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Abstract 

 

Among hematological malignancies, acute leukemia is the major cause of mortality. 

Despite improvement of survival with current chemotherapies, some patients still die 

from the disease or the treatment side effects. Thus, new therapeutic agents are needed. 

Anti-cancer drugs derived from natural products are of interest. Frondoside A is a 

triterpenoid glycoside form the sea cucumber, Cucumaria frondosa that has shown 

potent antitumor effects in various cancers. Previous studies in acute leukemia are 

limited. The current study investigated the effects of frondoside A in acute leukemia 

cell lines alone and in combination with drugs currently used for this malignancy. This 

study is the first to attempt comparing the efficacy of this compound to available 

conventional drugs.  

 

The acute leukemia cell lines used were CCRF-CEM, HL-60 and THP-1. Cells were 

cultured and treated with different concentrations of frondoside A, vincristine sulphate, 

asparaginase and prednisolone each compound alone and in combination with 

frondoside A. Experiments were conducted with treatment incubation periods of 24, 

48 and 72h. The inhibitory concentration 50 (IC50) for each compound at each time 

point was determined for the three cell lines using the CellTiter-Glo luminescence 

assay. Induction of apoptosis was examined using Annexin V test and expression of 

apoptosis-related genes (low-density expression array) was investigated in two acute 

leukemia cell lines. The expression of protein products of selected genes was also 

investigated. The effect of frondoside A combined with NFκB pathway inhibitor, 

andrographolide in acute leukemia cell lines was also examined. 

 

CCRF-CEM cells were very sensitive to frondoside A treatment while HL-60 and 

THP-1 were less sensitive. Frondoside A markedly enhanced the anticancer effects of 

all of the conventional drugs in all cell lines. Synergistic effects were seen in some of 

the combination concentrations. Induction of apoptosis was confirmed 

morphologically and by Annexin V in CCRF-CEM and THP-1 treated cells. Analysis 

of the effect of frondoside A on expression of apoptosis-related genes showed marked 

changes in multiple pro- and anti-apoptotic genes. Expression of some genes coding 

for both pro-apoptosis and anti-apoptosis proteins were increased, suggesting that a 
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survival pathway was also activated in the frondoside A-treated cells. Frondoside A 

treatment increased the gene expression of multiple members of both the intrinsic and 

extrinsic as well as the executioner pathways. The compound also up-regulated the 

genes encoding multiple death receptors and death effector domains. In THP-1 cells, 

frondoside A treatment resulted in the increased expression of the tumor suppressor 

protein p21 and it decreased the expression of the mutated p53 protein in CCRF-CEM 

cells. Frondoside A treatment also markedly up-regulated multiple genes in the NFκB 

pathway with changes being more marked in the THP-1 cell line, which is more 

resistant to the effects of frondoside A. Combining andrographolide IC50 concentration 

with frondoside A in the treatment of acute leukemia cell line resulted in marked 

enhancement of frondoside A anti-leukemia effect. 

 

Frondoside A has marked anti-leukemia effects. It decreased the viability of acute 

leukemia blasts and induces apoptosis. The apoptosis appeared to be due to the 

activation of both extrinsic and intrinsic pathways. Resistance to frondoside A can be 

due to the activation of the NFκB survival pathway in the treated cells and combining 

the treatment with NFκB pathway inhibitors results in dramatic enhancement of the 

anti-leukemic effect of frondoside A. Frondoside A affected different genes and 

pathways in leukemia blast cells and inhibiting malignant cells by targeting multiple 

pathways might be more beneficial in the treatment strategy. It potentiates the anti-

cancer effects of all three drugs currently used to treat acute leukemias and it may be 

a valuable addition to the therapeutic options in these deadly diseases especially in 

high-risk patients by sparing the side effects of high dose therapy and bone marrow 

transplantation. 

 

Keywords: Frondoside A, acute leukemia, pro-apoptosis, anti-cancer, chemotherapy, 

sea cucumber, NFκB pathway, Andrographolide. 
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Title and Abstract (in Arabic) 

 

 سرطان الدم الحاد فيتأثير مادة الفروندوسايد أ 

 الملخص

عدل م اللوكيميا الحادة )سرطان خلايا الدم البيضاء الحاد( سبب رئيسي للوفيات. بالرغم من تحسن

لا يزال هناك مرضى يموتون بسبب هذا المرض أو الأعراض الجانبية للعلاج. الأدوية  النجاة،

ة الأعراض نسبالمشتقة من مواد طبيعية تستجلب الانتباه لقلة السرطانية وتي تعالج الأمراض ال

ذرة كربون جليكوسايدية مشتقة  30مادة تحتوي على  Frondoside A الجانبية المصاحبة لها.

يظهر خواص ضد الأورام في السرطانات ( و الذي Cucumaria frondosaمن خيار البحر )

لأول االصلبة. في هذا البحث قمنا بدراسة تأثير هذا المركب في اللوكيميا الحادة. هذا البحث هو 

 من نوعه في مقارنة فعالية هذا المركب للعلاج المتوفر حالياً لهذا المرض.

. HL-60و CCRF-CEM, THP-1د التي استخدمت شملت سرطان الدم الحاخلايا خطوط 

و  vincristine, asparaginase, frondoside Aعولجت الخلايا بتركيزات مختلفة من 

prednisolone  مزيج من كل دواء مع و أيضاكل دواء على حدة "frondoside A تم تقييم .

جيني تمت دراسة التعبير البقاء الخلايا بعد العلاج و تم اختبار الحث لموت الخلايا المبرمج. كما 

تم دراسة أثر علاج الخلايا بمزيج من البروتيني للجينات المتصلة بموت الخلايا المبرمج. و

frondoside A  مع مثبط مسارNFκB ،andrographolide. 

يحسن عمل الأدوية التقليدية التي تستخدم في علاج  frondoside Aأوضحت التجارب أن إضافة 

حثت الموت المبرمج في الخلايا السرطانية كما زادت  frondoside A سرطان الدم الحاد. مادة

خلايا  لجلاد. فياو الداخلي والخارجيالتعبير الجيني للجينات المؤثرة في مسار الموت المبرمج 

THP-1  قامfrondoside A  بزيادة البروتينp21  والذي يعمل على دورة الانقسام الخلوي. كما

 frondoside A. مزيج NFκB على زيادة التعبير الجيني للجينات الخاصة بمسارأظهر تأثيره 

   ضد الخلايا السرطانية. frondoside Aأظهر قدرته على زيادة فاعلية  Andrographolideو

ومزيج من العلاج به مع مثبط  تأثير كبير ضد اللوكيميا الحادة frondoside A ظهري

يزيد من فاعليته. كما يقوم المركب بتعزيز عمل الأدوية المستخدمة حاليا" وقد يكون  NFκBمسار

  فاعله لخيارات العلاج لمرضى سرطان الدم الحاد. ةإضاف
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ائي، ، علاج كيميفروندوسايد أ، مساعد الموت المبرمج، مضاد للسرطان الرئيسية:مفاهيم البحث 

 ، أندروجرافولايدNFκBخيار البحر، مسار 
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Chapter 1: Introduction 

 

1.1 Overview 

Acute lymphoblastic leukemia (ALL) is one of the successes of the 

chemotherapy era and has led to over 75% of children being cured. However, there 

remain 25% of children who will still die of their disease despite chemotherapy. Acute 

myeloid leukemia (AML) is less common in pediatrics age group but has lower cure 

rates. Survival rate in AML is about 55% in spite of intensive chemotherapy and 

hematopoietic stem cell transplantation. Clearly there is a need to find better anticancer 

agents/compounds that specifically target cancer cells and have lower side effects. 

Anti-cancer effects of compounds derived from seafood sources have not been 

fully studied on such patients’ cells. One compound identified is frondoside A, a 

triterpenoid glycoside from the Atlantic sea cucumber Cucumaria frondosa which has 

a potent anti-cancer effects in solid tumors but its effect on hematopoietic malignancies 

has not been fully elucidated. 

1.2 Statement of the Problem 

Acute leukemia is a major health concern worldwide. It is the main 

hematological malignancy diagnosed both in pediatrics and adult age groups. With 

currently available chemotherapeutic, cure is possible in many of the cases, but not 

without side effects. Some of the synthetic drugs are also associated with long term 

side effects that compromise the cure and add a considerable burden on the health 

system. 
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The cure rate is less achievable by these drugs in high risk patients and 

intensive chemotherapy followed by bone marrow transplantation is the only option to 

achieve cure. 

The search for new compounds with potential anti-leukemia effects is essential 

if we aim for curing this fatal disease. Much research is currently exploring the anti-

cancer effect of naturally available compounds; hoping for the discovery of agents 

with potent effect on cancer cells but with minimal systemic side effects.  

 

1.3 Relevant Literature 

1.3.1 Cancers and Acute Leukemia 

Cancer is a pathological condition that develops in response to multiple 

changes in normal tissue. It can be induced, promoted and progressed by different 

interacting factors. Genetic and epigenetic alterations have been proven to play a major 

role in the natural history of cancer but recent studies also demonstrated the importance 

of the interaction between cancer microenvironment and the immune system of the 

host (Uzan et al., 2014). 

1.3.1.1 Characteristics of Cancer 

For normal cells to transform into malignant phenotype, certain characteristics 

should be gained to achieve that. These characteristics are highlighted in general in 

this section with the factors contributing to leukemogenesis described in more detail 

later. 
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1.3.1.1.1 Continuous proliferating signals 

Normal cells proliferate when stimulated transiently by a growth factor and 

stop when the growth factor is withdrawn. In cancer cells, stimulation of proliferation 

can be sustained by the ability of these cells to produce signaling molecules that 

stimulate proliferation receptors. Cancer can stimulate tumor-associated stromal cells 

(tumor microenvironment) to secret required signals (Goldar, Khaniani, Derakhshan, 

& Baradaran, 2015) or up-regulate receptors expressed on the cell membrane. 

Mutations in the receptors may render them active without external stimuli. Mutations 

downstream proliferation pathways may activate cell proliferation independent of 

receptors and ligands. Loss of negative feedback is another mechanism (Hanahan & 

Weinberg, 2011). 

1.3.1.1.2 Avoiding suppressors of growth 

Cell proliferation is controlled by tumor suppressor genes that inhibit cell cycle 

progression if growth conditions are not optimal. Cancer cells usually lose the function 

of tumor suppressor genes, which allow them to proliferate regardless of wellbeing of 

the cell and environment (Hanahan & Weinberg, 2011). 

1.3.1.1.3 Resisting apoptosis 

Programmed cell death is highly controlled by a balance between pro-apoptotic 

and anti-apoptotic proteins. This balance is altered in cancer favoring anti-apoptotic 

proteins (for detail, refer to section 1.3.3.3). 

1.3.1.1.4 Manifesting unlimited replication ability 

The number of times a cell can replicate depends on telomere length. This is a 

protective mechanism to maintain integrity of the genetic material. With each cell 
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division, the telomere shortens till a critical limit is reached, normal cells then inter 

senescence and apoptosis mediated by p53 (refer to section 1.3.3). If cells continue to 

divide beyond this limit, chromosomal end-to-end fusion occurs. In many cancer cells, 

the function of such tumor suppressor gene is lost. Cancer cells also express telomerase 

that activates the expression of this enzyme with the ability to maintain the telomere 

length (Hanahan & Weinberg, 2011). This is probably due to the fact that cancers arise 

in stem cells (blast cells in the case of leukemias) that already express telomerase. 

1.3.1.1.5 Inducing angiogenesis 

Angiogenesis is the process of producing new blood vessels from existing ones. 

This process is achieved by a balance between pro-angiogenic and anti-angiogenic 

factors. The angiogenic drive in cancer comes from stimulation of oncogenes to the 

up-regulation of factors or their respective receptors. An example for that is the 

vascular endothelial growth factor A (VEGF-A) (Hanahan & Weinberg, 2011).  

Although acute leukemia is a blood disorder where the role of angiogenesis is 

conflicting, recent studies have shown increase vascularization of the bone marrow in 

ALL and AML. The leukemic blast cells were found to secret VEGF and angiopoietin 

that act as an autocine stimulus for the leukemic cell growth. Some studies have even 

shown that VEGF levels do correlate with the higher risk of the disease (Ayala, Dewar, 

Kieran, & Kalluri, 2009; Buga Corbu, Glűck, & Arion, 2014). 

1.3.1.1.6 Invading locally and distant metastasis 

Cancer cells are able to change shape, gain or lose adhesion molecules to 

enable them to invade and metastasize. In solid tumors, this process is known as 

epithelial-mesenchymal transition (EMT). There are multiple factors that help cancer 
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cells to exert migratory phenotype including interaction between the tumor cells and 

the microenvironment that provide the appropriate signals and proteins (Hanahan & 

Weinberg, 2011).  

For cancer cells to gain these characteristics they require enabling properties 

to be present. Studies highlighted the function of two properties; genomic instability 

and tumor-promoting inflammation. 

