 mod 7

22 � 4 mod 7

32 � 2 mod 7

42 � 2 mod 7

52 � 4 mod 7

62 � 1 mod 7

Since 7 is prime, 1, 2, and 4 are all relatively prime to 7, and thus each of the

three is a residue modulo 7. On the other hand, 3, 5, and 6 are nonresidues

modulo 7, since x2 � 3 mod 7, x2 � 5 mod 7, and x2 � 6 mod 7 do not have

solutions.

Observe that this partitions Z�
7 into two equal sets of residues and

nonresidues. Furthermore, each of the residues has exactly two solutions.

Theorem 8.1.3 Suppose p is an odd prime. If p � a, then x2 � a mod p

either has exactly two solutions or it has no solution.

Proof: Assume that p � a for some a P Z and some odd prime p.

Suppose that r is a solution to x2 � a mod p. Then p � r is also a solution,

since

pp� rq2 � p2 � 2pr � r2 � r2 mod p.
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Furthermore, we claim that the two solutions are distinct. Assume that this

is not the case. Then r � pp� rq mod p.

r � pp� rq mod p

ðñ 2r � p mod p (Arithmetic)

ðñ 2r � 0 mod p. (p � 0 mod p)

But p is odd, so gcdp2, pq � 1. This implies that r � 0 mod p. However, p � r,

so this is impossible. Thus, if r is a solution, p� r is a different solution.

Since Zp is a field when p is prime, there can be at most two solutions

to this congruence. Thus, if x2 � a mod p has a solution, it has exactly two

of them, and they are x � r and x � p� r.

Recall from the Group Theory chapter that a P Z�
n is called a primitive

root of n if a is a generator of Z�
n.

Lemma 8.1.4 If g is a primitive root of p, then gpp�1q{2 � �1 mod p.

Proof: Assume that g is a primitive root of some prime p. Since there

are ϕppq � p � 1 elements in Z�
p , we know that the order of g is ϕppq, thus

gp�1 � 1 mod p. Hence

gp�1 � 1 mod p

ðñ �
gpp�1q{2

�2 � 1 mod p (Properties of exponents)

ðñ gpp�1q{2 � gpp�1q{2 � 1 mod p. (Properties of exponents)
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This implies that either gpp�1q{2 � 1 mod p or gpp�1q{2 � �1 mod p. But g has

order p� 1 since g is a primitive root of p, so gpp�1q{2 � �1 mod p.

Example 8.1.5 Recall that we examined Z�
19 in Example 4.3.29. We saw that

2, 3, 10, 13, 14, and 15 are the generators and primitive roots of 19. Applying

the lemma to 2 yields

2p19�1q{2 � 29 � �1 mod 19.

Similar calculations hold for each of the other primitive roots as well.

Note that the converse of the lemma is not true. We can easily see that

89 � �
23
�9 � �

29
�3 � �1 mod 19.

However,

81 � 8 mod 19

82 � 7 mod 19

83 � 18 mod 19

84 � 11 mod 19

85 � 12 mod 19

86 � 1 mod 19,

so 8 is not a primitive root of 19, since it is not a generator of Z�
19.

Lemma 8.1.6 Let p be prime with primitive root g and let a � gk. Then

x2 � a mod p has a solution if and only if k is even.
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Proof: ñ Assume that x2 � a mod p has a solution, say gl, for some

l. Then
�
gl
�2 � a mod p, which implies that g2l � a mod p. Thus k � 2l, so

k is even.

ð Assume that k is even. Then

x2 � gk mod p ðñ x2 � �
gk{2

�2
mod p,

but since k is even,
k

2
is an integer, thus x2 � gk mod p has a solution, namely

gk{2.

Theorem 8.1.7 (Euler’s Criterion) If p is an odd prime and p � a, then

app�1q{2 �

$'''&
'''%

1 mod p, if x2 � a mod p has a solution

�1 mod p, if x2 � a mod p has no solution.

Proof: Let p be an odd prime with primitive root g. Then g P Z�
p and

the order of g modulo p is ϕppq, so gp�1 � 1 mod p.

Consider the congruence x2 � a mod p. Since a P Z�
p , a � gk mod p,

for some 1 ¤ k ¤ p� 1. If a solution to the congruence exists, then k is even,

by Lemma 8.1.6. Thus

app�1q{2 � �
gk
�pp�1q{2

mod p (Substitution)

� �
gp�1

�k{2
mod p (Properties of exponents)

� 1 mod p. (Fermat’s Little Theorem)

So app�1q{2 � 1 mod p if a solution exists.
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Now, one direction of Lemma 8.1.6 says that if there is a solution to

x2 � a mod p, then k is even. Thus the contrapositive says that if k is odd,

then there is no solution. Assume that k is odd. Then since a � gk mod p,

app�1q{2 � �
gk
�pp�1q{2

mod p (Substitution)

� �
gpp�1q{2

�k
mod p (Properties of exponents)

� p�1qk mod p (Lemma 8.1.4)

� �1 mod p. (k is odd)

Combining these results yields app�1q{2 � 1 mod p if x2 � a mod p has

a solution, and app�1q{2 � �1 mod p if x2 � a mod p has no solution.

Example 8.1.8 By Example 8.1.2, x2 � 3 mod 7 has no solution, and Euler’s

Criterion yields 3p7�1q{2 � �1 mod 7. There are two solutions to x2 � 4 mod 7,

and Euler’s Criterion yields 4p7�1q{2 � 1 mod 7.

If we examine x2 � 1 mod 7, we know that there are also two solutions

and Euler’s Criterion yields 1p7�1q{2 � 1 mod 7. In fact, since 1k � 1 for any

k P N, 1 will always be a quadratic residue for any prime p. This follows from

the fact that x2 � 1 � 0 mod p always has exactly two solutions, since Zp is a

field.

Corollary 8.1.9 There are as many quadratic residues as quadratic non-

residues modulo p.
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Proof: Assume that x2 � a mod p has a solution for some prime p.

Then by Euler’s Criterion, app�1q{2 � 1 mod p. Clearly
p� 1

2
� p � 1, so by

Lemma 6.0.10, we know that app�1q{2 � 1 mod p has exactly
p� 1

2
solutions.

Thus there are exactly
p� 1

2
values of a for which Euler’s Criterion indicates

that x2 � a mod p has a solution, so there are exactly
p� 1

2
quadratic residues.

But there are p � 1 elements in Z�
p , so there are p � 1 �

�
p� 1

2



� p� 1

2

nonresidues as well.

Theorem 8.1.10 Suppose p is an odd prime. Let a P Z and n P N such that

p � a and p � n. Then if xn � a mod p is solvable, so is xn � a mod pe for all

e ¥ 1. Furthermore, for any given n, these congruences have the same number

of solutions.

Example 8.1.11 Consider the congruence x2 � 2 mod 5.

x 1 2 3 4

x2 mod 5 1 4 4 1

Note that none of the least residues is equivalent to 2 modulo 5, thus our

congruence has no solution. If e � 2, the congruence becomes x2 � 2 mod 25.

x 1 2 3 4 5 6 7 8 9 10 11 12

x2 mod 25 1 4 9 16 0 11 24 14 6 0 21 19

x 13 14 15 16 17 18 19 20 21 22 23 24

x2 mod 25 19 21 0 6 14 24 11 0 16 9 4 1
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Again we do not have a least residue that is equivalent to 2 modulo 25,

so this congruence also has no solution.

Consider x2 � 4 mod 5. From the first table, we can see that x � 2 and

x � 3 are both solutions. Thus the congruence is solvable for e � 1. If e � 2,

we can see from the second table that x � 2 and x � 23 are both solutions to

x2 � 4 mod 25.

Proof: Assume that p is an odd prime and let n P N and a P Z be

such that p � n and p � a. Consider xn � a mod p.

Suppose n � 1. Then x � a mod p, which is trivially solvable, and the

solution is simply the least residue of a modulo p. Likewise, x � a mod pe is

also trivially solvable, and both congruences have the same solution.

Assume that n ¥ 2. We use induction on e. For e � 1, we can see that

xn � a mod p and xn � a mod pe are the same congruence, so the theorem

holds regardless of whether or not a solution exists. Assume that the result

holds for some e.

Now examine e � 1. Assume that xn � a mod pe has a solution, say

x0. Set x1 � x0 � bpe, where b is yet to be determined. Then by the binomial

expansion theorem,

xn1 � pxo � bpeqn

�
�
n

0



xn0 �

�
n

1



xn�1
0 bpe �

�
n

2



xn�2
0 pbpeq2 � � � � �

�
n

n



pbpeqn.
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We are working modulo pe�1, and it is clear that the terms that contain

ppeqj for 2 ¤ j ¤ n will be congruent to 0 modulo pe�1.

Collecting the leftover terms leaves us with xn1 � xn0�nxn�1
0 bpe mod pe�1.

We want this congruence to be of the form xn1 � a mod pe�1, for two reasons.

First, it will indicate that x1 is a solution to xn � a mod pe�1, which is the

result we are trying to achieve via induction. The second reason is that if x1

is a solution, then both xn � a mod pe and xn � a mod pe�1 have the same

number of solutions, since x1 was constructed from an arbitrary solution of

xn � a mod pe. To achieve this goal, we need to take a step back and examine

some things.

By assumption, xn0 � a mod pe. By the definition of congruent, there

exists k P Z such that pek � a � xn0 . Solving this equation for k yields

k � a� xn0
pe

, so we know that
a� xn0
pe

P Z. Recall that x1 � x0 � bpe and

consider

nxn�1
0 b � a� xn0

pe
mod p

ðñ nxn�1
0 b � a� xn0

pe
� jp, for some j (Definition of congruent)

ðñ nxn�1
0 bpe � a� xn0 � jpe�1, for some j (Arithmetic)

ðñ xn0 � nxn�1
0 bpe � a� jpe�1, for some j (Arithmetic)

ðñ xn0 � nxn�1
0 bpe � a mod pe�1 (Definition of congruent)

ðñ xn1 � a mod pe�1. (Substitution)
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Note that nxn�1
0 b � a� xn0

pe
mod p is a linear congruence in b. We

want to find a solution, if one exists. Recall that Theorem 6.0.5 states that

if gcdpnxn�1
0 , pq � 1, then there is a solution. Since p � n and x0 � 0 mod p

by hypothesis, p � nxn�1
0 . Thus there is exactly one b P Z that will satisfy the

congruence.

With this value of b and the work done above, we have established that

xn1 � xn0 � nxn�1
0 bpe � a mod pe�1, as required.

Suppose now that xn � a mod p has no solution. It is clear that

xn � a mod pe will also have no solution. So by induction on e, the first part

of the theorem holds.

It remains to show that for any given n, the congruences have the same

number of solutions. Recall that by Theorem 6.0.20, xn � a mod m has a

solution if and only if aϕpmq{d � 1 mod m, where d � gcd
�
n, ϕpmq�. In terms

of our situation, this means that xn � a mod p has a solution if and only

if aϕppq{d1 � 1 mod p, where d1 � gcd
�
n, ϕppq�, and xn � a mod pe has a

solution if and only if aϕpp
eq{d2 � 1 mod pe, where d2 � gcd

�
n, ϕppeq�. So,

in order to show that the congruences have the same number of solutions, we

need to show that gcd
�
n, ϕppq� � gcd

�
n, ϕppeq�.

Let d � gcd
�
n, ϕppq�. We know that since p is prime, ϕppq � p � 1,

so d � gcdpn, p� 1q. By definition of greatest common divisor, we have d � n

and d � pp � 1q, which imply that ds � n and dt � p � 1, for some s, t P Z.
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Now we want to show that gcd
�
n, ϕppeq� � d as well. To do this, we first refer

back to Theorem 7.2.3 to find that ϕppeq � pe�1pp� 1q. Thus, we are actually

trying to find gcd
�
n, pe�1pp� 1q�. We already have d � n and d � pp� 1q. The

final step is to note that since p is prime, d � pe�1, thus gcd
�
n, ϕppeq� � d as

desired, and both congruences have the same number of solutions, regardless

of the value of n.

Recall that in Theorem 6.0.20, we saw that if m is a positive integer that

has primitive roots and a and m are relatively prime, then a is an nth power

residue modulo m if and only if aϕpmq{d � 1 mod m, where d � gcd
�
n, ϕpmq�.

Recall also that m having primitive roots means that there is some element

g P Z�
m, such that xgy � Z�

m.

Consider the congruence xn � amod m, wherem P Z�. We can express

m by its prime-power decomposition, so that m � 2epe11 p
e2
2 . . . pekk , where each

pi is distinct and e and each ei are natural numbers. Then by Corollary 6.1.2,

xn � a mod 2epe11 p
e2
2 . . . pekk can be written as the system of congruences

xn � a mod 2e

xn � a mod pe11

...

xn � a mod pekk ,

so xn � a mod 2epe11 p
e2
2 . . . pekk is solvable if and only if the system of congru-

ences is solvable.
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We proved in Theorem 7.2.11 that every prime has ϕpp � 1q primitive

roots, which means that every prime possesses at least one primitive root. If

we first consider the odd prime powers of m, then Theorem 6.0.20 applies

and provides the criteria under which the last k congruences of the system

have solutions. If e � 0, then m is odd, so our system does not contain the

congruence xn � a mod 2e. Thus we can assume that e � 0, and we are

left with the question of whether or not the congruence xn � a mod 2e has

solutions.

Since 1 is a primitive root of 2 and 3 is a primitive root of 4, we can

also apply Theorem 6.0.20 to xn � a mod 2e in the cases e � 1 and e � 2.

This reduces our problem to determining whether or not we can solve the

congruence xn � a mod 2e if e ¥ 3.

Proposition 8.1.12 Suppose that a is odd and e ¥ 3. Consider the congru-

ence xn � a mod 2e.

1. If n is odd, a unique solution always exists.

2. If n is even, a solution exists if and only if a � 1 mod 4 and

ap2
e�2q{d � 1 mod 2e, where d � gcd

�
n, 2e�2

�
. When a solution exists,

there are exactly 2d of them.

The proof of this proposition can be found in [8].
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Theorem 8.1.13 Let 2l be the highest power of 2 dividing n. Suppose that a

is odd and xn � a mod 22l�1 is solvable. Then xn � a mod 2e is solvable for

all e ¥ 2l � 1. Moreover, all of these congruences have the same number of

solutions.

Example 8.1.14 Let n � 6. Then since 21 � 6, we have l � 1. Suppose that

x6 � a mod 23 is solvable.

16 � 1 mod 8

26 � 0 mod 8

36 � 1 mod 8

46 � 0 mod 8

56 � 1 mod 8

66 � 0 mod 8

77 � 1 mod 8

The theorem states that a needs to be odd, so if a � 1, we have the possible

solutions x � 1, x � 3, x � 5, or x � 7. Also, if x6 � a mod 23 is solvable,

then so is x6 � a mod 2e, for all e ¥ 3.

If we examine the congruence for e � 4, we have x6 � 1 mod 16. Clearly

x � 1 is also a solution here, so this congruence is solvable. In fact, 1 will be

a solution for any positive choice of e, so the result holds.

This proof is going to be very similar to the proof of Theorem 8.1.10.
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Proof: Assume that xn � a mod 2m has a solution for some m ¥ 2l�1.

Let this solution be x0 and let x1 � x0�2m�lb. Then by the binomial expansion

theorem,

xn1 �
�
xo � 2m�lb

�n
�
�
n

0



xn0 �

�
n

1



xn�1
0 2m�lb�

�
n

2



xn�2
0

�
2m�lb

�2 � � � � �
�
n

n


�
2m�lb

�n
� xn0 � nxn�1

0 2m�lb�
�
n

2



xn�2
0 22m�2lb2 � � � � �

�
n

n



2mn�lnbn.

Now we want to examine the right hand side modulo 2m�1. Notice that if

m � 2l � 1, then

2m� 2l � 2p2l � 1q � 2l (Substitution)

� 4l � 2� 2l (Distributive Property)

� 2l � 2 (Arithmetic)

� m� 1. (Substitution)

Thus

�
n

2



xn�2
0 22m�2lb2 � 0 mod 2m�1 regardless of m, since m ¥ 2l � 1. The

terms that follow this one will also be equivalent to 0 modulo 2m�1, since their

powers of 2 will be even higher, so xn1 � xn0 � nxn�1
0 2m�lb mod 2m�1.

We need this congruence to be of the form xn1 � a mod 2m�1. To that

end, recall that xn0 � a mod 2m. This implies that there exists k P Z such

that a � xn0 � 2mk, so k � a� xn0
2m

P Z. We need to find b P Z such that

nxn�1
0 b � a� xn0

2m�l
mod 2l�1. This is a linear congruence in b, so we can apply

Theorem 6.0.5. Then if gcd
�
nxn�1

0 , 2l�1
� � d � 1, a unique solution exists.
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Since 2l�1 � nxn�1
0 by hypothesis, d � 1. Thus there exists exactly one b that

satisfies the congruence.

Since nxn�1
0 b � a� xn0

2m�l
mod 2l�1, there exists some j P Z such that

sl�1j � 2m�lnxn�1
0 b � a� xn0

2m�l
, by definition of congruent. Clearing fractions

and simplifying this equation yields 2m�1j � a � 2m�lnxn�1
0 b � xn0 . But this

implies that 2m�lnxn�1
0 b � xn0 � a mod 2m�1. With this value of b, we have

xn1 � xn0 � 2m�lnxn�1
0 b � a mod 2m�1, which is exactly the result we needed.

Finally, we need to show that for any n, the congruences have the same

number of solutions. We saw in Theorem 6.0.20 that if one solution exists,

then there are exactly gcd
�
n, ϕppeq� solutions. Thus we need to show that

gcd
�
n, ϕppq� � gcd

�
n, ϕppeq�.

Let d � gcd
�
n, ϕppq� � gcdpn, p � 1q. Then d � n and d � p � 1. We

need to establish that d � gcd
�
n, ϕppeq�. Recall from Theorem 7.2.3 that

ϕppeq � pe�1pp� 1q. Thus we need d � gcd
�
n, pe�1pp� 1q�. Since p is prime,

d � pe�1, but d � n and d � p� 1, so gcd
�
n, pe�1pp� 1q� � d as required. Thus

both congruences have exactly the same number of solutions, regardless of the

value of n.

Theorem 8.1.15 Let m � 2epe11 . . . pekk be the prime decomposition of m, and

suppose that gcdpa,mq � 1. Then x2 � a mod m is solvable if and only if the

following conditions are satisfied:

1. If e � 2, then a � 1 mod 4.
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If e ¥ 3, then a � 1 mod 8.

2. For each 1 ¤ i ¤ k, we have appi�1q{2 � 1 mod pi.

Before we prove this theorem, recall that we begin looking at this con-

gruence in the preamble to Theorem 8.1.12. We said that xn � a mod m could

be broken down into a system of congruences, and that a solution exists if and

only if the system is solvable. Then in Theorem 8.1.12, it was stated that if n

is even, then if a solution exists, there are certain conditions on a that must

be satisfied. This theorem takes that idea one step further and considers the

conditions for specific values of e. The case e � 1 is not addressed by this

theorem, because if e � 1, then m � 2pe11 . . . pekk . Since 2 and each odd prime

power possess primitive roots, then solvability of each of the congruences in

this system is covered by Theorem 6.0.20.

Proof: Let m � 2epe11 . . . pekk P Z and suppose gcdpa,mq � 1 for some

a P Z. Consider the congruence x2 � a mod p2epe11 . . . pekk q. By Corollary 6.1.2,

x2 � a mod p2epe11 . . . pekk q is equivalent to the system of congruences

x2 � a mod 2e

x2 � a mod pe11

...

x2 � a mod pekk .
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Consider x2 � a mod 2e. If e � 2, then x2 � a mod 4, and

12 � 1 mod 4

22 � 0 mod 4

32 � 1 mod 4.

Note that since gcdpa,mq � 1, a must necessarily be odd, since m is even,

so a � 1 mod 4 implies that x2 � a mod 2e has a solution. To satisfy the if

and only if requirement of the theorem, suppose that x2 � a mod 4 is solvable

and gcdpa, 4q � 1. Then from the work above, a is necessarily congruent to 1

modulo 4. It follows that if e � 2, then x2 � a mod 4 is solvable if and only

if a � 1 mod 4.

Now suppose e � 3. Then for x2 � a mod 8, we have

12 � 1 mod 8

22 � 4 mod 8

32 � 1 mod 8

42 � 0 mod 8

52 � 1 mod 8

62 � 4 mod 8

72 � 1 mod 8.

Again we know that a is odd, so a � 1 mod 8 implies that x2 � a mod 8 has a
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solution. By Theorem 8.1.13, if x2 � a mod 8 is solvable, then x2 � a mod 2e

is also solvable for all e ¥ 3.

Now consider x2 � a mod peii . Since each of the pi is an odd prime,

gcdp2, piq � 1. Then we know from Theorem 8.1.10 that if x2 � a mod pi is

solvable, then x2 � a mod peii is also solvable. Suppose that x2 � a mod peii

has a solution, say r. Then r2 � a mod peii , which implies that r2 � a� αpeii ,

and thus r2 � a�βpi, where β � αpei�1
i . But this implies that r2 � a mod pi,

so r is also a solution to the congruence x2 � a mod pi. It follows that

x2 � a mod peii is solvable if and only if x2 � a mod pi is solvable.

Now we are in a position to apply Theorem 6.0.20 with n � 2, m � pi,

and d � gcd
�
n, ϕpmq� � gcdp2, pi � 1q � 2. The theorem indicates that

x2 � a mod pi is solvable if and only if appi�1q{2 � 1 mod pi.

Example 8.1.16 Let m � 72. Then the prime-power decomposition of 72 is

72 � 2333. Consider the congruence x2 � a mod 72. By Theorem 8.1.15, e � 3

and this congruence has a solution if and only if a � 1 mod 8.

Suppose a � 35. Since 35 � 3 mod 8, x2 � 35 mod 72 has no solution.

If a � 41 instead, then 41 � 1 mod 8, but if we consider the second

requirement of the theorem, for p � 3, we have 41p3�1q{2 � 41 � 2 mod 3.

Thus condition 2 is not satisfied, and there is no solution to x2 � 41 mod 72.

Let a � 49. Then 49 � 1 mod 8 and 49p3�1q{2 � 49 � 1 mod 3, so the

congruence x2 � 49 mod 72 has a solution by Theorem 8.1.15. This should
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feel somewhat intuitive, since x � 7 clearly satisfies the congruence.

8.2 Legendre Symbol

The remainder of this chapter will be spent exploring congruences of the form

x2 � a mod p, and determining whether or not they have solutions. A. M.

Legendre came up with a notation called the Legendre symbol that represents

the phrase “x2 � a mod p has a solution”. The use of this symbol, as defined

and explored in the pages to come, will greatly simplify the rest of the work

done in this chapter.

Definition 8.2.1 Let pa{pq be called the Legendre symbol. Then for odd

primes p,

pa{pq �

$''''''''&
''''''''%

0, if p � a

1, if a is a quadratic residue modulo p

�1, if a is a quadratic nonresidue modulo p.

As far as notation goes, the Legendre symbol can either be written

as pa{pq or as

�
a

p



. We don’t have a preferred notation, and will just use

whichever notation is more convenient. ♦

Note that the special case of pa{2q is not addressed in this definition.

If we examine the congruence x2 � a mod 2, our only choices are a � 0 and
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a � 1. If a � 1, then x � 1 is clearly a solution. In fact, any odd integer is a

solution when we are working modulo 2.

Most of the work we do from here on out will involve odd primes as

our p values, and we will address the special cases of a � 2 separately.

Theorem 8.2.2 (Properties of the Legendre Symbol)

1. app�1q{2 � pa{pq mod p.

2. If p � a and p � b, then

�
ab

p



�
�
a

p


�
b

p



.

3. If a � b mod p, then pa{pq � pb{pq.

4. If p � a, then

�
a2

p



� 1.

5.

��1

p



�

$'''&
'''%

1, if p � 1 mod 4

�1, if p � 3 mod 4.

Example 8.2.3 This example is designed to illustrate the properties of the

Legendre symbol. We do not have the Law of Quadratic Reciprocity available

to use yet, but once we have established it, we will give other examples that

show how powerful it is in evaluating Legendre symbols.

Consider the Legendre symbol

�
87

101



. By Property 2, this becomes

�
87

101



�
�

3

101


�
29

101



.
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Now if we apply Property 1 to each of the Legendre symbols on the right hand

side, we have

�
3

101



� 3p101�1q{2 mod 101 (Property 1 of Legendre symbols)

� 350 mod 101 (Arithmetic)

� �1 mod 101 (Reduce modulo 101)

and

�
29

101



� 29p101�1q{2 mod 101 (Property 1 of Legendre symbol)

� 2950 mod 101 (Arithmetic)

� �1 mod 101. (Reduce modulo 101)

Thus

�
87

101



� p�1qp�1q � 1 mod 101, so x2 � 87 mod 101 has a solution by

the definition of Legendre symbol.

It is fairly straightforward (using a computer for the computations) to

discover that x � 17 and x � 84 are the two solutions.

Proof: Assume that p is an odd prime and consider the congruence

x2 � a mod p.

1. Property 1 follows immediately from Euler’s Criterion.
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2. Suppose that p � a and p � b. Then�
ab

p



� pabqpp�1q{2 mod p (Property 1 of Legendre symbols)

� app�1q{2 � bpp�1q{2 mod p (Properties of exponents)

�
�
a

p


�
b

p



mod p. (Property 1 of Legendre symbols)

3. Suppose a � b mod p. Then x2 � a mod p and x2 � b mod p are the

same congruence, so they either both have solutions, or they both do

not.

