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Abstract 

The goal of this study was to investigate the influences of different light systems, 

on growth parameters (fresh and dry weight, height and width, number of leaves and 

leaf area) and accumulation of chlorophylls and carotenoids of the lettuce. The 

marketable sensory characteristics (shape, and color) of fresh plants were also 

evaluated.  

(Lactuca sativa crispa. “Lollo bionda”) lettuce were cultured in three levels of 

vertical hydroponically for 45 days under different light sources of natural light in the 

upper level, 60% shade light in the middle level and red (R), green (G) blue (B), 

provided by light-emitting diodes (LEDs) was 12/12 (day/night) in the lower level. 

Three levels of vertical hydroponics were also prepared in the same levels of three 

treatments, while were exposed to natural light as a control group.  

For treatments, lettuces exposed to natural light, with high light intensity, 

showed the highest values in all growth parameters as well as pigments, while lettuce 

under the 60% shade, the result showed all pigments and growth parameters were low, 

except the length was similar to the length of the natural light treatment. As for the 

lettuce exposed to the (RGB) LED which recorded lowest light intensity, was a 

significantly lowest value at all growth parameters, while pigments not detectable. 

As for the control group, all of which were exposed to natural light, where the 

light quality was equal, while the light intensity was decreased gradually from top to 

bottom. The values of the parameters were high at all levels. With noted that, the leaf 

area was the highest in the middle level, while the fresh and dry weight were highest 

at the upper level. As for the pigment values, where all were high and no significant 

difference. 

Lettuce Plants under natural light looked large, vigorous, most compact 

morphology with dark green leaves, while those under 60% Shade and (RGB) LED 

treatments looked small, weak, sparse and fragile. 

The overall results indicate that, all levels of treatments and control group 

obtained the same qualities of light in terms of spectra radiation, which the required 

for plant growth, but the different quantities of light spectra radiation were the main 
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parameter in the greenhouse in the experiment, which led to significantly different 

results. 

These new strategy to exploit the quality and quantity of solar natural light in the 

vertical hydroponics system should be conveyed for vegetable production in UAE.  

Keywords: Lollo bionda lettuce, natural light, 60% shade, (RGB) Light-emitting 

diode (LED), photosynthetically active radiation (PAR), vertical hydroponic system. 
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Title and Abstract (in Arabic) 

 مختلفة إضاءة مصادر مع مائي نظام في( .Lactuca sativa L) الخس وتطور نمو

 صالملخ

الهدف من هذه الدراسة هو التحقيق في تأثيرات أنظمة الضوء المختلفة، على معايير النمو )الوزن 

الطازج والجاف، الطول والعرض، عدد الأوراق ومنطقة الورقة( وتراكم الكلوروفيل 

واللون(  ،والكاروتينات في نبات الخس. كما تم تقييم الخصائص الحسية القابلة للتسويق )الشكل

 للنباتات الطازجة.

 54تمت زراعة الخس نوع لاكتوكا ساتيفا كريسبا )لولو بيوندا( في الزراعة المائية الرأسية لمدة  

ى الطبيعي،بينما المستوكان المستوى العلوي معرض للضوء  ،مصادر ضوء مختلفةيومًا تحت 

في حين المستوى السفلي كان مغلق بأحكام من جميع  ،%06المتوسط مغطى بشبك الضل بمعدل 

الجوانب و كان معرض للضوء الأحمر و الأخضر و الأزرق التي توفرها لوح من الثنائيات 

عة المائية )نهار / ليل(. كما تم إعداد ثلاثة مستويات من الزرا 21/21الباعثة للضوء )ليد( 

لضوء تم تعريضها لو قد و كانت في نفس مستويات المعالجات الثلاث،  ،كمجموعة تحكم يةالعمود

 الطبيعي. 

يث كثافة ح ،بالنسبة للمعالجات، أظهرنبات الخس المعرض للضوء الطبيعي في المستوى العلوي

 ن الخس تحت ظلالضوءعالية، أعلى القيم في جميع معلمات النمو وكذلك الأصباغ، في حين أ

 في المستوى المتوسط، أظهرت النتائج أن جميع معايير النمو كانت منخفضة كثيرآ باستثناء 06%

. نخفضةمقيم الصبغات كانت  الطول كان قريباً من قيمة الطول للمعالجة بالضوء الطبيعي، كذلك

المستوى السفلي والذي سجل أدنى كثافة  أما بالنسبة إلى الخس المعرض لـلوح الضوء الصناعي

للضوء، فقد كانت قيم جميع معلمات النمو الآقل على الإطلاق. في حين لا توجد قيم لأصباغ 

 الكلوروفيل و الكاروتينات.

ما مجموعة التحكم، فكانت جميعها معرضة للضوء الطبيعي، حيث كان نوع الطيف الضوئي أ

ريجيآ من الأعلى إلى الأسفل. و كانت النتيجة أن قيم متساوي، ولكن كثافة الضوء تنخفض تد

مساحة الورقة كانت أعلى بقليل في أن معلمات النمو عالية في جميع المستويات، مع ملاحضة 

المستوى المتوسط، في حين أن قيم الوزن الطازج والجاف كانت مرتفعة في المستوى العلوي. 
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يات يتونيد فكانت عالية وتقريبآ متساوية في مستوأما بالنسبة لقيم صبغات الكلوروفيل و الكار

 التحكم.

كما أن نبات الخس تحت الضوء الطبيعي بدت مورفولوجيا كبيرة وزاهية مع الأوراق الخضراء 

بدت صغيرة وضعيفة  و لوح الضوء الصناعي، %06تلك التي تحت شبك الظل  الداكنة، في حين

 .وأوراقها متفرقة وهشة

تشير النتائج الإجمالية إلى أن جميع مستويات المعالجات ومجموعة التحكم حصلت على نفس نوع 

الأطوال الموجية من حيث الإشعاع الطيفي، وهو المطلوب لنمو النبات. في حين كانت الكميات 

 من إشعاع الضوء الطيفي مختلفة و كانت هيا المعلمة الرئيسية داخل الصوبة في التجربة التي

 ت إلى نتائج مختلفة من حيث النمو وكمية الأصباغ في نبات الخس.أد

ظام الضوء الطبيعي الشمسي في ن ثافةنقل هذه الاستراتيجية الجديدة لاستغلال نوعية وكيجب  

 الزراعة المائية العمودي لإنتاج الخضار في الإمارات العربية المتحدة.

الصمام الثنائي الباعث  ،% 06شبك  ،ضوء طبيعي ،خس لولو بيوندا :مفاهيم البحث الرئيسية

 نظام الزراعة المائية العمودي. ،الأشعاع النشط الضوئي )بار( ،للضوء
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Chapter 1: Introduction 

1.1 Overview 

Light is an important factor in determining plant growth and development as 

light is necessary for photosynthesis. Light quality shows much more complex effects 

on plant morphology and physiology compared with light intensity and photoperiod 

(Chen et al., 2017). The intensity, quality and duration of light effect plant growth and 

development and spectral quality is an important factor enhancing the growth of the 

plant (Chung et al., 2010). 

 Because of the importance of light to the plant, many types of industrial light 

sources have been used to increase plant productivity and improve quality, such as 

fluorescent and others, while the best source of light was (light emitting diode) LED 

light, due to its many advantages. Compared to traditional light sources, LED lighting 

systems have many unique advantages, including the ability to control spectral 

composition, small mass and size, durability, long operating life, wavelength 

specificity, narrow band width, relatively cool and minimal heating, and photon output 

which is linear with current voltage. 

 From this point of view, we used LED light source with specific wavelengths to 

compare with natural light of the sun and natural light with 60% Shade and the effect 

of the three light sources mentioned above on the growth and development of lettuce 

(Lactuca sativa. L). Lettuce is a major crop grown in greenhouses around the world. 

Lettuce is used almost every year as there are a number of varieties that are 

successfully grown in early spring, during summer and winter. There are many kinds 

of lettuce such as butter, iceberg, loose leaves, romaine and others. In the experiment 

we used the type loose leaf lettuce (Lactuca sativa crispa. “Lollo bionda”). It is the 
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easiest kind of lettuces to grow, and as the name indicates, green color with tight curly 

leaves. It can be harvested leaf by leaf or by the whole plant, it takes 45-50 days to be 

mature, Height: 15 cm (6"). Spread: 25 cm (10"). 

 Lettuce (Lactuca sativa) is found to be the most cultured vegetable in 

hydroponic system. This is due to its easy adaptation to this system, which has been 

showing high productivity in cycle compared with the soil cultivation (Cometti et al., 

2013), therefore seedlings of loose leaf were planted in hydroponic system under 

different light spectra from the following three lights: natural light, 60% Shade, LED 

(RGB). This research is an attempt to undertake lettuce production in a vertical 

hydroponic system under three different light resources with same photoperiod in a 

greenhouse. 

1.2 Background of the study 

Lettuce (Lactuca sativa) is one of the most frequently demanded commodities 

depending on the increasing popularity of salad recipes containing lettuces (Allende et 

al., 2007). The lettuce, also known as Lactuca sativa L, belongs to the Compositae 

family. It contains high percentage of water (90-95%), as well as folates, provitamin 

A or β-carotene and appreciable amounts of vitamin C, these last two with antioxidant 

action, related to the prevention of cardiovascular diseases and even cancer (Anderson 

et al., 2017). Several environmental factors are responsible for growth and 

development of lettuce (Dufault et al., 2009; Gruda, 2005). 