Genomic instability: Mutations in cancer cells and tumor phenotype gained 

through epigenetic alteration serve as survival advantage for these cells allowing them 

to further divide and accumulate more mutations. Some mutations can aid the escape 

of cells from apoptosis that is triggered in response to DNA damage. 

Tumor-promoting inflammation: Immune cells in cancer microenvironment 

have contradicting function. They serve to eradicate cancer, but doing so (in the 

presence of the immune evading property of cancer cells) they provide the tumor cells 

with essential growth signals. Immune cells interaction with other tissues lead to the 

production of oxygen radicals which has a further mutagenic effect on cells. 

Cancer cells use inflammatory factors and pathways to maintain their survival 

signals. One of the main factors is nuclear factor kappa β (NFκB) which is a major 

transcription factor involved in the inflammatory response. It is secreted by many cells 

in the body and has 5 subunits; RelA (p65), RelB, c-Rel (Rel), NFκB1 (p105) and 

NFκB2 (p100). Activation of specific subunits is stimulus-type dependent. The NFκB1 

and NFκB2 are cleaved to produce the active forms p50 and p52 respectively.  

Normally NFκB is retained in the cytoplasm in an inactive form bound to its inhibitor 

IKβ (Gilmore & Herscovitch, 2006; Sethi, Shanmugam, Ramachandran, Kumar, & 
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Tergaonkar, 2012). NFκB is activated by a classical (canonical) pathway, triggered by 

pathogen liposaccharide, inflammatory secreted tumor necrosis factor (TNF) and 

interleukin-1 (IL-1) and involves RelA/p50. The non-canonical alternative pathway is 

activated through LTBR (lymphotoxin beta receptor), CD40, tumor necrosis factor 

receptor-2 (TNFR2) and B-cell activation factor (involves RelB/p52). Both pathways 

are IKβ/ inhibitor of NFκB kinase (IKK) dependent. 

Atypical activation triggered by hypoxia and reactive oxygen species (ROS) is 

a third way of activation and is IKβ independent (Aivaliotis et al., 2012). Upon 

activation, NFκB dissociate from its inhibitor and translocate into the nucleus where it 

binds specific Igκ light chain enhancer region on DNA. This leads to the activation of 

B-lymphocytes as well as activation of other genes involved in cell survival and 

proliferation. Once the acute inflammation is controlled, the activity of the mediators 

subside and NFκB is inactivated through up-regulation of the inhibitor IKβ by NF-κB 

feedback inhibition (Hoesel & Schmid, 2013). 

In case of cancer, there is a continuous secretion of mediators and NFκB is 

persistently activated. High levels of NFκB are associated with activation of many 

genes involved in cell signaling. Studies showed NFκB to activate anti-apoptotic genes 

which helps cancer cells to avoid cell death. It also activates neutrophils to produce 

ROS leading to DNA damage and tumorigenesis. On the other hand, high levels of 

ROS can reciprocally activate NFκB through an atypical pathway, as mentioned 

above, producing a vicious cycle (Hoesel & Schmid, 2013). 

Continuously active NFκB in cancer contributes to the inactivation of tumor 

suppressor gene TP53 via RelA subunit. Many cancer cells are resistance to apoptosis 

mediated via cell receptors because of the over-expression of c-FLIP, a negative 
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regulator of death receptors. One of the target genes for activated NFκB is c-FLIP and  

NFκB can also up-regulate c-FLIP through the activation of MAPK and PI3K/Akt 

pathways, both leading to the inhibition of death signals through Fas, tumor necrosis 

factor receptor-1 (TNFR1) and other death receptors (Hoesel & Schmid, 2013). NFκB 

also induces genes from the inhibitor of apoptosis protein (IAP) family including 

XIAP, BIRC1, 2, 3, 5, 6, 7 and 8. These proteins hide the protein-protein interaction 

site on caspase substrates, hence, inhibiting apoptosis (Goldar et al., 2015). The 

function of NF-κB in cancer is summarized in Figure 1. 

 

Figure 1: Pro-tumor function of NFκB 

 

1.3.1.2 Acute Leukemia 

Acute leukemia is a blood cancer and is regarded as a group of disorders 

characterized by a clonal expansion of a hematopoietic cell type leading to disruption 

of normal proliferation and differentiation process of blood cell precursors. 
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Normal hematopoiesis involves a complex interaction between hematopoietic 

stem cells (HSC), the surrounding microenvironment, different growth factors and 

growth inhibitory molecules. 

1.3.1.2.1 Pathogenesis 

Hematopoietic SC (also known as pluripotent SC) are undifferentiated cells 

with special properties allowing them to self-renew and indefinitely replenish stem cell 

pool in addition of being able to differentiate to any of the more lineage committed 

cells. The majority of these cells are kept quiescent in G0 phase of the cell cycle by 

the action of transforming growth factor- β (TGF-β) which acts through the tumor 

suppressor protein p53 and cyclin-dependent kinase (CDK) inhibitor p21. The TGF-β 

is usually secreted by the surrounding stromal cells (Buga Corbu et al., 2014; 

Hoffbrand , Catovesky, & Tuddenham, 2006). There is a tight balance between the 

stimuli that controls SC renewal or differentiation. 

Under different influences of body requirements, SC can be stimulated to shift 

the balance towards differentiation to progenitor cells that have less self-renewal 

capacity and more differentiation potentials to multipotent SC. Further differentiation 

leads to a lineage commitment towards erythroid, megakaryocytic, eosinophilic and 

granulocytic/monocytic lineages.  

After final commitment, cells undergo maturation. Abnormal cells are detected 

and eliminated by the immune system through the process of apoptosis (see section 

1.3.3). 

As in any cancer, acute leukemia arises as a result of accumulation of multiple 

genetic abnormalities involving key cellular processes such as cell cycle, 



9 
 

 
 
 

differentiation, maturation, regulation of transcription, cell death (apoptosis) and 

intracellular signal transduction (Buga Corbu et al., 2014; Rubnitz & Inaba, 2012). 

Recent studies investigating the process of leukemogenesis revealed a complex 

interaction of different pathways as well as the bone marrow compartments. Although 

genetic alterations/mutations are considered a major factor for developing leukemia, 

they are not the only factors. Interaction with cellular epigenetic changes as well as the 

vital supportive contribution of the surrounding microenvironment are important in the 

process of transformation of a normal cell into a malignant one. 

The genetic alterations in acute leukemia are found to affect genes involved in normal 

leukocyte development (O'Brien, Morin, Ouellette, & Robichaud, 2011). Activation 

of an oncogene, silencing a tumor suppressor gene or production of a fusion gene that 

encodes a protein with a transcription factor or kinase receptor activation property 

(Mullighan, 2009). 

Broadly, the genetic alterations associated with acute leukemia can be 

classified based on the number and structure abnormalities of chromosomes, as listed 

in Table 1. 

Examples of oncogene activated mutations are:     

Translocation (12,21) 

This translocation t(12,21)(p13;q22) involves TEL gene on chromosome 12 

and the AML1 gene on chromosome 21 (Burg et al., 2004; Mullighan, 2012). TEL 

gene encodes a sequence-specific-DNA binding transcriptional regulator (from the 

ETS family) while AML1 is a transcriptional factor that binds specific DNA sequences 

inducing hematopoiesis development. The fusion resulting from the translocation 
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alters AML1 to a transcriptional suppressor causing disruption in normal lymphocyte 

development. The fusion gene also has the capacity to activate downstream JAK-

STAT signaling pathway leading to the promotion of self-renewal of B-lymphocyte 

progenitors.  

Classification Subtype Frequency 

Aneuploidy 

 

Hyperdiploidy 

Hypodiploidy 

20-30% 

1-2% 

Chromosomal Translocations t (12,21) 

t (4,11) 

t (1,19) 

t (9,22) 

t (17,19) 

t (8,14) 

15-25% 

1-6% 

2-6% 

2-5% 

1% 

1-2% 

Submicroscopic alterations PAX5 

IKZF1 

CRLFZ 

JAK1/2 

CREBBP 

2% (31% in B-cell ALL) 

15% of B-cell ALL 

2-5% 

5-7% of B-cell ALL 

1-7% 

Table 1:  Classification of common genetic mutations in ALL 

 

Translocation (4,11) 

MLL rearrangements: these include translocations involving the mixed lineage 

leukemia gene on chromosome 11 and multiple other genes on different chromosomes 

such as t(4,11), t(9,11) and t(10,11) as well as t(11,19) that is seen in T-cell ALL and 

carry a poor prognosis (Campos-Sanchez et al., 2011; Heerema et al., 2005). MLL 

rearrangement is also seen in AML. Since t(4,11)(q21;q23) accounts for 50% of all 

MLL rearrangements; it will be discussed in more details. MLL gene is important for 

hematopoeisis regulation through maintaining normal gene expression. It acts partially 

through HOX gene family. The MLL-AF4 translocation places MLL gene under the 
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activation of AF4 gene promoter which encodes a transcriptional factor leading to up-

regulation of HOX family proteins promoting a stem-cell like state of maturation. The 

HOX family proteins are involve in cell transformation and some of those proteins act 

by delaying cell differentiation. Other MLL rearrangements results in fusion proteins 

that affect the regulation of transcription leading to transcription deregulation (Bach et 

al., 2010).  

Translocation (9,22) 

Translocation (9,22)(q34;q11.2): is only seen in 3-5% of pre-B-cell ALL cases 

(Mullighan, 2012)  but is significant due to its association with poor prognosis and the 

development of targeted therapy. It results in the production of Philadelphia 

chromosome with BCR region on chromosome 22 being translocated to chromosome 

9. The BCR-ABL fusion gene encodes a novel protein with a tyrosine kinase (TK) 

activity. There are three fusion proteins produced from such translocation, depending 

on the breakpoint site within BCR region. A 190 kDa protein, mainly associated with 

ALL cases. Another two proteins of 210 kDa and 230 kDa seen in cases of chronic 

myeloid leukemia (CML) and acute myeloid leukemia (AML) respectively (Hunger, 

2011). This fusion protein activates multiple signaling pathways (such as 

Ras/Raf/MEK/ERK, JAK/STAT and SRC family of TK) (Brown, Seif, Reid, Teachey, 

& Grupp, 2008) leading to progression of cell through cell cycle and hence, the 

promotion of cell proliferation and adhesion.  

Sub-microscopic alterations: as mentioned before and from earlier studies, 

genetic abnormalities are detected in 75% of ALL cases. With the advancement in 

technology the remaining cases were found to harbor submicroscopic abnormalities 

that might play a role in the leukemogenesis of this subtype of ALL. Some of the 
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microscopic abnormalities include deletion of lymphoid transcriptional factors (such 

as PAX5, IKZF1, EBF1 and LEF1), tumor suppressor genes (NF1, PTEN, RB1 and 

ATM), abnormal regulation of apoptosis (BTG1), signaling molecules and DNA 

circulating nucleic acid (Mullighan, 2009). 

 PAX5 

The PAX5 oncogene from the Paired Box (PAX) family encodes an important 

transcription factor that is involved in B-cell differentiation (Thomas-Tikhonenko & 

Cozma, 2008). 

Studies have shown PAX5 expression to be low in early B-cells (pro-B and 

earlier stages) and the expression increased in pre-B cell stage, after which it is down- 

regulated in plasma cells (terminally differentiated B cells). From the expression 

pattern, it is clear that the PAX5 gene has a role in B-cell lineage commitment, 

differentiation and development (Campos-Sanchez et al., 2011). In normal B-cells, 

transcription from PAX5 is controlled by multiple factors including an upstream 

regulator (early B cell factor 1, EBF1) that mediates histone remodeling allowing 

access for PAX5 transcription (O'Brien et al., 2011). 

Epigenetic modifications are defined as changes that affect gene expression 

without a direct change or alteration to the DNA/gene sequence. These include DNA 

methylation and histone modifications such as acetylation and methylation. 

DNA methylation occurs on the pyrimidine nucleotide cytosine. The 

methylation at the promoter of the genes is usually associated with the repression of 

the gene and majority of gene are kept quiescent by this mechanism. In contrast, the 

methylation of the coding part of the gene leads to the activation of the transcription 
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(Gutierrez & Romero-Oliva, 2013). The methylations is facilitated by the enzymes 

DNA methyl transferase 1, 3a and 3b.  

DNA hypomethylation due either to defects in those enzymes or other factors 

have been shown to cause chromosomal instability and activation of oncogenes. 

Hypermethylation of the promoter regions of tumor suppressor genes was recorded to 

be associated with inactivation of these genes. A study to identify differences in DNA 

methylation in AML patients compared to normal hematopoietic cells showed a unique 

difference (Gutierrez & Romero-Oliva, 2013).  

As a general rule acetylation of histone is associated with gene activation while 

methylation causes gene repression. Histone acetyltransferase (HAT) and histone 

methyltransferase (HMT) are responsible of these changes. Mutations involving these 

enzymes have been seen in many acute leukemias as in case of t(8;16). The MLL 

mutations that are known to be associated with aggressive ALL as well as AML 

involves a mutation in the mixed lineage leukemia protein which is a HMT (Gutierrez 

& Romero-Oliva, 2013). 