4. Assume that p � a. Then x2 � a2 mod p clearly has a solution, specifi-

cally the least residue of a modulo p. Thus

�
a2

p



� 1.

5. Suppose that p � 1 mod 4. Then p � 4k � 1 for some k P Z. Consider

x2 � �1 mod p. By Property 1 of the Legendre symbol, we have

p�1qpp�1q{2 � p�1qp4k�1�1q{2 mod p (p � 4k � 1)

� p�1q2k mod p (Arithmetic)

� 1 mod p.

Suppose that p � 3 mod 4. Then p � 4j � 3, for some j P Z. Consider

x2 � �1 mod p. By Property 1 of the Legendre symbol, we have

p�1qpp�1q{2 � p�1qp4j�3�1q{2 mod p (p � 4j � 3)

� p�1q2j�1 mod p (Arithmetic)

� �1 mod p.
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Thus

��1

p



� 1 if p � 1 mod 4 and

��1

p



� �1 if p � 3 mod 4.

It follows that all five properties hold as desired.

Observe that the properties of the Legendre symbol indicate that the

product of two quadratic residues is again a residue. If a and b are residues

modulo p, then

�
a

p



� 1 �

�
b

p



and certainly multiplying those results

together yields 1 as well, so ab is also a residue. On the other hand, if a is

a residue and b is a nonresidue, then

�
ab

p



�

�
a

p


�
b

p



� p1qp�1q � �1,

and ab is a nonresidue. Thus the product of a residue and a nonresidue is

a nonresidue. This means that the Legendre symbol can be interpreted as a

multiplicative character.

Example 8.2.4 Consider the congruence x2 � 3870 mod 431. Since

3870 � 422 mod 431, by Property 3 of the Legendre symbol,�
3870

431



�

�
422

431



. Thus, if we evaluate both symbols, they should give us

the same result. The first yields

�
3870

431



�
�

430 � 32

431



(Factorization of 3870)

�
��1 � 32

431



(430 � �1 mod 431)

�
��1

431


�
3

431


2

(Property 2 of Legendre symbols)

� p�1qp1q mod 431, (Properties 3 and 5 of Legendre symbols)
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and the second yields�
422

431



�
�

2

431


�
211

431



(Property 2 of Legendre symbols)

� 2p431�1q{2 � 211p431�1q{2 mod 431 (Property 1 of Legendre symbols)

� 2215 � 211215 mod 431 (Arithmetic)

� p1qp�1q mod 431 (Reduce modulo 431)

� �1 mod 431. (Arithmetic)

The two results agree, which is what Property 3 states, and since the result is

�1, there is no solution to the congruence x2 � 3870 mod 431.

8.3 Law of Quadratic Reciprocity

The Law of Quadratic Reciprocity has three parts. The first two parts deal

with the cases a � �1 and a � 2 in the congruence x2 � a mod p. The third

part is a powerful tool that allows us to determine the relationship between

pp{qq and pq{pq when p and q are both prime. In other words, it addresses

the question “if x2 � p mod q has a solution, under what circumstances does

x2 � q mod p also have a solution”?

We introduce the theorem here, and our goal is to prove it in its entirety.

We need some additional results first though, so the proof will be given shortly.

Theorem 8.3.1 (The Law of Quadratic Reciprocity) Let p and q be

distinct odd primes. Then
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1. p�1{pq � p�1qpp�1q{2

2. p2{pq � p�1qpp2�1q{8

3. pp{qqpq{pq � p�1qppp�1q{2qppq�1q{2q.

Recall that we looked at the properties of the Legendre symbol in the

previous section. Part 1 of the Law of Quadratic Reciprocity follows immedi-

ately from Property 1 of the Legendre symbol. We need to establish additional

results before we can prove the remaining two parts of the Law of Quadratic

Reciprocity.

Lemma 8.3.2 (Gauss’ Lemma) Let p be an odd prime and let a P Z be such

that gcdpa, pq � 1. Define µ to be the number of least residues of the integers"
a, 2a, 3a, . . . ,

�
p� 1

2



a

*
that are greater than

p� 1

2
. Then pa{pq � p�1qµ.

Example 8.3.3 Let p � 11 and a � 4. Then gcdp4, 11q � 1 and
11� 1

2
� 5.

The table below shows the least residues modulo 11 of the integers a, 2a, . . . , 5a.

4 8 12 16 20

mod 11 4 8 1 5 9

Note that there are three least residues less than or equal to 5 and two that

are greater than 5, so µ � 2. By Gauss’ Lemma, p4{11q � p�1q2 � 1. Notice

that Property 4 of Legendre symbols gives us this result as well, since 4 is a

perfect square.
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Proof: Assume that p is an odd prime. Let a P Z be such that

gcdpa, pq � 1. Consider the integers

"
a, 2a, . . . ,

�
p� 1

2



a

*
. (8.1)

Let u1, u2, . . . , us denote the least residues modulo p of the integers in (8.1)

that are less than or equal to
p� 1

2
, and let v1, v2, . . . , vt denote the least

residues modulo p of the integers in (8.1) that are greater than
p� 1

2
.

Suppose that two of the ui are congruent modulo p. Then for some s1

and s2, we have s1a � s2a mod p. But gcdpa, pq � 1, so by Corollary 4.3.20,

we have s1 � s2 mod p. Since s1, s2 P
"

1, . . . ,
p� 1

2

*
, we have s1 � s2, and it

follows that the ui are unique. By a similar argument, we get that the vj are

also unique.

Now consider the set of numbers

R � tu1, u2, . . . , us, p� v1, p� v2, . . . , p� vtu.

Recall that 0 ¤ ui ¤ p� 1

2
and

p� 1

2
  vj   p. Thus, 1 ¤ r ¤ p� 1

2
for each

r P R. There are at most
p� 1

2
such elements r, since s� t � p� 1

2
.

We claim that ui � p � vj mod p for any 1 ¤ i ¤ s, 1 ¤ j ¤ t. Note

that ui � s1a mod p for some 1 ¤ s1 ¤ p� 1

2
and p� vj � t1a mod p for some

1 ¤ t1 ¤ p� 1

2
. Suppose ui � p�vj mod p, for some i, j. Then by substitution,

we have s1a � t1a mod p. But gcdpa, pq � 1, so by Theorem 4.3.20, we have

s1 � t1 mod p. However, 1 ¤ s1, t1 ¤ p� 1

2
, so s1 � t1, and it follows that each
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r P R is unique.

Since 1 ¤ r ¤ p� 1

2
for each unique r P R, it must be the case that

R is a permutation of

"
1, 2, . . . ,

p� 1

2

*
. Multiplying all of the elements of R

together yields

u1u2 . . . uspp� v1qpp� v2q . . . pp� vtq � 1 � 2 . . . p� 1

2
. (8.2)

Now, p � vj � �vj mod p for all 1 ¤ j ¤ t, and there are µ such terms, so

Equation (8.2) becomes

u1u2 . . . usv1v2 . . . vµp�1qµ �
�
p� 1

2



! mod p. (8.3)

But u1, . . . , u2, v1, . . . , vµ are a permutation of the least residues modulo p of

the integers in (8.1), so

u1 . . . usv1 . . . vµ � paqp2aq . . .
�
p� 1

2



a mod p

ðñ u1 . . . usv1 . . . vµ � app�1q{2

�
p� 1

2



! mod p.

This last congruence implies that Congruence (8.3) can be rewritten as

p�1qµapp�1q{2

�
p� 1

2



! �

�
p� 1

2



! mod p. (8.4)

Since p is prime,

�
p� 1

2



! is relatively prime to p, so by Theorem 4.3.20, we

have app�1q{2p�1qµ � 1 mod p.

Multiplying both sides of Congruence (8.4) by p�1qµ, yields

app�1q{2 � p�1qµ mod p. (8.5)
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By Property 1 of Legendre symbols, app�1q{2 � pa{pq mod p, so

pa{pq � p�1qµ mod p. Note that each side of Congruence (8.5) will only take

the values of 1 or �1, so the two sides must be equivalent modulo p. It follows

that pa{pq � p�1qµ.

Theorem 8.3.4 2 is a quadratic residue of primes of the form 8k � 1 and

8k � 7. 2 is a quadratic nonresidue of primes of the form 8k � 3 and 8k � 5.

This information is summarized in the formula

p2{pq � p�1qpp2�1q{8.

Example 8.3.5 To illustrate this theorem, we consider the primes 11, 13, 17,

and 23. Since 11 � 3 mod 8, it is of the form 8k � 3. By Euler’s Criterion,

2pp�1q{2 � 2p11�1q{2 � �1 mod 11,

thus x2 � 2 mod 11 does not have a solution and p2{pq � �1. The formula

from Theorem 8.3.4 yields

p�1qpp2�1q{8 � p�1qp112�1q{8 (p � 11)

� p�1q15 (Arithmetic)

� �1.

Similarly, since 13 � 5 mod 8, 13 is of the form 8k � 5, and

2pp�1q{2 � 26 � �1 mod 13.

176



Thus p2{pq � �1 and p�1qp132�1q{8 � p�1q21 � �1. Therefore 2 is a quadratic

nonresidue of both 11 and 13, which were primes of the form 8k�3 and 8k�5

respectively.

Since 17 � 1 mod 8, it is of the form 8k � 1, and

2p17�1q{2 � 28 � 256 � 1 mod 17.

Thus x2 � 2 mod 17 has a solution, and p2{pq � 1 � p�1qp172�1q{8.

Finally, 23 � 7 mod 8, so 23 is of the form 8k � 7 and

2p23�1q{2 � 211 � 2048 � 1 mod 23,

thus p2{pq � 1 � p�1qp232�1q{8. Hence 2 is a quadratic residue of the primes

17 and 23, which are of the form 8k � 1 and 8k � 7 respectively.

We present two very different proofs of Theorem 8.3.4. The first is a

variation of the proof that is generally credited to Gauss, which relies heavily

on the use of Gauss’ Lemma. While it does give the desired result, the method

is a bit unwieldy. We have changed the second half of the proof slightly to

make it more straightforward.

Before we work through the first proof of this theorem, we need to

recall that the greatest integer of a real number x, denoted by rxs, is the

largest integer less than or equal to x. Symbolically, this is rxs ¤ x ¤ rxs � 1.

For example, r1{4s � 0 and r5s � 5. This idea will be used in Gauss’ version

of the proof.
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Proof: Assume that p is an odd prime. Recall that Gauss’ Lemma

takes the set of integers

"
a, 2a, . . . ,

p� 1

2
a

*
and divides them into two groups.

For 1 ¤ m ¤ p� 1

2
, the first group is the set of ma for which ma ¤ p� 1

2
,

and the second group is the set of ma such that ma ¡ p� 1

2
. The number of

elements in this second group is the value of µ in Gauss’ Lemma.

So for a � 2, µ is the number of 2m P S �
"

1 �2, 2 �2, . . . ,
�
p� 1

2



�2
*

such that 2m ¡ p� 1

2
. We want to find the value of m that is the cutoff point

between the two groups. In other words, we are looking for the m, such that

2m ¤ p� 1

2
, but 2pm � 1q ¡ p� 1

2
. Solving each of these inequalities for m

and then combining inequalities yields

p� 1

4
� 1   m ¤ p� 1

4
.

Since each of the integers in t1 �2, 2 �2, . . . ,m �2u is less than or equal to

p� 1

2
, we see that m is the number of least residues that are less than or equal

to
p� 1

2
. Thus, since there are a total of

p� 1

2
least residues, µ � p� 1

2
�m.

There are four possibilities for least residues modulo 8, and they are 1,

3, 5, and 7. We examine each of these individually, and determine m and µ in

each case.

• Suppose p � 1 mod 8. Then p � 8k � 1, for some k P Z, so
p� 1

2
� 4k.
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Since
p� 1

4
� 1   m ¤ p� 1

4
, we have

8k � 1� 1

4
� 1   m ¤ 8k � 1� 1

4
(Substitution)

ðñ 2k � 1   m ¤ 2k, (Arithmetic)

which implies that m � 2k. Thus, µ � 4k � 2k � 2k, so

p2{pq � p�1q2k � 1.

It follows that 2 is a quadratic residue of primes of the form 8k � 1.

• Suppose p � 7 mod 8. Then p � 8k � 7, for some k P Z, which gives us

p� 1

2
� 4k � 3. Thus,

8k � 7� 1

4
� 1   m ¤ 8k � 7� 1

4
ðñ 2k � 1

2
  m ¤ 2k � 3

2
.

But m is an integer, so m � 2k� 1 by the greatest integer function, and

µ � 4k � 3 � p2k � 1q � 2pk � 1q. Thus p2{pq � p�1q2pk�1q � 1, and it

follows that 2 is a quadratic residue of primes of the form 8k � 7, which

is equivalent to saying that p � �1 mod 8.

• Suppose p � 3 mod 8. Then p � 8k � 3, for some k P Z, which yields

p� 1

2
� 4k � 1. Thus

8k � 3� 1

4
� 1   m ¤ 8k � 3� 1

4
ðñ 2k � 1

2
  m ¤ 2k � 1

2
.

But since m is an integer, m � 2k by the greatest integer function, so

µ � 4k � 1 � 2k � 2k � 1, which is odd. Hence p2{pq � p�1q2k�1 � �1,

179



and it follows that 2 is a quadratic nonresidue of primes of the form

8k � 3.

• Suppose p � 5 mod 8. Then there is some k P Z, such that p � 8k � 5.

Thus
p� 1

2
� 4k � 2, so

8k � 5� 1

4
� 1   m ¤ 8k � 5� 1

4
ðñ 2k   m ¤ 2k � 1,

which implies that m � 2k�1. Thus µ � 4k�2�p2k�1q � 2k�1, which

is odd, so p2{pq � p�1q2k�1 � �1, and it follows that 2 is a quadratic

nonresidue of primes of the form 8k � 5.

At this point we have established that

�
2

p



�

$'''&
'''%

1, if p � �1 mod 8

�1, if p � �1 mod 8.

It remains to show that the formula p2{pq � p�1qpp2�1q{8 holds. We

have already seen that we can write each of the odd primes as 8k � r, where

k P Z and r P t1, 3, 5, 7u. Examination of
p2 � 1

8
yields

p8k � rq2 � 1

8
� 64k2 � 16rk � r2 � 1

8
(Substitution; Arithmetic)

� 8k2 � 2rk � r2 � 1

8
. (Arithmetic)

But 8k2 � 2rk � 0 mod 2, so we only need to be concerned with the term

r2 � 1

8
for r P t1, 3, 5, 7u. Examining this term for each of the possible values

of r yields the following table of results.
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r r2 � 1
r2 � 1

8
mod 2

1 0 0 0

3 8 1 1

5 24 3 1

7 48 6 0

Note that the values in the modulo 2 column match our previous results

for each value of r. Thus

�
2

p



� p�1qpp2�1q{8,

as desired.

The second version of this proof that we present is a version by Euler.

He used complex numbers and primitive roots of unity to derive the formula

for p2{pq. The math is more complicated in Euler’s version, but it is presented

here as a contrast to the fairly straightforward proof by Gauss.

Proof: Let ζ be a primitive eighth root of unity. Then ζ � e2πi{8. By

definition of primitive roots of unity, we have ζ8 � 1 � pζ4 � 1qpζ4 � 1q � 0.
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Since ζ is an eighth root of unity, ζ4 � 1, so ζ4 � 1 � 0. Thus we have

ζ4 � �1

ðñ ζ�2 � ζ4 � ζ�2 � p�1q (Left multiplication by ζ�2)

ðñ ζ2 � �ζ�2 (Arithmetic)

ðñ ζ2 � ζ�2 � 0 (Addition Property of Equality)

ðñ ζ2 � 2� ζ�2 � 2 (Add 2 to both sides)

ðñ pζ � ζ�1q2 � 2. (Factorization)

Set τ � ζ � ζ�1. Then τ 2 � 2. Now, since ζ8 � 1 � 0, ζ is an algebraic

integer, because it is the root of a polynomial with integer coefficients. Recall

that we stated earlier that the algebraic integers form a ring. This implies

that τ is also an algebraic integer, since rings are closed under addition and

multiplication.

We need to work temporarily in the setting Zppζq, where ζ is a primitive

8th root of unity. Zppζq is an extension field of Zp containing ζ. We did not

prove results in this thesis about extension fields, but they can be found in

[6]. For the remainder of this proof, whenever τ comes into play, we will be

working in this extension field.
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For the odd prime p in Zppζq,

τ p�1 � pτ 2qpp�1q{2 (Properties of exponents)

� 2pp�1q{2 (τ 2 � 2)

� p2{pq. (Property 1 of Legendre Symbols)

To justify the third step, note that τ 2 � 2, since p is an odd prime, and 2   p

for any p. Thus 2pp�1q{2 � p2{pq by Property 1 of Legendre symbols.

So now we have τ p�1 � p2{pq if and only if τ is in the extension field.

But this is equivalent to τ p � τ � p2{pq. By Theorem 5.5.3, we also have

τ p � pζ � ζ�1qp � ζp � ζ�p. Recall that ζ8 � 1. We can now see that if

p � �1 mod 8, ζp � ζ�p � ζ � ζ�1, and if p � �3 mod 8, ζp � ζ�p � ζ3 � ζ�3.

Recall that we saw previously that ζ4 � �1, so

ζ4 � �1

ðñ ζ�1 � ζ4 � ζ�1 � p�1q (Multiplication Property of Equality)

ðñ ζ3 � �ζ�1. (Arithmetic)

A similar calculation yields ζ�3 � �ζ. Thus, when p � �3 mod 8, we have

ζp � ζ�p � �pζ � ζ�1q. Combining these results yields

ζp � ζ�p �

$'''&
'''%
τ, if p � �1 mod 8

�τ, if p � �3 mod 8.

(8.6)
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Putting all of the pieces together reveals that

τ p � τ � p2{pq

ðñ ζp � ζ�p � τ � p2{pq (τ p � ζp � ζ�p)

ðñ p�1qαpζ � ζ�1q � τ � p2{pq, (Equation (8.6))

where α is yet to be determined. Based on our previous work in this proof, we

see that p�1qα � 1 when p � �1 mod 8 and p�1qα � �1 when p � �3 mod 8.

Thus

α �

$'''&
'''%

0, if p � �1 mod 8

1, if p � �3 mod 8.

Now suppose that p � 1 mod 8. Then p � 8k � 1 for some k P Z.

Observe that

p2 � 1

8
� 64k2 � 16k � 1� 1

8
(Substitution; Arithmetic)

� 8k2 � 2k (Arithmetic)

� 0 mod 2.

Similar calculations reveal that
p2 � 1

8
� 0 mod 2 when p � �1 mod 8 and

p2 � 1

8
� 1 mod 8 when p � �3 mod 8.
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Returning to our previous work, τ p � τ � p2{pq yields

τ p � τ � p2{pq

ðñ p�1qαpζ � ζ�1q � τ � p2{pq

ðñ p�1qpp2�1q{8pζ � ζ�1q � τ � p2{pq (α � pp2 � 1q{8)

ðñ p�1qpp2�1q{8 � τ � τ � p2{pq (τ � ζ � ζ�1)

ðñ p�1qpp2�1q{8 � p2{pq, (Corollary 4.3.20)

which is the desired result.

Now we have proved parts 1 and 2 of the Law of Quadratic Reciprocity,

and it remains only to prove part 3. However, we need to establish a few more

results before we prove that portion of the theorem. Once we have proved the

third part, we will demonstrate its usefulness with some examples.

Recall that rxs is the greatest integer function, and rxs ¤ x ¤ rxs � 1.

We will use this function in the proofs to come.

Lemma 8.3.6 Let p and q be odd primes. Then pq{pq � p�1qk, where

k �
pp�1q{2¸
i�1

�
qi

p

�
.

Example 8.3.7 Let p � 11 and q � 7. Then

p11�1q{2¸
i�1

�
7i

11

�
�
�

7

11

�
�
�

14

11

�
�
�

21

11

�
�
�

28

11

�
�
�

35

11

�

� 0� 1� 1� 2� 3 (Definition of rxs)

� 7. (Arithmetic)
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We know from previous work that

p7{11q � 7p11�1q{2 mod 11

� 16807 mod 11

� �1 mod 11,

and if we apply the lemma, we have p7{11q � p�1q7 � �1, which agrees.

Note that

14 �
�

14

11

�
� 11� 3 and 0   3   11

2
,

but

28 �
�

28

11

�
� 11� 6 �

�
28

11

�
� 11� p11� 5q, where 0   5   11

2
.

In other words, some of the qi can be expressed as qi �
�
qi

p

�
� p � u, where

0   u   p

2
. However, if qj �

�
qj

p

�
� p � v, where

p

2
  v   p, then we can

express qj as qj �
�
qj

p

�
� p� pp� u1q, where u1 � p� v and 0   u1   p

2
.

This idea that each qi can be expressed as either qi �
�
qi

p

�
� p� r, for

some 0   r   p

2
, or qi �

�
qi

p

�
� p � pp � r1q, where r1 � p � r and 0   r1   p

2

is going to play a part in the proof of Lemma 8.3.6.

We can use a similar process to calculate p11{7q.
p7�1q{2¸
i�1

�
11i

7

�
�
�

11

7

�
�
�

22

7

�
�
�

33

7

�

� 1� 3� 4 (Definition of rxs)

� 8 (Arithmetic)
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By the definition of the Legendre Symbol, p11{7q � 11p7�1q{2 mod 7 � 1 mod 7,

and p11{7q � p�1q8 � 1 by the lemma, so the results agree.

Proof: Consider the integers q, 2q, . . . ,

�
p� 1

2



q. By the division

algorithm for integers, we can divide these into two types, as modeled by

Example 8.3.7. So either

qi �
�
qi

p

�
� p� ui, where 0   ui   p

2
, (8.7)

or

qi �
�
qi

p

�
� p� pp� viq, where 0   p� vi   p

2
. (8.8)

Now recall that by Gauss’ Lemma, µ is defined to be the number of least

residues of q, 2q, . . . ,

�
p� 1

2



q that are greater than

p� 1

2
. By definition,

the number of vi is exactly µ. In the proof of Gauss’ Lemma, we showed that

tu1, . . . , us, p�v1, . . . , p�vµu is a permutation of the integers

"
1, 2, . . . ,

p� 1

2

*
.
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Adding Equations (8.7) and (8.8) together yields

pp�1q{2¸
i�1

qi �
pp�1q{2¸
i�1

�
qi

p

�
� p�

ş

i�1

ui �
µ̧

i�1

pp� viq

� p �
pp�1q{2¸
i�1

�
qi

p

�
�

ş

i�1

ui �
µ̧

i�1

p�
µ̧

i�1

vi (Properties of sums)

� p �
pp�1q{2¸
i�1

�
qi

p

�
�

ş

i�1

ui � pµ�
µ̧

i�1

vi

� p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ�

ş

i�1

ui �
µ̧

i�1

vi �
µ̧

i�1

vi �
µ̧

i�1

vi

(Addition of zero)

� p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ�

ş

i�1

ui �
µ̧

i�1

vi � 2
µ̧

i�1

vi

(Rearrange summand)

� p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ�

pp�1q{2¸
i�1

i� 2
µ̧

i�1

vi. (s� µ � pp� 1q{2)

In the final step, note that s� µ � p� 1

2
and since the ui and vi are distinct,

ş

i�1

ui �
µ̧

i�1

vi gives us the sum of the integers 1, 2, . . . ,
p� 1

2
.

Thus continuing our work from above and using properties of sums to

manipulate the equation, we have

pp�1q{2¸
i�1

qi � p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ�

pp�1q{2¸
i�1

i� 2
µ̧

i�1

vi

ðñ
pp�1q{2¸
i�1

qi�
pp�1q{2¸
i�1

i � p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ� 2

µ̧

i�1

vi

ðñ
pp�1q{2¸
i�1

ipq � 1q � p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ� 2

µ̧

i�1

vi

ðñ pq � 1q
pp�1q{2¸
i�1

i � p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ� 2

µ̧

i�1

vi.
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But p and q are both odd, so taking

pq � 1q
pp�1q{2¸
i�1

i � p �
pp�1q{2¸
i�1

�
qi

p

�
� pµ� 2

µ̧

i�1

vi

modulo 2 yields

1 �
pp�1q{2¸
i�1

�
qi

p

�
� 1 � µ � 0 mod 2,

which implies that

µ � �
pp�1q{2¸
i�1

�
qi

p

�
mod 2.

Now recall that by hypothesis, k �
pp�1q{2¸
i�1

�
qi

p

�
, so µ � �k mod 2. This means

that µ and k differ only by sign, and thus they are either both even or both

odd. So by Gauss’ Lemma, pq{pq � p�1qµ � p�1qk.

Before we prove part 3 of the Law of Quadratic Reciprocity, we want

to look at an example that illustrates geometrically how Lemma 8.3.6 works,

because we will use a similar approach in our proof.

Example 8.3.8 From Example 8.3.7, consider the ordered pairs px, yq, such

that 1 ¤ x ¤
�

7� 1

2



� 3 and 1 ¤ y ¤

�
11� 1

2



� 5, where x, y P Z. There

are 3 � 5 � 15 such pairs, and we can arrange them in the rectangle shown

below.
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p0, 0q p3, 0q

p3, 5qp0, 5q

y
�
p11
{7q
x

Now consider the line 7y � 11x. This equation implies that 11 � 7y, so

either 11 � 7 or 11 � y. Clearly 11 � 7, and since 1 ¤ y ¤ 5, we can see easily

that 11 � y as well. Thus, none of the 15 ordered pairs px, yq lie on the line

y � 11

7
x.