 Light, in addition to being an indispensable source of energy for the plants, is 

also an important factor for its growth and development. Plants have three systems of 

primary perception of light signals, like photosynthetic pigments, special 

photoreceptors and light-dependent biochemical processes of photosynthetic pigment 
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biosynthesis and DNA reparation (Berkovich et al., 2017). Light quality determine the 

accumulation of leaf photosynthetic pigments (Carvalho et al., 2011; Lillo and 

Appenroth, 2001; Giliberto et al., 2005). 

Due to this lighting systems of production in a controlled environment are very 

important as well as the technological advances that may arise in this area. Recently 

the LED light has become an alternative for the cultivation of plants for the benefits 

that this system of lighting provides such as the firm control of the spectral 

composition, production of high levels of light with a low heat radiation index, its 

small size and a long productive life that allows them to keep working for years without 

needing replacement (Anderson et al., 2017). The selected LED lights differentially 

affected the metabolic system of the investigated vegetables. The most sensitive 

response was in sugars, the main photosynthesis product, and their accumulation in 

leaves (Lefsrud et al., 2008). Li and Kubota (2009), investigated different LED light 

quality effect on phytochemicals of leaf lettuce. Light quality determines the efficiency 

and productiveness of photosynthesis (Swatz et al., 2001; Massa et al., 2008; Johkan 

et al., 2010; Abidi et al., 2013; Li et al., 2013). 

Plants grown in the Shade tend to have a larger leaf area due to high rate of 

expansion of leaf cells and ultimately there is chance of pigment elevation than in 

control plants (Fu et al., 2012). 

1.3 Purpose of the study 

In the growth of Lettuce, the light is not only the source of energy but also a 

significant environmental input for the development and growth and their 

physiological and morphological adaptations which can be mediated with the help of 
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morphogenetic reactions and through light-reliant adjustments in the process of 

photosynthesis.  

The quality of light demonstrates much more complex level of impacts on 

physiology and morphology of plant compared with the intensity of light. The main 

purpose of the study is to compare lettuce growth parameters under LED light with 

Shade and natural light as light treatments to satisfy requirements of growth at diverse 

phases. The reactions of growth and development example plant biomass, leaf area, 

shoot growth, leaf number, chlorophyll content, carotenoid, that will be evaluated to 

determine the effect of different light resources on "loose leaf" lettuce in a vertical 

hydroponic system inside greenhouse. 

1.4 Research aim and objectives 

The aim of the research is to explore and investigate the growth and development 

of loose leaf lettuce under different lighting systems in vertical hydroponics system. 

1.5 The research will test the following hypothesis 

There is no significant difference of growing lettuce (Lactuca sativa crispa. 

“Lollo bionda”) in different light set up. 

1.6 Research significance  

Investigating the growth of lettuce under different lighting set ups carries a lot 

of significance. The main goal of the research is to know the impact of diverse lighting 

types on the quality and productivity of lettuce leaf that can contribute to make further 

research work and investigations and opens new dimensions to research projects to 

maintain the plant quality and enhance its growth and productivity through the lighting 



5 

 

type and the level of control. On the other hand, growth of shaded plants would help 

to design vertical hydroponic system with maximum tiers. 

In order to conduct the research, particular parameters were monitored. These 

parameters included length, width, number of leaves, leaf area, fresh weight, dry 

weight, pigment values, and different micro climatic parameters included light 

intensity, temperature, relative humidity, and Light quality also were measurement, 

that included PAR and light spectrum parameters. 
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Chapter 2: Review of Literature 

Cometti et al. (2013) stated that light plays a very important role in the life of 

plants. Their photosynthetic activity is very conditioned by the quality and quantity of 

solar radiation they receive. The global radiation spectrum is very broad, however, 

only a small portion, called Photosynthetically Active Radiation (PAR), is used by 

plants to perform photosynthesis. (Choosria et al., 2017) reported that, 

photosynthetically active radiation (PAR) forms one part of the solar spectrum with a 

wavelength range of 400–700 nm (Fig. 1).  

 

Figure 1: Photo synthetically active radiation 

Different pigments are responsible for the capturing or absorption of different 

light spectrum, like chlorophyll A and B for absorption bands in the red (650–700 nm) 

and blue (420–460 nm) (Dey and Harborne, 1997). According to Theiler et al. (2016), 

in the visible light spectrum, the wavelength of green perceived by plant 

photoreceptors and pigments is 500–600 nm. A small fraction of near-infrared 

radiation, i.e., far-red light perceived by phytochromes with a sensitivity peak at 730 
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nm, is also essential to plant development. A summary of the effect of light wavelength 

on the plant growth is given in Table 1 (Deram et al., 2014). 

Table 1: The effect of light wavelength on plant growth 

Optical 

wavelength (nm) 
The influence on the growth of plants 

280–315 Minimal impact on morphological and physiological process 

315–400 
Chlorophyll absorbs less, photoperiod effect, tissue and stem 

elongation 

400–520 
Chlorophyll and carotenoid absorption proportion is the 

largest, the biggest influence on photosynthesis 

520–610 The pigment absorption rate is not high 

610–720 
Chlorophyll absorption rate is high, have significant effects on 

photosynthesis and light cycle effect 

720–1000 
Absorption rate is low, stimulate cell extended, affecting 

flowering and seed germination 

>1000 Convert into heat 

(Source: Xu et al., 2016) 

Many studies are available in the literature to estimate PAR from the more 

routinely measured parameters of solar radiation (e.g. Alados et al., 1996, Jacovides et 

al., 2004, Escobedo et al., 2009). 

  Specifically, there are three systems of light signals and primary perception. 

These are special photoreceptors involved in plant photo regulatory systems and 

affecting most processes in plants, and light-reliant biochemical procedures of 

photosynthetic pigment biosynthesis and photosynthetic pigments and DNA 

reparation that are connected to the transformation of photochemical energy in the 

(electron transport chain) ETC of the (photosynthetic apparatus) PSA (Berkovich et 

al., 2017). 
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 It is necessary to consider that there are three major global problems of which 

it is a priority to find solutions, the need to reduce the emission of greenhouse gases, 

linked to climate change and natural disasters, as well as the continuous increase in the 

demand for energy and food (Pinho et al., 2012). It is estimated that by 2050 it will be 

necessary to increase food production by 50% in order to avoid a food disaster in the 

future (Murchie et al., 2008). Therefore, it is necessary to use technological advances 

to face these problems, such as feeding future generations. Due to this, the production 

of vegetables in controlled environments is a possibility to consider (Pinho et al., 2012) 

and this has started to grow rapidly all over the world (Liu, 2012). 

The use of artificial lighting systems for production in a controlled environment 

is an opportunity to increase crop yields. High intensity LED light could be a viable 

alternative to be used for these purposes. However, it is necessary to achieve a better 

understanding of the processes and mechanisms under which plants respond to light 

(Pinho et al., 2012). This suggests that it is inescapable to continue carrying out 

research related to the effects of treatment with type of light, for the production of 

vegetables in controlled environments. According to lot of researchers such as 

Okamoto et al. (1996); Drozdova et al. (2001); Chung et al. (2010), different types of 

lights are used extensively to investigate the effects of spectral quality on the growth 

of plant and it has been proved that more fine growth of plants can be achieved by 

making adjustments of the spectral quality. According to Carvalho et al. (2011), the 

quality of light affects the accumulation and formation of pigments of leaf 

photosynthetic which may either enhance light harvest under conditions of low-light, 

or act as free-radical scavengers and screening pigments under high-light conditions. 

Besides, the quality of light imparts a significant impact on the expression of gene of 
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plants through originating the signaling cascade of photoreceptors like cryptochromes, 

phototropins and phytochromes (Giliberto et al., 2005; Lillo and Appenroth, 2001). 

In Japan, in 2013, LED-based lighting sources illuminated 27% of crop area in 

vertical farms, which is inferior only to fluorescent lamps (60%); while in 2003, only 

lamp-based lighting was used in vertical farms (Kozai et al., 2016). Artificial lighting 

applied to greenhouses has historically been linked exclusively to installations located 

in areas with few hours of sunshine per year, or to the modification of the photoperiod 

to induce the flowering of ornamental crops at times of the year that have the highest 

commercial value. This paradigm may be changing due to the advancement of lighting 

technology and the decrease in the installation and energy consumption costs of 

modern lighting systems, which could facilitate its incorporation, not only for the 

production of flowers, but also for the production of fruit and vegetable, especially in 

certain farms such as nurseries; in which clearly the supplementary lighting is 

necessary in the production of grafted plant. In horticultural production it can 

sometimes be advantageous to provide artificial lighting, or simply regulate natural 

lighting, for different reasons: to increase net assimilation by forcing a higher rate of 

photosynthesis, to increase the length of the day in places where required, or in long 

day plants that would not flower in another way during autumn-winter. 

According to Dufault et al. (2009), day by day technology overcomes the limits 

and shows how far it is able to reach to surprise the senses of men; and agriculture, 

being one of the primary activities for man to survive, cannot be left behind. In this 

sense, in recent years LED lamps have meant one of the most important advances in 

artificial lighting for horticulture. There are several methods to offer plants 

supplementary light, however, LED lighting systems are considered today the most 
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effective, there are currently specific developments for use in agriculture. These are 

powerful and efficient in the emission spectra that cover the entire range of PAR 

radiation, making it possible, in addition, its regulation in various lighting regimes 

depending on the type of crop and its phenological development. As early as 1966, 

Hardh suggested that the artificial lighting used for plants should be adapted to the 

spectra of photosynthetic function sensitivity, and in 1972, McCree offered a proposal 

for a generalized spectrum of action for photosynthesis. With light sources based on 

LED technology, it is possible to adapt the spectral composition of light in a way that 

is not possible with conventional lighting systems. Therefore, it has been suggested 

that the use of LED-based light sources, which are consistent with the spectral response 

curve to light from photosynthesis, could improve growth and reduce the energy 

needed for assimilation illumination. 