Studies attempting to classify patients into risk groups and tailor treatment 

based on the epigenetic signature of the disease are ongoing and many epigenetic 

compounds are under investigation for possible use as a treatment option in acute 

leukemia (Gutierrez & Romero-Oliva, 2013). 

The concept of leukemia (cancer) stem cell and tumor reprograming in 

response to the close interaction with bone marrow cellular compartments/ 

microenvironment has been emerging recently highlighting the importance of this in 

the process of leukemogenesis (Gojo & Karp, 2014). It is well known that the behavior 
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of the hematopoietic stem cells is determined by its interaction with the surrounding 

cells as well as the different proteins in the extra cellular matrix (ECM), including 

cytokines, growth factors and adhesion molecules. 

The bone marrow consists of cellular and vascular parts. The cellular niche 

consists of the hematopoietic cells and the mesenchymal cells that supports the 

hematological components including osteoblasts, endothelia cells and neurons (Ayala 

et al., 2009). These are in contact with the ECM consisting of collagen, fibronectin and 

laminin. The vascular part functions as a boundary separating mature from immature 

cells. To demonstrate the importance of the microenvironment in the development of 

acute leukemia we will take the cytokine CXCL12 produced by the bone marrow 

reticular cells and vascular endothelial growth factor (VEGF) as examples.  

The chemokine CXCL12 and its receptor CXCR4 have shown to be crucial for 

cellular homing, it controls the migration of normal hematopoietic cells in the bone 

marrow(Ayala et al., 2009). It has been shown that this function is also demonstrated 

in both acute lymphoid leukemia and acute myeloid leukemia blast cells. The 

expression levels of CXCR4 on leukemia blast are usually increased in hypoxic 

environment (such as the bone marrow) and CXCL12 is activated through hypoxia 

inducing factor-1 and promotes blast cell survival through NFκB and JNK/AP-1 

pathways (Rashidi & Uy, 2015). 

As mentioned before, VEGF secreted from blast cells promotes angiogenesis 

and this enhances the recruitment of other growth factors and molecules into the 

surrounding microenvironment leading to the support of leukemia cell survival (Ayala 

et al., 2009).  
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Cross-talk between leukemic blast cells and the marrow endothelial cells also 

found to promote blast cell survival through changing the cellular expression of the 

proteins involved the apoptosis pathways (Ayala et al., 2009).    

1.3.1.2.2 Classification 

Broadly, acute leukemias are classified based on the stage of differentiation/ 

maturation arrest and the type of SC involved. Hence, acute leukemias are classified 

as acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML). 

These major groups are further sub-grouped based on details of morphology, 

immunophenotyping and cytogenetics. 

Previously, French-American-British (FAB) classification system was used. It 

is a purely morphological/cytochemical staining based system. For the diagnosis of 

acute leukemia it requires the presence of at least 30% of blast cells. If the blast cells 

are of lymphoid origin then they are further sub-classified to L1, L2 and L3 subtypes 

(Hoffbrand  et al., 2006). The morphological details are shown in Table 2 and Figure 

2. If the blast cells are of myeloid origin then the subtypes include M0 to M7 based on 

the degree of maturation (Buga Corbu et al., 2014; Hoffbrand  et al., 2006). Table 3 

demonstrates the morphological description of each subclass. 

Classification Morphology findings 

L1 Blast cells small, uniform, high nuclear to cytoplasm ratio 

L2 Blast cells larger, heterogeneous, lower nuclear to cytoplasm ratio 

L3 Vacuolated blast cells, basophilic cytoplasm (usually B-ALL) 

Table 2: French-American-British (FAB) classification of ALL 
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Figure 2: FAB classification of ALL. Based on morphology, A) L1, showing small 

blast cells with high N:C ratio. B) L2, the cells are larger with lesser N:C ratio. C) L3, 

shows basophilic cytoplasm with vacuoles. http://www.thecrookstoncollection.com 

 

Currently, the World Health Organization (WHO) classification is in-use and 

it lowered the blast percentage for the diagnosis to 20% and extended the former 

system to involve surface/cytoplasmic markers using immunophenotyping techniques 

and also molecular cytogenetic analysis of detected abnormalities. A more complex 

and detailed sub-classification of acute leukemia has been produced which was found 

to better correlate with prognosis (Khaled, Al Malki, & Marcucci, 2016). Table 4 

represents the recent revised version of the WHO classification system. 

FAB 

subclass 

Morphological description 

M0 MPO/SBB positive, blast cells<30% 

M1 MPO/SBB positive, blast cells≥30%, Mature cells≤10% 

M2 Blast cells 30-89% with granulocyte maturation in>10% 

M3 Promyelocyte maturation with strongly positive MPO/SBB and typical 

Auer rods.   

M4 Blast cells≥30% with granulocyte maturation≥20% and monocyte 

components≥20% 

M5 M5a) Blast cells≥30% with monocyte components≥80% and 

monoblast≥80% 

M5b) Blast cells≥30% with monoblasts<80% 

M6 Erythroid lineage cells≥50% of the bone marrow 

M7 Blast cells showing mainly megakaryoblasts features 

Table 3:  FAB morphological classification of acute myeloid leukemia. (MPO: 

myeloperoxidase, SBB: Sudan black B) 

 

http://www.thecrookstoncollection.com/
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WHO category Subclasses 

AML with recurrent genetic abnormalities AML with t(8;21) 

AML with inv(16) 

AML with t(15;17) 

AML with t(6;9) 

AML with inv(3) 

AML witht(1;22) 

AML with myelodeysplasia  

Therapy related myeloid neoplasms  

AML not otherwise classified AML minimally differentiated 

AML without maturation 

AML with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic/monocytic leukemia 

Acute Erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma  

Myeloid proliferation related to Down’s 

syndrome 

Transient abnormal myelopoiesis 

Myeloid leukemia associated with Down’s 

syndrome 

Blastic plasmacytoid dendritic cell neoplasm  

Table 4:  WHO classification of acute myeloid leukemia  

 

1.3.1.2.3 Incidence 

Acute lymphoblastic leukemia accounts for two-third of acute leukemias in 

children and young adults. Data from the national cancer institute showed acute 

leukemia to account for 30% of childhood malignancies (Moriyama, Relling, & Yang, 

2015) with ALL being the diagnosis in more than 60% of all hematological 

malignancies while AML accounts for 18% of the cases and is associated with more 

complex pathogenesis. In USA, there are 4000 cases diagnosed per year (Pui & Evans, 

2006).  

Eighty percent of pediatrics ALL are of pre-B cell ALL while T-cell ALL are 

around 10-15% of the cases (Mullighan, 2012; Pui & Evans, 2006). ALL in adults is 
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less common and the main diagnosis is AML in patients aged between 65-70 years 

(Buga Corbu et al., 2014; Nazha & Ravandi, 2014; Pui & Evans, 2006).  

In the UAE, cancer is the 3rd cause of death after cardiovascular diseases and 

trauma (mostly due to road traffic accidents) (Badrinath, Ghazal-Aswad, Osman, 

Deemas, & McIlvenny, 2004; Tadmouri & Al-Sharhan, 2008). Data from the ministry 

of health showed leukemia to be the 3rd most frequent cancer accounting for 8% of all 

cases but it is the most common among children accounting for 39.4% of childhood 

malignancies. ALL accounts for 23% of all hematological malignancies, while AML 

is diagnosed in 14% of cases and it is more common in females with male: female ratio 

of 1:1.23 in the years 1998-2001 (Tadmouri & Al-Sharhan, 2008). 

1.3.1.2.4 Diagnosis 

The diagnosis of acute leukemia depends on the clinical presentation 

suggestive of the disease as well as the confirming investigations. In the following 

section, a brief diagnostic plan and findings will be described. 

Symptoms at presentation include those of bone marrow failure such as fatigue 

and irritability due to anemia (Choi & Pai, 2003; Ek, Mellander, & Abrahamsson, 

2005), easy bruising due to thrombocytopenia and infections due to a relative 

neutropenia. Central nervous system (CNS) involvement can also occur mainly in 

ALL, causing headache, vomiting and cranial nerve palsies. Lymphadenopathy, 

hepatosplenomegaly and osteolytic bone lesions may be found on examination 

(Hoffbrand  et al., 2006; Hoffbrand  & Pettit, 1994). 

The diagnosis is usually confirmed by bone marrow examination showing 

replacement of normal hematopoiesis by blast cells of the malignant lineage. 
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Radiological studies are important to assess the extent of the disease, any 

complications, and to have baseline information about the patient’s physical condition 

before starting any treatment. Chest x-rays might show a mediastinal mass due to 

infiltration of malignant cells. Testicular ultrasound can be used to look for testicular 

involvement (in ALL). Echocardiogram and Electro-Cardiogram (ECG) are important 

to perform before the start of treatment with anthracyclines due to their potential 

cardiotoxicity. 

Bone marrow aspirate examination is mandatory for the diagnosis and 

classification. The microscopic examination of the aspirate will show a blast count of 

≥20% (typically 50% or more). 

Cytochemical staining of the BM aspirate cells is used to diagnose and broadly 

classify acute leukemia (Hoffbrand  & Pettit, 1994). The diagnosis is further refined 

by immunological phenotyping (Bain, Clark, & Wilkins, 2010).  

Incorporating cytogenetics analysis in the diagnosis of acute leukemia has 

emerged due to its correlation with the prognosis (Hoffbrand  et al., 2006). Specific 

chromosomal abnormalities are associated with specific acute leukemia subclasses and 

these genetic abnormalities found to contribute largely to the disease behavior in terms 

of severity, response to treatment and risk of relapse (Jaffe, Harris, Stein, & Vardiman, 

2001). 

1.3.1.2.5 Prognosis 

It is vital in acute leukemia patients as in patients with other types of 

malignancies to be assigned into risk groups based on prognosis. This determines the 

possible cure rate and risk of relapse and help in better tailoring the treatment options. 
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Recent treatment protocols have taken into accounts the prognosis of patients 

in order to design the best treatment schedule in regards to drug types, doses and 

duration of treatment. 

The determination of the prognosis depends on many factors including; both 

clinical and laboratory findings. It was found that risk group stratification of patients 

with childhood ALL correlates well with the cure rate while it is less predictive of the 

outcome in AML (Liersch, Müller-Tidow, Berdel, & Krug, 2014). 

The diagnosis of ALL at 1-9 years of age with B-cell types is considered a good 

prognostic factor with better cure rates than those diagnosed before age of 1 year or at 

10 years and older. The white blood cell (WBC) count at diagnosis is another powerful 

factor with counts more than 50,000 cells/ml3 being associated with less cure chances. 

Females were observed to do better than males and hence, gender is also included in 

the prognostic list. ALL subtypes of good prognosis are Pre-B-Cell ALL, common-B-

Cell ALL and early Pre-B-Cell ALL achieving better cure rates than mature-B-cell 

ALL. Previously, diagnosis with T-cell ALL subtypes was considered a poor 

prognostic factor but with recent advances in treatment, its prognosis is as good as B-

cell ALL. The involvement of extramedullary organs such as central nervous system 

(CNS) and the testicles in boys is a high risk factor. Cytogenetic abnormalities with 

chromosomal aneuploidy and translocations are recently been found associated with 

the prognosis of the disease (Cooper & Brown, 2015; Hoffbrand  et al., 2006; Pui & 

Evans, 2006). Early response to treatment measured by minimal residual disease 

(MRD) detection techniques is also a powerful prognostic indicator, with some 

investigators considering it with the cytogenetic markers to be the two major factors 

affecting the disease outcome (Rubnitz & Inaba, 2012). 
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Using these multiple factors, pediatric ALL risk groups are divided into low, 

standard, high and very high risk groups while adults with ALL are grouped into either 

standard or high risk groups. AML risk stratification uses similar prognostic factors 

(Hoffbrand  et al., 2006). 

1.3.1.2.5 Treatment 

Childhood ALL is one of the successes of the chemotherapy era and has led to 

over 75-90% of children being cured of this once uniformly fatal malignancy (Kreis, 

Louwen, & Yuan, 2015; Mathisen, Jabbour, & Kantarjian, 2012; Silverman & 

Deitcher, 2013). However, there remains a 10-25% of children who will still die of 

their disease or the treatment side effects. There is a need to investigate other 

compounds with more potent effect for these high risk/treatment failing cases if we are 

to improve treatment in the future. Acute myeloid leukemia is less common in 

pediatrics age group but has lower cure rates. Survival rate in AML is about 55% in 

spite of intensive chemotherapy and hematopoietic stem cell transplantation. 

In adults, ALL is usually of poor prognosis with cure rates up to 40% due to 

the association with high risk cytogenetic alterations (Boissel & Sender, 2015; 

Mathisen et al., 2012; Pui, Mullighan, Evans, & Relling, 2012). 

The treatment options for ALL depend on the prognostic factors, as well as the 

involvement of extramedullary sites such as CNS. The treatment protocols consist of 

four main stages (2): induction therapy, CNS prophylaxis, intensification therapy and 

maintenance treatment. 