This line effectively splits the pairs into two groups. The group in the

top portion of the rectangle are those pairs that satisfy 11x   7y, or the

values 1 ¤ y ¤ 5 and 1 ¤ x ¤ 7

11
y. Since x is an integer, this last inequality

is 1 ¤ x ¤
�

7y

11

�
, for each 1 ¤ y ¤ 5. The group in the bottom portion of

the rectangle are the pairs satisfying 7y   11x, or the values 1 ¤ x ¤ 3 and
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1 ¤ y  
�

11x

7

�
.

From our work above, we can see that there are

5̧

i�1

�
7i

11

�
� 7

points that lie above the line y � 11

7
x. Similarly, there are

3̧

i�1

�
11i

7

�
� 8

points below the line, and since none of the points lie exactly on the line, this

accounts for all 15 of the ordered pairs.

Examining the product

�
p� 1

2


�
q � 1

2



for our values p � 11 and

q � 7 yields

�
11� 1

2


�
7� 1

2



� 5 � 3 (Arithmetic)

� 15 (Arithmetic)

� 8� 7 (Arithmetic)

�
3̧

i�1

�
11i

7

�
�

5̧

i�1

�
7i

11

�
.

Now recall that in part 3 of the Law of Quadratic Reciprocity, the right hand

side of the equation is p�1qppp�1q{2qppq�1q{2q. Our work here means that when

we prove the Law of Quadratic Reciprocity, we can replace the exponent on

the right side of the equation in part 3 with the sums that we constructed.

We are now in a position to prove part 3 of the Law of Quadratic

Reciprocity. There are to date over two hundred versions of this proof [18].
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The proof that we present here is credited to Eisenstein and makes use of the

greatest integer function.

Theorem 8.3.9 (The Law of Quadratic Reciprocity) Let p and q be

distinct odd primes. Then

1. p�1{pq � p�1qpp�1q{2

2. p2{pq � p�1qpp2�1q{8

3. pp{qqpq{pq � p�1qppp�1q{2qppq�1q{2q.

Proof: Assume that p and q are distinct odd primes.

1. This follows immediately from Property 1 of Legendre symbols.

2. This result was proved in Theorem 8.3.4.

3. Let k �
pq�1q{2¸
i�1

�
pi

q

�
and k1 �

pp�1q{2¸
i�1

�
qi

p

�
. Then by Lemma 8.3.6, we

know that pp{qq � p�1qk and pq{pq � p�1qk1 . Thus

pp{qqpq{pq � p�1qk � p�1qk1 � p�1qk�k1 .

Our goal is to show that k � k1 � p� 1

2
� q � 1

2
.

Consider a rectangle similar to the one from Example 8.3.8, as shown

below.
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p0, 0q �
p�1
2
, 0
�

pp�1q{2¸
i�1

�
qi

p

�
lattice points

�
p�1
2
, q�1

2

�
pq�1q{2¸
i�1

�
pi

q

�
lattice points

�
0, q�1

2

�

y �
pq{p

qx

Now consider the ordered pairs px, yq in the rectangle, where x, y P Z

and 1 ¤ x ¤ p� 1

2
, 1 ¤ y ¤ q � 1

2
, and note that there are

p� 1

2
� q � 1

2

such pairs.

If we graph the line qx � py, notice that none of the integer pairs px, yq

is on the line, since if qx � py, then q � py, which implies that either

q � p or q � y. But p and q are distinct primes, so q � p is not possible.

Also, 1 ¤ y ¤ q � 1

2
, so y cannot be a multiple of q either. Thus qx � py

for any pair px, yq.

Suppose py ¡ qx. We want to count the number of px, yq pairs that

lie above the line py � qx. These pairs satisfy 1 ¤ y ¤ q � 1

2
and

1 ¤ x ¤ py

q
. As we run through each y value, we can see that there

are

�
py

q

�
integers that satisfy 1 ¤ x ¤ py

q
. Since there are

q � 1

2
such
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values of y, there are exactly

pq�1q{2¸
i�1

�
pi

q

�
pairs px, yq such that x and y

are both integers and 1 ¤ y ¤ q � 1

2
and 1 ¤ x ¤ py

q
are both satisfied.

In a similar fashion, if we consider the inequality qx ¡ py, we can deter-

mine how many px, yq pairs lie below the line py � qx. The pairs below

the line must satisfy 1 ¤ x ¤ p� 1

2
and 1 ¤ y ¤ qx

p
. Running through

each x value gives us

�
qx

p

�
integers that satisfy 1 ¤ y ¤ qx

p
. There are

p� 1

2
such x values, so there are exactly

pp�1q{2¸
i�1

�
qi

p

�
pairs px, yq such

that x, y P Z and 1 ¤ x ¤ p� 1

2
and 1 ¤ y ¤ qx

p
are both satisfied.

Now, since there are
p� 1

2
� q � 1

2
total pairs in the rectangle and none

of the pairs lie on the line py � qx,

p� 1

2
� q � 1

2
�

pq�1q{2¸
i�1

�
pi

q

�
�

pp�1q{2¸
i�1

�
qi

p

�
� k � k1.

Thus pp{qqpq{pq � p�1qppp�1q{2qppq�1q{2q as desired.

It follows that the Law of Quadratic Reciprocity holds.

There are of course several different ways to state the third part of the

Law of Quadratic Reciprocity, so we will state three versions and then prove

that they are equivalent. We require a lemma for the proof.

Lemma 8.3.10 Suppose q is an odd prime and a ¥ 1 P Z. If x2 � a mod q,

then p2xq2 � 4a mod q and p4a{qq � pa{qq.
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Proof: Suppose x2 � a mod q. Then

x2 � a mod q

ðñ 4x2 � 4a mod q

ðñ p2xq2 � 4a mod q.

Thus

p4a{qq � p4{qqpa{qq (Properties of Legendre Symbol)

� pa{qq, (p4{qq � 1 by Properties of Legendre Symbol)

as desired.

Theorem 8.3.11 Let p and q be odd primes and a ¥ 1 an integer. Then the

following assertions are equivalent.

1. If p � q � 3 mod 4, then pp{qq � �pq{pq. Otherwise, pp{qq � pq{pq.

2. pp{qqpq{pq � p�1qpp�1qpq�1q{4.

3. If p � �q mod 4a and p � a, then pa{pq � pa{qq.

In the statement of the theorem, a is restricted to the natural numbers.

This restriction prevents strange occurrences such as working modulo negative

numbers, since in the third part of the theorem, we work modulo 4a.

Proof: Throughout this proof, assume that p and q are odd primes

and let a P N.
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1 ñ 2 Assume p � q � 3 mod 4. Then pp{qq � �pq{pq, which implies

that exactly one of pp{qq or pq{pq is equal to 1 and the other is equal to �1,

and thus the product pp{qqpq{pq � �1. Let p � 4t � 3 and q � 4s � 3, for

some s, t P Z. Then

p� 1

2
� q � 1

2
� 4t� 3� 1

2
� 4s� 3� 1

2
(Substitution)

� p2t� 1qp2s� 1q (Arithmetic)

� 2p2st� t� sq � 1, (Distributive Property)

which is odd. So p�1qpp�1qpq�1q{4 � �1, hence pp{qqpq{pq � p�1qpp�1qpq�1q{4.

Suppose now that p � q � 1 mod 4. Then pp{qq � pq{pq, which implies

that pp{qqpq{pq � 1. Let p � 4t� 1 and q � 4s� 1, for some s, t P Z. Then

p� 1

2
� q � 1

2
� 4t� 1� 1

2
� 4s� 1� 1

2
(Substitution)

� 2t � 2s, (Arithmetic)

which is even. Thus p�1qpp�1qpq�1q{4 � 1, so pp{qqpq{pq � p�1qpp�1qpq�1q{4.

Finally, suppose that p � q mod 4. Without loss of generality, assume

that p � 3 mod 4 and q � 1 mod 4. Then pp{qq � pq{pq, so pp{qqpq{pq � 1.

Let p � 4t� 3 and q � 4s� 1, for some s, t P Z. Then

p� 1

2
� q � 1

2
� 4t� 3� 1

2
� 4s� 1� 1

2
(Substitution)

� p2t� 1qp2sq (Arithmetic)

� 2p2st� sq, (Distributive Property)
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which is even, so p�1qpp�1qpq�1q{4 � 1. Thus pp{qqpq{pq � p�1qpp�1qpq�1q{4 � 1.

2 ñ 3 Assume that pp{qqpq{pq � p�1qpp�1qpq�1q{4 and p � a. Recall

that the properties of the Legendre symbol tell us that if a is composite, then

pa{pq � pm{pqpn{pq, where a � mn. Thus it is sufficient to show that the

result holds when a is prime.

Suppose a � 2 and p � q mod 4a. Then p � q mod 8. So by Theo-

rem 8.3.4, pa{pq � pa{qq. Suppose that p � �q mod 8. Then p � 1 mod 8

implies that q � 7 mod 8. Likewise, if p � 3 mod 8, then q � 5 mod 8,

etcetera. Thus pa{pq � pa{qq by Theorem 8.3.4.

Suppose now that a is an odd prime. Then pp{aqpa{pq � p�1qpp�1qpa�1q{4

and pq{aqpa{qq � p�1qpq�1qpa�1q{4. Suppose p � q mod 4a. Then

p � q mod 4a

ðñ p � q � p4aqk, for some k P Z (Definition of congruent)

ðñ p � q � ap4kq (Associativity in Z)

ùñ p � q mod a, (Definition of congruent)
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which implies that pp{aq � pq{aq. So now we have

pa{pq � p�1qpp�1qpa�1q{4pp{aq

� p�1qpp�1qpa�1q{4pq{aq (pp{aq � pq{aq)

� p�1qpp�1qpa�1q{4 � p�1qpq�1qpa�1q{4pa{qq (Substitution)

� p�1qppp�1qpa�1q�pq�1qpa�1qq{4pa{qq (Arithmetic)

� p�1qpa�1qpp�1�q�1q{4pa{qq (Arithmetic)

� p�1qpa�1qpp�q�2q{4pa{qq. (Arithmetic)

Note that p � q mod 4a implies that p � q mod 4, by a similar argument to

the one used previously. We examine the exponent on �1. Since a is odd,

a� 1 is even. Recall that previously we let p � q � 4ak, for some k P Z. So

p� q � 2

4
� q � 4ak � q � 2

4
, for some k P Z (p � q mod 4a)

� 4ak � 2pq � 1q
4

� ak � q � 1

2
.

But q is an odd prime, so q � 1 is even, and it follows that ak � q � 1

2
is an

integer. Thus the exponent is an even integer, so pa{pq � pa{qq.

Suppose now that p � �q mod 4a. Then p � �q mod a, which implies
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that pp{aq � p�q{aq � p�1{aqpq{aq. Thus

pa{pq � p�1qpp�1qpa�1q{4pp{aq

� p�1qpp�1qpa�1q{4p�1{aqpq{aq (pp{aq � p�1{aqpq{aq)

� p�1qpp�1qpa�1q{4p�1qpa�1q{2p�1qpq�1qpa�1q{4pa{qq (Substitution)

� p�1qppa�1q{2qppp�1�2�q�1q{2qpa{qq (Properties of exponents)

� p�1qpa�1qpp�qq{4pa{qq. (Arithmetic)

Without loss of generality, suppose that p � 1 mod 4 and q � �1 � 3 mod 4.

Let p � 4t� 1 and q � 4s� 3, for s, t P Z. Then

p� q

4
� 4t� 1� 4s� 3

4

� 4pt� s� 1q
4

(Arithmetic)

� t� s� 1,

so pa{pq � p�1qpa�1qpt�s�1qpa{qq. But a� 1 is even, so pa{pq � pa{qq.

3 ñ 1 Assume that whenever p � �q mod 4a and p � a, for some

a P N, then pa{pq � pa{qq is true. We want to show that if p � q � 3 mod 4,

then pp{qq � �pq{pq, and otherwise pp{qq � pq{pq.
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So

pp{qq � pq � 4a{qq (p � q � 4a)

� p4a{qq (q � 4a � 4a mod q)

� pa{qq (Lemma 8.3.10)

� pa{pq (pa{pq � pa{qq)

� p4a{pq (Lemma 8.3.10)

� pp� q{pq (p� q � 4a)

� p�q{pq (p� q � �q mod p)

� p�1{pqpq{pq (Properties of Legendre Symbol)

� p�1qpp�1q{2pq{pq. (Law of Quadratic Reciprocity)

Suppose that p � 1 mod 4, and let p � 4t� 1 for some t P Z. Then

pp{qq � p�1qp4t�1�1q{2pq{pq (Substitution)

� p�1q2tpq{pq (Arithmetic)

� pq{pq.

By a symmetric argument, if we suppose that q � 1 mod 4 and interchange p

and q, we have pq{pq � pp{qq.

Suppose instead that p � q � 3 mod 4 and let p � 4t � 3 for some
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t P Z. Then

pp{qq � p�1qp4t�3�1q{2pq{pq (Substitution)

� p�1q2t�1pq{pq (Arithmetic)

� �pq{pq.

It follows that the three statements are equivalent.

We are now in a position to look at some examples that pull together

the various forms of the Law of Quadratic Reciprocity together with the prop-

erties of the Legendre symbol to determine whether or not selected quadratic

congruences have solutions.
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Example 8.3.12 Consider the congruence x2 � 800 mod 431.

�
800

431



�
�

369

431



mod 431 (Property 3 of Legendre symbols)

�
�

32

431


�
41

431



mod 431 (Property 2 of Legendre symbols)

� p1q �
�

41

431



mod 431 (Property 4 of Legendre symbols)

�
�

431

41



mod 431 (Law of Quadratic Reciprocity)

�
�

21

41



mod 431 (Property 3 of Legendre symbols)

�
�

7

41


�
3

41



mod 431 (Property 2 of Legendre symbols)

� �
�

41

7



� �

�
41

3



mod 431 (Law of Quadratic Reciprocity)

� p�1q2
�
�1

7


�
2

3



mod 431 (Property 3 of Legendre symbols)

� p�1qp7�1q{2 � p�1qp32�1q{8 mod 431 (Law of Quadratic Reciprocity)

� p�1q3 � p�1q1 mod 431 (Arithmetic)

� 1 mod 431. (Arithmetic)

It follows that x2 � 800 mod 431 has a solution. Sadly, these tools that we

have developed do not help us to actually find the solution, but we do know

that it exists in this example.

Example 8.3.13 Now consider the congruence x2 � 17471 mod 1697. If

we use a similar strategy as that used in the previous example, it yields the
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following.

�
17471

1697



�
�

501

1697



mod 1697 (Property 3 of Legendre symbols)

�
�

3

1697


�
167

1697



mod 1697 (Property 2 of Legendre symbols)

�
�

1697

3


�
1697

167



mod 1697 (Law of Quadratic Reciprocity)

�
�

2

3


�
27

167



mod 1697 (Property 3 of Legendre symbols)

�
�

2

3


�
32

167


�
3

167



mod 1697

(Property 2 of Legendre symbols)

� p�1qp32�1q{8 � p1q � �
�

167

3



mod 1697

(Law of Quadratic Reciprocity)

� p�1qp�1q
�

2

3



(Property 3 of Legendre symbols)

� p�1qp32�1q{8 mod 1697 (Law of Quadratic Reciprocity)

� �1 mod 1697. (Arithmetic)

Suppose that now we want to examine x2 � 1697 mod 17471 to see if

it has a solution. We could certainly repeat the above process to figure it out

directly, but this method is a fair bit of work, and there are a lot of places where

arithmetic errors could occur. This is where the Law of Quadratic Reciprocity
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comes in handy. We know that

�
17471

1697


�
1697

17471



� p�1qp17471�1qp1697�1q{4 (Law of Quadratic Reciprocity)

� p�1q7407280 (Arithmetic)

� 1,

so either both

�
17471

1697



and

�
1697

17471



are equal to 1 or they are both equal

to �1. Since

�
17471

1697



� �1, it must be the case that

�
1697

17471



� �1 as

well. Thus, neither congruence has a solution, and we haven’t wasted a lot of

time looking for solutions that don’t exist.

Example 8.3.14 Consider the congruence x2�5x � 0 mod 37. It seems only

natural to wonder whether or not this congruence has a solution, but we have

not discussed how to make that determination. However, we can use ideas

from algebra to manipulate it into something that looks more familiar to us.

First just consider the equation x2�5x � 0. If we complete the square,

then we have �
x� 5

2


2

� 25

4
.

This is the basic idea we want to use on our congruence, but we need to make

some minor changes. First, fractions are essentially meaningless when working

modulo 37, so we need to write them in a different form. If we think about

Z37, we can see easily that 4�1 � �9, since �9 � 4 � 36 � 1 mod 37. Similarly,
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2�1 � �18. So if we use these results on our congruence, we can rewrite it as

x2 � 5x � 0 mod 37

ùñ �
x� 5 � 2�1

�2 � 25 � 4�1 mod 37

ùñ px� 90q2 � �225 mod 37

ùñ px� 90q2 � 34 mod 37.

Now let y � px � 90q2, so our congruence becomes y2 � 34 mod 37, which is

something we know how to evaluate for solvability.

�
34

37



�
�

2

37


�
17

37




� p�1q
�

37

17



(Law of Quadratic Reciprocity)

� p�1q
�

3

17



(Property 3 of Legendre symbols)

� p�1q
�

17

3



(Law of Quadratic Reciprocity)

� p�1q
�

2

3



(Property 3 of Legendre symbols)

� p�1qp�1q (Law of Quadratic Reciprocity)

� 1.

Thus y2 � 34 mod 37 has a solution, so px � 90q2 � 34 mod 37 must also

have a solution. But we got this congruence by completing the square on

x2 � 5x � 0 mod 37, so it is necessarily solvable.

Example 8.3.15 Suppose we have the congruence 2x2�29x�15 � 0 mod 73.

We will use a similar method as that used in the previous example to determine
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whether or not this has a solution. Note that when working modulo 73, the

inverse of 2 is 36.

2x2 � 29x� 15 � 0 mod 73

ùñ 2x2 � 29x � �15 mod 73

ùñ 2x2 � 29x � 58 mod 73

ùñ 2�1 � 2x2 � 2�1 � 29x � 2�1 � 58 mod 73

ùñ x2 � p36qp29qx � p36qp58q mod 73

ùñ x2 � 1044x � 2088 mod 73

ùñ x2 � 1044x� p36 � 1044q2 � 2088� p36 � 1044q2 mod 73

ùñ x2 � 22x� 375842 � 2088� 375842 mod 73

ùñ x2 � 22x� 622 � 19 mod 73

ùñ px� 62q2 � 19 mod 73

So if we again make a substitution, then y2 � 19 mod 73 and

�
19

73



�
�

73

19



(Law of Quadratic Reciprocity)

�
�

16

19



(Property 3 of Legendre symbols)

� 1. (Property 4 of Legendre symbols)

Thus y2 � 19 mod 73 is solvable, which implies that p2� 62q2 � 19 mod 73 is

solvable, and thus 2x2 � 29x� 15 � 0 mod 73 is solvable.

Recall that assertion 1 of Theorem 8.3.11 states that for odd primes
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p and q, if p � q � 3 mod 4, then pp{qq � �pq{pq and otherwise we have

pp{qq � pq{pq. The following proposition states this in a slightly different

form. Because it does not give us any new results, we offer it without proof,

but the proof can be found in [8].

Proposition 8.3.16 Let q be an odd prime.

1. If q � 1 mod 4, then q is a quadratic residue modulo p if and only if

p � r mod q, where r is a quadratic residue mod q.

2. If q � 3 mod 4, then q is a quadratic residue modulo p if and only if

p � �b2 mod 4q, where b is an odd integer relatively prime to q.

8.4 Jacobi Symbol

We are going to introduce a new symbol, called the Jacobi symbol. It is

somewhat similar to the Legendre symbol, in that it relates to the congru-

ence x2 � a mod b, where b is not necessarily prime. However, we shall see

momentarily that the output of the Jacobi symbol is not always completely

helpful.

Definition 8.4.1 Let b be an odd, positive integer and a any integer such

that gcdpa, bq � 1. Let b � p1p2 . . . pk, where the pi are not necessarily distinct

primes. The symbol ra{bs defined by

ra{bs � pa{p1qpa{p2q . . . pa{pkq
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is called the Jacobi symbol. ♦

The Jacobi symbol is a generalization of the Legendre symbol, but they

are not the same. The right hand side of the definition is composed of Legendre

symbols. Thus the Jacobi symbol is the product of a finite number of Legendre

symbols. In other words, it is the product of a finite number of values of 1

and �1.

We must be cautious when we interpret the output of the Jacobi symbol.

Recall that if we have x2 � amod b and b � p1p2 . . . pk, then by Corollary 6.1.2,

we can write this congruence as the system of congruences

x2 � a mod p1, x
2 � a mod p2, . . . , x

2 � a mod pk.

So the Jacobi symbol is really trying to tell us whether or not there is a solution

to this system of congruences.

If ra{bs � �1, then at least one of the Legendre symbols is necessarily

equal to �1, which means that at least one of the congruences in the system

does not have a solution, so the system is not solvable. Thus x2 � a mod b

does not have a solution, so in this case, the output is helpful.

On the other hand, suppose that ra{bs � 1. There are two possibilities

here. Either each of the Legendre symbols is equal to 1, which means that

each congruence in the system has a solution, or there are an even number of

Legendre symbols that are equal to �1. In the first case, x2 � a mod b has a

solution, since every congruence in the system is solvable, but in the second
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case, it does not. Thus just having a Jacobi symbol output of 1 is not enough

on its own to tell us anything useful about the solvability of x2 � a mod b.

For example, consider r2{63s. If we evaluate this using the definition of

the Jacobi symbol and properties of the Legendre symbol, then

r2{63s � p2{3qp2{3qp2{7q

� p�1qp32�1q{8 mod 3 � p�1qp32�1q{8 mod 3 � p�1qp72�1q{8 mod 7

� p�1qp�1qp1q

� 1.

If we just saw that r2{63s � 1, without the benefit of seeing the in-

termediate work, we might be tempted to assume that x2 � 2 mod 63 has

a solution, but in fact it does not. This can be verified by checking each

x P t1, 2, . . . , 62u, but is omitted here.

Generally speaking, the Jacobi symbol is denoted as pa{bq rather than

as ra{bs, but to avoid confusion with the Legendre symbol, we will use ra{bs

to denote the Jacobi symbol in this thesis. As with the Legendre symbol,

sometimes it will be more convenient to use

�
a

b

�
rather than ra{bs. The two

versions of the symbol are interchangeable, and we will endeavor to make the

usage clear if this same notation is used for anything else, such as the greatest

integer function.
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We will state and prove some properties about the Jacobi symbol, but

first we need to establish some results that will help us in part of the proof.

Lemma 8.4.2 Suppose j, k P Z and n P N. Then p1� jkqn � njk mod j2.

Proof: By the Binomial Expansion Theorem, p1�jkqn �
ņ

i�0

�
n

i



pjkqi.

For each i ¥ 2,

�
n

i



pjkqi � 0 mod j2, since each of these terms contains a

factor of j2. Thus we are left with only the first two terms, and it follows that

p1� jkqn � 1� njk mod j2.

Suppose that instead of p1 � jkqn, we have
n¹
i�1

p1 � jkiq, where each

ki P Z. Then
n¹
i�1

p1� jkiq �
ņ

i�0

jiC, where C is the sum of all of the products

of subsets of size i of tk1k2 . . . knu. But for each i ¥ 2,
ņ

i�0

jiC � 0 mod j2, for

the same reasons as given in the proof of the lemma above. It follows that

n¹
i�1

p1� jkiq � 1� j
ņ

i�1

ki mod j2.

Theorem 8.4.3 (Properties of the Jacobi Symbol) Assume that b is an

odd positive integer and a is any integer. Then for all such a and b, the

following properties hold.

1. If a1 � a2 mod b, then ra1{bs � ra2{bs.

2. ra1a2{bs � ra1{bsra2{bs.

3. ra{b1b2s � ra{b1sra{b2s.
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4. r�1{bs � p�1qpb�1q{2.

5. r2{bs � p�1qpb2�1q{8.

Proof: Unless specified otherwise, for each piece of this proof, assume

that b is an odd, positive integer and assume that a1, a2 P Z. We will represent

b by its prime factorization, so b � p1p2 . . . pm, where the pi are not necessarily

distinct.

1. Suppose that a1 � a2 mod b. Then

ra1{bs � pa1{p1qpa1{p2q . . . pa1{pmq (Definition of Jacobi symbol)

� pa2{p1qpa2{p2q . . . pa2{pmq (Property 3 of Legendre symbol)

� ra2{bs. (Definition of Jacobi symbol)

2.

�
a1a2
b

�
�
�
a1a2
p1


�
a1a2
p2



. . .

�
a1a2
pm



(Definition of Jacobi symbol)

�
�
a1
p1


�
a2
p1


�
a1
p2


�
a2
p2



. . .

�
a1
pm


�
a2
pm




(Property 2 of Legendre Symbol)

�
�
a1
p1


�
a1
p2



. . .

�
a1
pm


�
a2
p1


�
a2
p2



. . .

�
a2
pm




(Commutative Property)

�
�
a1
b

��
a2
b

�
(Definition of Jacobi symbol)
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3. Assume b1 and b2 are odd, positive integers and a P Z. Let the prime

factorizations of b1 � p1p2 . . . pm and b2 � q1q2 . . . qn, where the pi and

qj are not necessarily distinct. Then b1b2 � p1p2 . . . pmq1q2 . . . qn, and

�
a

b1b2

�
�
�
a

p1


�
a

p2



. . .