Hahn et al. (2000) further posit that this new technology offers the possibility of 

establishing ranges of suitable spectra, which at present are not only used as a primary 

source of energy for the growth of plants, but also provide physiological regulation 

information in the various growth processes of plants. In recent years, intensive 

research is being carried out to clarify the impact of the quality of light on the 

physiological benefits it causes to plants. In this sense, LEDs are increasingly used as 

lighting systems in greenhouses, as they allow to study the response of the plants based 

on the wavelength of the radiation incident on them, in a simple way. The quality of 

the light under conditions of controlled cultivation can modify the growth, fresh weight 

and the quality of many horticultural crops and, therefore, can considerably affect its 

market value. That is why, the study of the effects of LED lighting on plant growth 

and fruit production, is currently a very important line of research in intensive 

horticulture. All this without forgetting the traditional use of artificial lighting of the 
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production of ornamental crops, all technology requires an initial investment and LEDs 

are no exception. 

Research results showed that, particular LED lights differentially impacted the 

metabolic system of the examined vegetables. The subtlest response was in sugars, the 

major photosynthesis product, and their increase in leaves (Lefsrud et al., 2008). 

According to Nhut et al. (2003), LED has turned out to be an encouraging source of 

light used in physiology of plant research in surrounded facilities, and several 

researches on photobiological research comprising formation of chlorophyll, 

morphogenesis and photosynthesis which have been carried out by applying LED to 

numerous plants in which fluorescent lamps are always used as the controller. While 

examining diverse quality of LED light, Li and Kubota (2009) demonstrated 

imperative enhance of phenolics compounds under fluorescent lighting supplemented 

with red LEDs and did not notice supplemental green or blue LEDs influence on the 

accumulation of phenolics. According to Abidi et al. (2013), in terms of the quality of 

the light, the impacts of red and blue light on the growth and development of plant 

appeal most of the considerations as these wavelengths are mainly absorbed by 

photosynthetic pigments and have the major effect on plant development and 

architecture. 

2.1 Light quality 

Light quality refers to the spectral distribution of the radiation. For 

photosynthesis, plants respond strongest to red and blue light (Singh et al., 2015). 

Plants can absorb any wavelength; they are very selective in absorbing the proper 

wavelength according to their requirements. According to Theiler et al. (2010), in the 

visible light spectrum (400–700 nm), the major wavelengths perceived by plant 
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photoreceptors and pigments are those corresponding to blue (400–500 nm) and red 

(600–700 nm) and, to a lesser extent, green (500–600 nm). As shown in Fig. 2. 

 

Figure 2: Absorption spectrum of chlorophyll and carotenoid pigments 

As a vital segment of the light range for normal development of plant, R affects 

plant morphogenesis by tempting changes in phytochrome, and is also vital for the 

growth and development of the photosynthetic apparatus along with controlling the 

synthesis of phytochemicals such as oxalate and phenolics (Qi et al., 2007; Choi et al., 

2015). In addition, according to Hogewoning et al. (2010), blue light is significant for 

chloroplast development, photosynthesis; chemical composition of plants and 

chlorophyll formation, but the reaction extremely relies on the quantity of blue light. 

The researchers further posited that combined red and blue LEDs resulted in enhanced 

shoot biomass and Pn compared to monochromatic red or blue (Brown et al., 1995; 

Ohashi-Kaneko et al., 2006; Hogewoning et al., 2010; Nanya et al., 2012; Li et al., 

2013). The effect of green light is similar to blue light in plant metabolism (Swatz et 

al., 2001; Baroli et al., 2008; Hogewoning et al., 2010; Sun et al., 1998). 
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2.2 Advantages of LED lighting 

According to Lazcano et al. (2009), LED lamps can last from 50 to 100 thousand 

hours without reducing their energy efficiency, having a much lower energy 

consumption compared to other lamps. Nowadays it is possible to modify the quality 

of the emitted light, which allows us to carry out a greater experimentation, until we 

find the optimal values of ideal intensity for our concrete crop. They become a fixed 

and controllable tool of artificial light in plants. The lowering of installation costs 

facilitates the profitability of the system. With technological advances and research, it 

is possible by LED technology to "mold" the ornamental plants according to the 

preferences of the consumers. 

The use of LED technology has emerged as an attractive option for the growth 

of plants in a controlled environment. A lower energy consumption (cost savings of 

40%), longer device life compared to other lighting systems, higher switching speed, 

better color control and higher light intensity are some of the benefits of this 

technology. In addition to the fact that, they do not require ballasts (increasing savings) 

because the LEDs allow the producers to place the luminaires very close to the plants 

by not producing heat (Abidi et al., 2013). 

According to Massa et al. (2008); Vänninen et al. (2010), LEDs can provide 

several benefits to the greenhouse industry, for example, they can reduce the energy 

consumption up to 70%, and many other benefits. 

2.3 The role of different lighting systems in Lettuce growth 

Lettuce is used almost throughout the year since there are a number of varieties 

which are successfully cultivated during different growing seasons (Zdravković et al., 

2014). Due to increasing demand, lettuce has become a leading crop cultivated in 
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greenhouses throughout the world and considered to be a model crop because of its 

rapid growth and sensitivity to diverse range of light qualities (Dougher and Bugbee, 

2001). Kader and Rolle, (2004) states the key parameters of quality main lettuce are: 

based on freshness, overall appearances, color, leaf freshness, nutritional value and 

size and shape of head. The appearance of biological disorders can be visually 

observed on the surfaces of leaf (Chutichudet and Chutichudet, 2011). 

Dufault et al. (2006) presented in the research that as planting dates developed 

toward longer days and warmer temperatures, quality and lettuce yield were affected 

adversely. Bolting requires a definite photoperiod and is different for each plants 

(Wallace et al., 2012). According to Caldwell (2003), exposure to high radiation and 

temperature has been demonstrated to enhance the production of phenolic composites 

in pigmented lettuce and green lettuce (Marin et al., 2015). An adverse impact was 

confirmed as a result of a reduction of 40 to 50% of the transmission of light (Oh et 

al., 2011) at the same time a contact to high intensity of light enhanced antioxidant 

capacity and phenolic accumulation (Zhou et al., 2009; Oh et al., 2009). 

 According to Dufault et al. (2009), the growth of plants and vegetables in a 

controlled environment requires nutrients, water, CO2, temperature and light for 

optimal development. Several investigations have shown the influence of light, as a 

factor to control morphogenesis and growth in plants. Light characteristics, such as 

wavelength, direction, intensity and duration, provide the plants with signals that they 

monitor through highly sensitive photoreceptors and translate them into cellular 

signals, which affect the endogenous mechanisms of growth and differentiation 

control. As a consequence, light modulates a variety of processes in the life of the 
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plant, such as germination, etiolation of the seedling, avoidance of Shade and induction 

of flowering, characteristics collectively defined as photomorphogenesis.  

 Generally, fluorescent lamps have been used in growth chambers and 

greenhouses to promote the development of the plants. However, these light sources 

contain unnecessary and low quality wavelengths to promote growth. Johkan et al. 

(2010) also reported greater dry weight of lettuce seedlings cultured under RB LED 

than Fluorescent. 

The use of LED technology has emerged as an attractive option for the growth 

of plants in a controlled environment. According to several researchers, Lian et al. 

(2002); Nhut et al. (2003); Lee et al. (2007) Combined RB LED lights were proven to 

be an effective lighting source for producing many plant species, including lettuce, in 

controlled environments. 

In the wild, seeds germinate in the dark when being buried in the ground, reason 

why the seedlings quickly develop hypocotyls that lengthen without opening the 

cotyledons above the surface. Upon reaching the light, the elongation of the hypocotyl 

is inhibited and the cotyledons begin to expand and the development of the 

photosynthetic apparatus begins. These developmental changes are collectively called 

de-ethiolation. The general rule is that, light causes the developing seedling to cease 

rapid elongation and adopt a strategy of vegetative aerial growth appropriate for the 

light environment (Wang and Folta, 2013). Far Red and Red light diminish the 

elongation of the hypocotyl by acting mainly through the phytochromes phyB and 

phyA respectively (Parks et al., 2001). Blue light strongly inhibits stem elongation 

under high illumination rates (Folta and Spalding, 2001; Ahmad et al., 2002). This 
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effect is mainly mediated by cryptochromesb cry and is maintained while blue light is 

present (Wang and Folta, 2013). 

In the experiment the growth of the seedlings was evaluated with the variable 

medium length of the hypocotyl (LMH), where it was clear to observe that the 

treatments with green light (12 hours) and red light (12 hours) achieved the greatest 

increases with 39% and 21% compared to the control respectively. The effect of green 

light is explained by Wang and Folta (2013) where it indicates that this type of light 

inactivates the action of cryptochromes cry, so that the growth of hypocotyl is 

maintained. These results with green light are in accordance with the statements made 

by McCoshum and Kiss (2011) and Johkan et al. (2012), who indicated that, the 

growth of adult plants and seedlings are improved with the use of green light. On the 

contrary, all the treatments with blue light of this investigation caused the hypocotyl 

to grow much less, where the longer the exposure, the lower the growth, which agrees 

with that described in the previous paragraphs for blue light. Similar results were 

obtained by Shoji et al. (2010) and Kobayashi et al. (2013), as the increase in blue light 

decreased the hypocotyl length in lettuce seedlings. Regarding green light, recent 

research considers the use of it to improve growth in combination with other 

wavelengths (Kim et al., 2004b; Massa et al., 2008), as happened in this investigation. 