Current induction therapy consists of three to four main drugs including 

vincristine (to block mitosis), prednisolone (to block activation of AP-1 and NFkB 
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responsive elements), L-asparaginase (to starve leukemia cells of asparagine that, 

unlike other cells, they cannot synthesize) with or without anthracyclines (to inhibit 

nucleic acid synthesis and topoisomerase activity). It usually lasts 4-6 weeks and 

remission can be achieved in 95% of patients. 

Subsequently, CNS prophylaxis is used to prevent leukemia cells reaching the 

nervous system. That is a specific treatment aimed to cross the blood-brain barrier 

preventing leukemia cells seeding and eliminating any CNS disease. The CNS 

prophylaxis consists of cranial irradiation and intrathecal methotrexate. Alternative 

protocols include 3 intrathecal drugs (usually methotrexate inhibits dihydrofolate 

reductase), hydrocortisone and cytarabine (inhibits DNA synthesis) and no irradiation, 

to minimize toxicity and the risk of developing secondary brain tumors. The decision 

of the protocol depends on the clinical and prognostic status of the patient. 

Intensification therapy is used with the aim of eradicating any residual 

leukemia cells left soon after the induction of remission. The benefit of this therapy is 

seen in high risk patients. Different combinations of chemotherapy drugs are given 

including high dose methotrexate, cyclophosphamide, L-asparaginase, 6-

mercaptopurine and cytarabine (Ara-C) (Pui & Evans, 2006).      

Maintenance therapy is continued for 2-2.5 years after induction treatment with 

the aim of ensuring that all leukemia cells are eradicated and minimize the risk of 

relapse (the return of the disease after treatment, i.e. failure to “cure”). 

High risk patients may be considered for allogenic bone marrow 

transplantation in their first remission. 
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Acute myeloid leukemia is more heterogeneous. Current treatment protocols 

rely on the molecular diagnosis.  Treatment also include an induction cycle, 

intensification and maintenance cycles. With the addition of anthracyclines and 

cytarabine in most of the recent treatment protocol has improved the survival rate to 

reach to 70% of the cases (Nazha & Ravandi, 2014). 

The ideal anti-cancer and more specifically anti-leukemia drugs should be 

targeting specific features of the tumor cells that are different from normal cells. In 

this way, normal cells are spared from being affected by the drugs and their side 

effects. 

One of the main tumor characteristics as discussed before is the high rate of 

proliferation which requires large amounts of amino acids to produce proteins for cell 

survival. Asparagine is an amino acid that is produced by the cells using the enzyme 

asparagine synthase. Small quantities of asparagine are sufficient for normal cells but 

not for tumor cells. Lymphoid cells showed to have limited capacity to produce 

asparagine and their high requirement of it makes it an essential component for cancer 

cell survival (Boissel & Sender, 2015). 

The introduction of L-asparaginase in the treatment of acute lymphoblastic 

leukemia deprives the blast cells from this amino acid. L-asparaginase hydrolyses 

asparagine into aspartic acid and ammonia. Initially it was extracted and purified from 

biological sources such as bacteria and plants, recently recombinant L-asparaginase is 

available. 

The enzyme has been modified to decrease its immunogenicity and prolong its 

half-life; pegylated asparaginase (PEG-Asp) is one of the successful modifications 
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(Moriyama et al., 2015). Studies have shown L-asparaginase to cause cell cycle arrest 

in leukemia cells at G1 phase and eventually induce apoptosis. Some AML cells were 

shown to over express mRNA of asparagine synthase and treatment with l-

asparaginase decreased its effectiveness. Asparaginase is also associated with decrease 

in plasminogen and anti-thrombin levels. Although high proliferation rate and 

asparagine dependence are features of leukemia blast cells, asparaginase is not specific 

and other normally highly proliferating cells are affected by the treatment. Side effects 

of asparaginase include allergic reactions, vomiting, hyperlipidemia, pancreatitis, 

immune suppression consisting of neutropenia but the most serious and major side 

effect is hypercoagulability and thrombosis. Thrombosis can affect different organs 

and lead to cerebral thrombosis, myocardial ischemia, renal dysfunction and acute 

liver injury (Verma, Kumar, Kaur, & Anand, 2007). 

Vincristine is another chemotherapeutic drug that is used for the treatment of 

ALL, AML and many solid tumors. It is a vinca alkaloid with anti-mitotic effects. It 

binds the β subunit of tubulin in the spindle apparatus during cell division in M-phase 

leading to cell cycle arrest and interference with chromosomal segregation (Mora, 

Smith, Donohoe, & Hertz, 2016; Silverman & Deitcher, 2013). As part of its anti-

cancer mechanism it binds other cellular microtubules and interferes with cellular 

transportation of molecules. Studies have shown vincristine to inhibit capillary 

formation and the secretion of VEGF in vitro. Vincristine action is not specific to 

cancer cells and it affects mitosis in normal cells as well. 

Vincristine has to be given intravenously, since it is not active if given orally 

and can be lethal if given intrathecally. It is metabolized in the liver using the normal 

cytochrome P450 pathway. This can affect its plasma concentration and dosing 
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schedule since it can interact with other drugs/compounds using the same metabolic 

pathways. It has a large plasma distribution volume and a long half-life. It distributes 

in normal tissues which makes its effect in tumor cells limited. 

The side effect of vincristine include hair loss, constipation and hyponatremia. 

It is teratogenic and the most serious side-effect is peripheral neuropathy (Moriyama 

et al., 2015). Vincristine binds to neuronal fibers leading to sensory, motor and 

autonomic neuropathies. As a consequence, patients can present with peripheral 

sensory loss, foot drop, decrease muscle power of upper as well as lower limbs and 

orthostatic hypotension. These neurological symptoms can be severe necessitating 

dose reduction and skipping of doses that can affect the treatment outcome. The 

neurological symptoms can start within a week of treatment and last for many years 

after stopping the drug. This side-effect can affect the quality of life as well as the 

effectiveness of the treatment (Mora et al., 2016). There is no effective treatment to 

protect or reverse vincristine induced peripheral neuropathy.   

Glucocorticoids such as prednisolone/hydrocortisone are incorporated in the 

treatment regimen of acute leukemia. Prednisolone binds glucocorticoid receptors and 

translocate into the nucleus binding to steroid response element and 

activates/suppresses different genes through the interaction with activated protein-1 

(AP-1) and NFκB. It can lead to cell cycle arrest and apoptosis. It’s known anti-

inflammatory effects also add to its anti-leukemia properties. It crosses the blood brain 

barrier which makes it suitable for CNS prophylaxis/treatment. 

The side-effects of prednisolone include infections, osteonecrosis, osteopenia 

and fractures as a consequence. It also causes steroid induced psychosis, 
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hypogammaglobulinemia and proximal myopathies. The side-effects are dose and 

duration dependent (Inaba & Pui, 2010). 

Treatment being non-specific for leukemia blast cells and affect other normally 

highly proliferating cells such as the gastrointestinal tract, the respiratory system and 

the skin. Drugs used in the treatment regimens of acute leukemia are mostly toxic 

causing immediate as well as longer term complications. These unwanted effects may 

either resolve with discontinuation of the drug or manifest themselves as long-term 

effects with more permanent end organ damage, affecting the patient’s quality of life.  

Naturally available compounds with medicinal properties such as anti-cancer/ 

anti-leukemia properties might be an alternative options for the treatment of such 

diseases with reduced side effects, lower toxicities and perhaps lower costs of 

treatment.  

1.3.2 Frondoside A 

Sea cucumbers, scientifically known as ‘Holothuroidea’ are echinoderms, 

living deep on the floors of the oceans (Menchinskaya, Pislyagin, et al., 2013; 

Wijesinghe, Jeon, Ramasamy, Wahid, & Vairappan, 2013). Their shape ranges from 

spherical to elongated cucumber like, hence, the name. Cucumaria frondosa is one of 

the species from the Cucumaria genus, cucumariidae family in the dendrochirotida 

order of the holothuroidea class. It is one of the largest sea cucumbers (Figure 3) and 

the most common type in New England, it is also abundant in the North Atlantic Ocean 

and Russia's Barents Sea. Cucumaria frondosa is harvested, dried and processed using 

segmented chromatography to extract multiple biologically active components 

(Aminin et al., 2008; Bordbar, Anwar, & Saari, 2011). Many of which have been 
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investigated for different possible pharmacological functions including anti-

inflammatory, anti-bacterial and immune-modulatory functions (Aminin et al., 2008; 

Janakiram, Mohammed, & Rao, 2015)  as well as its anticancer effect in different types 

of cancer. 

 

 

 

 

Figure 3:  Cucumaria frondosa from the deep Atlantic Ocean 

 

Frondoside A is a soluble triterpenoid glycoside, extracted from the skin of 

Cucumaria frondosa. Different natural products extracted from sea cucumbers have 

been used as dietary supplements (Al Marzouqi et al., 2011; Janakiram et al., 2015) 

and as traditional remedy in old Chinese medicine (Li , Himaya, & Kim, 2013). Yet 

there have been 14 biologically active glycosides extracted from C. frondosa. Other 

forms of triterpenoid glycosides are available from other types of sea cucumbers and 

have some structural differences compared to frondoside A, these forms include 

holothuria A2-2, holothuria A4-2 and holothuria A7-1 (Park , Bae, Kim, Stonik, & 

Kwak, 2014). 

Structurally, frondoside A consists of a pentaoside with one sulfate group 

(Menchinskaya, Pislyagin, et al., 2013). It has an aglycone steroid back bone with a 

xylose attached as a 3rd monosaccharide residue, 3-O- methylglucose as a terminal 
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monosaccharide and an acetoxyl group at C-16 of the aglycone ring (Janakiram et al., 

2015; Jin et al., 2009; Menchinskaya, Pislyagin, et al., 2013; Park  et al., 2014; 

Silchenko et al., 2008). Figure 4 shows the structure of frondoside A.  

Most anti-cancer therapies available target one or more of the malignant 

hallmarks; interfering with cancer cells’ survival. Studies have shown frondoside A to 

target multiple cancer cells characteristics making it an interesting potential compound 

to be used in cancer therapy. These studies are summarized in Table 5.   

 

 

 

 

 

 

Figure 4:  The chemical structure of frondoside A 

 

1.3.2.1 Cancer growth inhibition, anti-proliferation and pro-apoptosis properties 

Frondoside A inhibits cancer cell growth via different mechanisms. It causes 

decrease cell viability in many cell lines including human LNM35 lung cancer cells in 

a dose dependent manner. Lung cancer growth suppression by frondoside A was also 

tested in vivo in mice injected with this compound alone, cisplatin or combination of 

both and low concentration of frondoside A (10 µg/kg/day) caused significant decrease 

in tumor weight and volume (P < 0.05). Frondoside A in this study showed to enhance 
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the effect of cisplatin and treated animals showed no side effects in term of behavioral 

and body weight changes post treatment (Attoub et al., 2013). 

Another study on athymic mice injected with two types of aggressive human 

pancreatic cancer cell lines AsPC-1 and S2013 showed that combination of the 

standard treatment (gemcitabine) with frondoside A has statistically higher 

suppressive effect on cancer growth measured by tumor volume and tumor weight than 

each compound given alone. Activation of caspase-3 detected by 

immunohistochemical examination of the tumor developed in xenograft, showed 

marked apoptosis in the treated groups compared to controls. Those treated with 

combination therapy showed significantly higher apoptosis rates. In this study it was 

suggested that decrease tumor growth is mainly due to the activation of apoptosis 

pathways by both compounds (Al Shemaili et al., 2014). Frondoside A was also found 

to enhance the effect of paclitaxel in human breast cancer MDA-MB-231 xenograft. 

Treatment of MDA-MB-231 xenografts with intraperitoneal frondoside A (100 μg/kg) 

daily for 24 days significantly decreased the tumor volume and weight (p < 0.001 and 

< 0.01, respectively). There was no toxicity recorded in terms of changes in blood 

counts, creatinine level and liver enzymes post treatment (Al Marzouqi et al., 2011). 

Furthermore, a study that aimed at investigating the antigrowth effect of salinomycin 

on MDA-MB-231 cell lines demonstrated an enhanced effect of salinomycin when 

combined with 1.0 μM frondoside A measured by CellTiter-Glo luminescence assay 

(Al Dhaheri et al., 2013).  

Frondoside A found to increase the expression of cyclin dependent kinase 

inhibitor; p21 independent from p53 (Li   et al., 2008). 
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Type of 

study 

Cancer 

type 

Cells/animal 

model 

Major finding Ref 

 In vitro 

 

 

 In vivo 

Breast  Human MCF-10A 

  MDA-MB-231 

 

Athymic NMRI 

nude mice 

 Decrease cell viability 

 Induce apoptosis via activation of 

caspase3/9/8 

 Increase p53 expression 

 Impaired cell migration and 

invasion 

 Enhanced the effect of paclitaxel 

 Decrease tumor volume 

 No change in CBC/LFT 

51 

 In vitro 

 

 In vivo 

Pancreas Human AsPC-1, 

S2013 

Athymic xenograft 

mice 

 Decrease cell viability 

 Enhances the effect of gemcitabine 

 

 Decrease tumor volume and wieght 

52 

 In vitro Leukemia Human HL-60, 

NB4, THP-1 

 

 Induces apoptosis via activation of 

caspase 3/8 after 6h treatment. 