�
a

pm


�
a

q1


�
a

q2



. . .

�
a

qn




(Definition of Jacobi symbol)

�
�
a

b1

��
a

b2

�
. (Definition of Jacobi symbol)

4. Let b � pe11 p
e2
2 . . . pemm be the prime power decomposition of b. Note that

since b is an odd integer, each pi is also odd. By the Law of Quadratic

Reciprocity, we know that if p is prime, then p�1{pq � p�1qpp�1q{2. Thus

r�1{bs � p�1{p1qe1p�1{p2qe2 . . . p�1{pmqem

(Definition of Jacobi Symbol)

� p�1qe1pp1�1q{2�e2pp2�1q{2�����emppm�1q{2.

(Law of Quadratic Reciprocity)

Now, since b � pe11 p
e2
2 . . . pemm , we can cleverly write b as

b � �
1� pp1 � 1q�e1�1� pp2 � 1q�e2 . . . �1� ppm � 1q�em .
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Now apply Lemma 8.4.2, with j � 2 and k � pi � 1

2
. Then

b � �
1� pp1 � 1q�e1�1� pp2 � 1q�e2 . . . �1� ppm � 1q�em

�
�

1� 2

�
p1 � 1

2


�e1

. . .

�
1� 2

�
pm � 1

2


�em

�
�

1� 2e1

�
p1 � 1

2


�
. . .

�
1� 2em

�
pm � 1

2


�
mod 4

(Lemma 8.4.2)

� 1� 2
m̧

i�1

ei

�
pi � 1

2



mod 4

(By the comment following Lemma 8.4.2)

� 1� e1pp1 � 1q � e2pp2 � 1q � � � � � emppm � 1q mod 4,

which implies that b� 1 � e1pp1 � 1q � � � � � emppm � 1q mod 4.

Since b is odd, b�1 is even, and we know that each pi�1 is also even. In

Theorem 4.3.19, it was stated that if ac � bc mod m and gcdpc,mq � d,

then a � b mod pm{dq. Thus we have

b� 1

2
� e1pp1 � 1q

2
� � � � � emppm � 1q

2
mod 2.

Recall that initially we came up with

r�1{bs � p�1qe1pp1�1q{2�e2pp2�1q{2�����emppm�1q{2.

Combining these two results yields r�1{bs � p�1qpb�1q{2. But the only

least residues modulo p are 0 and 1, so since
b� 1

2
can only take values

of 0 or 1 modulo 2, the result is either 1 or �1, as required.
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5. Recall that if p is prime, then by the Law of Quadratic Reciprocity,

p2{pq � p�1qpp2�1q{8. Thus

r2{bs � p2{p1qe1p2{p2qe2 . . . p2{pmqem (Definition of Jacobi Symbol)

� p�1qe1pp21�1q{8�e2pp22�1q{8�����empp2m�1q{8.

(Law of Quadratic Reciprocity)

If we square b, we have b2 � p2e11 p2e22 . . . p2emm , which can be expressed as

b2 � �
1� pp21 � 1q�e1�1� pp22 � 1q�e2 . . . �1� pp2m � 1q�em .

Now since each pi is odd, we know that p2i�1 � 0 mod 8, by Lemma 6.0.14,

so let p2i � 1 � 8ki, for some ki P Z. Then applying Lemma 8.4.2 yields

b2 � �
1� pp21 � 1q�e1�1� pp22 � 1q�e2 . . . �1� pp2m � 1q�em

� p1� 8k1qe1p1� 8k2qe2 . . . p1� 8kmqem (Substitution)

� p1� 8e1k1qp1� 8e2k2q . . . p1� 8emkmq mod 64 (Lemma 8.4.2)

� 1� 8
m̧

i�1

eiki mod 64 (By the comment following Lemma 8.4.2)

� 1� 8e1k1 � 8e2k2 � � � � � 8emkm mod 64

� 1� e1pp21 � 1q � e2pp22 � 1q � . . . empp2m � 1q mod 64,

(Substitution)

which implies that b2�1 � e1pp21�1q�e2pp22�1q�� � ��empp2m�1q mod 64.

Since b is odd, b2�1 � 0 mod 8, by Lemma 6.0.14. Each p2i�1 � 0 mod 8
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as well, so by Theorem 4.3.19, we have

b2 � 1

8
� e1pp21 � 1q

8
� � � � � empp2m � 1q

8
mod 8.

Initially we had

r2{bs � p�1qe1pp21�1q{8�e2pp22�1q{8�����empp2m�1q{8,

so combining these two results yields r2{bs � p�1qpb2�1q{8 as desired.

It follows that the five properties of Jacobi symbols hold.

Now we look at some examples that utilize the properties of Legendre

symbols, properties of Jacobi symbols, and the Law of Quadratic Reciprocity.

Example 8.4.4 Consider x2 � 273 mod 110. The Jacobi symbol for this

congruence is

�
273

110

�
and we can apply the properties of Legendre and Jacobi

215



symbols to evaluate it.

�
273

110

�
�
�

3

110

��
7

110

��
13

110

�
(Property 2 of Jacobi symbols)

�
�

3

2


�
3

5


�
3

11


�
7

2


�
7

5


�
7

11


�
13

2


�
13

5


�
13

11




(Definition of Jacobi symbol)

�
�

1

2


�
3

5


�
3

11


�
1

2


�
2

5


�
7

11


�
1

2


�
3

5


�
2

11




(Property 3 of Legendre symbols)

� p1q
�

3

5


�
3

11



p1q

�
2

5


�
7

11



p1q

�
3

5


�
2

11




(Property 1 of Legendre symbols)

�
�

5

3



p�1q

�
11

3


�
2

5



p�1q

�
11

7


�
5

3


�
2

11




(Law of Quadratic Reciprocity)

�
�

2

3


�
2

3


�
2

5


�
4

7


�
2

3


�
2

11




(Property 3 of Legendre symbols)

�
�

2

3


3�
2

5



p1q

�
2

11



(Property 4 of Legendre symbols)

� �p�1qp32�1q{8
�3p�1qp52�1q{8p�1qp112�1q{8

(Law of Quadratic Reciprocity)

� p�1q3p�1q3p�1q15 (Arithmetic)

� �1,

so the congruence has no solution.
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Example 8.4.5 Consider x2 � 1534 mod 2805.�
1534

2805

�
�
�

1534

3


�
1534

5


�
1534

11


�
1534

17



(Definition of Jacobi symbol)

� p1{3qp4{5qp5{11qp4{17q (Property 3 of Legendre symbols)

� p1qp1qp5{11qp1q (Property 4 of Legendre symbols)

� p11{5q (Law of Quadratic Reciprocity)

� p1{5q (Property 3 of Legendre symbols)

� 1 (Property 4 of Legendre symbols)

In this example, the result is 1, but we stated earlier that there can

be some uncertainty as to what a result of 1 actually means. If we consider

the original congruence again, we can apply Corollary 6.1.2 to split it into the

system of congruences

x2 � 1534 mod 3

x2 � 1534 mod 5

x2 � 1534 mod 11

x2 � 1534 mod 17.

Now as we evaluated the corresponding Legendre symbol for each of the con-

gruences in this system, notice that each of them had an output of 1. Thus

each of the congruences in the system was solvable, which in turns means that

the system is solvable. So in this case, having an output of 1 means that our

original congruence does have a solution.

217



Theorem 8.4.6 (Reciprocity Law for the Jacobi Symbol) Let a and b

be odd, positive integers, where gcdpa, bq � 1. Then

ra{bsrb{as � p�1qppa�1q{2qppb�1q{2q.

Proof: Assume that both a and b are odd, positive integers and rep-

resent a and b by their prime power decompositions. Then a � qa11 q
a2
2 . . . qann

and b � pb11 p
b2
2 . . . p

bm
m .

Then

ra{bs � pa{p1qb1pa{p2qb2 . . . pa{pmqbm (Substitution for b)

�
m¹
i�1

pa{piqbi (Write as product over i)

�
m¹
i�1

n¹
j�1

pqj{piqajbi (Substitution for a)

and

rb{as � pb{q1qa1pb{q2qa2 . . . pb{qnqan (Substitution for a)

�
n¹
j�1

pb{qjqaj (Write as product over j)

�
n¹
j�1

m¹
i�1

ppi{qjqbiaj . (Substitution for b)

Combining these results yields

ra{bsrb{as �
m¹
i�1

n¹
j�1

�pqj{piqppi{qjq�ajbi .
By the Law of Quadratic Reciprocity, we have

pqj{piqppi{qjq � p�1qppqj�1q{2qpppi�1q{2q,
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thus

ra{bsrb{as �
m¹
i�1

n¹
j�1

�
p�1qppqj�1q{2qpppi�1q{2q

	ajbi
(Substitution)

�
m¹
i�1

n¹
j�1

p�1qbipppi�1q{2q�ajppqj�1q{2q (Properties of Exponents)

� p�1q
°m

i�1

°n
j�1 bipppi�1q{2q�ajppqj�1q{2q. (Properties of Exponents)

Notice that

m̧

i�1

ņ

j�1

bi

�
pi � 1

2



� aj

�
qj � 1

2



�

m̧

i�1

bi

�
pi � 1

2



�
ņ

j�1

aj

�
qj � 1

2



.

Recall that in the proof of Property 4 of the Jacobi symbol, we showed

that

b� 1

2
� e1pp1 � 1q

2
� e2pp2 � 1q

2
� � � � � emppm � 1q

2
mod 2.

If we apply this result twice to the right side of our equation above, we have

m̧

i�1

bi

�
pi � 1

2



� b� 1

2
mod 2

and
m̧

j�1

aj

�
qj � 1

2



� a� 1

2
mod 2.

Hence,

m̧

i�1

ņ

j�1

bi

�
pi � 1

2



� aj

�
qj � 1

2



� b� 1

2
� a� 1

2
mod 2.

Combining these results yields

ra{bsrb{as � p�1qppa�1q{2qppb�1q{2q,

as desired.
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Example 8.4.7 We saw in Example 8.4.4 that

�
273

110

�
� �1. By the Reci-

procity Law for the Jacobi Symbol,

�
273

110

��
110

273

�
� p�1qp273�1qp110�1q{4 (Reciprocity Law for Jacobi Symbol)

� p�1q7412 (Arithmetic)

� 1.

Thus it must be the case that

�
110

273

�
� �1 as well. This can in fact be verified

by manipulations very similar to those done in Example 8.4.4.

At first glance, it might seem like having this tool available now makes

determination of quadratic residues a breeze, but in the Law of Quadratic

Reciprocity, we were given very specific criteria for which we can interchange

pp{qq and pq{pq, and we are not given any similar guidelines with the Jacobi

symbol. We are also restricted to both a and b being odd and positive to even

be able to apply the Reciprocity Law for the Jacobi symbol, so we must use

caution and be aware that we can not just swap one out for the other the

way we could with Legendre symbols, so while it’s yet another tool to use in

determining whether or not quadratic congruences have solutions, one must

still be cautious and not invoke any craziness.
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8.5 Why do we care about any of this?

Quadratic residues and the Law of Quadratic Reciprocity have led to many

different applications in various areas. A few such applications are in acoustics,

cryptography, and graph theory [19].

8.5.1 Acoustics

Acoustic equipment, and more specifically sound diffusors, have been greatly

improved because of the use of quadratic residues. Early sound diffusors were

called Maximum Length Sequence (MLS) Diffusors and used a strictly geo-

metric pattern to diffuse sound. They were somewhat restricted in terms of

bandwidth, so they weren’t very effective at certain frequencies. A diffusor

called the quadratic-residue diffusor was developed that is an improvement on

the MLS diffusor, because it can diffuse sound in either one or two directions,

and its bandwidth is much wider, so it has a greater range of frequencies for

which it is effective [15], [19].

8.5.2 Cryptography

With all of the activity taking place on the internet, cryptography has become

a huge field, and methods must continually improve, as computers become

faster and more powerful, and computing time of difficult problems is reduced.

The backbone for one method involves finding solutions to congruences of
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the form x2 � a mod n, where n is composite, because this is a difficult

problem when n is a large number. In fact, in terms of level of difficulty

and computation time, it is similar to the problem of trying to factor large

numbers. Thus quadratic residues have been used as the basis for two methods

known as the Rabin cryptosystem and oblivious transfer. Additionally, there

is a specific problems called the quadratic residuosity problem that is at the

heart of the Goldwasser-Micali cryptosystem [19].

Factorization of large integers is another area upon which cryptography

methods are built. In Volume VI of the Disquisitiones Arithmeticae, Gauss

apparently explained two different algorithms for factoring that were based on

quadratic residues and the Law of Quadratic Reciprocity. There are factoring

algorithms that are still being used today that are based on quadratic residues

as well. Some of these are the continued fraction method, Dixon’s algorithms,

the number field sieve, and the quadratic sieve [19].

Closely related to the factorization of large integers is something called

primality testing, where methods are developed to try to determine whether

large numbers are prime or not. There is a procedure known as the Solovay-

Strassen primality test that can be used to try to determine whether a given

integer n is prime or not. Basically, a random integer a is chosen and the

Legendre symbol pa{nq is computer using Euler’s criterion, and then the con-

gruence apn�1q{2 � pa{nq mod n is examined. If n is a prime number, then
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the congruence holds for all a P Z. Thus the general strategy for the test

is to pick random values of a and check the congruence. As soon as an a is

found for which the congruence is false, then it is known that n is prime. The

value of a for which the congruence is false is called an Euler witness for n.

On the other hand, the values of a for which the congruence is true when n

is actually composite are called Euler liars for n. If a very large number of

values of a are tested and the congruence holds, then n is termed a “probable

prime” [19], [21]. There is another primality test that is loosely based on the

use of quadratic residues, which is called the Miller-Rabin test. It is similar

to the Solovay-Strassen primality test, but the Miller-Rabin test is said to be

stronger and more accurate, because it allegedly produces “stronger” Euler

witnesses and liars for n, and thus the probability that n is prime is much

higher than other tests [16].

8.5.3 Graph Theory

There are a certain type of graphs in graph theory that are called Paley graphs,

which have ties to quadratic residues. Paley graphs are undirected graphs that

are constructed from elements of a finite field that differ by only a quadratic

residue. Study of these graphs led to the development of something called

Paley construction, which is used to create Hadamard matrices from quadratic

residues. These matrices have been studied extensively, because they have
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many interesting properties that fascinate mathematicians [17], [19].

These are just a few of the applications of quadratic residues and the

Law of Quadratic Reciprocity that we were able to find. There may be other

applications out there as well, and it may turn out that there will be future

uses for these concepts that have not been thought of yet.
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Chapter 9

Gauss and Jacobi Sums

9.1 Quadratic Gauss Sums

Gauss spent a lot of time studying cyclotomy, or how to divide a circle into

n equal parts using only a compass and a straightedge [12]. But this leads to

having n points equally spaced on the edge of a circle, which are the nth roots

of unity. Thus his studies gave him vast knowledge of the properties of sums

of roots of unity [7].

It is this knowledge that led to Gauss’ fourth and sixth proofs of the

Law of Quadratic Reciprocity. The sums of roots of unity are now known

as Gauss sums. The values of quadratic Gauss sums are used directly in

Gauss’ fourth proof, but his sixth proof uses them without evaluating them

first [7]. Gauss’ fourth and sixth proofs are not presented in this thesis, but
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we introduce quadratic Gauss sums here so that we can generalize them later

in this chapter. The generalized sums will play a role in our work with cubic

reciprocity.

In Section 1, we examine various sums of roots of unity in general and

then review the Kronecker δ-function. We look at some sums of Legendre

symbols and develop important results, then define what it means to be a

quadratic Gauss sum. In the second section, we define the Gauss sum in gen-

eral, and the characters that we introduced earlier play a role. We establish

more results and then in the third section, we define Jacobi sums. The re-

mainder of the chapter is spent tying these ideas together. The Gauss and

Jacobi sums are at the heart of several theorems we prove, and we establish

some properties of Jacobi sums involving characters.

Recall that the nth roots of unity are solutions to the equation xn � 1.

Earlier we defined ζ to be a primitive nth root of unity if ζ is a generator

for the group of nth roots of unity. In this section, unless otherwise specified,

ζ will represent e2πi{p, which is a primitive pth root of unity, for some prime

p P Z.

Theorem 9.1.1 Suppose p is prime. Then

p�1̧

t�0

ζat �

$'''&
'''%
p, a � 0 mod p

0, a � 0 mod p.
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Example 9.1.2 Let p � 11 and a � 2. Then examine
10̧

t�0

ζ2t. Recall that a

geometric series is of the form
n�1̧

k�0

ark and its sum is given by a � 1� rn

1� r
. If we

rearrange our sum slightly, we have
10̧

t�0

�
ζ2
�t

, and it is now obvious that this

is in fact a geometric sum with r � ζ2. Thus the sum is

10̧

t�0

�
ζ2
�t � 1� �

ζ2
�11

1� ζ2
(Sum of finite geometric series)

� 1� �
ζ11

�2
1� ζ2

(Properties of exponents)

� 1� 12

1� ζ2
(ζ11 � 1)

� 0.

Suppose instead that a � 22. Then

10̧

t�0

ζ22t �
10̧

t�0

�
ζ11

�2t
(Properties of exponents)

�
10̧

t�0

1 (ζ11 � 1)

� 11.

Thus the sum is 0 when a � 0 mod p and p when a is a multiple of p.

The proof of this Lemma is straightforward, and in fact mirrors the

example almost exactly.

227



Proof: Suppose a � 0 mod p. Then a � kp for some k P Z, and

p�1̧

t�0

ζat �
p�1̧

t�0

ζkpt (Substitution)

�
p�1̧

t�0

�
ζp
�kt

(Properties of exponents)

�
p�1̧

t�0

1 (ζp � 1)

� p. (Arithmetic)

Suppose now that a � 0 mod p. Then a is not a multiple of p, so

ζa � 1. Thus

p�1̧

t�0

ζat �
p�1̧

t�0

�
ζa
�t

(Properties of exponents)

� 1� �
ζa
�p

1� ζa
(Sum of a finite geometric series)

� 1� �
ζp
�a

1� ζa
(Properties of exponents)

� 0. (ζp � 1)

Hence the result holds as desired.

Leopold Kronecker is credited with coming up with a simple function

of two variables such that the output is 1 if the variables are equal and 0 if

they are different. It is called the Kronecker δ-function, and has applications

throughout mathematics, in fields such as linear algebra, calculus, and is even

used in signal processing [13]. It is defined as follows.
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For x, y P Z and a prime p, define δpx, yq by

δpx, yq �

$'''&
'''%

1, x � y mod p

0, x � y mod p.

We will use the Kronecker δ-function in the following Corollary.

Corollary 9.1.3 Suppose p is prime. Then p�1 �
p�1̧

t�0

ζtpx�yq � δpx, yq.

Proof: Suppose x � y mod p. Then x� y � 0 mod p. Thus

p�1 �
p�1̧

t�0

ζtpx�yq � p�1 � p (Theorem 9.1.1)

� 1. (Multiplicative inverses)

Now suppose x � y mod p. Then x� y � 0 mod p, so

p�1 �
p�1̧

t�0

ζtpx�yq � p�1 � 0 (Theorem 9.1.1)

� 0.

Thus the result holds for all x, y P Z as desired.

Lemma 9.1.4 Suppose p is an odd prime. Then
p�1̧

t�0

pt{pq � 0, where pt{pq is

the Legendre symbol.

Proof: First note that p0{pq � 0pp�1q{2 � 0. Also, recall from Corol-

lary 8.1.9, that there are as many residues as nonresidues, for any given prime
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p. So we have

p�1̧

t�0

pt{pq � p0{pq �
p�1̧

t�1

pt{pq (Split the sum)

� 0�
�
p� 1

2



p1q �

�
p� 1

2



p�1q (Corollary 8.1.9)

� 0, (Arithmetic)

as desired.

We are now in a position to define the quadratic Gauss sum that will

be developed in this section and then generalized later in the chapter. Gauss

sums will be used together with Jacobi sums in the cubic reciprocity chapter.

Definition 9.1.5 The sum ga �
p�1̧

t�0

pt{pqζat is called a quadratic Gauss sum.

In this sum, p is an odd prime and ζ is a pth root of unity. ♦

Consider the cosets formed by the least residues of Z modulo p. Each

coset contains integers that all have the same residue. If we choose one repre-

sentative from each coset, this gives us a complete set of representatives, since

each residue r such that 0 ¤ r ¤ p� 1 will be present exactly once. This can

also be called a complete system of residues.

For example, if we take one element from a group and multiply it by

each of the other elements of the group, we get a permutation of the group.

So if k P Z�
p , then tkt mod p : 1 ¤ t ¤ p � 1u � Z�

p . Since k � 0 � 0, we can

extend this to tkt mod p : 0 ¤ t ¤ p � 1u � t0, 1, . . . , p � 1u. Thus, when we
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start with an element from Zp and multiply it by each element in the group,

the result is a complete system of residues, since every least residue for the

given prime p is present in the set.

Theorem 9.1.6 Suppose p is an odd prime. Then ga � pa{pqg1.

Proof: By definition of quadratic Gauss sum,

ga �
p�1̧

t�0

pt{pqζat.

Suppose a � 0 mod p, which implies that ζat � 1 for all t. Hence

ga �
p�1̧

t�0

pt{pq. (9.1)

But by Lemma 9.1.4, we know that the sum on the right-hand side of Equa-

tion (9.1) is 0, so ga � 0. Since p0{pq � 0 for all p, pa{pq � g1 ðñ 0 � g1, when

a � 0 mod p. Combining these results yields ga � 0 � 0 � g1 � pa{pq � g1, when

a � 0 mod p, which is the desired result.
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Now suppose that a � 0 mod p. Then

ga �
p�1̧

t�0

pt{pqζat (Definition of quadratic Gauss sum)

ðñ pa{pq � ga � pa{pq �
p�1̧

t�0

pt{pqζat (Multiplication Property of Equality)

ðñ pa{pq � ga �
p�1̧

t�0

pat{pqζat (Property 2 of Legendre symbols)

ðñ pa{pq � ga �
p�1̧

k�0

pk{pqζk

(Group property; Complete system of residues)

ðñ pa{pq � ga � g1. (Definition of g1)

Multiplying both sides of the last equation by pa{pq yields ga � pa{pq � g1.

Lemma 9.1.7 If p is an odd prime, then

p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



δpx, yqp � pp� 1qp.

This proof is going to be a little complicated because of the nested

sums, so looking at a simple example might help to clarify things before we

attempt the proof.

Example 9.1.8 Let p � 3 and recall that δpi, jq � 1 when i � j and 0

otherwise. Also recall that p0{pq � 0 and pa{pq2 � 1 when p � a, by the

properties of the Legendre symbol. Then expansion of the sums about x
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yields

2̧

x�0

2̧

y�0

�
x

p


�
y

p



δpx, yqp

�
�

0

p


 p̧

y�0

�
y

p



δp0, yqp�

�
1

p


 p̧

y�0

�
y

p



δp1, yqp�

�
2

p


 p̧

y�0

�
y

p



δpx, yqp

� 0�
�

1

p


�
1

p



� 1 � p�

�
2

p


�
2

p



� 1 � p

� p� p

� 2p.

But since p � 3, 2p � pp� 1qp.

Before we dive into the proof, it should be noted that for a generic

prime p, as we iterate through the sums, each time x � y, we will get a term

that looks like px{pq2 δpx, xq � p in the sum, and in fact there will be exactly

p� 1 of these, since when x � 0, p0{pq effectively “kills” the terms of the sum

over y.

Proof: Suppose p is an odd prime. Then expansion of the sums yields

p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



δpx, yqp

�
�

0

p


 p�1̧

y�0

�
y

p



δp0, yqp� � � � �

�
p� 1

p


 p�1̧

y�0

�
y

p



δpp� 1, yqp

� 0�
�

1

p


2

δp1, 1qp� � � � �
�
p� 1

p


2

δpp� 1, p� 1qp

� pp� 1qp,

which is the desired result.
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Theorem 9.1.9 Suppose p is an odd prime. Then pg1q2 � p�1qpp�1q{2p.

Proof: The general idea of this proof is to examine ga � g�a in two

different ways and then equate the results. Suppose a � 0 mod p. Then

ga � g�a � pa{pq � g1 � p�a{pq � g1 (Theorem 9.1.6)

� p�a2{pqpg1q2 (Property 2 of Legendre Symbol)

� p�1{pqpa2{pqpg1q2 (Property 2 of Legendre Symbol)

� p�1{pqpg1q2. (Property 4 of Legendre Symbol)

Summing both sides of this equation over a from 0 to p� 1 yields

p�1̧

a�0

�
ga � g�a

� � p�1̧

a�0

p�1{pqpg1q2 (Property 4 of Legendre Symbol)

� p�1{pq
p�1̧

a�1

pg1q2 (Properties of sums)

� p�1{pqpp� 1qpg1q2.

But we could look at ga � g�a in another way.

ga � g�a �
�
p�1̧

x�0

�
x

p



ζax

��
p�1̧

y�0

�
y

p



ζ�ay

�
(Definition 9.1.5)

�
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



ζaxζ�ay (Properties of sums)

�
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



ζapx�yq (Properties of exponents)

Recall from Corollary 9.1.3 that δpx, yqp �
p�1̧

t�0

ζtpx�yq. Thus, summing
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ga � g�a �
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



ζapx�yq over a yields

p�1̧

a�0

�
ga � g�a

� � p�1̧

a�0

�
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



ζapx�yq

�

�
p�1̧

x�0

p�1̧

y�0

�
p�1̧

a�0

�
x

p


�
y

p



ζapx�yq

�
(Properties of sums)

�
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p


�
p�1̧

a�0

ζapx�yq

�
(Properties of sums)

�
p�1̧

x�0

p�1̧

y�0

�
x

p


�
y

p



δpx, yq � p (Corollary 9.1.3)

� pp� 1q � p (Lemma 9.1.7)

So now we have

p�1̧

a�0

�
ga � g�a

� � p�1{pqpp� 1qpg1q2 and
p�1̧

a�0

�
ga � g�a

� � pp� 1q � p.