The use of intense green light is biostimulator of seeds in presowing, because they 

found a considerable increase of biomass in plants (Sommer and Franke, 2006; 

Dechaine et al., 2009; Goggin and Steadman, 2012). Bewley and Black (1994) and 

Daud et al. (2013) reported that Red light may initiate seed germination and root 

development and seed germination (Bewley and Black, 2012; Chen et al., 2013). 
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2.4 Shading effect 

Shade netting is used as a major agriculture technique and has been practiced for 

ornamentals, vegetables and fruit trees (Shahak et al., 2004a; Shahak et al., 2004b; Ilić 

et al., 2017a). The light through the holes in the Shade cloth will be same quality as 

the normal light (Jaimez and Rada, 2006; Appling, 2012). 

There are many beneficial effects in using the Shade nets (Wallace et al., 2012). 

Moreover, lower intensities of light enhance the elongation of stem, blade area of leaf 

and area index of leaf. Generally, texture of leaf and shape of head were among the 

things that were improved expressively by the color Shade nets and developed from 

the acceptability of consumer’s perspective (Ilić et al., 2017b). 

Higher yield and quality of lettuce has been achieved with the selection of correct 

cultivar (Maboko and Du Plooy, 2008) and correct technique (Ilić et al., 2017a) like 

Shade growing (Bergquist, 2006(. The quality of lettuce under different Shade-nets 

(Zdravković et al., 2014) and spring production (Mladenovic et al., 2013) were 

reported previously. 

The Shade effects on lettuce growth and quality with production in commercial 

scale have been reported earlier (Zhao and Carey, 2009; Jenni et al., 2013; Ntsoane et 

al., 2016; Ilić et al., 2017a; Ilić et al., 2017b). 

2.5 Vertical hydroponics 

Vertical hydroponics have been proposed as an engineering solution to increase 

productivity per unit area of land by extending crop production into the vertical 

dimension (Despommier, 2011). Vertical hydroponics is a method for plant culture 

that using the height of a greenhouse in addition to the ground space and this can 
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increase the number of plants and thus enhance yield. Other benefits of vertical culture 

include more economic use of water and nutrition, easy harvesting and a reduction in 

labor costs. The two chief merits of the hydroponics are, first, much higher crop yields, 

and second, the fact that hydroponics can be used in places where ordinary agriculture 

or gar dening is impossible. There is also a considerable reduction in growing area; 

weeds are practically non-existent, while automatic operation results in less labor, cost, 

and maintenance (DeMitchell & Tarzian, 2011). 

On the other hand, according to (Poorter et al., 2012), light intensity in growth 

chambers is known to decrease as distance from the light source increases. As spacing 

between vertical columns influenced crop productivity in vertical farming system 

glasshouse trials (Liu et al., 2004). from a commercial point of view, if lettuce was 

grown to be sold as individual heads, then the nonuniform productivity of the vertical 

farming system would be a potential weakness of the vertical farming system over the 

horizontal farming system (Touliatos et al., 2016). 

2.6 Leaf area index 

Leaf area index (LAI), defined as half the total green leaf area per unit ground 

surface area (Chen and Black, 1992; Weiss et al., 2004; Ryu et al., 2012). LAI is an 

important parameter for photosynthesis models (Chen et al., 1999; Silva et al., 2012; 

Savoy and Mackay, 2015). It will be varying based on the plants and light effects (Liu 

et al., 2015). LAI can be obtained by both direct and indirect methods (Breda et al., 

2003). 
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Chapter 3: Materials and Methods 

3.1 Experimental site 

The experiments were conducted in the Greenhouse of Al Foah, College of Food 

and Agriculture United Arab Emirates University. It lies in the co-ordinate latitude and 

longitude of 24.2191 °N and 55.7146 °E.  

3.2 Experimental set-up and growth conditions 

On 14-01-2018, in the agricultural greenhouse and in 26.5 °C, seeds of lettuce 

(Lactuca sativa crispa. “Lollo bionda”) shown in moisturized Rockwool cubes 

(2.0 cm × 2.0 cm × 2.0 cm), placed in plastic containers and sprayed with water every 

two days. They were also covered with white gauze to protect them from insects. 

 

Figure 3: Grown seedlings in Rockwool cubes before transplanted to Rockwool slabs 

 As shown in Fig. 3, after 39 days, 240 seedlings were selected in good health, 

and transplanted each 4 seedlings in a Rockwool slabs (100 cm × 20 cm × 2.5 cm), 

where the distance between each two seedlings was 16 cm, connected to the 

hydroponics system, as shown in Fig. 4. 
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Figure 4: Seedlings in Rockwool slab connected to the hydroponics system 

The hydroponic system was included of four tanks. The first tank contained fresh 

water and three other tanks that contained various chemicals and fertilizers necessary 

for lettuce growth. 

A “closed” hydroponic system was used which allows water and nutrient reuse. 

Where the water is pumped through a pump which is also attached at single point to 

the three tanks. The minerals are mixed in water which is then passed on to the growing 

area. The water passes through the plants and is absorbed. Any extra water is then 

pumped out. The irrigation water then passes through a special water filter which 

results in refining of the irrigation water which is ready to be used again. In order to 

maintain an enough supply of nutrients to the lettuce plant, a frequent testing of the 

nutrient solution composition is made.  

Electrical conductivity (EC) and pH was adjusted to 1.2 m S/cm and 5.5 

respectively. The chemicals used in this study are analytical grade and procured from 

Sigma-Aldrich, USA. The details of the composition of nutrients are given below in 

Table 2. 
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Table 2: Nutrient composition for hydroponic culture of (Lactuca sativa crispa 

“Lollo bionda”)  

    Elements   Salts  

Nutrient 

Concentration 

(mM) 

 

 

Macro 

N  NH4NO3 0.2 

K, N   KNO3 5.0 

Mg, S  MgSO4 2.0 

P,K  KH2PO4 0.1 

Si  Na2SiO3 0.0 

 

 

 

 

Micro 

   (µM) 

B  H3BO3 12.5 

Mn  MnCl2 2.0 

Zn  ZnSO4 3.0 

Cu  CuSO4 0.5 

Mo  Na2MoO3 0.1 

Ni  NiSO4 0.0 

Cl  KCl 0.0 

 

3.3 System layout 

The seedlings were planted in 4 rows; each row (8 m × 50 cm × 28 cm) 

comprising of 3 levels, the distance between each level and other was 50 cm and 

between each row and other was 80 cm. Each level accommodated 5 Rockwool slabs, 

each Rockwool slab included 4 seedlings replicates (4 plants per replicate, 5 replicates 

per treatment). Thus, in total (240) seedlings were planted. It must be noted that the 

hydroponic system was already in place at the greenhouse, prior to the plantation. The 

water was given to the plants four times, at an interval of six hours. The duration of 

watering the plants was ten minutes each time. 

Plants were exposed to light radiation using three photo treatments with different 

radiation methods described below and harvested in 80 days after transplanting. 

The first row (control), in which 3 levels were exposed to the natural light which 

from the polycarbonate cover of the greenhouse. While the other three rows have the 
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upper levels exposed to natural light, the middle levels covered from all sides with the 

Shade net (60%), and the low levels closed tightly sealed from all sides with 

horticulture reflection sheet, as shown in Fig. 5. 

   

Figure 5: Four rows and three levels in each row, all connected to the hydroponic 

system 

3.4 Light quality treatments 

Illumination treatments were performed using natural light, Shade (60%), and 

three-color LED panels (RGB). The LED light was a strip extending along the third 

level (8 meters) and a width of 1 cm. The three-color LED panels provide red, blue 

and green. The distance between LED panels and plant canopy was 40 cm. Also, the 

photoperiod at the lower levels exposed to LED were set to 12/12. Irradiation intensity, 

temperature and relative humidity were measured three times a week for each level at 

8 am, 12 pm and 4 pm. 

3.5 Studies of growth parameters 

Four plants randomly taken from each treatment were regarded as a repetition 

for biometric and biochemical measurements. Among which, plant height/width, 

number of leaves were measured once every 7 days while other indices were measured 

at harvest (80 days). The fresh weight (FW), leaf area as well as the contents of total 

chlorophyll, chlorophyll a, chlorophyll b, carotenoid, were all determined using fresh 
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lettuce samples. The dry weight (DW) was determined using the oven-dried lettuce 

samples (70 °C for 3 d).  

3.6 Determination of chlorophyll and carotenoid 

Concentrations of the chlorophyll and carotenoid were determined using the 

following equations (Lichtenthaler and Wellburn, 1983): 

Chl a (mg/g) = (12.7 × OD663 − 2.59 × OD645) V/W 

Chl b (mg/g) = (22.9 × OD645 − 4.67 × OD663) V/W 

 Total Chl (mg/g) = (20.2 × (OD645) + 8.02(OD663)) × Chl.a − 104 × Chl.b) V/W 

Car (mg/g) = ((OD440 − 3.27 × Chl.a – 104 × Chl.b) / 229) V/W 

Where;        

OD: optical density at certain wave length (645 nm, 663 nm or 440 nm) 

V is the total volume of acetone extract (50 mL) and W is the fresh weight (500 g) of the 

sample. 