 No change in mitochondrial 

membrane potential. 

 Treatment with caspase 3 inhibitor 

blocked apoptosis but not caspase 8 

inhibitor 

54 

 In vitro 

 

 

 In vivo 

Lung  Human LNM35, 

A549, NCI-H460-

Luc2 

NMRI nude mice 

 Decrease cell viability 

 Activates caspase3/7 

 Decrease cell migration and 

invasion 

 Decrease tumor volume and weight 

 Decreased capillary-like structures 

 Enhanced cisplatin activity 

 No change in mice weight or 

behavior and no signs of toxicity 

56 

 In vitro 

 

 

 In vivo 

Pancreas Human AsPC-1 

 

Athymic mice 

(BALB/c nu/nu) 

 Decrease cell proliferation 

 Induce apoptosis via activation of 

caspases 3/7/9 

 Decrease Bcl-2 and Mcl-1 and 

increase Bax 

 Increase p21 expression 

 Decreased tumor volume and 

weight 

57 

 In vitro Breast  MDA-MB-231  Enhance the inhibitory effect of 

salimomycine on cell viability 

58 

 In 

vitro 

Breast  Human MDA-MB-

231 

 Inhibit TPA-induced colony 

formation 

 Inhibit MMP-9 

 Inhibit cancer migration and 

invasion though PI3K/Akt/ERK 

pathways   

61 

Table 5:  Studies investigated the anti-cancer effects of frondoside 
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Type of 

study 

Cancer 

type 

Cells/animal 

model 

Major finding Ref 

 In vitro 

 

 

 

 

 In vivo 

 

Prostate PC3, Du145, VCaP, 

22Rv1, LNCaP 

 

 

Human xenograft 

models of PC3 and 

Du145 

Du145 

xenotransplants  

 Decrease cell viability, proliferation 

and colony formation 

 Cell cycle arrest in PC3 at G2/M phase 

 Induce caspase-dependent apoptosis in 

Du145 but caspase-independent in 

other cell lines 

 Pro-apoptosis and anti-apoptosis 

protein expression changes 

 Inhibit autophagy 

 Inhibit growth of subcutaneous tumor 

 Decrease cell metastasis to the lung in 

PC3 model 

 Increase spleen size, lymphocytosis 

and monocytosis 

 No side effects detected 

60 

 In vivo Murine 

mammary 

tumor 

Balb/cByJ mice 

with 410.4, 66.1 and 

67 cell lines 

 Decrease tumor colony formation 

 Inhibit metastasis in NK cell dependent 

manner 

 Restore NK cell capacity for IFN-γ 

production 

 Antagonize EP4 receptor 

62 

 In vitro 

 

 

 

 In vivo 

Breast  Murine mammary 

66.1 line 

 

 

Balb/cByJ 

syngeneic female 

mice 

 High concentration block EP2-

mediated cAMP activation 

 Inhibit ERK1/2 in a dose dependent 

manner 

 Pretreatment of the cell lines before 

injecting to the mice reduced 

metastasis to the lung 

 Treatment of the mice with frondoside 

A 50μg/kg decreased the metastatic 

potential but didn’t affect the tumor 

size 

63 

 In vitro 

 

 In vivo 

Breast  Murine mammary 

66.1, 410.4, 67, 410 

& human MDA-

MB-231, SKBR3, 

MCF7 

Balb/c/SCID mice 

 Decrease mammosphere size by 

antagonizing EP4 but not size 

 Decrease expression of CD44 

65 

 In vitro  Mice Ehlich 

carcinoma ascites 

cells 

Inhibit multidrug resistance via blocking P-

glycoprotein pump 

68 

 In vitro Lung Human A549 cell 

line 

 Inhibit PAK1-dependent cell growth 

 Direct inhibitor of PAK1 

102 

 In vitro 

 

 

 

 In vivo 

Pancreas Human AsPC-1, S2-

013 

 

Athymic AsPC-1 

xenograft 

 Inhibit cell growth 

 Frondoside A more potent than 

frondoside B 

 Ip rout decrease tumor volume 

 Iv bioavailability is longer than ip rout 

 Oral administration id ineffective 

 No reported SE after 1 month treatment 

with frondoside A 100µg/kg/day 

129 

Table 5 (continued): Studies investigated the anti-cancer effects of frondoside 
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In vitro testing on human prostate cancer cell lines (PC-3, DU145, VCaP. 

22Rv1 and LNCaP) revealed frondoside A to cause reduction in cell viability and 

colony formation ,with androgen sensitive tumor cell line to be more sensitive to 

frondoside A (IC50 ranged from 0.5 to 2 μM).  

It is worth mentioning that the effect of frondoside A was very much lower in 

the control cell lines compared to the cancer ones at similar concentrations (Dyshlovoy 

et al., 2016). The same study has demonstrated cell cycle arrest in response to the 

treatment at 48 h treatment duration in PC-3 cell line but not DU145. 

In vivo testing confirmed the in vitro results with significant tumor growth 

inhibition in xenograft models. Again the study reported no side effects in term of 

stable hemoglobin and platelet count. No change in mice weight was observed and no 

signs of distress during the treatment. In this study the spleen was reported to be 

enlarged with higher concentration treatments. Lymphocytosis and monocytosis were 

seen in the treated group and this can be explained by the immune modulatory effects 

of frondoside A (Aminin et al., 2008).  

Multiple Studies have shown its pro-apoptotic effect to be mediated via 

decrease expression of anti-apoptotic proteins from the Bcl-2 family and increase in 

the pro-apoptotic proteins expression (Li   et al., 2008). In general, frondoside A was 

found to activate the cysteine-aspartic proteases caspase 3/7 and 9 in multiple cancer 

cell lines (Attoub et al., 2013; Dyshlovoy et al., 2016; Jin et al., 2009; Li   et al., 2008).  

X. Li (2008) and colleagues demonstrated its effect in suppressing cancer cell 

proliferation in AsPC-1 and S2013 human pancreatic cancer cell lines and inducing 

apoptosis demonstrated by increased annexin V positive cells after treatment with 
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different concentrations of the compound. Proteins extracted from treated cells were 

analyzed by western blot and showed increased bands corresponding to the active 

forms of caspases-3,-7 and -9. The activation of the apoptotic pathway was suggested 

to be p21 dependent (Li   et al., 2008). Treatment of human estrogen receptor negative 

breast cancer cell lines (MDA-MB-231) with different concentrations of frondoside A 

for 24 hours showed higher expression levels of p53 which was dose-dependent and 

this was associated with increase in caspase-3/7 and 9 activity as well as caspase 8 to 

a lower extent. In his study, blocking caspase 3 with specific inhibitor was associated 

with absolute inhibition of apoptosis in the treated cells. This again confirms the 

caspase dependent apoptosis induced by frondoside A in these cell lines (Al Marzouqi 

et al., 2011). In human lung cancer cell lines LNM35, A549 and NCI-H460, apoptosis 

has been confirmed by increase cell population in sub-G1 fraction and was also 

mediated by the activation of the same caspases (Attoub et al., 2013).  

Protein analysis from human breast cancer cell lines treated with the compound 

showed decrease in anti-apoptotic proteins; Bcl-2 and Mcl-1 with increase in pro-

apoptotic proteins such as Bax. Frondoside A was also found to activate p53 in these 

cell lines (Park  , Kim , Kim , & Lee 2012). 

One study conducted in human myeloid leukemia cell lines including HL-60, 

NB-4 and THP-1 showed that apoptosis was induced in these cells after treatment with 

frondoside A in a dose and time dependent manner. Significant decrease in pro-

caspases 3 and 7 expression on western blot and increase in cleaved caspase 3 and 7 

was detected after 6 h of treatment. A corresponding change was seen in poly ADP 

ribose polymerase (PARP) cleavage. In this study, no change in mitochondrial 

membrane permeability was detected when HL-60 cells were treated and the level of 
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cytoplasmic cytochrome c didn’t change which is essential for the activation of the 

intrinsic apoptosis pathway. To further investigate this, the author used different 

caspase inhibitors along with frondoside A treatment and observed only partial 

inhibition of apoptosis. Similar experiments were conducted on other sea cucumber 

glycosides (holothuria A2-2 and A2-4) and complete block of apoptosis was detected 

with the use of the caspase inhibitors (Jin et al., 2009). From this study, it was 

concluded that frondoside A might activate apoptosis, at least initially, in a caspase 

independent manner and alternative pathways may be involved.   

Dyshlovoy et al. (2016) showed that apoptotic pathways activated in prostate 

cancer in response to the treatment with frondoside A were cell-type specific. In his 

study, apoptosis was caspase-dependent in DU145 cell line and caspase-independent 

in PC-3 and LNCaP. Protein expression analysis on western blot showed down-

regulation of anti-apoptotic proteins such as Bcl-2. Up-regulation of the pro-apoptotic 

protein PTEN was only demonstrated in the caspase-dependent cell line. All cell lines 

showed up-regulation of p21 which confirms the compound’s effect on cell cycle 

control. Interestingly, frondoside A treatment showed inhibition of survival autophagy 

in those prostate cancer cell lines (Dyshlovoy et al., 2016).  

1.3.2.2 Anti-invasive and anti-metastasis properties 

Frondoside A has demonstrated its effect on inhibiting cancer cell invasion by 

decreasing the intracellular expression of matrix metalloproteinase 9 (MMP 9) which 

plays a vital role in breaching the extra cellular matrix (ECM) allowing cancer cells to 

invade adjacent tissue including blood vessels and lymphatics; hence promoting cancer 

metastasis. This inhibition is mediated through inhibition of PI3k/AKT, ERK1/2, p53 
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MAPK pathways. Frondoside A also increases the level of tissue inhibitor of 

metalloproteinase (TIMP 1 &2) (Park   et al., 2012).  

Frondoside A was found to inhibit AP-1 and NFκβ that are needed to bind the 

promoter region on MMP gene for activation (Park   et al., 2012). This effect was 

demonstrated in breast and lung cancers by wound healing and matrigel invasion 

assays (Al Marzouqi et al., 2011; Attoub et al., 2013). In lung cancer, the anti-invasive 

effect was seen at low concentrations of frondoside A, so the author suggested that it’s 

a specific effect on cell migration and not because of the decrease cell viability as a 

result of compound’s cytotoxic effects (Attoub et al., 2013). 

A study on breast cancer metastasis has shown that pretreatment of breast 

cancer cells with frondoside A before injecting to mice models has led to 30% decrease 

in the tumor metastatic colonies to the lung but it didn’t reach clinical significance 

(Holt, Ma, Kundu, Collin, & Fulton, 2012). In another study the decrease in lung 

metastasis from human 66.1 breast cancer cell line has been confirmed. Injecting 

syngeneic Balb/cByJ mice with cancer cells that has been pretreated with 1.0 μM 

frondoside A significantly suppressed the number of lung metastasis colonies (p < 

0.0001) although the direct systemic treatment of the breast cancer mice model with 

frondoside A in the same study did not reach clinical significance of < 0.05 (p = 0.06). 

The mechanism of metastasis inhibition involved in such models was further 

investigated. Ma et al (2012) showed decrease cAMP generation and hence blockage 

of ERK1/2 pathway in cells treated with frondoside A as it antagonizes the effect of 

prostaglandin E-2 (PGE-2) (Ma, Kundu, Collin, Goloubeva, & Fulton, 2012). Breast 

cancer cells were also found to inactivate natural killer cells migration and cytokine 

release via PGE2 receptor 4 (EP4). Since frondoside A has been shown to antagonize 
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EP4; treatment with low doses were able to restore the function of the NK-cells which 

added to its contribution to the decrease in metastatic potentials (Holt et al., 2012). 

Prostate cancer metastasis to the lung in xenograft models were found to be 

significantly reduced with the treatment of frondoside A (Dyshlovoy et al., 2016). 

1.3.2.3 Anti-angiogenic properties 

A recently published data showed frondoside A to have an additional anti-

angiogenic properties in lung cancer LNM35 xenografts, where it significantly 

inhibited angiogenesis in chick chorioallantoic membrane assay as well as vascular 

tube forming assay. The study has shown suppression of basic Fibroblast Growth 

Factor (bFGF) induced new blood vessel formation by frondoside A when used in non-

toxic concentrations which confirms that the observation of reduced vascularity in the 

tumor is due to specific compound effect and not due to cell apoptosis and death 

(Attoub et al., 2013). This property might be contributing to its effect in reducing 

cancer growth and metastasis, since the blood supply is vital for cell growth and can 

be a mode of influencing distant metastasis (Jia, Zhang, Yuan, & Huang, 2005). 