Combining these two results yields

p�1{pqpp� 1qpg1q2 � pp� 1q � p

ðñ p�1{pqpg1q2 � p (Cancellation Law)

ðñ pg1q2 � p�1{pq � p (Multiplication property of equality)

ðñ pg1q2 � p�1qpp�1q{2 � p, (Law of Quadratic Reciprocity)

which is the desired result.

Recall that we previously described what it means to have a complete

set of representatives. We now look at a specific set of integers that form a

complete set of representatives.
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Lemma 9.1.10 The integers �p4k � 2q, where k � 1, 2, . . . pp � 1q{2, are a

complete set of representatives of the nonzero cosets modulo p.

Proof: Assume that 4k�2 � 4k1�2 mod p. Then 4pk�k1q � 0 mod p.

By Corollary 4.3.20, this implies that k�k1 � 0 mod p, and k � k1 mod p. But

1 ¤ k, k1 ¤ p� 1

2
, so the only way they could be equivalent modulo p is if they

are equal. A similar argument reveals that if �p4k � 2q � �p4k1 � 2q mod p,

then k � k1.

Now we need to show that 4k � 2 � �p4k1 � 2q mod p, so assume that

4k � 2 � �p4k1 � 2q mod p. Then

4k � 2 � �p4k1 � 2q mod p

ðñ 4k � 2� 4k1 � 2 � 0 mod p (Arithmetic)

ðñ 4pk � k1 � 1q � 0 mod p (Distributive Property)

ùñ k � k1 � 1 � 0 mod p (Corollary 4.3.20)

ùñ k � k1 � 1 mod p. (Arithmetic)

But 1 ¤ k, k1 ¤ pp � 1q{2, so 2 ¤ k � k1 ¤ p � 1. Thus it’s not possible for

their sum to be 1, and it follows that 4k � 2 � �p4k1 � 2q mod p.

So we have p�1 total values, and each is distinct, so they are a complete

system of residues, and in fact they are a complete set of representatives of

the nonzero cosets modulo p.
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Theorem 9.1.11 Suppose p is an odd prime. Then

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	2

� p�1qpp�1q{2p.

Proof: Since we know that ζ is a root of the equation xp � 1, we can

factor xp � 1 as follows.

xp � 1 � px� 1qpxp�1 � xp�2 � � � � � x� 1q

� px� 1q�x� ζp�1
��
x� ζp�2

�
. . .

�
x� ζ2

��
x� ζ

�

Thus

xp � 1 � px� 1q
p�1¹
j�1

�
x� ζj

�
. (9.2)

Dividing both sides of (9.2) by x� 1 yields

xp�1 � xp�2 � � � � � x� 1 �
p�1¹
j�1

�
x� ζj

�
. (9.3)

If we set x � 1 in (9.3) the result is p �
¹
r

p1�ζrq, where the product is taken

over any complete set of representatives of the nonzero cosets modulo p. Now
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applying Lemma 9.1.10 yields

p �
pp�1q{2¹
k�1

�
1� ζ4k�2

	 pp�1q{2¹
k�1

�
1� ζ�p4k�2q

	

�
pp�1q{2¹
k�1

�
1�

�
ζ2k�1

	2

 pp�1q{2¹

k�1

�
1�

�
ζ�p2k�1q

	2



(Properties of exponents)

�
pp�1q{2¹
k�1

�
ζ�p2k�1q

	�
1�

�
ζ2k�1

	2

 pp�1q{2¹

k�1

�
ζ2k�1

	�
1�

�
ζ�p2k�1q

	2



(Multiplication by 1 � ζ�p2k�1q � ζ2k�1)

�
pp�1q{2¹
k�1

�
ζ�p2k�1q � ζ2k�1

	 pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	
.

(Distributive Property)

Now notice that

�
ζ�p2k�1q � ζ2k�1

	
� �

�
ζ2k�1 � ζ�p2k�1q

	
,

so we can rewrite this last equation. Thus

p � p�1qpp�1q{2

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	2

. (9.4)

Multiplying both sides of Equation (9.4) by p�1qpp�1q{2 yields

p�1qpp�1q{2p �
pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	2

,

which is the desired result.

Theorem 9.1.12 If p is an odd prime, then

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

� �
$'''&
'''%
�?p, p � 1 mod 4

�i?p, p � 3 mod 4.
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Proof: By Theorem 9.1.11, we know that

pp�1qpp�1q{2 �
pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

�2
.

Suppose first that p � 1 mod 4. Then
p� 1

2
is even, so

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q


2

� p.

Suppose now that p � 3 mod 4. Then
p� 1

2
is odd, so

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q


2

� �p.

Hence

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

� �
$'''&
'''%
�?p, p � 1 mod 4

�i?p, p � 3 mod 4.

In the remainder of this section, the Gauss Sum g1 will be denoted

g1pχq, where χptq � pt{pq, and pt{pq is the Legendre symbol. Thus we can

write

gapχq �
p�1̧

t�0

χptqζat.

This allows us to generalize the Gauss sums to other characters.

Recall that in Theorem 9.1.9, we showed
�
g1pχq

�2 � p�1qpp�1q{2p. By

Theorem 9.1.11, we also have

pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	2

� p�1qpp�1q{2p. Com-

bining these two results yields

�
g1pχq

�2 � pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	2

.
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Thus g1pχq � �
pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

	
and combining this with the result

of Theorem 9.1.12, we have

g1pχq �

$'''&
'''%
�?p, p � 1 mod 4

�i?p, p � 3 mod 4.

Proposition 9.1.13 For p an odd prime, g1pχq �
pp�1q{2¹
k�1

�
ζ2k�1 � ζ�p2k�1q

�
,

and thus g1pχq �

$'''&
'''%
?
p, p � 1 mod 4

i
?
p, p � 3 mod 4.

The proof of this proposition is very difficult, but it can be tackled by

looking at the sin function or by using Taylor polynomials. A version of the

proof can be found in [8].

In the late 1700s, Gauss wrote in his diary that he had discovered a

connection between the nth roots of unity and what he called the “golden

theorem” (quadratic reciprocity). Two of the versions of Gauss’ proofs of the

law of quadratic reciprocity were based on properties of sums of roots of unity,

and in fact that is where Gauss sums originated [7].

In this chapter, we work more with the multiplicative characters that

we defined in Chapter 7 and develop some useful properties and theorems

associated with them. We will then examine Gauss sums and make some

connections between characters and the sums.
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In the first half of the 1800s, both Eisenstein and Jacobi used the ring

Zrωs in their studies of cubic reciprocity. Jacobi sums arose from the ties

between multiplicative characters and roots of unity. We will explore Jacobi

sums in great detail and develop some theorems that we will need for our work

with cubic reciprocity.

9.2 Gauss Sums

Recall that we introduced multiplicative characters in Definition 7.3.1. We

defined a multiplicative character χ to be a homomorphism χ : Z�
p Ñ C�,

such that χpabq � χpaqχpbq for all a, b P Z�
p . The trivial character is ε, since

εpaq � 1 for all a P Z�
p . If we define χp0q � 0, for χ � ε, and εp0q � 0, then we

can extend the domain so that χ : Zp Ñ C. We proved in Theorem 7.3.4 that

the set of characters on Zp is a cyclic group of order p � 1, under the usual

function multiplication. In Theorem 7.3.2, we established three properties

about multiplicative characters. For χ, a multiplicative character, and a P Z�
p ,

χp1q � 1, χpaq is a pp� 1qst root of unity, and χpa�1q � �
χpaq��1 � χpaq.

Definition 9.2.1 Let χ be a multiplicative character on Zp and let a P Zp.

Set

gapχq �
p�1̧

t�0

χptqζat,

where ζ � e2πi{p. Then gapχq is a Gauss sum on Zp belonging to χ. ♦
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Theorem 9.2.2 Let χ be a multiplicative character on Zp and let a P Zp.

Then

1. If a � 0 and χ � ε, we have gapχq � χpa�1qg1pχq.

2. If a � 0 and χ � ε, we have gapεq � 0.

3. If a � 0 and χ � ε, we have g0pχq � 0.

4. If a � 0 and χ � ε, we have g0pεq � p.

Proof: Assume χ is a character on Zp and let a P Zp.

1. Suppose a � 0 and χ � ε. Then by Definition 9.2.1,

χpaq � gapχq � χpaq
p�1̧

t�0

χptqζat (Multiply both sides by χpaq)

�
p�1̧

t�0

χpaqχptqζat

�
p�1̧

t�0

χpatqζat (Homomorphism Property)

�
p�1̧

k�0

χpkqζk (See below)

� g1pχq. (Definition 9.2.1)

Note that in the fourth step, we can make the substitution k � at because
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at runs over all of the elements of Zp as t does. So

χpaq � gapχq � g1pχq

ðñ gapχq �
�
χpaq��1 � g1pχq (Left multiplication by

�
χpaq��1

)

ðñ gapχq � χpa�1q � g1pχq. (Theorem 7.3.2)

2. Suppose a � 0 and χ � ε. Then

gapεq �
p�1̧

t�0

εptq � ζat (Definition 9.2.1)

�
p�1̧

t�0

ζat (Definition 7.3.1)

� 0. (Theorem 9.1.1)

3. Suppose a � 0 and χ � ε. Then

g0pχq �
p�1̧

t�0

χptq � ζ0 (Definition 9.2.1)

�
p�1̧

t�0

χptq (ζ0 � 1)

� 0. (Theorem 7.3.3)

4. Suppose a � 0 and χ � ε. Then

g0pεq �
p�1̧

t�0

εptq � ζ0 (Definition 9.2.1)

�
p�1̧

t�0

εptq (ζ0 � 1)

� p. (Theorem 7.3.3)
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So all four results hold as desired.

Theorem 9.2.3 Let χ be a character on Zp. If χ � ε, then |g1pχq| � ?
p.

Proof: Let χ be a character on Zp and let a P Zp. If a � 0, then

gapχq � χpa�1q � g1pχq,

by Theorem 9.2.2. Also note that

gapχq � χpa�1q � g1pχq (Complex conjugate of gapχq)

� χpaq � g1pχq. (Property 3 of Characters)

Multiplying gapχq and gapχq together yields

gapχq � gapχq � χpa�1q � g1pχq � χpaq � g1pχq

� χpa�1q � χpaq � g1pχqg1pχq (Commutativity in C)

� ��g1pχq��2. (χpa�1q � χpaq � 1)

Hence, gapχq � gapχq �
��g1pχq��2 implies that

p�1̧

a�0

gapχq � gapχq � g0pχq � g0pχq �
p�1̧

a�1

gapχq � gapχq (Sum both sides over a)

� 0� pp� 1q � |g1pχq|2.

Now examine gapχq � gapχq using Definition 9.2.1. We have

gapχq � gapχq �
p�1̧

x�0

χpxqζax �
p�1̧

y�0

χpyqζ�ay (Definition 9.2.1)

�
p�1̧

x�0

p�1̧

y�0

χpxqχpyqζax�ay. (Rearrange sums)
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Summing both sides of the last equation over a yields

p�1̧

a�0

gapχq � gapχq �
p�1̧

a�0

�
p�1̧

x�0

p�1̧

y�0

χpxqχpyqζax�ay
�

�
p�1̧

a�0

�
p�1̧

x�0

p�1̧

y�0

χpxqχpyqζapx�yq
�

(Properties of exponents)

�
p�1̧

x�0

p�1̧

y�0

χpxqχpyq�δpx, yq � p� (Corollary 9.1.3)

Now, we need to consider what is happening in this final step. If we expand

the right side over y, then we have

p
p�1̧

x�0

χpxq
�
χp1qδpx, 1q � χp2qδpx, 2q � � � � � χpyp�1qδpx, yp�1q



.

As we iterate through x, each iteration produces exactly one term that looks

like χpkqχpkqδpk, kqp, where k P t1, 2, . . . , p�1u. We know from the properties

of characters that χpkq � �
χpkq��1

. We also know from Corollary 9.1.3 that

δpx, yq � 1 whenever x � y mod p and δpx, yq � 0 when x � y mod p. Thus,

for each iteration of x where x � 0, we will have p� 2 terms equal to 0, since

the δpx, yq factor will be equal to 0. The remaining term in each iteration is

then χpkq�χpkq��1 �1 �p. When x � 0, χpxq � 0 as well, so it effectively “kills”

the rest of the terms. We can simplify this further since χpkq�χpkq��1 � 1,

thus we will have exactly p� 1 terms from the entire sum that are equal to p.

It follows that
p�1̧

a�0

gapχq � gapχq � pp� 1qp.
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But we also have
p�1̧

a�0

gapχq � gapχq � pp� 1q��g1pχq��2.
Combining the two results yields

pp� 1q � ��g1pχq��2 � pp� 1q � p

ðñ ��g1pχq��2 � p (Left multiplication by pp� 1q�1)

ðñ |g1pχq| � ?
p,

as desired.

9.3 Jacobi Sums

We want to extend the results we’ve developed about solutions to equations.

If we examine x2 � y2 � 1 over the field Zp, we know that there can be only

finitely many solutions, since for any prime p, Zp is finite. Using the same

notation as in the previous section, let N px2 � y2 � 1q denote the number of

solutions.

Our goal is determine explicitly what this number is, but first we need

to revisit Zp and look at some basic behaviors of its elements. We know that

there are p elements in Zp, and p � 1 of them are nonzero. Since 02 � 0, we

will set 0 aside for now and examine the other elements. Notice that since

p � 1 is even for any p ¡ 2, if we choose k P Zp such that 1 ¤ k ¤ p� 1

2
,

then k2 � pp � kq2 mod p, since pp � kq2 � p2 � 2pk � k2 � k2 mod p. This

246



is important, because when we square the nonzero elements of Zp, each least

residue either appears exactly twice or does not appear. This means that one

of the ways for x2�y2 � 1 to have solutions is for one of x or y to be 0 and the

other to be either 1 or p�1. Otherwise, we have x2�y2 � 1, where x � 0 � y.

Let a � x2 and b � y2. Then we are simultaneously solving for a � x2 and

b � y2 whenever a� b � 1.

Hence, we can consider N px2 � y2 � 1q �
¸

a�b�1

N px2 � aq �Npy2 � bq.

Notice that x2 � a really means that we are looking for the number of solutions

to x2 � a mod p. We know that pa{pq � 1 if a solution exists and pa{pq � �1

otherwise. Furthermore, we know that if a solution exists, then there are

exactly two, since Zp is a field. Thus N px2 � aq � 1 � pa{pq, since the sum

will be 0 if there is not a solution and 2 if there is a solution. Finally, it should

be clear that there are p ways to have a�b � 1 when a, b P Zp, since 0�1 � 1,

and the other elements pair up as follows: 2� p� 1, 3� p� 2, and so on, with

the element
p� 1

2
paired with itself. This gives us

p� 1

2
of the pairs. Then

switching the roles of a and b and not counting the pair
p� 1

2
,
p� 1

2
twice

gives us the other
p� 1

2
pairs.
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So now we have

N px2 � y2 � 1q �
¸

a�b�1

N px2 � aq �N py2 � bq (Substitution)

�
¸

a�b�1

�
1� pa{pq��1� pb{pq� (Substitution)

�
¸

a�b�1

�
1� pb{pq � pa{pq � pa{pqpb{pq�

(Distributive Property)

� p�
p�1̧

a�0

pa{pq �
p�1̧

b�0

pb{pq �
¸

a�b�1

pa{pqpb{pq. (Split the sum)

Now recall that there are as many quadratic residues as nonresidues and

p0{pq � 0. Thus
p�1̧

a�0

pa{pq � 0, and likewise
p�1̧

b�0

pb{pq � 0.

So our problem is now reduced to N px2�y2 � 1q � p�
¸

a�b�1

pa{pqpb{pq.

We will return to this problem shortly to calculate the actual value.

Definition 9.3.1 Let χ and λ be characters of Zp and let a, b P Zp. Then

Jpχ, λq �
¸

a�b�1

χpaqλpbq

is called a Jacobi sum. ♦

Lemma 9.3.2 Let a, b P Zp. Then
¸

a�b�1

1 � p, where the sum is over all pairs

a and b such that a� b � 1 mod p.

Proof: This follows immediately from the discussion preceding Defi-

nition 9.3.1.
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Theorem 9.3.3 Let χ and λ be nontrivial characters. Then

1. Jpε, εq � p.

2. Jpε, χq � 0.

3. Jpχ, χ�1q � �χp�1q.

4. If χλ � ε, then Jpχ, λq � gpχqgpλq
gpχλq .

Proof: Let χ and λ be nontrivial characters and let a, b P Zp.

1. We have

Jpε, εq �
¸

a�b�1

εpaq � εpbq (Definition 9.3.1)

�
¸

a�b�1

1 (Definition 7.3.1)

� p, (Lemma 9.3.2)

which is the desired result.

2. By Definition 9.3.1, we have

Jpε, χq �
¸

a�b�1

εpaq � χpbq

�
p�1̧

b�0

χpbq (Definition 7.3.1)

� 0. (Theorem 7.3.3)

In the second step, note that we changed from the sum being over all

pairs of a, b such that a� b � 1, to the sum over all b P Zp. This follows
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from Lemma 9.3.2, because each value of b appears in a unique pair and

εpaq � 1 for all a.

3. By Definition 9.3.1, we have

Jpχ, χ�1q �
¸

a�b�1
b�0

χpaq � �χpbq��1

�
¸

a�b�1
b�0

χpaq � χpb�1q (Theorem 7.3.2)

�
¸

a�b�1
b�0

χpab�1q (Multiplicative character)

�
¸
a�1

χ
�
ap1� aq�1

�
(b � 1� a)

Note that in the second and third steps, we restrict the bounds of the

sum to exclude b � 0 as an option. Similarly, in the fourth step, we have

made the substitution b � 1� a, and since b � 0, this forces a � 1.

Now set c � ap1� aq�1. We know c � �1, since c � �1 would result in

� 1 � ap1� aq�1

ðñ � p1� aq � a (Right multiplication by p1� aq)

ðñ � 1� a � a (Distributive Property)

ðñ � 1 � 0. (Subtraction Property of Equality)
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Thus for c � �1,

c � ap1� aq�1

ðñ cp1� aq � a (Right multiplication by p1� aq)

ðñ c� ca � a (Distributive Property)

ðñ c � a� ca (Addition Property of Equality)

ðñ c � ap1� cq (Distributive Property)

ðñ cp1� cq�1 � a. (Right multiplication by p1� cq�1)

So Jpχ, χ�1q �
¸
a�1

χ
�
ap1� aq�1

�
is now Jpχ, χ�1q �

¸
c��1

χpcq, and as a

varies over Zpzt1u, c varies over Zpzt�1u. Thus we have

¸
c��1

χpcq � χp�1q �
p�1̧

c�0

χpcq

� 0, (Part 2 above)

which tells us that

¸
c��1

χpcq � χp�1q � 0 ðñ
¸
c��1

χpcq � �χp�1q.

Putting everything together yields

Jpχ, χ�1q � �χp�1q.
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4. First we want to examine the product g1pχqg1pλq from Definition 9.2.1.

g1pχqg1pλq �
�
p�1̧

x�0

χpxqζx
��

p�1̧

y�0

λpyqζy
�

(Definition 9.2.1)

�
p�1̧

x,y�0

χpxqλpyqζx�y (Rearrange sum)

�
p�1̧

t�0

� ¸
x�y�t

χpxqλpyq
�
ζt (Rearrange sum)

In the last step, we rearrange the sum by setting t � x�y and factoring.

Now if t � 0,

¸
x�y�0

χpxqλpyq �
p�1̧

x�0

χpxqλp�xq (y � �x)

�
p�1̧

x�0

χpxqλp�1 � xq (�x � �1 � x)

�
p�1̧

x�0

χpxqλp�1qλpxq (Multiplicative character)

� λp�1q
p�1̧

x�0

χpxqλpxq (Rearrange sum)

� λp�1q
p�1̧

x�0

χλpxq (Function multiplication)

� 0, (Part 2 above)

since the group of characters is closed under function multiplication, and

by our initial assumption χλ � ε.

Since x, y P Zp, if t � 0, then there exist u and v such that x � tu and
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y � tv. Then

x� y � t

ðñ tu� tv � t (Substitution)

ðñ u� v � 1. (Left multiplication by t�1)

So

¸
x�y�t

χpxqλpyq �
¸

u�v�1

χptuqλptvq (Substitution)

�
¸

u�v�1

χλptq � χpuqλpvq (Multiplicative characters)

� χλptq � Jpχ, λq. (Definition 9.3.1)

Combining results yields

g1pχqg1pλq �
p�1̧

t�0

� ¸
x�y�t

χpxqλpyq
�
ζt

�
p�1̧

t�0

�
χλptq � Jpχ, λq�ζt (Substitution)

� Jpχ, λq � g1pχλq, (Definition of g1pχλq)

which implies that Jpχ, λq � g1pχqg1pλq
g1pχλq as desired.

Therefore, all four properties hold, as claimed.

We are now in a position to finish the work we started at the beginning

of this section. We left off with N px2 � y2 � 1q � p�
¸

a�b�1

pa{pqpb{pq. Recall

that earlier we were working with the character χptq � pt{pq. Thus our problem
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has now become N px2� y2 � 1q � p�
¸

a�b�1

χpaq � χpbq. But a� b � 1 implies

that b � 1� a. Since Zp is an additive group, this means that b � 1� a is the

additive inverse of a, so by Property 3 of Theorem 9.3.3, this can be rewritten

as

N px2 � y2 � 1q � p�
p�1̧

a�0

χpaq � χ�1paq � p� Jpχ, χ�1q � p� χp�1q.

Recall that earlier we said that χptq would represent the Legendre symbol

pt{pq. Thus χp�1q � p�1{pq, so �χp�1q � �p�1{pq. But we know that for

odd primes p, either p � 1 mod 4 or p � 3 mod 4, so

N px2 � y2 � 1q �

$'''&
'''%
p� 1, p � 1 mod 4

p� 1, p � 3 mod 4.

Corollary 9.3.4 Let χ and λ be nontrivial characters. If χλ � ε, then

|Jpχ, λq| � ?
p.

Proof: Assume that χ and λ are nontrivial characters with χλ � ε.

Then from Theorem 9.3.3, we have

Jpχ, λq � g1pχqg1pλq
g1pχλq .
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Working with this equation yields

|Jpχ, λq| �
����g1pχqg1pλqg1pχλq

���� (Take absolute value of both sides)

� |g1pχq| � |g1pλq|
|g1pχλq| (Properties of absolute value)

�
?
p
?
p?

p
(Theorem 9.2.3)

� ?
p,

as desired.

Recall that in Example 5.3.5, for α � a � bi P Zris, the norm is given

by Npαq � a2 � b2. Similarly, by Definition 5.4.1, for β P Zrωs, the norm is

Npβq � a2 � ab� b2.

Theorem 9.3.5 If p � 1 mod 4, then there exist integers a and b such that

a2 � b2 � p.

If p � 1 mod 3, then there exist integers a and b such that

a2 � ab� b2 � p.

Proof: Suppose p � 1 mod 4. Then p � 4k � 1 for some k P Z. By

Theorem 7.3.2, for a P Z�
p , χpaq is a pp � 1qst root of unity, so

�
χpaq�p�1 � 1.

Recall that the characters form a cyclic group, thus there is some character λ

that generates the group, so λp�1 � 1. Set χ � λpp�1q{4, and note that χ is

order 4.
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Since χ has order 4, each χpaq is a root of x4 � 1, thus χpaq takes on

the values 1, �1, i, and �i. This means that Jpχ, χq �
¸

s�t�1

χpsqχptq is a

Gaussian integer. In other words, Jpχ, χq � a� bi P Zris. So

Jpχ, χq � a� biñ |Jpχ, χq| � |a� bi|,

but we know from Corollary 9.3.4 that since χ is nontrivial, |Jpχ, χq| � ?
p.

Thus

|a� bi| � |Jpχ, χq| � ?
p.

Recall from complex analysis that |a � bi| � ?
a2 � b2 by definition. Thus,

since |a� bi| � ?
p, it follows that |a2 � b2| � p.

Now suppose p � 1 mod 3. Then by a similar argument as that used

in the first part of this proof, there is some character χ that has order 3. Each

χpaq is a root of x3 � 1, so χpaq takes on the values 1, ω, and ω2, where

ω � e2πi{3 � �1�?�3

2
. Thus, Jpχ, χq �

¸
u�v�1

χpuqχpvq is an Eisenstein

integer, which means that Jpχ, χq � a� bω P Zrωs. So

Jpχ, χq � a� bω ñ |Jpχ, χq| � |a� bω|.

But by Corollary 9.3.4, |Jpχ, χq| � ?
p. Combining these results yields

|a� bω| � |Jpχ, χq| � ?
p

ðñ Npa� bωq � |Jpχ, χq|2 � �?
p
�2

ðñ a2 � ab� b2 � p,

which is the desired result.
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Theorem 9.3.6 If p � 1 mod 3, then there are integers A and B such that

4p � A2 � 27B2,

where A and B are uniquely determined up to sign.