3.7 Measuring equipment’s used in the experiment 

1 - Spectral radiation measurement 

The light quality measurement was performed using spectrometer (model 

MK350N PREMIUM). Placed it horizontal to the light source, twice a day, 8 am and 

2 pm, to measure the emissions of wavelengths of each treatment and control levels. 

 

https://www-sciencedirect-com.ezproxy.uaeu.ac.ae/science/article/pii/S030442381730314X#bib0185
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2 - Photosynthetically active radiation  

Using a Photosynthetically Active Radiation (PAR) sensor (Model: LI-1500 

Light Sensor Logger). Every 24 hours the PAR sensor was shifting from one level to 

the other in hydroponic set up. 

3 - Light intensity measurements 

LUX (Lumen/m2) measurement: using DIGI- SENSE Light Meter (Model 

20250-00), used three times a day, at 8 am, 12 am and 4 pm, placed it horizontal to the 

light source for each level of treatment and control three levels. 

4 - Temperature and relative humidity measurement 

Used DIGI- SENSE Thermohygrometer (Model 20250-11), to measure the 

temperature, and relative humidity, was used 3 times a day, at 8 am, 12 am and 4 pm, 

placed it horizontal in each level of treatment and control levels through the period of 

experiment. 

5 - Leaf area measurement  

The LA (cm2) of lettuce plant was measured by AREA METER (Model CI-202) 

at harvest. 

3.8 Statistical analysis 

The results were presented as mean values and standard error. Data were tested 

using SPSS (version 16.0, SPSS Inc.). Statistical analysis of the results was based on 

Analysis of Variance ANOVA for Randomized Complete Block Design RCBD for 

treatments data and Completely Randomized Design CRD for Control Data with 

subsampling. Where Row considered as Blocks. Means for significant effects were 

compared using t-test at p<0.05. 
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Chapter 4: Results 

The lettuce namely (Lactuca sativa “Lollo bionda”). Was grown using different 

light systems. Different parameters of the growth of lettuce like fresh weight, dry 

weight, leaf area, plant length, plant width, leaves number, different pigment values 

like total Chlorophyll, Chlorophyll a, Chlorophyll b, Carotene, and different micro 

climatic parameters like light Intensity, temperature, and relative humidity were 

recorded and the results are discussed in this chapter. 

Light quality was also measured and used for comparison, that included PAR 

and light spectrum parameters. 

4.1. Plant morphology  

As shown in Fig. 6, in the end of the experiment, plants under natural light looked 

large and vigorous while those with 60% Shade and (RGB) LED treatments looked 

small and weak, lettuce under natural light had the most compact morphology with 

dark green leaves while plants with other treatments were detected sparse and fragile. 

https://www-sciencedirect-com.ezproxy.uaeu.ac.ae/science/article/pii/S030442381730314X#fig0015
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Figure 6: Lettuce under natural light, 60% Shade, (RGB) LED treatments and control 

group 

4.2 Growth parameters 

The length, width, and number of leaves of lettuce were measured through six 

weeks of the experiment, at the latest day of each week. According to ANOVA results, 

there is a significant difference among the parameters of lettuce under different light 

set up. 

As shown in Fig. 7, the average growth rate of plant height, plant width, number 

of leaves during the whole culture period was respectively 0.31 cm, 0.36 cm and 0.30 

number of leaves per day with natural light treatment, the width and number of leaves 

were the highest among all the three treatments, followed by 60% Shade, while no 

significant difference between length of lettuce in NL and 60% Shade treatments.  
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Figure 7: Plant length, plant width, number of leaves growths of lettuce cultivated 

under natural light, 60% Shade and (RGB) LED 
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Table 3 displays the growth parameters of lettuce at the latest week (7th) of the 

experiment. Compared with 60% Shade and (RGB) LED, the length of lettuce under 

NL, 60% Shade, (RGB) LED treatments was increased respectively by 44.3%, 41.5% 

and 14.1%, while the width of lettuce was increased respectively by 72.7%, 23.1% and 

4.1%, and the number of leaves was increased respectively by 67.4%, 23.2% and 9.4%. 

Table 3: Plant height, plant width, number of leaves growths of lettuce cultivated under 

different light treatments of natural light, 60% Shade, (RGB) LED. The alternating 

irradiation provided by LED is 12 h a day 

Variable Length (cm) Width (cm) Leaves number 

Treatment p-value 0.0004 <0.0001 <0.0001 

Natural light 24.29±0.87
a
 24.88±0.78

a
 22.75±0.76

a
 

Shade 22.75±2.43
a
 7.92±2.04

b
 7.83±0.81

b
 

LED 7.75±2.48
b
 1.42±0.45

c
 3.17±0.98

c
 

a,b,c means with different letters are significantly different at p<0.05   

 As for the control, which was composed of three levels above each other and all 

exposed to natural light, the growth parameters were approximately equal, as shown 

in both the Fig. 8 and Table 4. 
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Figure 8: Plant height, plant width, number of leaves growths of lettuce cultured 

under natural light in levels of control 
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Table 4: Influence of natural light of three levels of control on plant height, plant 

width, and leaves number of lettuces at latest week of experiment 

Variable Length (cm) Width (cm) Leaves number 

Level p-value NS NS NS 

Upper level (C1) 22.75±1.26 26.75±1.71 23.25±2.63 

Middle level (C2) 24.50±1.91 28.00±1.83 24.75±2.99 

Lower level (C3) 22.50±1.29 26.25±2.50 20.50±0.58 

NS Not significant at p<0.05 

The other plant growth parameters of lettuce reported at harvest, represented in 

the leaf area, fresh weight and dry weight are given in the Table 5 and Fig. 9, 10. The 

results showed that the leaf area, fresh weight and dry weight of the biomass under NL 

treatment were significantly high i.e. 147.91±10.65 cm2, 542.52±30.48 g, 27.39±1.78 

g. The lettuce grown under (RGB) LED showed the lowest in terms of leaf area, 

biomass in fresh weight, dry weight (3.94±1.66 cm2, 0.89±0.42 g, not detectable).  

Table 5: Leaf area (cm2), fresh weight (g), and dry weight (g) of lettuce under NL, 

60% Shade and (RGB) LED treatment at harvest 

Variable Leaf area (cm2) Fresh weight (g) Dry weight (g) 

Treatment p-value 0.0039 0.0001 0.0001 

Natural light 147.91±10.65
a
 542.52±30.48

a
 27.39±1.78

a
 

Shade 57.87±15.74
b
 13.00±2.19

b
 0.35±0.07

b
 

LED 3.94±1.66
c
 0.89±0.42

b
 Not detectable 

a,b,c means with different letters are significantly different at p<0.05 
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Figure 9: Leaf area (cm2) of lettuce under NL, 60% Shade and (RGB) LED treatment 

at harvest 

 

Figure 10: Fresh weight (g) and dry weight (g) of lettuce under NL, 60% Shade and 

(RGB) LED treatment at harvest 

The lettuce planted in control row where three levels are exposed to natural light 

with the highest biomass, (FW, DW) in the upper level (616.33±78.07g, 32.74±4.56g) 

then follow it middle level i.e. (366.78±41.04g, 15.22±3.21g). While the least biomass 

in the lower level (237.90±47.16g, 9.45±1.33g). However, the leaf area in the mid-

level was the highest value, follow upper then lower level, as shown in Table 6 and 

Fig. 11, 12. 
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Table 6: Leaf area (cm2), fresh weight (g), and dry weight (g) of lettuce planted in 

control levels under natural light at harvest 

Variable Leaf area (cm2) Fresh weight (g) Dry weight (g) 

Level p-value <0.0001 <0.0001 <0.0001 

Upper level (C1) 167.62±52.90 616.33±78.07
a
 32.74±4.56

a
 

Middle level (C2) 207.91±68.24 366.78±41.04
b
 15.22±3.21

b
 

Lower level (C3) 99.34±41.54 237.90±47.16
c
 9.45±1.33

c
 

NS Not significant at p<0.05. a,b,c means with different letters are significantly different at 

p<0.05 

 

Figure 11: Leaf area (cm2) of lettuce planted in control group under natural light at 

harvest 

 

Figure 12: Fresh weight (g) and dry weight (g) of lettuce planted in control group 

under natural light at harvest 
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4.3 Chlorophyll and carotenoid contents 

Fig. 13 indicates the chlorophyll and carotenoid contents of lettuce plants 

cultured with different lighting modes. The content of Chl a was approximately more 

than three times as much as that of Chl b irrespective of the various light treatments 

except (RGB) LED. Compared with 60% Shade, the content of chlorophyll a, 

chlorophyll b, total chlorophyll and carotenoid under NL were significantly increased 

by (1.14±0.15, 0.91±0.11, 0.24±0.04 and 0.50±0.06 mg/g) respectively. No values 

were detected under (RGB) LED light for the pigment contents mentioned above, as 

shown in Table 7.  