Administration of the compound in xenograft lung cancer model showed decrease 

microvessel density by decrease expression of (CD31/PLT) on immunohistochemistry 

stained sections from the tumor tissue (Attoub et al., 2013). 

1.3.2.4 Effect of frondoside A on cancer stem-like properties 

Cancer stem cells are thought to determine the behavior of the tumor including 

metastasis, relapse, treatment resistance and it is thought that these cells are 

responsible for cancer growth. Breast cancer stem cells are characterized by the 

expression of Csf-1, CSF-M, c-met, CXCL12 and CD44 cell markers. A study aiming 
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at investigating the effect of COX-2 pathway and PGE2 role in breast cancer by 

blocking prostaglandin E2 receptor 4 (EP-4) either by shRNA or frondoside A which 

acts as EP-4 antagonist has shown reduction in these stem cells (monitored by the 

markers’ expression) and concomitant decrease in tumor growth and metastatic 

potentials to the lung. This effect was demonstrated in different murine mammary 

tumor cell lines including MMT 66.1, MMT 410.4, MMT 67and MMT 410 as well as 

the human breast cancer cell lines MDA-MB-231, SKBR3 and MCF-7. Mammosphere 

formation was assessed after blocking EP-4 and showed decreased stem cell frequency 

(P < 0.018). At high doses of frondoside A, the size of the mammospheres were smaller 

but the number of the mammospheres formed in MDA-MB-231 cell lines didn’t 

decrease. This was associated with decreased expression of CD44 (Kundu et al., 2014). 

1.3.2.5 Effect of frondoside A on multi-drug resistant cancer 

A major issue that is faced in the field of cancer therapy is the evolution of 

cancer cells to develop drug resistance. There are different mechanisms by which 

cancer cells become insensitive to the treatment; these include cancer cells altered 

metabolism of the drug, inactivation of the drug by the detoxification system in the 

body and over expression of P-glycoprotein transporter (Kapse-Mistry, Govender, 

Srivastava, & Yergeri, 2014; Kuete & Efferth, 2015). This is a trans-membrane pump 

that causes efflux of substances from the intracellular space. Frondoside A extracted 

from a different sea cucumber strain (Cucumaria okhotensis) was found to inhibit this 

pump in multidrug resistant (MDR) Ehrlich cancer cells extracted from ascetic fluid. 

The cells were injected with a diffusible fluorescent probe attached to calcein. 

Resistant cancer cells will pump the calcein out of the cell and hence, will have less 

intracellular fluorescence detection. Cells treated with sub-cytotoxic concentrations of 
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frondoside A (range 0.001-0.1 μg/ml) or its complex with cholesterol showed 

increased levels of fluorescence inside the treated cells indicating the inhibition of P-

glycoprotein (Menchinskaya, Aminin, et al., 2013). This might suggest an additional 

function of frondoside A as an option to use in MDR cancers.  

1.3.2.6 Immunomodulatory properties 

A study investigating the immune-stimulatory effects of frondoside A on 

mouse peritoneal macrophages after the treatment with sub-toxic concentrations has 

shown that it increases macrophage lysosomal number, size and activity measured by 

acridine orange fluorescence assay after one day of treatment. The maximum 

stimulatory effect was seen at day 4-5 post-treatment.  

Phagocytosis of fluorescein isothiocyanate FITC-labeled bacteria was 

increased in macrophages treated with 0.0001-0.01 μg/ml of frondoside A. The study 

also showed increase ROS production in those cells tested by rhodamine production. 

Using higher (cytotoxic) concentrations of frondoside A in these experiments were 

associated with immune suppressive effects. 

Frondoside A treated animals demonstrated a mild increase in antibody 

production (p < 0.05) (Aminin et al., 2008). Another study on prostate cancer 

xynografts has also shown enlarged spleen size in the treated group which might also 

indicate its immune stimulatory effects (Dyshlovoy et al., 2016). 

1.3.2.7 Suggested mechanism of action 

Frondoside A is thought to interact with the cell membrane leading to an 

increase in membrane permeability and hence, membrane lyzing (Aminin et al., 2008; 

Park  et al., 2014). It was found that the sulfate group attached to C-4 of the xylose 
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contributes to the enhanced frondoside A activity  (Kalinin, 2000; Park  et al., 2014) 

and for the immune stimulatory effect, compounds with lower number of sulfate 

groups have higher activity (mono-sulfate compared to di- and tri-sulfate) (Aminin et 

al., 2008). Intracellular calcium concentration was also found to be enhanced by the 

number and position of the sulfate group and it contributes to the variable functions of 

different extracts from sea cucumbers (Janakiram et al., 2015).  

The structure of frondoside A highly contributes to its functional efficacy as a 

pro-apoptotic and cytotoxic agent. Treatment with similar concentrations of 

frondoside A decreased the leukemia cell line HL-60 viability after 24 h more than the 

holothuroid glycosides A2-2 and A4-2. Apoptosis measured by annexin V was detected 

in cells treated with 1 μM frondoside A compared to 5 μM need for similar effect to 

be seen when treated with the glycosides A2-2 and frondoside A4-2 (Jin et al., 2009).  

This confirms the importance and the relation between the structure and the function 

of the extract. Figure 5 summarizes the suggested mechanism of action of frondoside 

A. 

 

Figure 5: Anti-cancer properties of frondoside A 
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1.3.3 Cell Cycle 

Living cells are classified as somatic cells and germline cells. Somatic cells 

have a complete set of chromosomes (e.g. 46 chromosomes in humans) and form the 

multicellular organism while germ cells produce the gametes with a haploid number 

of chromosomes. These gametes are specific for reproduction. 

Cells undergo division to serve the purpose of growth, tissue repair and 

replacement of dead cells. All cells divide by passing through a specific, highly 

regulated cell cycle.  

Somatic cells divide by mitosis to produce 2 identical diploid cells that are an 

exact copy of the mother cell. On the other hand, germline cells divide by meiosis to 

produce germ cells with half the number of chromosomes from the mother cell. 

Cell cycle is a process of 4 phases (Figure 6). G1: is the gap 1 phase where 

cells that are triggered to divide grow in size and increase synthesis of proteins required 

for the next step. Also during this phase, chromosomes undergo a check to make sure 

that DNA to be replicated is free of damage. The S phase: is the DNA synthesis phase 

where DNA strands are replicated. G2: is the second gap phase where the newly 

synthesized DNA is checked for accuracy. Proteins that are needed for the next step 

are also synthesized at this stage.  M: is the actual cell division (i.e. mitosis) which 

consists of mitosis and cytokinesis.G0, is a term used to describe cells that are viable 

but not replicating anymore (resting or senescent). 

Many proteins are involved in the control and regulation of cell cycle and these 

proteins are encoded by genes that will be discussed further in the following sections.  
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Figure 6: Cell cycle stages and checkpoints 

 

Cell cycle is a highly regulated process (Kreis et al., 2015) by two main 

molecules; cyclins and cyclin dependent kinases (CDK). These kinases control cell 

cycle progression through phosphorylating/ dephosphorylating different targets. They 

have limited kinase activity on their own and get activated when binding to their 

specific cyclin forming cyclin/CdK complexes. An example of how these complexes 

control cell cycle, if a growth stimuli binds to a tyrosine kinase receptor of a cell in G1 

phase, it signals the cell to inter the cell cycle for mitosis, this activates a cascade of 

signal transducers such as Ras, Raf, MAP and ERK leading to the accumulation of 

cyclin D which binds CdK4 forming a complex that becomes phosphorylated by CdK 

activating kinase (CAK) (Benada & Macurek, 2015), once phosphorylated, the 

complex is capable of phosphorylating the tumor suppressor, retinoblastoma protein 

(Rb) which releases the transcription factor E2F. This transcription factor enters the 

nucleus and binds the promoter region of DNA to activate genes involved in the 

production of other proteins required for cell cycle progression (Gartel & Tyner, 2002). 

Cyclin E/Cdk2 also act at this point (G0/G1) to ensure that the cell is ready to enter 

cell cycle. Another example is at M-phase where cyclin B gets phosphorylated 
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inhibiting its transport out of the nucleus, cyclin B accumulates and binds CdK1 

forming a complex that gets phosphorylated by CAK and also activated by CdC25A 

phosphatase that removes an inhibitory phosphate from the active substrate binding 

site. Cyclin B/CdK1 triggers the breakdown of the nuclear membrane driving the cell 

into mitosis.  

Cell cycle is controlled at 4 main checkpoints. First restriction point is at G0/G1 

transition. The second checkpoint is at S phase (DNA damage check). The DNA 

replication checkpoint at G2 ensures that replication has been completed accurately 

(Shapiro & Harper, 1999). The final checkpoint is in M-phase to make sure proper 

chromosome attachment to the spindle is achieved, if not, aneuploidy may result. 

Cyclins and CdK are also involved at these check points. At the G1/S DNA damage 

check point, a protein called ataxia telangiectasia and Rad3 related (ATR) senses DNA 

damage and leads to the activation of Chk1 kinase which phosphorylates the 

phosphatase Cdc25A, this signals the phosphatase to destruction leading to the 

inactivation of CdKs (Benada & Macurek, 2015). At this point, another protein, ataxia 

telangiectasia mutant (ATM) encodes Ser/Thr kinase that gets activated in response to 

dsDNA damage, ATM leads to cell cycle arrest at G1/S phase as well as G2/M phase 

and activates DNA repair pathways or apoptosis, depending on the extent of damage 

and repair possibilities (Rossi & Gaidano, 2016). It also stabilizes the tumor suppressor 

protein p53 (Benada & Macurek, 2015). 

Cancer develops due to defect in specific genes that function to prevent such 

events. These genes are classified as caretaker, landscaper and gatekeeper genes 

(Soussi & Wiman, 2015). Caretaker genes encode proteins that stabilizes the genome 

integrity while landscaper genes encode proteins that once cancer develops, they 
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provide the growth support and the proper stromal environment. The gatekeeper genes 

such as TP53 encode proteins that prevent the growth and proliferation of genetically 

abnormal cancer cells and hence, preventing cancer cell survival. 

The p53 protein is encoded by TP53 gene located on chromosome 17 (17p13.1) 

(Hollstein & Hainaut, 2010; Saha, Kar, & Sa, 2015). The gene has several promoters, 

multiple splice sites and alternative translation initiation sites leading to the 

transcription of at least 10 isoforms all with similar DNA binding domain but different 

N and C- terminus. The gene also contains regulatory element (RE) for many 

molecules such as AP1 and NFκB both suppress p53 promoter decreasing its 

transcription hence, inhibiting apoptosis while HOXA5 when bound to its RE at the 

promoter site, it induces the expression of p53 leading to activation of apoptosis 

(Hollstein & Hainaut, 2010). 

The protein is 393 amino acid long consisting of 4 main domains; an N- 

terminus that has the trasactivation domain, proline rich domain, DNA binding domain 

and C- terminus with its tetramerization domain. The protein p53 has a complex 

structure that highly correlates with its complex variable function and its functional 

structure consists of a homotetramer.  

The protein belongs to a family of transcriptional proteins with two other 

members; p63 and p73. The protein p73 shares common structural features to p53 and 

get activated by similar signals of cell stress and can initiate apoptosis (Mantovani, 

Zannini, Rustighi, & Del Sal, 2015; Saha et al., 2015; Soussi & Wiman, 2015). The 

gatekeeper gene, TP53 has a major role as a tumor suppressor gene. It regulates cell 

cycle, maintain genetic integrity, involved in DNA repair pathways, initiates cell 

apoptosis, autophagy, endocytosis, angiogenesis, inflammation and cell differentiation 
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(Hollstein & Hainaut, 2010; Leroy, Anderson, & Soussi, 2014; Mantovani et al., 2015; 

Rossi & Gaidano, 2016; Saha et al., 2015). It gets activated in response to DNA 

damage (as mentioned above), hypoxia, heat shock and other cell stress signals. 

Based on cell conditions and multiple other factors, p53 when activated can 

direct the cell to one of the following paths: cell cycle arrest and DNA repair, apoptosis 

or senescence. The protein p53 interacts with different pathways and undergo 

structural modifications leading to different cellular localization (nucleus, 

mitochondria or cytoplasm) where specific function can be initiated. Acetylation at 

certain positions on p53 can prolong its half-life (t1/2). 

As a guardian of the genome and a suppressor of excessive cell growth, in 

response to severe un-repairable DNA damage or telomerase shortening p53 interacts 

with different proteins to block cell proliferation and induce apoptosis. Stress like 

hypoxia leads to the accumulation of p53 in the mitochondria and this promotes the 

change in mitochondrial outer membrane permeabilization (MOMP). It also directly 

activates Bcl-2 associated X protein (Bax) and Bcl-2 antagonist/killer (BAK); the pro-

apoptosis proteins. The protein also activates the cyclin dependent kinase inhibitor p21 

to arrest cell cycle. 