Proof: Assume p � 1 mod 3. Then p � a2�ab� b2 by Theorem 9.3.5.

Even if we restrict a and b to the positive integers, this representation of p is

not unique, since

a2 � apa� bq � pa� bq2 � a2 � ab� b2 � pb� aq2 � pb� aqb� b2.

But if p � a2 � ab� b2, then

4p � 4a2 � 4ab� 4b2 (Multiplication Property of Equality)

� 4a2 � 4ab� b2 � 3b2 (4b2 � b2 � 3b2)

� p2a� bq2 � 3b2 (Factor)

� p2b� aq2 � 3a2

� pa� bq2 � 3pa� bq2.

We claim that either 3 � a, 3 � b, or 3 � pa� bq.

First recall that p � a2� ab� b2, which implies 1 � a2� ab� b2 mod 3,

since p � 1 mod 3. If 3 � a, then a � 0 mod p, so 1 � b2 mod 3, which yields

b � �1 mod 3. Likewise, if 3 � b, then a � �1 mod 3. If a � 0 mod 3 and

b � 0 mod 3, then a2 � b2 � 1 mod 3, so 1 � 1�ab�1 mod 3, so ab � 1 mod 3.
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But this implies that either a � b � 1 mod 3 or a � b � �1 mod 3, and either

way, we have a� b � 0 mod 3, so 3 � pa� bq.

So either 3 � a, 3 � b, or 3 � pa� bq. Recall that we also showed that

4p � p2a� bq2 � 3b2 � p2b� aq2 � 3a2 � pa� bq2 � 3pa� bq2.

If 3 � a, then a � 3k for some k, and 4p � p2b�aq2�3a2 � �
2b�p3kq�2�3p3kq2,

which is of the form 4p � A2 � 27B2, for some A and B. Similarly, if 3 � b,

then 4p � p2a�bq2�3b2 � �
2a�p3jq�2�3p3jq2, for some j. Finally, 3 � pa�bq

implies that 4p � pa � bq2 � 3p3lq2. When we put these results together, it

follows that there exist A,B P Z, such that 4p � A2 � 27B2.

By [8], A and B are unique up to sign.

Lemma 9.3.7 If χ is a character, then g1pχq � χp�1q � g1pχq.
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Proof: Let χ be a character. Then

g1pχq �
p�1̧

t�0

χptqζt (Definition of g1pχq)

�
p�1̧

t�0

χptqζ�t

�
p�1̧

t�0

χp�tqζt

�
p�1̧

t�0

χp�1qχptqζt

� χp�1q
p�1̧

t�0

χptqζt

� χp�1qg1pχq (χp�1q � χ
�� 1q�1

� � χp�1q)

� χp�1qg1pχq,

so g1pχq � χp�1qg1pχq.

Theorem 9.3.8 Suppose that p � 1 mod n and assume that χ is a character

of order n ¡ 2. Then

�
gpχq�n � χp�1qpJpχ, χqJpχ, χ2q . . . Jpχ, χn�2q.

Proof: Assume p � 1 mod n and let χ be a character of order n ¡ 2.

Then we can apply part 4 of Theorem 9.3.3, which gives us

Jpχ, χq � g1pχqg1pχq
g1pχχq

�
�
g1pχq

�2
g1pχ2q ,
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so
�
g1pχq

�2 � g1pχ2qJpχ.χq. Multiplying both sides of this equation by g1pχq

yields

�
g1pχq

�3 � g1pχqg1pχ2qJpχ, χq.

Now,

Jpχ, χ2q � g1pχqg1pχ2q
g1pχχ2q (Theorem 9.3.3)

ðñ g1pχ3qJpχ, χ2q � g1pχqg1pχ2q.

By substitution, we have

�
g1pχq

�3 � g1pχ3qJpχ, χ2qJpχ, χq.

Again multiplying both sides of the equation by g1pχq yields

�
g1pχq

�4 � g1pχqg1pχ3qJpχ, χ2qJpχ, χq.

But

Jpχ, χ3q � g1pχqg1pχ3q
g1pχ, χ3q (Theorem 9.3.3)

ðñ g1pχ4qJpχ, χ3q � g1pχqg1pχ3q.

So if we substitute again, we have

�
g1pχq

�4 � g1pχ4qJpχ, χ3qJpχ, χ2qJpχ, χq.

If we continue in this manner, we will eventually have

�
g1pχq

�n�1 � g
�
χn�1

�
J
�
χ, χn�2

�
J
�
χ, χn�3

�
. . . J

�
χ, χ2

�
Jpχ, χq. (9.5)
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Recall that χ has order n, so χn�1 � χ�1, but χ�1 � χ, by Property 3

of multiplicative characters. Thus

g1pχqg1pχn�1q � g1pχqg1pχ�1q (χn�1 � χ�1)

� g1pχqg1pχq (χ�1 � χ)

� g1pχqg1pχqχp�1q (Lemma 9.3.7)

� ��g1pχq��2χp�1q (Theorem 9.2.3)

� pχp�1q. (Theorem 9.2.3)

So, if we multiply both sides of Equation (9.5) by g1pχq, we have

�
g1pχq

�n � g1pχqg1pχqJpχ, χn�2qJpχ, χn�3q . . . Jpχ, χ2qJpχ, χq

� pχp�1qJpχ, χn�2qJpχ, χn�3q . . . Jpχ, χ2qJpχ, χq,

which is the desired result.

Corollary 9.3.9 If χ is a cubic character, then

�
g1pχq

�3 � pJpχ, χq.

Proof: By Theorem 9.3.8,

�
g1pχq

�3 � pχp�1qJpχ, χq.

But since χ is a cubic character,
�
χp�1q�3 � 1. However, by the definition

of function multiplication,
�
χp�1q�3 � �

χp�1q3� � χp�1q, and it follows that

χp�1q � 1. Thus, we have
�
gpχq�3 � pJpχ, χq, as desired.
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We want to see if we can determine the number of solutions to the

equation x3 � y3 � 1 over the field Zp. As before, we will denote the number

of solutions as N px3 � y3 � 1q. We begin the same way we did with the

quadratic version, so

N px3 � y3 � 1q �
¸

a�b�1

N px3 � aqN py3 � bq.

Suppose x3 � 0. The only solution to this equation in Zp is x � 0.

Suppose now that p � 2 mod 3. Recall that Z�
p is cyclic, so there is

some g that generates it. Since p � 2 mod 3, gcdp3, p� 1q � 1, so g3 is also a

generator of Z�
p , by Theorem 4.3.21. Thus there exists some 0 ¤ k   p such

that a � �
g3
�k

. But we can rewrite this as a � �
gk
�3

, so x3 � a has at least

one solution, and it is in fact x � gk mod p. If another solution exists, then it

is of the form x � gl mod p for some 0 ¤ l   p, where
�
gl
�3 � a. But then we

have g3k � a � g3l, which implies that 3k � 3l mod p. But gcdp3, p� 1q � 1,

so k � l mod p, and since 0 ¤ k, l   p, it follows that k � l. Thus there is

exactly one solution to the equation x3 � a for each a, so N px3 � aq � 1 for

all a. This implies that N px3 � y3 � 1q �
¸

a�b�1

1 � p, by Lemma 9.3.2.

Suppose instead that p � 1 mod 3. By Theorem 7.3.4, we know that the

set of characters on Zp forms a cyclic group of order p� 1. Since p � 1 mod 3,

we can see that 3 � pp�1q. Let λ be a generator of the cyclic group of characters

on Zp. Then χ � λpp�1q{3 is a character of order 3, and the characters χ, χ2,
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and χ3 � ε are all distinct cubic characters. By Theorem 7.3.7,

N px3 � aq � εpaq � χpaq � �
χpaq�2,

so

N px3 � y3 � 1q �
¸

a�b�1

N px3 � aqN py3 � bq

�
¸

a�b�1

2̧

i�0

�
χpaq�i 2̧

j�0

�
χpbq�j

�
2̧

i�0

2̧

j�0

� ¸
a�b�1

�
χpaq�i�χpbq�j

�
.

As we did in the quadratic case, we will return to calculate this value shortly.

Recall that in Section 5.5, we defined algebraic integers to be complex

numbers that are roots of a polynomial xn� b1xn�1� � � � � bn � 0, where each

bi is an integer. We also stated that the algebraic integers form a ring, which

is denoted Ω. Finally, we proved Theorem 5.5.3 and looked at an example

of the theorem at work. The theorem states that given ω1, ω2 P Ω and some

prime p P Z, then
�
ω1�ω2

�p � ωp1 �ωp2 mod p. Example 5.5.4 illustrated that

we can take algebraic integers, which are not ordinary integers, and add them

together modulo p, where p is an integer. This idea is going to come into play

in the proof of this next theorem.

Theorem 9.3.10 Suppose that p � 1 mod 3 and assume that χ is a nontrivial

cubic character. Set Jpχ, χq � a� bω. Then

1. b � 0 mod 3.
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2. a � 2 mod 3.

Proof:

�
g1pχq

�3 �
�
p�1̧

t�0

χptqζt
�3

(Definition of g1pχq)

�
p�1̧

t�0

�
χptq�3ζ3t mod 3 (Theorem 5.5.3)

� 03 �
p�1̧

t�1

�
χptq�3ζ3t mod 3 (χp0q � 0)

�
p�1̧

t�1

ζ3t mod 3 (χ is a cubic character)

� ζ1 � ζ2 � ζ3 � � � � � ζp�1,

since ζ is a pth root of unity and 3 � p, so 3t runs through t1, 2, . . . , p� 1u as

t does. But recall that ζ is a root of the polynomial xp � 1. More specifically,

ζ is a root of xp�1 � � � � � x � 1, which is one of the factors of xp � 1. Thus

ζp�1 � � � � � ζ1 � 1 � 0, which implies that ζp�1 � � � � � ζ1 � �1. Hence

�
g1pχq

�3 � 2 mod 3,

so

2 � �
g1pχq

�3
mod 3

� pJpχ, χq mod 3 (Corollary 9.3.9)

� Jpχ, χq mod 3 (p � 1 mod 3)

� a� bω mod 3.
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Thus a� bω � 2 mod 3.

Now we want to repeat this idea for χ. We proved in Lemma 9.3.7

that g1pχq � χp�1q � g1pχq, but χ is a cubic character, so χp�1q � 1. Thus

g1pχq � g1pχq,. Note also that

Jpχ, χq �
¸

a�b�1

χpaqχpbq (Definition of Jacobi sum)

�
¸

a�b�1

χpaqχpbq

�
¸

a�b�1

χpaq � χpbq (Properties of complex conjugates)

� Jpχ, χq.

Thus

�
g1pχq

�3 � pJpχ, χq (Corollary 9.3.9)

� a� bω mod 3

� 2 mod 3.

Subtracting the results yields

a� bω � pa� bωq � 2� 2 mod 3

ðñ bpω � ωq � 0 mod 3

ðñ b
?�3 � 0 mod 3.

But this implies that �3b2 � 0 mod 9, which in turn implies that 3 � b. Thus

b � 0 mod 3 and since a � bω � 2 mod 3, it follows that a � 2 mod 3, as

desired.
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Corollary 9.3.11 Let A � 2a � b and B � b{3. Then A � 1 mod 3 and

4p � A2 � 27B2.

Proof: We know from Theorem 9.3.5 that Jpχ, χq � a � bω. We also

have
��Jpχ, χq��2 � p, by Corollary 9.3.4. Combining these results yields

p � a2 � ab� b2

ðñ 4p � p2a� bq2 � 3b2 (Theorem 9.3.6)

ðñ 4p � A2 � 3p3Bq2 (Substitution)

ðñ 4p � A2 � 27B2.

Now, Theorem 9.3.10 indicates that a � �1 mod 3 and b � 0 mod 3,

so

A � 2a� b

� �2 mod 3 (Substitution)

� 1 mod 3.

Thus 4p � A2 � 27B2 and A � 1 mod 3.

We are now in a position to return to our discussion about the number

of solutions to the equation x3 � y3 � 1. Recall that we left off with

N px3 � y3 � 1q �
2̧

i�0

2̧

j�0

� ¸
a�b�1

�
χpaq�i�χpbq�j

�
.

From previous work, we know that ε is the identity character, so χ0 � ε.
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Recall that we previously defined a Jacobi sum to be

Jpχ, λq �
¸

a�b�1

χpaqλpbq.

Thus it’s easy to see that we are going to be adding together a bunch of Jacobi

sums. In Theorem 9.3.3, we established some properties about Jacobi sums

that we will need to use in evaluating our work. We proved that if χ and λ

are nontrivial characters, then

• Jpε, εq � p

• Jpε, χq � 0

• Jpχ, χ�1q � �χp�1q.

So if we expand the right side of the equation about i and j, we have

N px3 � y3 � 1q �
¸

a�b�1

εpaqεpbq �
¸

a�b�1

εpaqχpbq �
¸

a�b�1

εpaqχpbq

�
¸

a�b�1

χpaqεpbq �
¸

a�b�1

χpaqχpbq �
¸

a�b�1

χpaqχ�1pbq

�
¸

a�b�1

χ�1paqεpbq �
¸

a�b�1

χ�1paqχpbq �
¸

a�b�1

χ�1paqχ�1pbq

� p� 0� 0� 0� Jpχ, χq � χp�1q � 0� χ2p�1q � Jpχ�1, χ�1q

� p� Jpχ, χq � 1� 1� Jpχ2, χ2q

� p� 2� Jpχ, χq � Jpχ2, χ2q.

To justify the work between the second and third steps above, recall that χ

is a cubic character and p�1q3 � �1. Thus χp�1q � 1, which implies that

�χp�1q � �1.
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Now we set that result aside for a moment and examine Jpχ2, χ2q.

Jpχ2, χ2q �
¸

a�b�1

χ�1paqχ�1pbq

�
¸

a�b�1

χpaq � χpbq

�
¸

a�b�1

χpaqχpbq

�
¸

a�b�1

χpaqχpbq

� Jpχ, χq

But we know that Jpχ, χq is a complex number, and we know that the sum of

complex conjugates is just twice the real part of the complex number, so we

can return to our work from above.

N px3 � y3 � 1q � p� 2� Jpχ, χq � Jpχ2, χ2q

� p� 2� Jpχ, χq � Jpχ, χq

� p� 2� 2 � Re
�
Jpχ, χq�.

Finally, in Theorem 9.3.10, we proved that Jpχ, χq � a� bω, where a� bω is

primary. So

a� bω � a� b

��1�?�3

2




� a� b

2
� b

?�3

2
,

so Re
�
Jpχ, χq� � 2a� b

2
and 2 � Re

�
Jpχ, χq� � 2a� b. It follows that

N px3 � y3 � 1q � p� 2� p2a� bq.
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We now take Theorem 9.3.6 one step further and tie it together with

the work we have done on N px3 � y3 � 1q.

Theorem 9.3.12 Suppose that p � 1 mod 3. Then there are integers A and

B such that 4p � A2 � 27B2. If we require that A � 1 mod 3, then A is

uniquely determined, and

Npx3 � y3 � 1q � p� 2� A.

Proof: By the discussion preceding this theorem, Jpχ, χq � a � bω,

where a � 2 mod 3 and b � 0 mod 3. This implies that there are s, t P Z, such

that a � 3s� 2 and b � 3t. So

2a� b � 2p3s� 2q � 3t

� 6s� 4� 3t

� 1 mod 3.

Set A � 2a � b, then A � 1 mod 3 is uniquely determined. We do not prove

uniqueness here, but it can be found in [8]. Thus the number of solutions to

x3 � y3 � 1 is given by N px3 � y3 � 1q � p� 2� A.
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Chapter 10

Cubic Reciprocity

In this chapter, we finally get to explore the idea of cubic reciprocity. We begin

Section 1 by defining a new term, rational prime, in an effort to keep track

of the various types of primes that we now have. Recall that in Section 5.4,

we established some properties and characteristics of the ring Zrωs. We also

began looking at ways to identify the units and primes in the ring. We will

expand on that work, and develop results that we will need to prove the Law

of Cubic Reciprocity later. We also prove a theorem that tells us how to

determine whether or not an Eisenstein integer is prime in Zrωs.

In section 2, we examine a specific factor ring and develop properties

about that ring. Some of the concepts used are similar to things we did in the

ring theory chapter, but in this special setting.

In the third section, we define cubic residue characters and develop
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some properties similar to the properties of the Legendre symbol that we saw

previously. We also define something called a primary prime and develop

several results about these primes, and end the section by stating the Law of

Cubic Reciprocity and proving it in two different ways.

We finish off the chapter by looking at the special case of the cubic

character of 2 More specifically, we explore the circumstances under which 2

is a cubic residue.

10.1 Rational Primes

In Chapter 5, we established that Zrωs is a unique factorization domain, and

thus that primes and irreducibles are the same thing in Zrωs. We want to

examine the prime elements in Zrωs in detail, but we need to keep in mind

that primes in this setting are not necessarily primes in the integers. For

example, 3 is prime in Z, but 3 � p2 � ωqp1 � ωq � p�1 � 2ωqp1 � 2ωq is not

prime in Zrωs. To help keep the different primes straight, we will define a new

term that we will use from here on out.

Our current definition of prime states that if p is a nonzero nonunit

element of an integral domain D, then for all a, b P D, p � ab implies that

either p � a or p � b.

Definition 10.1.1 If p is a prime in Z, then p will be called a rational prime.
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If a� bω P Zrωs is prime, it will be denoted π unless otherwise specified, and

will be referred to simply as prime. ♦

In the ring theory chapter, we defined the term associates. Recall that

if a and b are elements of a ring and a � bu, where u is a unit in the ring, then

a and b are associates. We also explored the idea of norm in Zrωs, and noted

that if α � a� bω P Zrωs, then Npαq � a2 � ab� b2.

Theorem 10.1.2 Suppose that π is a prime in Zrωs. Then there exists a

rational prime p, such that either Npπq � p or Npπq � p2. If Npπq � p2, then

π and p are associates. If Npπq � p, π is not associate to a rational prime.

Note that if π and p are associates, then p is prime in Zrωs, since π and

p differ only by multiplication of one of the six units in Zrωs.

Example 10.1.3 Let π1 � 2 � ω. Recall that by the work done in Exam-

ple 5.4.9 that this is prime in Zrωs.

Np2� ωq � 4� 2� 1 (Definition of norm)

� 3. (Arithmetic)

Let π2 � 3� ω, which is also prime.

Np3� ωq � 32 � 3� 1 (Definition of norm)

� 7. (Arithmetic)
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Let π3 � 2. Since 2 cannot be written as pa � bωqpc � dωq, where

a, b, c, d P Z, 2 is prime in Zrωs. Thus

Np2q � 4. (Definition of norm)

In this case, Np2q � 22, so π3 � 2 is associate to p � 2.

Proof: Let π P Zrωs be prime. Then π is not a unit, so Npπq � 1,

thus Npπq ¡ 1. Let Npπq � n, where n P N and n ¡ 1. Then ππ � n by

definition.

Since n P N, n � p1p2 . . . pm, where each pi is a rational prime. So

n � p1 . . . pm � ππ, which implies that π � pi, for one of the rational primes

pi, say p. Suppose p � πγ, for γ P Zrωs. Then

NpπqNpγq �Nppq (Take the norm of both sides)

�p2. (Definition of norm)

It follows that either Npπq � p2 and Npγq � 1 or Npπq � p � Npγq.

If Npγq � 1, then γ is a unit, by Theorem 5.4.8, and π and p are

associates.

If instead Npπq � p, suppose that π � uq, where u is a unit and q is a

rational prime. This implies that

p �Npπq

�NpuqNpqq (Norm is multiplicative)

�1 � q2 (Definition of norm)
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which is impossible, since p is a rational prime. Thus p is not associate to a

rational prime in this case.

Theorem 10.1.4 If π P Zrωs is such that Npπq � p, where p is a rational

prime, then π is prime in Zrωs.

Proof: Assume Npπq � p, for some rational prime p and let π � αβ.

Then

p �Npπq

�NpαqNpβq, (N is multiplicative)

which implies without loss of generality that Npαq � p and Npβq � 1, which

in turn implies that π is irreducible, and thus is prime.

Example 10.1.5 Let π � 3. Then Npπq � 9, which is not a rational prime,

and we know from previous work that 3 is not prime in Zrωs.

Let π � 2� 3ω. Then Npπq � 4� 6� 9 � 7, which is a rational prime,

so 2� 3ω is prime in Zrωs.

Theorem 10.1.6 Suppose that p and q are rational primes. If q � 2 mod 3,

then q is prime in Zrωs. If p � 1 mod 3, then p � ππ, where π is some prime

in Zrωs. Finally, 3 � �ω2p1� ωq2, where 1� ω is prime in Zrωs.

Proof: Suppose that p � 3 is a rational prime that is not prime in

Zrωs. Then p � πγ for some π, γ P Zrωs, where Npπq ¡ 1 and Npγq ¡ 1,

which implies that p2 � Nppq � NpπqNpγq, so Npπq � p and Npγq � p.
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Let π � a� bω. Then, since Npπq � p, we have

p � a2 � ab� b2 (Npa� bωq � a2 � ab� ab)

ðñ 4p � 4a2 � 4ab� 4b2 (Multiplication Property of Equality)

ðñ 4p � p4a2 � 4ab� b2q � 3b2 (Split 4b2 into two terms)

ðñ 4p � p2a� bq2 � 3b2, (Factor)

which implies that p � p2a� bq2 mod 3.

The least residues modulo 3 are 0, 1, and 2, but only 0 and 1 are perfect

squares. If p � 0 mod 3, then p � 3 is the only possibility, which contradicts

our assumption that p � 3. Thus, p � 1 mod 3.

Since the assumption that p is not prime in Zrωs is what led to the

result that p � p2a � bq2 mod 3, then if p � 2 mod 3, it follows immediately

from the work above that p is in fact prime in Zrωs, since 2 is not a perfect

square, and thus does not satisfy the congruence.

For the last part of the theorem, recall that Npa� bωq � a2 � ab� b2.

If we set a � 1 and b � �1, then Np1 � ωq � 3. Then using what we know
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about norms,

Np1� ωq � 3

ùñ p1� ωqp1� ωq � 3 (Npαq � αα)

ùñ p1� ωqp1� ω2q � 3 (ω � ω2)

ùñ p1� ωqp1� ωqp1� ωq � 3 (Factorization of 1� ω2)

ùñ p1� ωq2p�ω2q � 3, (�ω2 � ω � 1)

which is the desired result.

For the remainder of this chapter, unless otherwise specified, q will

represent a positive rational prime, where q � 2 mod 3 and q is prime in Z.

Likewise, π will represent a prime in Zrωs, such that Npπq � p, where p is a

rational prime and p � 1 mod 3.

10.2 Residue Class Rings

Suppose α, β, γ P Zrωs, where γ � 0 and γ is not a unit. In this setting,

α � β mod γ if and only if γ � pα � βq, just as it is when we work over the

integers.

Recall that in Example 5.4.10, we examined
Zrωs

p1� ωqZrωs and deter-

mined that it contains three elements, specifically r0s, r1s, and r2s. The fol-

lowing theorem generalizes this result for any prime π P Zrωs.
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Theorem 10.2.1 Let π P Zrωs be prime. Then
Zrωs
πZrωs is a finite field with

Npπq elements.

Proof: Suppose π P Zrωs is prime. To prove that
Zrωs
πZrωs is a field,

note that π is prime if and only if π is irreducible, since Zrωs is a unique

factorization domain. But π is irreducible if and only if πZrωs is maximal, by

Proposition 5.3.3, and by Proposition 5.2.17, πZrωs is maximal if and only if

Zrωs
πZrωs is a field.

Suppose π � q is a rational prime, where q � 2 mod 3. We claim

that ta � bω : 0 ¤ a, b   qu is a complete set of coset representatives. Let

µ � m�nω P Zrωs. Then by the division algorithm for the integers, m � qs�a

and n � qt� b, where a, b, s, t P Z and 0 ¤ a, b   q. So

µ � m� nω

ðñ µ � pqs� aq � pqt� bqω (Substitution)

ðñ µ � qps� twq � pa� bωq (Distributive Property)

ðñ µ � a� bω mod q, (Definition of congruent)

and we have at most q2 elements. Suppose that a�bω � a1�b1ω mod q, where

0 ¤ a, a1, b, b1   q. Then q � pa� a1q� pb� b1qω, which implies that q � pa� a1q

and q � pb � b1qω, and it follows that q � pb � b1q, since q is a rational prime.

But since 0 ¤ a, a1, b, b1   q, it has to be the case that a � a1 and b � b1. Thus

Zrωs
πZrωs has Npqq � q2 elements.
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Now suppose that π � a � bω is not a rational prime. Then there is

a rational prime p, such that p � 1 mod 3 and Npπq � ππ � p. We claim

that t0, 1, . . . , p� 1u is a complete set of coset representatives of
Zrωs
πZrωs . Since

Npπq � a2 � ab � b2 � p, it follows that p � b. Let µ � m � nω. Since

gcdpb, pq � 1, b is a generator modulo p, so there is some c P Z such that

cb � n mod p, so cb � n� kp for some k. Now, cπ � ac� bcω, so

µ� cπ � pm� nωq � pac� bcωq (Substitution)

� pm� acq � pn� bcqω (Commutative, Distributive Properties)

� pm� acq � p�kpqω, for some k (cb � n� kp)

� pm� acq mod p. (Definition of congruent)

Thus we have µ � cπ � pm � acq mod p, but this implies that there is some

j such that µ � m � cπ � ca � jp. Since p � ππ, we can rewrite this as

µ � m� ca� πpc� jπq, and it follows that µ � m� ca mod π.