Table 7: Chlorophyll and carotenoid contents of plants grown under different light 

treatments of NL, 60% Shade and (RGB) LED treatments at harvest 

Variable 

Total 

Chlorophyll 

(mg/g) 

Chlorophyll A 

(mg/g) 

Chlorophyll 

B (mg/g) 

carotenoid mg/g 

Treatment p-value 0.003 0.0031 0.0026 0.001 

Natural light 1.14±0.15
a
 0.91±0.11

a
 0.24±0.04

a
 0.50±0.06

a
 

Shade 0.46±0.23
b
 0.36±0.18

b
 0.10±0.05

b
 0.20±0.10

b
 

LED Not detectable Not detectable Not detectable Not detectable 

a, b means with different letters are significantly different at p<0.05 
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Figure 21: Chlorophyll and carotenoid contents of plants grown under different light 

treatments of NL, 60% Shade treatments at harvest 

For the three levels of control, the content order of chlorophyll and carotenoid 

pigments was no significant difference as in the Table 8 and Fig. 14. 

Table 8: Chlorophyll and carotenoid contents of control plants grown under NL at 

harvest 

Variable 

Total 

Chlorophyll 

(mg/g) 

Chlorophyll A 

(mg/g) 

Chlorophyll B 

(mg/g) 
Carotene mg/g 

Level p-value NS NS NS NS 

Upper level (C1) 1.14±0.113 0.90±0.088 0.24±0.030 0.50±0.039 

Middle level (C2) 1.16±0.058 0.90±0.053 0.25±0.008 0.50±0.049 

Lower level (C3) 1.18±0.117 0.92±0.099 0.26±0.040 0.47±0.013 

NS Not significant at p<0.05 
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Figure 14: Chlorophyll & carotenoid contents of control group under natural light at 

harvest 

4.4 Light intensity, temperature and relative humidity 

The light intensity, temperature and relative Humidity of the treatments were 

measured three times a day for three days a week through the experiment and displayed 

in the Table 9. 

Table 9: The light intensity, temperature and relative humidity of the NL, 60% Shade 

and (RGB) LED treatments 

Variable Light intensity (LUX) Temperature °C Relative Humidity % 

Treatment p-value 0.0008 NS NS 

Natural light 77450±31115a 28.71±11.02 53.62±6.50 

Shade 6223±4796b 27.22±2.13 53.96±6.34 

LED 1420±653b 27.07±1.95 54.44±6.29 

NS Not significant at p<0.05 

a,b means with different letters are significantly different at p<0.05  

 

 The results showed that, very significant difference could be noticed among 

the light intensity values measured. The highest light intensity (77450±31115 lux) was 
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noticed in the NL treatment, followed by 60% Shade treatment i.e. (6223±4796 lux), 

while light intensity of the (RGB) LED treatment recorded the lowest term i.e. 

(1420±653 lux). While the temperature and relative humidity was almost equal under 

all treatments as shown also in the Fig. 15. 
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Figure 15: Light intensity, temperature and relative humidity of treatments for seven 

weeks 
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As well as control, the difference in intensity of light is clear between the three 

levels in the Table 10, where the intensity of the light is the highest in the upper level 

followed by the middle and then the lower level. While the temperature and relative 

humidity of approximately equal at all levels of control, as shown in Fig.16. 

Table 10: Light intensity, temperature and relative humidity of control levels. 

Variable 

Light intensity 

(LUX) 

Temperature 

°C 

Relative Humidity 

% 

Level p-value 0.0052 NS NS 

Upper level (C1) 93306±33467 a 28.65±2.22 51.24±6.56 

Middle level (C2) 30161±11320 b 27.74±2.32 52.44±6.52 

Lower level (C3) 18936±7308 c 27.67±2.31 53.54±6.34 

NS Not significant at p<0.05. a,b,c means with different letters are significantly different at p<0.0 
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Figure 16: Light intensity, temperature and relative humidity of control levels for 7 

weeks 
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4.5 Spectrometric measurements 

  Plants were exposed to different light spectra of the treatments (NL), 60% 

Shade, (RGB) LED, to measure the peak wavelengths of the light sources were 

determined with a spectrophotometer (model MK350N PREMIUM). The results are 

given in Table 11. The highest peak wavelength was 747 nm, at NL treatment in the 

range of infrared. Followed 552 nm, at (RGB) LED treatment, while the lowest peak 

wavelength was 552 nm at 60% Shade treatment. While the value and PPFD of the 

wavelengths were highest at the NL, followed 60% Shade and (RGB) LED treatments 

respectively as shown in Fig. 17. The values of Blue, Green and Red peak wavelengths 

of NL, 60% Shade and (RGB) LED of treatments are given in Table 12. 

Table 11: Peak wavelength, peak wavelength value and PPFD of treatments 

Variable 
peak wavelength 

(nm) 
Irradiance (mW/m2) PPFD (μmol/m2/s) 

Natural light 747 (Far-red) 201.7 212.3 

60% Shade 533 (Green) 24.0 21.24 

(RGB) LED 552 (Green) 16.10 18.68 

 

Table 12: Blue, Green and Red peak wavelengths and their values of NL, 60% Shade 

and (RGB) LED of treatments 

Variable peak wavelength (nm) Irradiance (mW/m2) 

Natural light B (450) G (550) R (640) B (140.7) G (180.9) R (150) 

60% Shade B (440) G (533) R (700) B (10.0) G (24.0) R (13.5) 

(RGB) LED B (437) G (552) R (640) B (8.0) G (16.10) R (15.0) 

 

                

 



41 

 

Natural light treatment 

 

 60% Shade treatment 

 

(RGB) LED treatment 

 

Figure 17: Peak wavelengths of natural light, 60% Shade and (RGB) LED treatments 
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The spectral distribution of the radiation at natural light, 60% Shade and (RGB) 

LED treatments with the highest peak wavelength was 747 nm at natural light 

treatment as shown in Fig. 18. 

 

 

Figure 18: Spectral distribution of the radiation at natural light, 60% Shade and 

(RGB) LED treatments 

Regarding the three levels of control, overall results indicate that, the upper level 

of control which was the nearest to the source of natural light, found significantly the 

highest value and PPFD of peak wavelength at 748 nm, followed was middle control 

at 777 nm, while the lowest value and PPFD of peak wavelength was lower control at 

778 nm, Observed that, all peak values of control group in the range of infrared as 

shown in Table 13 and Fig. 19.  The values of Blue, Green and Red peak wavelengths 

of control levels are given in Table 14. 
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Table 13: Peak wavelength, peak wavelength value and PPFD of control levels 

Variable 
peak wavelength 

(nm) 

Irradiance 

(mW/m2) 

PPFD 

(μmol/m2/s) 

Control (upper level) 748 187.9 188.3 

Control (middle level) 777 108.2 111.3 

Control (lower level) 778 71.60 59.20 

Table 14: Blue, Green and Red peak wavelengths and their values of control group 

Variable peak wavelength (nm) Irradiance (mW/m2) 

Control (upper level) B (460) G (550) R (700) B (100) G (160) R (145) 

Control (middle level) B (460) G (550) R (700) B (75) G (98) R (80) 

Control (lower level) B (467) G (550) R (700) B (40) G (55) R (45) 
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Control (upper level) 

 

Control (middle level) 

 

Control (lower level) 

 

Figure 19: Peak wavelengths of control group 
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The spectral distribution of the radiation at control group with the highest value 

of peak wavelength at 748 nm at the upper control, as shown in Fig. 20. 

 

 

Figure 20: Spectral distribution of the radiation at control group 

 While when compared with outside of the greenhouse, the value of peak 

wavelength was (539.0 mW/m2) and PPFD of peak wavelength was (680.1 μmol/m2/s) 

at 581 nm as in Fig. 21. 

 

Figure 21: Peak wavelength of outside the greenhouse 
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4.6 PAR measurement 

 The PAR was measured 24 hours of each level in hydroponic system. The 

results for different radiation treatments showed that, the PPFD of NL treatment, which 

the nearest to the source of natural light was significantly highest i.e. 221.17±201.47 

μmol/m2/s. While 60% Shade treatment was significantly lower i.e. 10.80±7.45 

μmol/m2/s, followed by the (RGB) LED treatment i.e. 5.71±3.40 μmol/m2/s, as showed 

in Table 15.  

Table 15: PPFD (μmol/m2/s) and accumulative PPFD (μmol/m2/day) of NL, 60% 

Shade and (RGB) LED treatments 

Variable 
Natural light 60% Shade (RGB) LED 

Treatment 

P-value 

Average PPFD 

(μmol/m2/s) 221.17±201.47a 10.80±7.45b 5.71±3.40c <0.0001 

Accumulative 

PPFD 

(μmol/m2/day) 
185779.89 9073.07 4822.95 - 

a,b,c means with different letters are significantly different at p<0.05  

On the other hand, the cumulative PAR per day was also measured for 

treatments, the results were the NL treatment was significantly highest i.e. 

185779.89 μmol/m2/day, followed by the 60% Shade i.e. 9073.07, while the 

significantly lowest 4822.95 μmol/m2/day at (RGB) LED treatment, as shown in Table 

15 and Fig. 22. 
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Figure 22: Cumulative PAR (μmol/m2/day) of NL, 60% Shade and (RGB) LED 

treatments 

Also, the PPFD (μmol/m2/s) of the PAR was measured 24 hours of each level of 

control in hydroponic system. The three levels of control exposed to natural light, 

where the light intensity decreased gradually from top to bottom. Thus, as we expected, 

the results showed that, the upper level of control was the highest PPFD i.e. 