Mutations of TP53 are the most common mutations in human cancers 

(Hollstein & Hainaut, 2010; Leroy et al., 2014; Mantovani et al., 2015). The type and 

frequency of the mutations are cell type and stage of cancer dependent. For example, 

TP53 mutations are less frequent in primary leukemias but very much detected in 

relapse cases. Such mutations are detected in 1-2% of childhood acute leukemia but 

seen in 19% of B-cell ALL and in 33% of T-cell ALL at relapse (Davies et al., 2011). 



45 
 

 
 
 

When p53 function is lost, cancer evolves with more genetic mutations due to the loss 

of the protective function of p53 at G1 check point. 

TP53 mutations in cancer can be classified based on the site of mutation as 

contact mutations; affecting the DNA binding site (accounting for > 90% of mutations) 

(Leroy et al., 2014; Soussi & Wiman, 2015) or structural mutations; affecting the 

protein stability and transport. They can also be classified as somatic leading to 

sporadic tumors or germline causing familial cancers. Mutations in p53 can be a 

resultant of defects in the gene or in the post translational modifications (PTM) process 

and the effecter pathways it interacts with. Frameshift mutations account for ~11% and 

lead to loss of p53 expression (null mutations) while silent mutations caused by single 

nucleotide variant may affect RNA splice sites and protein stability. Splice site 

mutations account for only 2-4% as reported in the literature (Leroy et al., 2014). The 

most common type of mutation is missense mutations accounting for 80% of all types. 

They result in the production of a stable protein that accumulates in the nucleus of the 

cancer cells forming a stable bound with MDM2 preventing its activation and 

transport. Wild type p53 interferes with molecules of inflammation and antagonizes 

NFκB while mutant p53 enhances inflammation and prolongs NFκB transcriptional 

activity in response to TNF-α in cancer cells. 

Another tumor suppressor protein that is involved in the tight and accurate 

regulation of cell cycle progression is p21. It is a 164 amino acid protein encoded by 

CDKN1A gene which is located on the short arm of chromosome 6 (6p21.2). The 

protein p21 has many synonyms including p21Cip1 referring to cyclin dependent kinase 

interacting protein1, p21Waf1 (wild type p53 activated fragment1) and Cdk inhibitor 1. 

Studies have confirmed p21 role in many physiological processes including growth 
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arrest, cell cycle control, DNA damage repair, control of T-cell proliferation, cell 

migration, cell senescence and is a major player in cellular stress response (Gartel & 

Tyner, 2002; Kreis et al., 2015; Ozaki & Hanazawa, 2001). Knockout studies of p21 

showed increase potential for tumor development (Davies et al., 2011). It has a short 

t1/2 and is activated either by p53 dependent or independent pathways. The pathway to 

be activated is cell type, condition and stimulus dependent (Gartel & Tyner, 2002). 

The protein can be regulated at transcriptional level via p53 where gene analysis of 

CDKN1A showed the promoter region to have 2 p53 binding sites. Other molecules 

that regulates p21 expression and activation in a p53-indepenent manner are TNF-α, 

TNF-β, IFN-γ, epidermal growth factor (EGF), IL-6, Ras, c-myc and histon 

deacetylase inhibitors (Gartel & Tyner, 2002; Kreis et al., 2015). The protein p21 can 

also be regulated at post translational level by phosphorylation, acetylation and 

ubiquitination.  

The function of p21 in cell cycle control will be discussed in more detail. 

Previous studies have demonstrated two peaks of p21 during cell cycle; that is at G1 

and G2/M transition phases (Gartel & Tyner, 2002) but recent studies showed that it 

also acts as a major regulator of mitosis. In response to DNA damage, p21 can suppress 

the expression of cyclin E/Cdk2 at G1/S phase. The expression of the protein increases 

in the nucleus after DNA damage where it binds cyclin B/Cdk1 complex leading to the 

inactivation of the kinase activity of the complex and hence, G2/M cell cycle arrest. 

The N- terminus of the protein has the Cdk domain with 2 pockets, one binds Cdk and 

the other blocks the ATP site on the Cdk. The binding of p21 to other cyclin/Cdk 

complexes depends on the extent of homology in structure between the complexes. To 

maintain the cycle arrest for DNA repair to take place, p21 also interferes with 
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Cdk/CAK interaction and this prevents the activation phosphorylation of Cdk1. The 

C-terminus can bind proliferating cell nuclear antigen (PCNA) and stops DNA 

synthesis.    

Studies in hematopoietic cells showed that abnormalities of p21 protein have 

been associated with centrosome defects and abnormal nuclear structure as well as 

polyploidy. In tumor cells, loss of p21 was associated with hyperactive Cdk activities 

leading to abnormal mitosis (Kreis et al., 2015).  

Many recent reviews highlighted the dual function of p21 since it also been 

shown to have an oncogenic/proliferation effect and research in this field pointed to 

the importance of cellular compartment localization in determining the function of 

p21. Cytoplasmic localization was found to be oncogenic were it was associated with 

inhibition of multiple caspase activities (Kreis et al., 2015). 

High levels of p21 were shown to cause cell cycle arrest but also inhibit p53-

dependent apoptosis, the mechanism of such dual function is still to be investigated 

but researchers propose that after DNA damage p21 causes p53-dependent cell cycle 

arrest and when p53 gets activated and hence activating the caspase cascade (caspase 

3 mainly), p21 gets sequestrated by caspase 3 and this is followed by the initiation of 

apoptosis (Gartel & Tyner, 2002). 

In some cancer cells where p53 is mutated, high levels of p21 results in 

protection of cancer cells from apoptosis. Mutations in p21 are very rare in cancer 

(Davies et al., 2011) and the protein inactivation is mainly due to epigenetic 

modifications. Studies in leukemia show that T-ALL cells from patients samples have 

low levels of p21 due to p53-independent epigenetic suppression while in AML cells 
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show high basal levels of p21 and in these cases it was associated with poor prognosis 

(Davies et al., 2011). In leukemias where p53 is mutated, apoptosis is induced in p53-

independent manner leading to accumulation of p21 and G2/M cell cycle arrest 

(Naujokat et al., 2000). 

1.3.3.1 Cell Death and Senescence 

Adult cells undergo limited number of division which varies depending on the 

type of the cell (e.g. fibroblasts go through 25-50 cell cycle divisions while bronchial 

epithelial cells go through 10 cycles only). This is due to a phenomenon known as 

replication senescence. With each division the end of the chromosomes get shorter 

because of the difficulties in base copying. To avoid loss of genetic information, the 

end of the chromosomes (the telomere) are made of non-coding repeated base pairs. If 

the cell continues to divide indefinitely, genetic material can get lost and end 

chromosome fusions take place with resultant DNA break and damage. As a protective 

mechanism; normal cells cease to divide after a critical limit in telomere length is 

reached (replication senescence). In germline cells, where cell division continues, the 

telomere length is maintained by the presence of telomerase enzyme. Adult cells lack 

the expression of this enzyme. During replication senescence, the cells are viable and 

metabolically active but cannot go further divisions. 

Cell death is a process were living cell is not able to function or be 

metabolically active. Cell dies to maintain homeostasis in the living organism. In an 

adult organism, number of newly synthesized cells should balance the number of 

injured, abnormal, destroyed or shedding cells.  
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1.3.3.2 Types of Cell Death 

Cell death can broadly be classified as programmed cell death (PCD), 

accidental and mitosis catastrophe. 

Programmed cell death is usually an active process initiated by the living 

organism and requires ATP as energy to complete the process. The most common and 

well-studied form of such death is apoptosis (which will be discussed in detail). 

Accidental cell death includes cell death by necrosis. Mitotic catastrophic cell death 

occurs as a default pathway when there is abnormality in cell cycle checkpoints or 

mitotic failure to protect the organism from faulty cell division. 

1.3.3.3 Programmed Cell Death (apoptosis)  

Programmed cell death also known as apoptosis and cell death type 1 is a vital 

physiological process for the body. It maintains cellular homeostasis, protects genome 

integrity by removing faulty cells, it plays a major part in other processes such as 

differentiation and healing and it’s a way by which the organism removes harmful cells 

and pathogens without triggering inflammation in the surrounding tissue (Chi, Kale, 

Leber, & Andrews, 2014; Delbridge & Strasser, 2015; Goldar et al., 2015; Testa & 

Riccioni, 2007). 

Disturbed apoptosis has been associated with many diseases for which a highly 

regulated balance is required. Excessive apoptosis is a dominant feature of 

degenerative disorders whereas suppression of apoptosis is seen in cancer.   

1.3.3.3.1 Triggers of apoptosis 

Apoptosis can be triggered by physiological as well as pathological factors and 

these can be either intracellular or extracellular triggers. This includes activation of 
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apoptosis by hormone/growth factor withdrawal such as during menstrual cycle and 

breast cells regression. Other examples of physiological triggers are loss of cells in the 

gastrointestinal tract, death of innate immune cells after removing infectious agents 

and removal of lymphocytes activated against self-cells. Pathological intracellular 

triggers include un-repairable DNA damage, accumulation of abnormal proteins and 

increase reactive oxygen species (ROS) beyond cellular adaptation limits. 

1.3.3.3.2 Mechanism and pathways 

Depending on the type of trigger, different apoptotic pathways can be 

activated. In general, the activation of apoptotic signal will lead to the activation of 

pro-enzymes known as caspases (cysteine dependent aspartate-directed proteases) 

which are able to cleave proteins at specific aspartic acid position through their 

proteolysis property (Christensen, Jansen, Sanchez, & Waterhouse, 2013). Figure 7 

shows the main apoptotic pathways. 

Apoptosis is controlled by a tight balance between multiple players including 

pro- and anti-apoptotic proteins from the B-cell leukemia (Bcl-2) family, caspase 

proteases and mitochondrial membrane.  

The Bcl-2 family proteins share a Bcl homology (BH) domains 1-4 and can be 

classified either based on the number of domains they have or based on their role in 

apoptosis. The anti-apoptotic proteins (Bcl-2/Bcl-xL, Bcl-w and A-1) include all the 

BH domains 1-4 except Mcl-1 protein which lacks BH-2. The effector proteins Bax 

and Bak contains all the regions while the pro-apoptotic proteins have only BH-3 

region and they include Bad, Bik, Bid, Bim, Noxa, Puma and others.  
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    Figure 7: The interaction between apoptosis pathways 

 

The mechanism by which these proteins control apoptosis is very complex and 

not yet fully clear. In-vivo, in-vitro and structural changes studies have suggested 

multiple theories to explain how the interaction between these proteins as well as cell 

receptors and mitochondrial membrane initiate and regulate apoptosis. Evidence from 

experiments suggest that the mechanism of activating these proteins is cell type and 

stimulus dependent (Delbridge & Strasser, 2015). 

Some studies suggest that the pro-apoptotic proteins except Bid (should be 

cleaved to be activated) are always active and hence they are required to be kept under 

the suppressive effect of the anti-apoptotic proteins by binding them. Other studies 

have demonstrated the importance of interaction with cellular membranes and other 

kinases to get the active conformational change needed for the proper functioning. 
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The function of the anti-apoptotic protein Bcl-2 and the effector protein Bax 

will be discussed in more detail in this section. Bcl-2 protein is encoded by the B-cell 

lymphoma-2 gene located on chromosome 18. The protein is usually bound to the outer 

mitochondrial membrane and the endoplasmic reticulum (Chi et al., 2014). On the 

membrane of the mitochondria it interacts with the effector pro-apoptotic proteins 

Bax/Bak and prevents their direct activation by other pro-apoptotic proteins such as 

Bid. Once the cell gets an apoptotic stimuli, Bcl-2 get released by the activated Bid 

and frees the negative effect on the activation of Bax/Bak which are ready to be 

activated and oligomerize to form pores in the mitochondrial outer membrane (MOM) 

increasing its permeability to release cytochrome c and other apoptosis related proteins 

such as Smac/DIABLO (Delbridge & Strasser, 2015; Doerflinger, Glab, & 

Puthalakath, 2015). Another theory of activation suggests that Bcl-2 is bound to Bid 

and once activated it releases Bid to further activate Bax/Bak on the MOM 

(Doerflinger et al., 2015). 

Activation of Bax is the rate limiting step in the mitochondrial pathway of 

apoptosis. Once activated it undergoes conformational changes leading to its deeper 

insertion into the mitochondrial membrane (Chi et al., 2014). At this stage the cell is 

obliged to apoptosis and the signal cannot be neutralized. 

Caspases are cysteine containing proteases that cleave other proteins at specific 

aspartic acid position. They are classified into two groups; the initiator caspases 8, 2, 

9 and 10 and the executioner caspases 3, 6 and 7 (Goldar et al., 2015; Testa & Riccioni, 

2007). 

Many cancer types show disrupted balance between pro- and anti-apoptotic 

proteins either by up- or down regulating the genes involved or by inactivating them 
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through altered post-translational modifications (Goldar et al., 2015). Some of the 

altered functions of those proteins have been associated with poor prognosis and more 

resistance to treatment (Goldar et al., 2015; Jia et al., 2001; Meyer et al., 2006; Testa 

& Riccioni, 2007). 