Now, note that every element of Zrωs is congruent to a rational integer

modulo π. Suppose l P Z. Then l � sp � r, by the division algorithm for the

integers, where 0 ¤ r   p. This implies that l � r mod p, and by a similar

argument as that used above, l � r mod π. Thus, every α P Zrωs is congruent

to an element in t0, 1, . . . , p � 1u modulo π. Furthermore, if r � r1 mod π,

where r, r1 P Z and 0 ¤ r, r1   p, then r � r1 � πγ, for γ P Zrωs and

Npr � r1q � NpπqNpγq ðñ pr � r1q2 � p �Npγq.
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This implies that p � pr�r1q, by the definition of divides in Z. But 0 ¤ r, r1   p,

so r�r1 � 0, and it follows that r � r1. Hence,
Zrωs
πZrωs has Npπq � p elements.

We already showed in Example 5.4.10, that when π � 1�ω, the factor

ring
Zrωs
πZrωs only has the three elements r0s, r1s, and r2s. Thus the order of

Zrωs
πZrωs is Npπq � 3.

10.3 Cubic Residue Character

We know from Theorem 10.2.1 that
Zrωs
πZrωs has order Npπq. This means that

the order of the multiplicative group

�
Zrωs
πZrωs


�

, for any prime π is Npπq � 1.

The multiplicative group is the group of units under multiplication modulo

π, and the only difference in the two sets is that 0 is not an element of the

multiplicative group. So if we choose α P
�

Zrωs
πZrωs


�

, we know from principles

of group theory that αNpπq�1 � 1 mod π. Hence we have an analog of Fermat’s

Little Theorem that applies in this setting.

Theorem 10.3.1 Let π be prime. If π � α, then αNpπq�1 � 1 mod π.

Proof: This follows immediately from the discussion above.

Theorem 10.3.2 Suppose that π is a prime such that Npπq � 3 and π � α.

Then there is a unique integer m � 0, 1, or 2 such that

αpNpπq�1q{3 � ωm mod π.
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Proof: Let α P
�

Zrωs
πZrωs


�

. Since there are Npπq � 1 elements in this

multiplicative group, we know that αNpπq�1 � 1 mod π.

Note that rωs P Zrωs
πZrωs , since elements are of the form ra � bωs, and if

a � 0 and b � 1, we have rωs. We know that ω3 � 1, so rωs3 � r1s. Since the

set t1, ω, ω2u is closed under multiplication,
 r1s, rωs, rωs2( is a subgroup of

order 3 of our multiplicative group. But this implies that 3 divides the order

of the whole group, or that 3 � Npπq � 1.

Recall that in a field, the equation x3 � 1 has exactly three solutions.

Since αNpπq�1 � 1 mod π, it is also the case that
�
αpNpπq�1q{3

�3 � 1 mod π,

which implies that αpNpπq�1q{3 is a solution to x3 � 1 mod π. But 13 � 1 mod π,

ω3 � 1 mod π, and
�
ω2
�3 � �

ω3
�2 � 1 mod π, so the three possibilities for

αpNpπq�1q{3 are 1, ω, or ω2. Thus m is either 0, 1, or 2, as desired.

For the following theorem, suppose F denotes any finite field with q

elements. Then F� is cyclic and contains q � 1 elements [8].

Theorem 10.3.3 Let α P F�. Then xn � α has solutions if and only if

αpq�1q{d � 1, where d � gcdpn, q � 1q. If solutions exist, then there are exactly

d of them.

Proof: This theorem is an application of Theorem 6.0.5, which states

that if gcdpn, q � 1q � d, then nx � l mod pq � 1q has exactly d solutions if

and only if d � l.
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F� is a cyclic group with generator g, containing q � 1 elements, so

gq�1 � 1. Define a group isomorphism ϕ : F� Ñ Zq�1 by ϕpglq � l, where

0 ¤ l ¤ q � 1. Set α � gl and suppose that gcdpn, q � 1q � d. Because

g has order p � 1, we know that pglqpq�1q{d � 1 if and only if d � l, so by

Theorem 6.0.5, nn � α has solutions if and only d � l, and if a solution exists,

then there are exactly d of them.

Definition 10.3.4 If Npπq � 3, the cubic residue character of α modulo π is

given by

1. pα{πq3 � αpNpπq�1q{3 mod π, with pα{πq3 equal to 1, ω, or ω2.

2. pα{πq3 � 0 if π � α.

This is the cubic analog to the Legendre symbol. ♦

Recall that the Legendre symbol represents the solvability of the con-

gruence x2 � a mod p, and is defined to be equal to 0 if p � a. Also,

pa{pq � app�1q{2 mod p, with pa{pq � �1.

In the quadratic case, the outputs of the Legendre symbol are the two

roots of x2 � 1, and in the cubic case, the outputs of the cubic residue character

are the three roots of x3 � 1, which are 1, ω, and ω2. As we will see, the cubic

character has many of the same properties that we saw previously for the

Legendre symbol.
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Theorem 10.3.5 (Properties of the Cubic Residue Character) Let π

be a prime and let α P
�

Zrωs
πZrωs


�

. Then

1. pα{πq3 � αpNpπq�1q{3 mod π.

2. pα{πq3 � 1 if and only if x3 � α mod π is solvable. In other words, if

and only if α is a cubic residue.

3. pαβ{πq3 � pα{πq3pβ{πq3.

4. If α � β mod π, then pα{πq3 � pβ{πq3.

Proof: Suppose α, β P
�

Zrωs
πZrωs


�

and suppose π is prime.

1. Recall that in Theorem 10.3.3, we saw that xn � α has exactly d solutions

if and only if αpq�1q{d � 1. This result follows immediately from that

theorem, with Npπq � q and n � 3, since this is saying αpNpπq�1q{d � 1

if and only if x3 � α mod π is solvable.

2. This follows immediately from Definition 10.3.4.

3.

pαβ{πq3 � pαβqpNpπq�1q{3 mod π (Definition 10.3.4)

� αpNpπq�1q{3βpNpπq�1q{3 mod π (Properties of Exponents)

� pα{πq3pβ{πq3 mod π. (Definition 10.3.4)
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4. Suppose α � β mod π. Then

pα{πq3 � αpNpπq�1q{3 mod π (Definition 10.3.4)

� βpNpπq�1q{3 mod π (α � β mod π)

� pβ{πq3 mod π. (Definition 10.3.4)

Thus, each of the properties of the cubic residue character holds.

Theorem 10.3.6 Suppose π is prime and α P
�

Zrωs
πZrωs


�

. Then

1. pα{πq3 �
�pα{πq3�2 � pα2{πq.

2. pα{πq3 � pα{πq3.

In this Theorem, it is important to point out that the bar notation

should not be confused with our use of bars in previous chapters to denote

partitions and conjugacy classes. When we are working with complex num-

bers, the bar notation will denote the conjugate of a complex number unless

otherwise specified. Note that

?�3 �
?

3i

� �
?

3i

� �?�3,
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so ω � ω2. Also, since ω2 � ω � 1 � 0, we have ω2 � �1 � ω. Thus, if

α � a� bω,

α � a� bω

� a� bω2 (ω � ω2)

� a� bp�1� ωq (ω2 � �1� ω)

� pa� bq � bω. (Distributive Property)

Proof: Assume π is a prime in Zrωs and let α P
�

Zrωs
πZrωs


�

.

1. Recall that by definition of pα{πq3, the possible values it can take are 1,

ω, or ω2. Suppose that pα{πq3 � ω. Then

pα{πq3 � ω (Substitution)

� ω2. (ω � ω2)

We also have

�pα{πq3�2 � pα{πq3pα{πq3

� pα2{πq3. (Theorem 10.3.5)

Since pα{πq3pα{πq3 � ω2 when pα{πq3 � ω, equality holds.

The proof works exactly the same way for the other two values, in that

the conjugate of the value is equal to the value squared, so regardless of

the value that pα{πq3 takes, we have pα{πq3 �
�pα{πq3�2 � pα2{πq.
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2. Observe that Npπq � ππ � Npπq, so

pα{πq3 � αpNpπq�1q{3 mod π (Theorem 10.3.5)

� αpNpπq�1q{3 mod π (Npπq � Npπq)

� pα{πq3 mod π. (Theorem 10.3.6)

But the only values that the cubic residue character can take are 1,

ω, and ω2. Since each of these is a least residue modulo π, we have

pα{πq3 � pα{πq3, as desired.

Corollary 10.3.7 Suppose that q is a rational prime. Then pα{qq3 � pα2{qq3

and pn{qq3 � 1 if n is an integer relatively prime to q.

Proof: Let n P Z and suppose that q is a rational prime such that

gcdpn, qq � 1. Let α P
�

Zrωs
πZrωs


�

. Since the complex conjugate of an integer

is the integer itself, q � q. Thus

pα{qq3 � pα{qq3 (q � q)

� pα{qq3 (Theorem 10.3.6)

� pα2{qq3. (Theorem 10.3.6)

Since n � n and q � q,

pn{qq3 � pn{qq3 (n � n; q � q)

� pn{qq3 (Theorem 10.3.6)

� �pn{qq3�2. (Theorem 10.3.6)
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We know that q � n, since n and q are relatively prime, thus pn{qq3 � 0. The

only other option is that pn{qq3 � 1, which is the desired result.

Definition 10.3.8 If π is a prime in Zrωs, then π is called a primary prime

if π � 2 mod 3. If π � q is a rational prime, then q � 2 mod 3. If π � a� bω,

then a � 2 mod 3 and b � 0 mod 3. ♦

Theorem 10.3.9 Let π be prime and suppose that Npπq � p � 1 mod 3.

Then exactly one of the associates of π is primary.

Proof: Assume that Npπq � p � 1 mod 3, where π is prime in Zrωs.

The six associates of π are π, ωπ, ω2π, �π, �ωπ, and �ω2π. Suppose that

π � a� bω. Writing each of the associates in terms of a and b gives us

1. π � a� bω

2. ωπ � �b� pa� bqω

3. ω2π � pb� aq � aω

4. �π � �a� bω

5. �ωπ � b� pb� aqω

6. �ω2π � pa� bq � aω.
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We saw in Theorem 9.3.5 that p � a2 � ab � b2 when p � 1 mod 3. We can

assume that a and b are not both divisible by 3, since if they are, then

p � p3kq2 � p3kqp3jq � p3jq2

� 9k2 � 9kj � 9j2

� 0 mod 3.

We can also assume that it is not the case that a � 1 mod 3 and b � �1 mod 3,

or vice versa, since if that is the case, then p � 0 mod 3.

These assumptions leave us with six cases to consider. First suppose

a � 0 mod 3. Then either b � 1 mod 3 or b � �1 mod 3. Assume b � 1 mod 3

and note that Npπq � 12 � 1 mod 3, so this is a valid value for b. Now we

examine each of the six associates modulo 3.

π � 0� ω

ωπ � �1� 1ω � 2� 2ω mod 3

ω2π � 1� 0ω

� π � �1ω

� ωπ � 1� 1ω

� w2π � �b� 0ω � 2� 0ω mod 3

Of the six, only �w2π is primary when a � 0 mod 3 and b � 1 mod 3.
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Now suppose b � �1 mod 3 and note that Npπq � 1 mod 3, so this is

also a valid value for b. Examination of the six associates yields the following.

π � 2ω

ωπ � �2� 2ω � 1� ω mod 3

ω2π � 2� 0ω

� π � �2ω � ω mod 3

� ωπ � 2� 2ω

� ω2π � �2� 0ω � 1 mod 3

Of these six, only ω2π is primary when a � 0 mod 3 and b � 2 mod 3.

The other four cases are handled in exactly the same way. If we assume

a � 1 mod 3, then either b � 0 mod 3 or b � 1 mod 3. Of these possibilities,

�π is primary when b � 0 mod 3 and ωπ is primary when b � 1 mod 3. If

instead we assume that a � �1 mod 3, then b � 0 mod 3 or b � �1 mod 3.

In these two cases, π is primary when b � 0 mod 3 and �ωπ is primary when

b � �1 mod 3.

In each case, exactly one of the six associates is primary, which is

exactly the result we need.

For ease of notation, we are going to use χ to represent cubic residue

characters in general. χ will come along with all of the properties that we pre-

viously proved about multiplicative characters. If we are specifically working
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modulo π, then the notation χπ will be used. In other words, χπpαq � pα{πq3.

When we are working in general, χ will just represent a generic cubic character.

Suppose π is a prime such that Npπq � p � 1 mod 3. We know that

Zrωs
πZrωs is a finite field of characteristic p, so it contains a copy of

Z
pZ

. Both fields

have p elements, thus an isomorphism exists between them. This isomorphism

is defined by sending the coset of n in
Z
pZ

to the coset of n in
Zrωs
πZrωs , and

allows us to work with χπ as a cubic character in the field
Z
pZ

. Thus we are

able to work with the Gauss sums gapχπq and the Jacobi sums Jpχπ, χπq.

Before we look at these specific Gauss and Jacobi sums, we want to

revisit some of the general results that we established previously. Recall that

in Theorem 9.3.8, we proved that if p � 1 mod n and χ is a character of

order n ¡ 2, then
�
gpχq�n � χp�1qpJpχ, χqJpχ, χ2q . . . Jpχ, χn�2q. We then

looked at the specific case of n � 3 and showed that
�
gpχq�3 � pJpχ, χq in

Corollary 9.3.9. Finally, in Theorem 9.3.10, we showed that if p � 1 mod 3 and

χ is a cubic character, then if we set Jpχ, χq � a�bω, we see that a � 2 mod 3

and b � 0 mod 3. This result implies that Jpχ, χq � a � bω is primary when

p � 1 mod 3.

Lemma 10.3.10 If p is a rational prime and p� 1 � k, for some nonnegative

k P Z, then
p�1̧

i�1

ik � 0 mod p.
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Proof: Let p be a rational prime and k a nonnegative integer such

that p� 1 � k. Then

p�1̧

i�1

ik � 1k � 2k � � � � � pp� 1qk.

Observe that each of the i in the sum is an element of the cyclic group Z�
p .

Let g be a generator of Z�
p and note that t1, 2, . . . , p� 1u is a permutation of

tg, g2, . . . , gp�1u modulo p. This implies that we can rewrite the sum as

p�1̧

i�1

ik �
p�1̧

i�1

�
gi
�k

mod p (g generates Z�
p)

�
p�1̧

i�1

gki mod p (Properties of exponents)

�
p�1̧

i�1

gi mod p (ki modulo p is a permutation of t1, 2, . . . , p� 1u)

�
p�2̧

i�0

gi mod p (Reindex the sum; gp�1 � g0 � 1 mod p)

� �
1� gp�1

��
1� g

��1
mod p (Sum of finite geometric series)

� 0 mod p,

since gp�1 � 1 mod p.

Lemma 10.3.11 Let π be primary. Then Jpχπ, χπq � π.

Proof: Let π P Zrωs and assume that π is primary. Let Jpχπ, χπq � π1.

We know from Theorem 9.3.10 that π1 is primary, and it is easy to see that

π1 is as well. We also know that Npπq � ππ � p, and by Corollary 9.3.4,

we have |Jpχπ, χπq| � ?
p and |Jpχπ, χπq| � ?

p. Thus we can surmise that
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π1π1 � |π1|2 � |Jpχπ, χπq|2 � p, so we have ππ � p � π1π1. This implies

that either π and π1 or π and π1 are associates. But π is primary, so by

Theorem 10.3.9, either π � π1 or π � π1. Our goal is to show that the second

case does not occur.

From the definition of Jacobi sum, we have

Jpχπ, χπq �
¸

x�y�1

χπpxqχπpyq (Definition of Jacobi Sum)

�
p�1̧

x�0

χπpxqχπp1� xq (y � 1� x)

�
p�1̧

x�0

px{πq3 � p1� x{πq3 mod π (χπpxq � px{πq3)

�
p�1̧

x�0

xpNpπq�1q{3 � p1� xqpNpπq�1q{3 mod π (Theorem 10.3.5)

�
p�1̧

x�0

xpp�1q{3 � p1� xqpp�1q{3 mod π. (Npπq � p)

We can simplify our work above by making a couple of observations. First,

notice that when x � 0, both of the factors in the sum are equal to 0, so we can

start indexing at x � 1. We also have Npπq � p � 1 mod 3, so let p � 3t� 1
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for some t. Then
p� 1

3
� t for some t. Making these changes yields

Jpχπ, χπq �
p�1̧

x�1

xpp�1q{3 � p1� xqpp�1q{3 mod π

�
p�1̧

x�1

xt � p1� xqt mod π, for some t (pp� 1q{3 � t)

�
p�1̧

x�1

�
xp1� xq�t mod π, for some t (Properties of exponents)

�
p�1̧

x�1

px� x2qt mod π, for some t (Distributive Property)

�
p�1̧

x�1

ţ

k�0

�
t

k



xt�kp�x2qk mod π, for some t

(Binomial Expansion Theorem)

�
p�1̧

x�1

ţ

k�0

�
t

k



p�1qkxt�kx2k mod π, for some t

(Properties of exponents)

�
p�1̧

x�1

ţ

k�0

�
t

k



p�1qkxt�k mod π, for some t

(Properties of exponents)

�
p�1̧

x�1

xt �
p�1̧

x�1

�txt�1 � � � � �
p�1̧

x�1

p�1qtx2t mod π, for some t.

(Expand inner sum)

Thus we have

Jpχπ, χπq �
p�1̧

x�1

xt �
p�1̧

x�1

�txt�1 � � � � �
p�1̧

x�1

p�1qtx2t mod π, for some t.

Now we want to apply Lemma 10.3.10, so we examine the right hand

side of the equation modulo p. Each of the sums in the equation is of the form
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C
p�1̧

x�1

xk for some constant C and some nonnegative exponent k. Furthermore,

notice that pp� 1q � k for any of the exponents k. By Lemma 10.3.10, each of

the sums is congruent to 0 modulo p.

Now, recall that ππ � p and observe that if α � β mod p, that is

equivalent to saying α � β � γp for some γ. But if we substitute ππ for p,

then we have α � β � γππ, which implies that α � β mod π. Thus

p�1̧

x�1

xt �
p�1̧

x�1

�txt�1 � � � � �
p�1̧

x�1

p�1qtx2t � 0 mod p

implies that

Jpχπ, χπq �
p�1̧

x�1

xt �
p�1̧

x�1

�txt�1 � � � � �
p�1̧

x�1

p�1qtx2t � 0 mod π.

But Jpχπ, χπq � π1, so we have π1 � 0 mod π. However, both π and π1 are

primary, and by Theorem 10.3.9, exactly one of the associates of π can be

primary, so it must be the case that π � π1, and the result follows.

The next lemma takes Corollary 10.3.7 one step further and proves that

for a specific type of rational prime, every integer is a cubic residue.

Lemma 10.3.12 If q � 2 mod 3 is a rational prime, then every integer is a

cubic residue modulo q.

Proof: Assume that q � 2 mod 3 is a rational prime. Then define

ϕ : Z�
q Ñ Z�

q by ϕpkq � k3. This ϕ is a group homomorphism, and by the

Fundamental Homomorphism Theorem,
Z�
q

kerpϕq � Impϕq.
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Now, k P kerpϕq if and only if k3 � 1. But we know that Z�
q is a cyclic

group of order q � 1, and 3 � q � 1, so k3 � 1 implies that k � 1. Thus kerpϕq

is trivial.

Note that

|Impϕq| �
���� Z�

q

kerpϕq
���� �

��Z�
q

��
1

� ��Z�
q

�� ,
which implies that ϕ is onto. It follows that every element of Z�

q is a perfect

cube.

Corollary 10.3.13 Let π be primary. Then
�
gpχπq

�3 � pπ.

Proof: Assume π P Zrωs is primary. By Corollary 9.3.9, we know that

�
gpχπq

�3 � pJpχπ, χπq. But by Lemma 10.3.11, Jpχπ, χπq � π. Putting the

two results together yields

�
gpχπq

�3 � pJpχπ, χπq � pπ,

as desired.

Lemma 10.3.14 If α and β are primary elements of Zrωs, then �αβ is also

primary.

Proof: Let α � a � bω, β � c � dω P Zrωs be primary. Then both α

and β are congruent to 2 modulo 3, so let α � 3t� 2 and β � 3s� 2 for some
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s, t P Z. The product of the two elements is

αβ � p3t� 2qp3s� 2q

� 9st� 6t� 6s� 4

� 1 mod 3,

but if we consider instead �αβ, then �αβ � �1 mod 3 � 2 mod 3. Thus

when α and β are primary, the opposite of their product is also primary.

Corollary 10.3.15 Assume that γ1, γ2, . . . , γk are all primary elements of

Zrωs. Then p�1qk�1γ1γ2 . . . γk is also primary.

Proof: We use induction on k. The base case is k � 2, and it holds

by Lemma 10.3.14. Assume that the result holds for some k and consider the

product of k� 1 primitive elements, γ1γ2 . . . γkγk�1. By the inductive assump-

tion, we know that p�1qk�1γ1γ2 . . . γk is primitive. We also know that γk�1 is

primitive. Thus by Lemma 10.3.14, p�1qp�1qk�1γ1 . . . γk�1 � p�1qkγ1 . . . γk�1

is also primary, so the result holds for all k P N.

The previous lemma and its corollary enable us to use the fact that

Zrωs is a unique factorization domain to formulate the following definition.

Definition 10.3.16 If γ is primary, then we can write γ � p�1qk�1γ1γ2 . . . γk,

where the γi are not necessarily distinct primary primes. ♦
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Definition 10.3.17 Let α, β P Zrωs and assume that β � 0 mod p1 � ωq.

Assume also that β � β1β2 . . . βk is the prime factorization of β, where the βi

are not necessarily distinct primes of Zrωs. Then

�
α

β

�
3

�

$'''&
'''%

1, if β is a unit of Zrωs

pα{β1q3pα{β2q3 . . . pα{βkq3, if β is a nonunit.

(Note that this is essentially the cubic analog to the Jacobi symbol.) ♦

Theorem 10.3.18 (The Law of Cubic Reciprocity) Suppose π1 and π2

are relatively prime primary elements of Zrωs, where Npπ1q, Npπ2q � 3 and

Npπ1q � Npπ2q. Then

pπ2{π1q3 � pπ1{π2q3.

Before we prove this theorem, a couple of notes are in order. We have

six units in Zrωs, �1, �ω, and �ω2, and this theorem doesn’t specifically

address how to deal with them, so we will look briefly at the cubic character

of the units. Recall that p�1q3 � �1, so x3 � �1 mod π always has a solution.

Thus p�1{πq3 � 1 for all primes π P Zrωs. To evaluate pω{πq3, we turn to

Property 1 of the cubic residue character which indicates that

pω{πq3 � ωpNpπq�1q{3.
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Thus

pω{πq3 �

$''''''''&
''''''''%

1, Npπq � 1 mod 9

ω, Npπq � 4 mod 9

ω2, Npπq � 7 mod 9.

Proof: Assume that π1 and π2 are relatively prime primary elements

in Zrωs, such that Npπ1q, Npπ2q � 3 and Npπ1q � Npπ2q. We need to consider

three cases. Specifically, both π1 and π2 are rational, exactly one of π1 or π2

is rational and the other is complex, and both π1 and π2 are complex.

Suppose that π1 and π2 are distinct and are both rational. If one or both

are not prime, we can apply Definition 10.3.17 to the non-prime denominators.

To handle the non-prime numerators, Property 3 of cubic residue characters

says that pαβ{πq3 � pα{πq3pβ{πq3. Thus it is sufficient to prove the result for

two rational primes. If π1 and π2 are both primary rational primes, then by

Corollary 10.3.7, pπ1{π2q3 � 1 and pπ2{π1q3 � 1, so pπ1{π2q3 � pπ2{π1q3.

Suppose without loss of generality that π1 is a rational prime and π2 is

a complex prime. By Theorem 10.1.6, π1 � q � 2 mod 3 and π2 � π, where

Npπq � p. Then by Corollary 10.3.13, we have

�
g1pχπq

�3 � pπ (Corollary 10.3.13)

ðñ
��
g1pχπq

�3	pq2�1q{3

� ppπqpq2�1q{3 (Power Rule)

ðñ �
g1pχπq

�q2�1 � ppπqpq2�1q{3. (Properties of exponents)
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Now if we consider this last equation modulo q, we have

�
g1pχπq

�q2�1 � ppπ{qq3 mod q (Theorem 10.3.5)

� pp{qq3pπ{qq3 mod q (Theorem 10.3.5)

� 1 � pπ{qq3 mod q. (Corollary 10.3.7)

So

�
g1pχπq

�q2�1 � pπ{qq3 mod q ðñ �
g1pχπq

�q2 � pπ{qq3 � g1pχπq mod q.

Now, by definition of Gauss sums, we have

�
g1pχπq

�q2 �
�
p�1̧

t�0

χπptq � ζt
�q2

�
p�1̧

t�0

�
χπptq

�q2 � ζq2t mod q.

But q � 2 mod 3, so q2 � 1 mod 3, and we can write q2 � 3k � 1, for some k.