340.56±261.40 μmol/m2/s, while the lowest PPFD at the lower control, which was the 

most far from the source of natural light i.e. 74.22±55.29 μmol/m2/s, as showed in 

Table 16. 
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Table 16: PPFD (μmol/m2/s) and a cumulative PPFD (μmol/m2/day) of control levels 

Variable Upper level  Middle level  Lower level  
Treatment 

p-value 

Average PPFD 

(μmol/m2/s1) 
340.56±261.40a 107.36±77.54b 74.22±55.29c <0.0001 

Accumulative 

PPFD 

(μmol/m2/day) 

286072.51 90182.51 62341.07 - 

a,b,c means with different letters are significantly different at p<0.05  

The cumulative PAR per day was also measured for control group 

and the result showed the upper level was the highest i.e. 286072.51 

μmol/m2/day, followed by the middle level i.e. 90182.51, while the lower 

level was 62341.07 μmol/m2/day, as shown in Table 16 and Fig. 23. 

 

Figure 23: Cumulative PAR (μmol/m2/day) of control levels 
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Chapter 5: Discussion 

The present study examined the effects of different light systems namely Natural 

light, Shade 60% and (RGB) LED were compared by growing the yield and quality of 

lettuce (Lactuca sativa crispa. “Lollo bionda”) on vertical hydroponic system, grown 

under the same climate conditions in the greenhouse. Lettuce (Lactuca sativa) is found 

to be the most cultured vegetable in hydroponic system. This is due to its easy 

adaptation to this system, which has been showing high productivity in cycle compared 

with the soil cultivation (Cometti et al., 2013). Also, the use of vegetable such as 

lettuce should be a standard practice in most greenhouses that contain hydroponics 

(Dougher and Bugbee, 2001).  

The plant length, width and number of leaves were measured once every 7 days, 

through six weeks of the experiment. At 6th week, in terms of length of lettuce plant 

under NL and 06% Shade treatments showed only a slight variation i.e. 24.29±0.87 

cm, 22.75±2.43 cm respectively, in spite of the significant different value PPFD were 

i.e. 221.17±201.47, 10.80±7.45 μmol/m2/s respectively. Jaimez and Rada (2006) 

stated that the PAR at full insolation (1519 μmol/m2/s) is lowered to 931 μmol/m2/s 

when shaded to 40% PAR, and to below 550 μmol/m2/s when shaded to 60% PAR. It 

is interesting to note that, the principal reason for this result may be due to the high 

light intensity limits the elongation of the plant stem, while low light intensity due to 

the use of 60% Shade in our experiment enhances the length. For example (Wang and 

Folta, 2013) indicate that, the high light causes a rapid cessation of elongation in the 

development of the seedling to adopt a strategy of vegetative aerial growth appropriate 

for the light environment. Moreover, lower intensities of light enhance the elongation 

of stem, the highest values were found in the lettuce plants cultivated under red color 
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nets (97 mm), while the control lettuce showed stem length of (60 mm) (Ilić et al. 

2017b). Jenni et al. (2013) reported that a shorter stem length indicates higher quality 

for crisphead lettuce. As for the LED treatment our experiment, three colors (Red, 

Green, and Blue) of light-emitting diode (LED) lights, with different wavelengths were 

used to investigate the effect of them on lettuce growth, the distance between LED 

panels and plant canopy was 40 cm. Also, the photoperiod at the lower three replicates 

levels exposed to LED were set to (12/12) hour. The use of LEDs in horticultural 

production with different benefits (Massa et al., 2008; Morrow, 2008). According to 

several researchers, (Hoenecke et al., 1992; Lian et al., 2002; Nhut et al., 2003; Lee et 

al., 2007), which has a long wavelength, promoted stem and leaf elongation. Blue light 

suppresses hypocotyl elongation and induces biomass production, which has a short 

wavelength, suppressed stem elongation (Kim et al., 2004a; Folta, 2004; Ohasi-

Kaneko et al., 2007). In our experiment, the result was the length of the lettuce plant 

under LED treatment was significantly lower i.e. (7.75±2.48 cm), where the light 

intensity was the lowest by PPFD (5.71±3.40 μmol/m2/s). One reason for this result 

may be was the low of light intensity and the second reason may be that distance 

between LED panels and plant canopy was 40 cm, which means it was a great distance 

between seedlings and light source. 

As for the plant width and leaves number, were significantly high in plants 

grown under NL treatment i.e. 24.88±0.78 cm, 22.75±0.76, than 60% Shade treatment 

i.e. 7.92±2.04 cm, 7.83±0.81 and (RBG) LED treatment i.e. 1.42±0.45 cm, 3.17±0.98. 

Consequently, the Light intensity decreasing significantly from top to base of vertical 

levels within the vertical hydroponics in different light systems, led to deterioration of 

quality the parameters of the yield from top to base. 
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While the other plant growth parameters of lettuce reported at harvest, 

represented in the leaf area, fresh weight and dry weight. Many vegetable species 

present leaf and stem morphological and physiological adaptations in response to 

Shade. Although plants grown in the Shade to have larger leaf areas, because cells 

expand more under low light intensities in order to increase photosynthesis. Ilic et al. 

(2017b) found that all Shade nets significantly increase the leaf area index. The overall 

results indicate the NL treatment was 147.91±10.65 cm2 better in terms of leaf area 

when compared to 60% Shade treatment i.e. 57.87±15.74 cm2. (Rajapakse and Shahak, 

2007) suggest a shading rate of 30% or less, instead of 40%, as a way to limit the 

impact on vegetable development caused by excessive shading. In our experiment the 

reason for this result was the shading rate, the use of Shade rate 60% has limited the 

growth of lettuce and this is clear from the inability of the leaves under the Shade used 

by the extension to get enough light to complete photosynthesis process. Regarding to 

(RGB) LED, in many experiments which confirmed that, the plant development and 

physiology are strongly influenced by Blue, Red and Green industrial light (Li et al., 

2010; Hogewoning et al. 2010; Johkan et al., 2012). Red light induces hypocotyl 

elongation and expansion in leaf area (McNellis and Deng, 1995; Johkan et al., 2010). 

Also (Kim et al., 2004b) reported that, the higher leaf area under RB light is a good 

indicator of higher photosynthetic surface area per unit investment in leaf tissue. G 

light also affects plant morphology and physiology, including leaf growth, stomatal 

conductance and early stem elongation (Folta, 2004; Kim et al., 2004a; Kim et al., 

2004b). However, the result in our experiment was unexpected; the leaf area of the 

lettuce plant exposed to LED at the lower level of vertical hydroponics was the least 

value i.e. 3.94±1.66 cm2. This may be because light intensity of LED treated was 
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significantly lower than 60% Shade and Natural light-treated, which has compromised 

the photosynthesis.  

The result showed that, the fresh weight of the lettuce shoots significantly 

decreased with (RGB) LED treatment i.e. 0.89±0.42 g. Where NL treatment was the 

highest i.e. 542.52±30.48 g, probably due to the enlarged leaf area as a result of high 

PAR value. The larger leaf allowed greater light interception, which may have led to 

the significant increase in biomass. While 60% Shade treatment was 13.00±2.19 g. 

These results indicate that NL-treated plants exhibited puffiness, large and vigorous 

shoot structure, while the shoot structure of Shade and LED-treated plants had a small 

and weak appearance, but observations of the growth and morphological features 

indicated that LED treatment was deleterious or adversely affected plant performance. 

Reductions in the lettuce biomass under Shade and LED treatments suggest that light 

intensity can alter growth, decrease the mean weight of lettuce.  

Yorio et al. (2001) reported that, there was high dry matter weight accumulation 

in lettuce grown under R LED supplemented with B LED than in lettuce grown under 

R LED. Red and blue LED irradiation with green light from fluorescent lamps 

increased the production (Kim et al. 2004b). However, shoot dry weight of leaf lettuce 

plants under 60% Shade treatment decreased significantly i.e. (0.35±0.07 g) compared 

with the NL treatment i.e. (27.39±1.78 g).  

   The overall previous results indicate the unevenness in the treatments was 

caused by the differences in the light environment and as expected that photosynthesis 

rate under a certain light quality influences the parameters of lettuce plant. 

Consequently, it was noticed that the leaves of plants under the natural light conditions 
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had a significantly higher values in all parameters when compared to planting under 

60% Shade and (RGB) LED. 

 On the other hand, where the lettuce plant was cultured in control in three levels 

of vertical hydroponics and exposed to natural light were no significant. Also, it can 

be said that the parameters of lettuce in the upper level of control and in the NL 

treatment seem almost the same, were no significant difference. Whilst, the significant 

difference exists between the middle and lower levels of control and the 60% Shade, 

(RGB) LED treatments. Also, a difference exists in parameters of lettuce between the 

control groups in the three levels. The impact of solar natural radiation on the control 

levels of all parameters was observed. Light gradients from top to base of vertical 

systems in strawberry was reported earlier (Ramírez- Gómez et al., 2012). Light 

intensity is known to decrease with light source increases (Poorter et al., 2012). Our 

Results showed that, although the natural light intensity decreased significantly from 

top to base of vertical hydroponics, where in the upper level was PPFD 340.56±261.40 

μmol/m2/s, in the mid-level was PPFD 107.36±77.54 μmol/m2/s, and in the lower level 

was PPFD 74.22±55.29 μmol/m2/s.  

However, the parameters which comprise length, width and leaves number, no 

significant difference in was observed in the three levels, which means that, the quality 

and intensity of light was sufficient in the three levels of control to satisfy plant needs. 

Leaf area of the lettuce seedlings was benefited from natural light intensity under the 

control in the three levels which exposed to natural light with hydroponically where 

the values of leaf area in the three levels of control were high. Moreover, the results 

revealed greater leaf area for control plants cultivated in the mid-level i.e. 