We also know that χπptq is a cubic character. We can apply these two ideas

to our work above, which yields

�
g1pχπq

�q2 � p�1̧

t�0

�
χπptq

�3k�1 � ζq2t mod q

�
p�1̧

t�0

χπptq � ζq2t mod q (χπptq is a cubic character)

� gq2pχπq mod q. (Definition of Gauss Sum)
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Manipulating the right hand side of this last congruence yields

gq2pχπq � χπpq�2q � g1pχπq (Theorem 9.2.2)

� χπpq�1q � χπpq�1q � g1pχπq (χ is multiplicative)

� χπpqq � χπpq�1q � g1pχπq (Theorem 7.3.2)

� χπpq2q � χπpq�1q � g1pχπq (Theorem 10.3.6)

� χπpq2 � q�1q � g1pχπq (χ is multiplicative)

� χπpqq � g1pχπq. (q2 � q�1 � q)

So now we have

�
gpχπq

�q2 � χqpπq � g1pχπq mod q and

�
gpχπq

�q2 � gq2pχπq mod q � χπpqq � g1pχπq mod q,

and combining the two results yields χqpπq � g1pχπq � χπpqq � g1pχπq mod q.

If we multiply both sides of this last congruence by g1
�
χπ

�
, then

χqpπq � g1pχπq � g1
�
χπ

� � χπpqq � g1pχπq � g1
�
χπ

�
mod q

ðñ χqpπq � p � χπpqq � p mod q (Theorem 9.2.3)

ðñ χqpπq � χπpqq mod q. (Theorem 4.3.20)

It follows that χqpπq � χπpqq, as desired.

Suppose finally that π1 and π2 are both primary complex primes. As-

sume that Npπ1q � p1 � 1 mod 3 and Npπ2q � p2 � 1 mod 3. Let γ1 � π1
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and γ2 � π2. Then γ1 and γ2 are also primary, p1 � π1γ1, and p2 � π2γ2. So

we have

�
g1pχγ1q

�3 � p1γ1 (Corollary 10.3.13)

ùñ
��
g1pχγ1q

�3	pNpπ2q�1q{3

� pp1γ1qpNpπ2q�1q{3 (Power Rule)

ðñ �
g1pχγ1q

�Npπ2q�1 � pp1γ1qpNpπ2q�1q{3 (Properties of exponents)

ðñ �
g1pχγ1q

�p2�1 � pp1γ1qpNpπ2q�1q{3 (Npπ2q � p2)

ðñ �
g1pχγ1q

�p2�1 � pp1γ1{π2q3 mod π2 (Theorem 10.3.5)

ðñ �
g1pχγ1q

�p2�1 � χπ2pp1γ1q mod π2.

Thus we have

�
g1pχγ1q

�p2�1 � χπ2pp1γ1qmod π2 ðñ �
g1pχγ1q

�p2 � g1pχγ1qχπ2pp1γ1qmod π2.

By the definition of Gauss sum,

�
g1pχγ1q

�p2 �
�
p2�1̧

t�0

χγ1ptqζt
�p2

�
p2�1̧

t�0

�
χγ1ptq

�p2ζp2t mod π2.

But p2 � 1 mod 3, so p2 � 3k � 1, for some k P Z. Also, χγ1ptq is a cube root

of 1, so

�
g1pχγ1q

�p2 � �
χγ1ptq

�3k�1
ζp2t mod π2 (Definition of Gauss Sum)

�
p2�1̧

t�0

χγ1ptqζp2t mod π2 (χγ1ptq is a cubic character)

� gp2pχγ1q mod π2.
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By Theorem 9.2.2, we have

gp2pχγ1q � χγ1
�
p�1
2

� � g1pχγ1q
� χγ1pp2q � g1pχγ1q (Theorem 7.3.2)

� pp2{γ1q3 � g1pχγ1q (Definition of χγ1pp2q)

� �
p22{γ1

�
3
� g1pχγ1q (Theorem 10.3.6)

� χγ1
�
p22
� � g1pχγ1q. (Definition of χγ1

�
p22
�
)

So now we have

�
g1pχγ1q

�p2 � g1pχγ1q � χπ2pp1γ1q mod π2

and

�
g1pχγ1q

�p2 � g1pχγ1q � χγ1
�
p22
�

mod π2,

and combining the two results yields

g1pχγ1q � χπ2pp1γ1q � g1pχγ1q � χγ1
�
p22
�

mod π2

ðñ g1pχγ1q � g1
�
χγ1

� � χπ2pp1γ1q � g1pχγ1q � g1
�
χγ1

� � χγ1�p22� mod π2

ðñ p1 � χπ2pp1γ1q � p1 � χγ1pp22q mod π2

ðñ χπ2pp1γ1q � χγ1
�
p22
�

mod π2.

By a symmetric argument, χπ1pp2π2q � χπ2pp21q mod π1. So now we

have

χπ2pp1γ1q � χγ1
�
p22
�

mod π2 (10.1)
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and

χπ1pp2π2q � χπ2
�
p21
�

mod π1. (10.2)

Note that the values of the characters in Congruences (10.1) and (10.2) are in

t1, ω, ω2u, so congruence modulo π2 and π1 respectively implies that we have

equality, therefore we can drop the modulus.

By Theorem 10.3.6,

χγ1
�
p22
� � χγ1pp2q

� χγ1pp2q (Theorem 10.3.6)

� χπ1pp2q,

because γ1 � π1 ñ γ1 � π1 and p2 � p2. Thus, if we start with Equation (10.1)

and multiply both sides of the equation by χπ1pπ2q, we have

χπ1pπ2q � χπ2pp1γ1q � χπ1pπ2q � χγ1
�
p22
�

� χπ1pπ2q � χπ1pp2q (χγ1
�
p22
� � χπ1pp2q)

� χπ1pp2π2q (χπ1 is multiplicative)

� χπ2
�
p21
�

(Equation (10.2))

� χπ2pp1 � π1γ1q (p1 � γ1π1)

� χπ2pπ1q � χπ2pp1γ1q. (χπ2 is multiplicative)

Thus,

χπ1pπ2qχπ2pp1γ1q � χπ2pπ1qχπ2pp1γ1q.
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Since by definition of cubic characters, χπ2pp1γ1q � 0, we can cancel the com-

mon factor, and we have

χπ1pπ2q � χπ2pπ1q,

as desired.

Theorem 10.3.19 (Supplement to the Cubic Reciprocity Law) Let π

be a primary prime. Then

�
1� ω

π



3

� ω2m.

Proof: We need to consider two cases. First, assume that π � q is a

rational primary prime. Let q � 3m� 1 and observe that

p1� ωq2 � p1� ωqp1� ωq

� 1� 2ω � ω2 (Distributive Property)

� 1� 2ω � 1� ω (ω2 � �1� ω)

� �3ω. (Arithmetic)
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Thus,

�
χqp1� ωq�2 � χq

�p1� ωq2� (Theorem 10.3.6)

� χqp�3ωq (p1� ωq2 � �3ω)

� �� 3ω{q�
3

(Definition of χq)

� �� 3{q�
3

�
ω{q�

3
(Theorem 10.3.5)

� �
ω{q�

3
(Corollary 10.3.7)

� ωpNpqq�1q{3 (Theorem 10.3.5)

� ωpq2�1q{3. (Npqq � q2)

So we have

�
χqp1� ωq�2 � ωpq2�1q{3.

Squaring both sides of this equation yields

�
χqp1� ωq�4 � �

ωpq2�1q{3
�2 � ω2pq2�1q{3.

Now, q2 � 1 � 9m2 � 6m, so

2pq2 � 1q
3

� 2p9m2 � 6mq
3

� 6m2 � 4m

� �4m mod 3

� 2m mod 3.
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We will need part of this result later in the proof, so we label it to make

notation easier.

6m2 � 4m � 2m mod 3 (10.3)

Also, note that

�
χqp1� ωq�4 � �

χqp1� ωq�3 � χqp1� ωq.

But by definition, χqpαq � 1, ω, or ω2, for any appropriate α, and 13 � 1,

ω3 � 1, and pω2q3 � pω3q2 � 12 � 1, so
�
χqp1� ωq�4 � χqp1� ωq. Thus,

�
χqp1� ωq�4 � ω2pq2�1q{3 ðñ χqp1� ωq � ω2m,

as desired.

Now suppose that π � a � bω is a primary complex prime. Then

a � 2 � �1 mod 3 and b � 0 mod 3, so let a � 3m � 1 and b � 3n, for

some m,n P Z. Note that since a � 2 mod 3, a is primary by definition. If

a is not prime, then by Corollary 10.3.15, we can factor a into the product

a � p�1qk�1a1a2 . . . ak, where each ai is a primary prime. Thus, we can assume

without loss of generality that a is a primary rational prime. By a similar

argument, we can also assume that a � b is a primary rational prime. Notice

also that b � 0, since π is a complex prime, so a and a�b and a and a�bω are

relatively prime. Likewise, b and a� b are also relatively prime since a � 0.
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We need to perform a few computations that will be helpful in this

proof. First, note that

Npaq � 1

3
� p3m� 1q2 � 1

3
(a � 3m� 1)

� 9m2 � 6m� 1� 1

3

� 3m2 � 2m

� m mod 3.

To make notation easier when we proceed with the proof, we label this result.

Npaq � 1

3
� m mod 3. (10.4)

Second,

a� bω � bω mod a. (10.5)

Next,

a� bω � 0 mod π

ùñ a� aω � aω � bω � 0 mod π (�aω � aω � 0)

ùñ a� aω � �pa� bqω mod π.

a� aω � �pa� bqω mod π (10.6)
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Since Npπq � p,

p � a2 � ab� b2 (Definition of Npπq)

ðñ p3m� 1q2 � p3m� 1qp3nq � p3nq2 � p (a � 3m� 1, b � 3n)

ðñ 9m2 � 6m� 1� 9mn� 3n� 9n2 � p (Distributive Property)

ðñ p� 1

3
� 3m2 � 2m� 3mn� n� 3n2

ðñ p� 1

3
� �2m� n mod 3.

p� 1

3
� �2m� n mod 3 (10.7)

Recall that since p�1q3 � 1, for any γ P Zrωs,
��1

γ



3

� 1. (10.8)

Finally, we compute a� bω modulo a� b.

a� bω � bw � b mod pa� bq

� �bp1� ωq mod pa� bq.

a� bω � �bp1� ωq mod pa� bq (10.9)

For each of notation in the justification of the computations to come,

we abbreviate cubic residue characters as CRC. So for example, if we are

referring to Property 3 of cubic residue characters, then we will use “Property

3 of CRC” as the reason for the computation. We also temporarily abbreviate

the Law of Cubic Reciprocity as “LCR”.

Now we are in a position to examine

�
1� ω

π



3

.
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�
1� ω

a� bω



3

�
�
b

a



3

�
1� ω

a� bω



3

(pb{aq3 � 1 by Lemma 10.3.12)

�
�
bω3

a



3

�
1� ω

a� bω



3

(ω3 � 1)

�
�
ω2

a



3

�
bω

a



3

�
1� ω

a� bω



3

(Property 3 of CRC)

�
�ω
a

	2

3

�
a� bω

a



3

�
1� ω

a� bω



3

(Theorem 10.3.6; 10.5)

� ω2pNpaq�1q{3

�
a

a� bω



3

�
1� ω

a� bω



3

(Property 1 of CRC; LCR)

� ω2m

�
a� aω

a� bω



3

(10.4; Property 3 of CRC)

� ω2m

��pa� bqω
a� bω



3

(10.6)

� ω2m

� �1

a� bω



3

�
ω

a� bω



3

�
a� b

a� bω



3

(Property 3 of CRC)

� ω2m � p1q � ωpNpπq�1q{3

�
a� b

a� bω



3

(10.8; Property 1 of CRC)

� ω2m � ω�2m�n

�
a� bω

a� b



3

(10.7; LCR)

� ωn
��bp1� ωq

a� b



3

(10.9)

� ωn
� �1

a� b



3

�
b

a� b



3

�
1� ω

a� b



3

(Property 3 of CRC)

� ωn � p1q � p1q
�

1� ω

a� b



3

. (10.8; Lemma 10.3.12)
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Now, we need to work on

�
1� ω

a� b



3

. First note that

2 � Npa� bq � 1

3
� 2

�p3m� 1� 3nq2 � 1
�

3

� 2p9m2 � 6m� 18mn� 1� 6n� 9n2 � 1q
3

� 2
�
3m2 � 2m� 6mn� 2n� 3n2

�
� 6m2 � 4m� 12mn� 4n� 6n2

� 2pm� nq mod 3.

Also, any cubic character has order 3, so

�
1� ω

a� b



3

� 1 �
�

1� ω

a� b



3

�
�

1� ω

a� b


3

3

�
1� ω

a� b



3

�
�

1� ω

a� b


4

3

�
�p1� ωq2

a� b


2

3

(Theorem 10.3.6)

�
��3ω

a� b


2

3

�
� �1

a� b


2

3

�
3

a� b


2

3

�
ω

a� b


2

3

(Property 3 of CRC)

� p1q2 � p1q2 � �ωpNpa�bq�1q{3
�2

(10.8; Lemma 10.3.12; Property 1 of CRC)

� ω2pm�nq.
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Now returning to our calculations, we have

�
1� ω

a� bω



3

� ωn
�

1� ω

a� b



3

� ωn � ω2pm�nq

� ω2m�3n

� ω2m,

since 2m� 3n � 2m mod 3.

We want to look at an example of cubic reciprocity at work, but before

we begin the example, we need to revisit some concepts that we haven’t seen

for a while. Recall that in Example 5.4.4, we showed that there is a division

algorithm for the elements of Zωs. This means that given α, β P Zrωs, we can

express α as α � βγ � ρ, where γ and ρ are unique and Npρq is either 0 or is

less than Npβq. But the more subtle consequence is that if α � βγ � ρ, then

α � ρ mod β, and we need to be able to do modular arithmetic in this setting

to utilize all of the properties of cubic residue characters.

We offer a quick recap of the division algorithm for Zrωs before we

begin our example. Suppose α � a � bω, β � c � dω � 0 P Zrωs. Our goal

is to find the particular γ and ρ such that α � βγ � ρ. The first step is to

represent
α

β
� ac� ac� bd

c2 � cd� d2
� bc� ad

c2 � cd� d2
ω. In other words, we said that this

is
α

β
� r � sω. The second step is to approximate r and s and then choose

integers t and u so that they are as close as possible to the approximate values
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of r and s respectively. Then γ � t� uω and ρ � α� βγ. We solve for ρ and

check to be sure that the norm of ρ is either 0 or is smaller than the norm of

β. If it is, then we have α � βγ � ρ.

Example 10.3.20 Consider x3 � p�9�4qω mod p2�9ωq. We want to explore

the solvability of this congruence. If a solution exists, then the cubic residue

character

��9� 4ω

2� 9ω



3

will be equal to 1. Before we start our computations,

note that Np�9 � 4ωq � 133, so �9 � 4ω is not prime in Zrωs. On the other

hand, Np2 � 9ωq � 103, and 2 � 9ω � 2 mod 3, so 2 � 9ω is prime, and is in

fact primary.

Step one is to use the division algorithm with so that we can start

applying properties of the cubic residue character.

�9� 4ω

2� 9ω
� �18� 81� 36

103
� 8� 81

103
ω (Division algorithm in Zrωs)

� �135

103
� 73

103
ω

Thus we have r � �135

103
� �1.31 and s � �73

103
� �0.709. Let t � �1 and

u � �1. Then γ � �1� ω and

ρ � p�9� 4ωq � p2� 9ωqp�1� ωq (ρ � α � βγ)

� �9� 4ω � 2� 2ω � 9ω � 9p1� ωq (Distributive Property)

� 2� 6ω.

Npρq � 28 and Npβq � 103, so �9� 4ω � 2� 6ω mod p2� 9ωq.
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Now we can begin to evaluate the cubic residue character.

��9� 4ω

2� 9ω



3

�
�

2� 6ω

2� 9ω



3

(Property 4 of cubic residue characters)

�
�

2

2� 9ω



3

�
1� 3ω

2� 9ω



3

(Property 3 of cubic residue characters)

�
�

2� 9ω

2



3

�
1� 3ω

2� 9ω



3

(Theorem 10.1.6; Law of Cubic Reciprocity)

At this point, note that 2� 9ω is a primary prime and 2 is a rational primary

prime, but while 1�3ω is prime, it is not primary. Before we try to do anything

with 1 � 3ω, we need to reduce 2 � 9ω modulo 2. The division algorithm for

Zrωs yields

2� 9ω

2� 0ω
� 4

4
� 9

2
ω,

so r � 1 and s � �4.5. We choose t � 1 and u � �5, so γ � 1� 5ω. Then

ρ � p2� 9ωq � p2qp1� 5ωq (ρ � α � βγ)

� ω.

Npρq � 1 and Npβq � 103, so 2 � 9ω � ω mod 2. Incidentally, note that in

this case we have s � �4.5, and we chose u � �5, but if one chooses u � �4

instead, then we would get ρ � �ω, so it would work equally well, as they

differ only by a unit.

Before we return to manipulating the cubic residue character, we exam-

ine 1�3ω. It is a prime and is congruent to 1 modulo 3, so by Theorem 10.3.9,
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we know that exactly one of its six associates is primary. It can easily be seen

that �1 � 3ω is primary, so we know that if we multiply 1 � 3ω by -1, we

will have a primary prime to work with. However, we must do this in such a

way that we do not change the value of the equation we are working on. We

know that we can multiply the equation by 1 and not change it, so observe

that since p�1q3 � �1, �1 is always a cubic residue. Thus the particular value

of 1 that we choose to multiply by is going to be the cubic residue character� �1

2� 9ω



3

� 1. So returning to our computations, we have

��9� 4ω

2� 9ω



3

�
�ω

2

	
3

�
1� 3ω

2� 9ω



3

(Property 4 of cubic residue characters)

� ωpNp2q�1q{3

� �1

2� 9ω



3

�
1� 3ω

2� 9ω



3

(Property 1 of cubic residue characters; Multiplication by 1)

� ω

��1� 3ω

2� 9ω



3

(Property 3 of cubic residue characters)

� ω

�
2� 9ω

�1� 3ω



3

(Law of Cubic Reciprocity)

Now we want to reduce 2 � 9ω modulo p�1 � 3ωq, so we look to the division

algorithm for assistance again.

2� 9ω

�1� 3ω
� 31

7
� 15

7
ω,

so r � 31

7
� 4.43 and s � 15

7
� 2.14. Let t � 4 and s � 2, then γ � 4 � 2ω
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and

ρ � p2� 9ωq � p�1� 3ωqp4� 2ωq (ρ � α � βγ)

� �ω.

Np�ωq � 1 and Npβq � 7, so 2 � 9ω � �ω mod p�1 � 3ωq. Thus our

computation is now

��9� 4ω

2� 9ω



3

� ω

� �ω
�1� 3ω



3

(Property 4 of cubic residue characters)

� ω � ωpNp�1�3ωq�1q{3 (Property 1 of cubic residue characters)

� ω � ω2

� 1.

Recall that Property 2 of cubic residue characters states that pα{πq3 � 1

if and only if x3 � α mod π is solvable, so it follows that the congruence

x3 � �9� 4ω mod p2� 9ωq has a solution.

10.4 The Cubic Character of 2

We want to explore the cubic character of 2, since it is a special prime.

Theorem 10.4.1 Let π be primary. Then x3 � 2 mod π is solvable if and

only if π � 1 mod 2, or in other words, if π � a� bω, where a � 1 mod 2 and

b � 0 mod 2.
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Proof: If π � q is a primary rational prime, then by Lemma 10.3.12,

every integer is a cubic residue modulo q. Thus it is sufficient to prove that

the result holds for a primary prime π.

Suppose that π � a � bω is a primary prime. By the Law of Cubic

Reciprocity, p2{πq3 � pπ{2q3. Now,

πpNp2q�1q{3 � πp4�1q{3 (Np2q � 22 � 4)

� π

� pπ{2q3 mod 2. (Theorem 10.3.5)

But pπ{2q3 � 1 if and only if x3 � π mod 2 is solvable, by Theorem 10.3.5.

However, x3 � π mod 2 is solvable if and only if π � 1 mod 2. Thus pπ{2q3 � 1

if and only if π � 1 mod 2, and since pπ{2q3 � p2{πq3, it follows that p2{πq3 � 1

if and only if π � 1 mod 2 as well. Therefore, x3 � 2 mod π is solvable if and

only if π � 1 mod 2.

Theorem 10.4.2 If p � 1 mod 3, then x3 � 2 mod p is solvable if and only

if there are integers C and D such that p � C2 � 27D2.

Proof: Let π � a � bω and Npπq � p � a2 � ab � b2. Suppose that

x3 � 2 mod p is solvable. Then x3 � 2 mod π is also solvable, so π � 1 mod 2,

by Theorem 10.4.1, which implies that a � 1 mod 2 and b � 0 mod 2. From

work in Chapter 9, we know that 4p � p2a � bq2 � 3b2. Set A � 2a � b and

B � b

3
. Then 4p � A2 � 27B2, and by Theorem 9.3.6, we know that A and
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B are unique integers up to sign. Now, since b � 0 mod 2, it must be the

case that b is even. But B is an integer, so b is also a multiple of 3. Let

b � p2mqp3nq. Then
6mn

3
� 2mn, for integers m and n, and it follows that

B is also even. But 4 � pA2 � 27B2q, so A is also even. Now let C � A

2
and

D � B

2
. Then p � C2 � 27D2, as desired.

Suppose now that p � C2 � 27D2, for integers C and D. Then

4p � 4C2 � 4 � 27D2

� p2Cq2 � 27p2Dq2.

By the uniqueness argument of Theorem 9.3.6, B � �2D, which implies that

B is even. But if B is even, then b is also even. So we have b � 0 mod 2, so

π � 1 mod 2, since π is not a multiple of 2. Thus x3 � 2 mod π is solvable.

We know that
Zrωs
πZrωs contains Npπq � p elements. By Theorem 10.2.1,

there is some integer a such that a3 � 2 mod π. This means that π � pa3� 2q.

But then π � pa3�2q as well, and ππ � p � pa3�2q2, so p � pa3�2q. It follows

that a3 � 2 mod p, as desired.

10.5 Where do we go from here?

We have spent a lot of time developing the concepts of quadratic and cubic

reciprocity. They have some similarities, in that each of them plays a key role in

determining whether or not solutions to quadratic and cubic congruences exist
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respectively. Both of them also have a special symbol, the Legendre symbol for

quadratics and the cubic residue character for cubics. The properties for the

symbols are similar, although they aren’t quite identical. One big difference

that we saw when we defined the cubic residue character, is that its outputs

are not as overtly helpful as the outputs for the Legendre symbol. When we

evaluate a Legendre symbol, we either come up with 1, which means that

our congruence has a solution, or we get �1, which means we do not have

a solution. In contrast, the outputs for the cubic residue character can be

1, ω, or ω2, and only the output of 1 really tells us anything useful. But

even that difference is not all that monumental, in the scheme of things. The

most obvious difference, at least to this author, is the amount of work that is

involved in working with the cubic reciprocity examples verses their quadratic

counterparts. Everything in the cubic setting seems to be magnified by some

large power, and nothing is as “simple” to compute there, as it is when working

in the ordinary integers. For example, the division algorithm in Z is pretty

straightforward, and we have all been using it for many years. But the division

algorithm in Zrωs is just flat out weird, and it can get rather time consuming,

especially when one has to use it repeatedly. It is also quite an exercise just to

think about notions of primeness in Zrωs, whereas it’s almost trivial to think

about primeness in the integers, because we have been exposed to that idea

for a very long time.
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One idea that we developed in the quadratic reciprocity chapter is the

Jacobi symbol. It allows us to deal with the congruence x2 � a mod n, where

n is not prime. This symbol came along with its own set of properties, and it

greatly expanded the set of congruences we could examine. We also had some

discussion about how using the Jacobi symbol to evaluate the solvability of

x2 � a mod n is akin to breaking the congruence into a system of congruences.

In order for the initial congruence to have a solution, each of the congruences

in the system must necessarily be solvable. This discussion came up because

of the ambiguity of the output of the Jacobi symbol. An output of 1 doesn’t

really tell us anything at all, as we saw when we evaluated r2{63s. The symbol

gave us a result of 1, but we showed that x2 � 2 mod 63 is in fact not solvable.

So while the Jacobi symbol was helpful and gave us more tools to work with,

we had to use caution not to get carried away with assumptions about what its

outputs meant in terms of solvability. There is a similar notion for the cubic

congruences, although we just barely touched on it. In the books we used as

references, this idea was not very developed, so we did not spend a lot of time

on it, but Definition 10.3.17 presents the basic idea.

Another difference between quadratic and cubic reciprocity comes with

the theorems themselves. In the Law of Quadratic Reciprocity, it is required

that we have distinct odd primes, p and q. In the Law of Cubic Reciprocity,

however, it is only necessary that π1 and π2 be relatively prime to do the actual
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“flipping” within the symbol.

Some of the ideas are pretty similar and some are very different, but

both reciprocities are interesting, at least to this author. There are higher

order reciprocity laws as well. Biquadratic, or quartic, reciprocity takes place

in the ring of Gaussian integers, Zris. It is noted in [8] that “the basic idea

is the same as in the cubic case, although the details are more extensive”.

So perhaps there is a similar magnification in the amount of work required

between cubic and quartic reciprocities as there is between quadratic and cubic

reciprocities. Interestingly enough, the cases for rational primes and complex

primes in biquadratic reciprocity are split completely apart, and in fact are

handled in separate sections of [8]. The rational primes come along with

their own definitions and theorems and it looks like the Law of Biquadratic

Reciprocity is actually different depending on which primes one is working

with. Many generalizations have arisen from quadratic reciprocity, including

Eisenstein reciprocity, Artin reciprocity, and Kummer reciprocity [20]. These

three reciprocities seem to involve computations on various ideals, rather than

numbers. There are many others, and in fact, they are too numerous to

mention individually. So it seems that the answer to the question “where

do we go from here?” is not particularly easy to answer, as there are many

directions one can go for further studies in reciprocity.
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