207.91±68.24 cm2, compared to plants grown in the upper level which is characterized 
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by high natural light intensity was 167.62±52.90 cm2, The principal reason for this 

result may be due to the leaves of lettuce in the middle level, had the ability to expand 

to catch more light to complete photosynthesis process, therefore led to increase of 

leaf area. Whereas plants leaves cultivated in the lower level were smaller, where the 

natural light intensity was the lowest in the control. Also, the result showed that, 

natural light intensity influenced growth in the control. There was a significant positive 

relationship between shoot fresh weight, dry weight and PPFD in the vertical 

hydroponics, indicating that as light intensity in the PAR range increased so did crop 

productivity. 

In the experiment, there was significant difference among the photosynthetic 

pigments, where the chlorophyll a, b, (a + b), and carotenoid contents higher in the 

lettuce under the NL treatment than 60% Shade treatments. However, in the studies 

conducted by Dong et al. (2014) and Manivannan et al. (2015) on Triticum aestivum 

and R. glutinosa, respectively, the best effect on chlorophyll synthesis was found for 

red LED light. Green light can stimulate photosynthesis deep in the canopy providing 

to carbon gain, especially within shaded canopies (Smith, 1994). While, the results 

showed the three LED colors inhibited the chlorophyll and carotenoid synthesis in 

lettuce plantlets, where the photosynthetic pigments not detectable under (RGB) LED 

treatment. Definitely, the applied light level in LED treated had reached a certain 

minimal light intensity, which is not enough for activity of photosynthetic pigment.  

 On the other side, the Chl a, Chl b, Chl (a + b), and Car contents in the leaves 

of three control levels did not statistically differ among them, where all have high 

values and approximately similar the pigment values of lettuce leaves under NL 

treatment. Observe that, the top level of the control received similar PPFD to all the 
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three replicates of NL treatments. However, within the vertical three levels of control, 

as distance from the light source increased, there was a significant drop in PPFD values 

within the vertical hydroponics. This refers to the main role of natural light intensity 

quantity and quality which was availability in the NL treatment and control levels. 

The results showed that the temperature and relative humidity at all levels of 

treatments and control group were approximately similar through 7 weeks, where were 

in the mean 27.22±2.13 °C, 53.62±6.50%. Beside temperature, lettuce production also 

depends on light properties (Dufault et al., 2009), light quality and light intensity (Ilić 

and Fallik, 2017). while the intensity of the light was significantly different in term of 

77450±31115 lux at NL treatment to 6223±4796, 1420±653 lux respectively at 60% 

Shade and (RGB) LED treatments.  

As for the control group, the light intensity was significantly reduced from the 

upper level which was closest to the solar natural light source, to the lower level, i.e. 

from 93306±33467, to 18936±7308 lux. Although the light intensity of the control 

group was significantly decreased, the parameters and pigments values were high, as 

in the NL treatment which exposed also to solar natural light. This means that, the light 

intensity was suitable for the lettuce growth in the control group and NL treatment. 

Our results confirm emphasize that, for the same temperature, and relative humidity, 

the impact of light intensity enhanced lettuce growth. This fact is important when 

selecting the cultivation vertical hydroponics system in greenhouses. 

In the experiment, to measure the spectral distribution of the radiation, 

spectrometer (model MK350N PREMIUM) was used. The result showed, the 400–

700 nm of wavelengths were available in all levels of the experiment with variable 

intensity. The most important part of the light spectrum is 400–700 nm which is known 
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as photosynthetically active radiation (PAR). Although the blue, green and red 

wavelengths were in the range of spectral distribution of the radiation in NL, 60% 

Shade and (RGB) LED treatments, however, the difference in the intensity spectra 

radiation of wavelengths was the main reason of the difference in the growth and 

development of lettuce seedlings under each treatment. In the experiment, the value of 

peak wavelength irradiance (201.7 mW/m2) and PPFD (212.3 μmol/m2/s) at (747 nm) 

NL treatment which exposed to solar natural light, where the highest values of 

parameters and pigments. While (533 nm) at 60% Shade treatment the peak 

wavelength irradiance value (24.0 mW/m2) and PPFD (21.24 μmol/m2/s). The peak 

emissions of the B (454 nm) and R (660 nm) LEDs closely coincide with the absorption 

peaks of chlorophylls a and b, and the reported wavelengths are at their respective 

maximum photosynthetic efficiency (McCree, 1972). In this study, (552) at (RGB) 

LED treatment the peak wavelength irradiance value (16.10 mW/m2) and PPFD (18.68 

μmol/m2/s) which produced the significantly lowest yield of lettuce.  

On the other hand, the three levels of control which exposed to solar natural light 

and had the values of yield quality parameters and pigments high. The results showed 

that, the intensity of spectra radiation decreased from upper to lower level, where the 

irradiance and PPFD decreased from 236.4 mW/m2, 141.1 μmol/m2/s to 71.60 mW/m2, 

59.20 μmol/m2/s. This explained that, the greater the distance from light source, the 

less intensity of the spectra radiation. 

   Spectral light intensity affects photosynthesis (Singh et al., 2015). Wu et al. 

(2007) studied the effect of variable light intensities on the quality of broccoli shoots 

and they suggested that transition from high (350 μmol/m2/s) to low (41 μmol/m2/s) 

light intensities may increase carotenoids, glucosinolates, macro and micronutrients 
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contents. In the experiment the impact of PAR on the different treatments was 

investigated. The expected result was found, significant differences were observed for 

the values of parameters and pigments. The NL treatment was highest in parameters 

and pigments values of lettuce subjected to the highest PAR dose (221.17±201.47 

μmol/m2/s) when compared to the lower PAR dose (10.80±7.45 μmol/m2/s) 60% 

Shade, and lowest PAR dose (5.71±3.40 μmol/m2/s) (RGB) LED. The principle 

reasons were the lettuce seedlings exposed to natural light at the upper level had taken 

a sufficient dose of PAR, led to a high-value lettuce yield of parameters and pigments. 

Light intensity affects the quality not only of leafy but also fruit vegetables. While 

60% shading rate in the middle level appeared high, where insufficient PAR dose 

reached to the lettuce seedlings, resulting in poor production of lettuce, where the 

values of growth parameters were low. Kläring and Krumbein (2013) indicated that 

reducing light intensity decreased growth and yield of tomato plants, as well as β-

carotene. Although the blue, green, and red wavelengths were available in LED plates, 

the significant lowest of parameters and pigments values of lettuce seedling recorded 

under (RGB) LED treatment, which the lowest PAR dose recorded compared with the 

other treatments. Perhaps the reason was the number of panels was insufficient, which 

in the experiment used a single panel with 1 cm width, while the width of each Rock 

wool slab, which includes 4 lettuce seedlings was 20 cm. The second reason was the 

distance between the LED panel and the lettuce seedlings was high (40 cm). 

Knowing that, the top level of the control received similar PPFD to all the three 

replicates NL treatments. However, within the vertical three levels of control, as 

distance from the light source increased, there was a significant drop in PPFD values 

within the vertical hydroponics, where decreased the PAR dose from the upper level 

(340.56±261.40 μmol/m2/s) to the lower level (74.22±55.29 μmol/m2/s), while the 
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results showed approximality similar in high values of parameters and pigments in 

three levels of control. This means that, the PAR dose emitted from natural light was 

sufficient even at the lower level of control to obtain high-quality yield of lettuce 

similar to upper level. 

Our results clearly demonstrate that, control group compared to treatments, 

PPFD from 74.22±55.29 μmol/m2/s to 340.56±261.40 μmol/m2/s, the parameters and 

pigments values of lettuce plants were better. Meanwhile, the yield of lettuce was 

higher. More important, in our research, we found that there was no substantial gain 

from a PPFD above 74.22±55.29 μmol/m2/s at lower level of control. 
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Chapter 6: Conclusion 

The final goal of our project is to determine the best light system optimized for 

vegetable production in vertical hydroponics. In the present study, we investigated the 

effective light with sufficient intensity for growing healthier lettuce plants more 

rapidly. Based on this study, it appears that the Natural light treatment resulted in many 

positive effects on growth, development, nutrition and appearance of lettuce plants.  

In fact, results in our study showed that optimized indices of lettuce such as 

higher yield or higher pigments value could be generated by solar natural irradiation 

without use one panel of (RGB) LED or 60% Shade treatments. 

The lettuce cultivation using the vertical hydroponic system can produce in 

greenhouse through winter season which low temperature and solar natural radiation 

is available in UAE. This research is being conducted with the purpose to provide an 

effective alternative method of lettuce production. This system can provide a 

breakthrough for agriculture in the UAE, once the method of lettuce production in 

multi-tier hydroponic system is standardized. 

Conclusions and recommendations 

1. Lettuce performed better under natural light than the 60% Shade and (RGB) LED, 

while it was not different in the three vertical levels of control. 

2. There was no significant difference between NL treatment and the upper level of 

control group which all exposed to solar natural light. 

3. Natural light is still the best source of radiation in terms of light quality and 

intensity, and it is available without charge.  

4. The low PPFD in the 60% Shade (21.24 μmol/m2/s) and LED (18.68 μmol/m2/s) 
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treatments, induced lower health parameters for lettuce plant, indicating that low 

PPFD at these values were not suitable for lettuce growth. 

5- There was no substantial gain from a PPFD above (74.22±55.29 μmol/m2/s) at 

lower level of control group. 

6. The addition of LED light panels and decrease the Shade percentage may will 

lead to further increased plant growth. 

7. Vertical Hydroponics system should be evaluated according to its water and 

energy use efficiency. 
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