Intrinsic pathway 

Also known as mitochondrial pathway, the intrinsic pathway is activated 

within the cell (no receptor is involved), usually in-response to intracellular stress as 

mentioned above. Once activated, it will activate the tumor suppressor p53 protein 

which will bind the anti-apoptotic Bcl-2 and Bcl-xL proteins leading to their 

inactivation and the release of the pro-apoptotic protein Bid (which is usually inhibited 

by being bound to Bcl-2/Bcl-xL). Activated Bid (tBid) translocates to the 

mitochondrial membrane, activates Bax leading to change mitochondrial membrane 

permeability, releasing cytochrome c to the cytoplasm where it binds apoptosis 

protease activating factor1 (Apaf1) in the presence of ATP and binds procaspase-9 

forming apoptosome, with the resultant of cleavage of procaspase-9 to active caspase-

9, this in turns activates the execution pathway caspases 3, 6 and 7. The end result is 

activation of DNA nucleases, DNA fragmentation and inhibition of polyADP ribose 

polymerase (PARP) which is a DNA repair enzyme (Goldar et al., 2015; Testa & 

Riccioni, 2007).  

Extrinsic pathway 

The extrinsic pathway is activated when the trigger binds a specific death 

receptor such as Fas ligand binding to Fas receptor, TNF or TNF related apoptosis 

inducing ligand (TRAIL) binding to TNF receptor. Once activated, the intracellular 

death domain through FADD or TADD, the adapter proteins, binds caspase 8 forming 
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death inducing signaling complex (DISC) directly activate caspase 3 that cleaves 

caspase activating DNas (CAD) from its inhibitor (ICAD) and releases the binding 

between Bcl-2 and Bid leading to the activation of the mitochondrial pathway (Goldar 

et al., 2015; Testa & Riccioni, 2007). In some cancers, particularly leukemias, the 

extrinsic pathway is sufficient to trigger apoptosis without involvement of the 

mitochondria. In contrast, most solid tumor cells need involvement of the intrinsic 

pathway with or without the extrinsic pathway (Testa & Riccioni, 2007). 

Perforin/granzyme pathway 

This is specific for T-lymphocyte mediated cell death. The major apoptotic 

pathway for T-cell cytotoxicity is via death receptors but another pathway is specially 

related to T-cells due to the close proximity between activated cytotoxic T-cell and 

target cells, where perforin molecule forms a junction between the two cells, allowing 

T-cells to release their proteolytic enzymes into the target cell. These granzymes can 

activate either the intrinsic or directly the execution pathway. 

Execution pathway 

These include caspase 3, 6 and 7 which when activated, can cleave proteins 

and inactivate PARP by cleavage. Caspase 3 also degrades cytoskeletal proteins of the 

cells leading to their fragmentation and cell death. It is responsible for the 

morphological features associated with apoptosis as will be discussed later. 

All these pathways interact and cross-talk to insure proper control of apoptosis. 

1.3.3.3.3 Changes in apoptosis 

Cellular changes accompany any form of cell death. Some are general while 

others are more specific to the type of death. In apoptosis, the cellular change occurs 
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in individual cells while in accidental cell death, the changes happen in many cells of 

the tissue, simultaneously. Specifically in apoptosis, there is cytoplasmic shrinking 

followed by nuclear chromatin changes. The cytoplasmic membrane stays intact but 

forms blebs due to the biochemical changes in its composition (Delbridge & Strasser, 

2015; Goldar et al., 2015).   

Many techniques have been developed to confirm cellular apoptosis, some are 

more specific than others. Apoptosis can be seen morphologically either by light 

microscopy or electron microscopy. Membrane changes in response to apoptosis, 

DNA fragmentation, elevated levels of active caspases and expression of 

proteins/genes involved in apoptosis can be detected. 

The choice of the assay used depends on the technique’s specificity and timing 

after the cell is signaled for apoptosis.  

Morphological features are not specific for apoptosis especially in late stages 

where it shares similar findings as in other forms of cell death. Another problem with 

morphological changes is that they occur fast and without triggering inflammation 

making their detection difficult. 

Light microscopy 

Under light microscopy, viable cells are round with intact cell membrane and 

clearly demarcated nucleus. Once the cells undergo apoptosis, cytoplasm shrinks in 

size and cells have irregular outer membrane (Goldar et al., 2015).  

Phase contrast inverted microscopy will show apoptotic cells with variable 

degrees of cell membrane blebbing based on being early or late apoptosis. In late 

apoptosis chromatin changes can also be detected (Figure 8). With Hematoxylin and 

Eosin (H&E) staining, apoptotic bodies can also be detected. 
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Electron microscopy 

Electron microscopy (EM) is considered a better method to detect intracellular 

as well as membrane morphological changes of apoptosis. These changes include 

cytoplasmic vacuoles, blebbing of cell membrane, nuclear fragmentation, 

mitochondrial outer membrane changes (using special cationic dyes) and apoptotic 

bodies with organelles enclosed within a membrane. 

 

Fluorescent microscopy 

Annexin V (fluorescein-isothiocyanate; FITC) stained samples can be used to 

confirm apoptosis and to accurately quantify it by flowcytometry methods. The 

principle of this technique is based on the different localization of phosphatidylserine 

(PS) on cell membrane. 

In viable cell, PS is localized on the cytoplasmic side of the cell membrane and 

when cells undergo apoptosis, it translocates to the extracellular side of the membrane. 

Figure 8: Blast cell morphology. Left: viable blast cells showing regular smooth 

round cell membrane. Right: shows apoptotic blast cells with variable degrees of 

membrane shrinkage and blebbing based on stage of apoptosis (indicated by red 

arrow) and cytoplasmic vacculation (black arrows) 
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Late apoptosis can also be qualified by counter staining of the DNA when the nuclear 

envelope becomes permeable in late stages. Propidium iodide (PI) is a red fluorescent 

that binds nucleic acid (7AAD is another dye with high affinity to nucleic acid).  

Figure 9 shows early apoptotic cells (stained green) and late apoptosis (stained 

in green and red) under confocal microscope after special staining.  

 

 

Figure 9: Annexin V test. Annexin V and PI stained apoptotic cells under fluorescent 

microscope (right) where phosphatidylserine in apoptotic cells is stained green while 

necrosis is indicated by propidium iodide red staining of the nucleic acid. The 

quantification on flowcytometry (left) 

 

Flow cytometry can be used to detect specific changes in membrane 

composition associated with apoptosis. It is also used to detect DNA fragmentation 

forming a ladder due to activation of DNA endonucleases by caspase 3. 

 

Annexin V 

Similar technique to the fluorescence microscope, the stained samples can be 

analyzed on flowcytometry. This technique allows accurate quantification of apoptotic 

cells. 
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Caspase activation assays 

Caspase activation is a specific step in apoptosis. Functional assays are 

available for detecting activated enzymes. Immunohistochemistry tests that detect 

cleaved caspase substrates such as PARP are another method to detect functional 

caspases. 

Fluorometric as well as colorimetric assays are available to measure active 

caspases. Different caspases cleave proteins at specific aspartic acid in the protein 

chain, providing a commercially available protein sequences with fluorochrome or a 

color dye at the specific aspartic acid and if the sample contains the activated caspase 

it will cleave the sequence and release the color or fluorescein that can be measure and 

is proportional to the number of activated caspase enzymes. 

Western blots with the use of polyclonal or monoclonal antibodies against 

active or pro-caspases can give semi-quantitative results when used with appropriate 

controls. Release of cytochrome c into the cytoplasm for the activation of intrinsic 

pathway can also be detected by this method. 

The expression of genes involved in apoptosis such as receptors, transcription 

factors, intracellular signaling molecules and enzymes, can be detected with accuracy 

using polymerase chain reaction (PCR) techniques. Decrease expression of anti-

apoptotic genes can also be detected with this method.   
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Chapter 2: Methods 

 

2.1 Research Design 

The aim of the study was to investigate the efficacy and mechanism of action 

of frondoside A as a potential anti-cancer agent for the treatment of acute leukemia. 

The effect of frondoside A on inhibiting the growth/viability of acute leukemia blast 

cell lines was compared to the combination with conventional chemotherapeutic drugs. 

The effect of frondoside A on the expression of apoptosis-related genes as well as 

proteins in these cells was also investigated.   

Objectives: 

1) To investigate the effect of frondoside A on viability of leukemic cell. 

2) To compare the effect of the currently used chemotherapeutic drugs (asparaginase, 

vincristine and prednisolone) for the treatment of acute leukemia to their effect when 

used in combination with frondoside A. 

3) To study the changes in expression of apoptosis-related genes after the treatment 

with frondoside A. 

4) To describe the effect of frondoside A on the level of proteins involved in apoptosis 

and cell cycle control.   

Based on the preliminary results, a secondary objective was added and that is 

to investigate the interaction of frondoside A with NFκB pathway in acute leukemia 

cell lines. 

The study is the first to attempt comparing the efficacy of this compound to 

conventional drugs. It also describes for the first time the effect of frondoside A on 



60 
 

 
 
 

gene expression in acute leukemia cell lines, including the interaction with NFκB 

pathway. 

2.2 Cell Lines and Cell Culture 

Three acute leukemia cell lines were used; T-lymphoblastic leukemia cell line 

(CCRF-CEM), acute monocytic leukemia cell line (THP-1) and acute promyelocytic 

leukemia cell line (HL-60), all purchased from American Type Culture Collection 

Global Biosource Center, ATCC (USA). The cell lines are described in table 6. 

 

 

Table 6:  Acute leukemia cell lines specification and growth requirements 

 

Cells were cultured as per the recommendation of the manufacturer with few 

modifications. In brief; CCRF-CEM were cultured in RPMI-1640 (HyCloneTM, 

USA) supplemented with 10% fetal bovine serum (FBS, HyCloneTM-USA). Cells 

were sub-cultured every 2-3 days; when density reached 1-2x106 cells/ml. The THP-1 

cells were grown in RPMI-1640 with 10% FBS and 0.05 mM 2-mercaptoethanl (2-

ME). The HL-60 cells were maintained in Dulbecco’s modified eagle’s medium; 

DMEM (Sigma, USA) with 20% FBS and sub-cultured every 3-4 days. All culture 

media were also supplemented with 1% penicillin-streptomycin mix antibiotics 

Description CCRF-CEM THP-1 HL-60 

Tissue PB PB PB 

Cell type T-Lymphoblast Monocyte        Promyeloblast 

Diagnosis T-ALL AML-M5 AML-M3 

Age (years) 4 1 36 

Culture media RPMI-1640 + 10% FBS RPMI-1640 + 10% FBS 

+ 0.05mM 2-ME 

DMEM + 20% FBS 

Plating density 2-3x105 cell/ml          2-4x105 cell/ml         1x105 cell/ml 

Maintaining 

density 

2x105-2x106  cell/ml         4-8x105 cell/ml 1x105-1x106 cell/ml 

Splitting point 2x106  cell/ml       8x105-1x106 cell/ml        1x106 cell/ml 

Freezing media Full culture media + 

7.5% DMSO 

Full culture media + 

5% DMSO 

Full culture media + 

5% DMSO 
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(Sigma or HyCloneTM, USA) and 50 mM L-glutamine (Thermo Scientific, USA) was 

added if not provided already in the media. Cells were grown in humidified incubator 

supplemented with 5% CO2 at 37oC.  

2.3 Compounds and Drugs 

Frondoside A (either purchased from Sigma ≥ 96% pure or provided by 

Coastside BioResources-USA ≥ 98% pure) was reconstituted in dimethyl sulfoxide 

(DMSO) initially and further dilutions for different concentrations were made in 

1xPBS (phosphate buffered saline) making the final DMSO content < 0.1% in the 

treated wells. The conventional drugs used in the treatment of acute leukemia and 

tested in this project in-combination with frondoside A were, vincristine sulphate (2 

mg liquid in 2 ml vials) from Hospira-UK, asparaginase 10,000 U/ml vial in powder 

form (43.2 mg) from Medac-Germany and prednisolone in packages of 20 mg/tablet 

(Julphar-UAE) dissolved in 1.5% ethanol. Further dilutions were made in 1X PBS so 

the final concentration of ethanol in the compound treatment concentrations was < 

0.1%. Andrographolide (NFκB irreversible antagonist) was purchased from MedChem 

Express-USA, and the main stock was prepared by dissolving in DMSO. Further 

dilutions made in serum free media (SFM; RPMI-1640). Table 7 describes the details 

of the compounds’ preparation.  

Compound/Drug Range of concentrations 

(μM) 

Solvent Mass (MW) 

Frondoside A 0.5-5.0 DMSO/PBS 1336.4 g/mole 

Asparaginase 0.0005-7.81 PBS 43.2 mg (31731.9 g/mole) 

Vincristine 0.0017-1.0625 liquid 2 mg (923.04 g/mole) 

Prednisolone 0.446-1393 1.5% 

Ethanol/PBS 

20 mg (358.428 g/mole) 

Andrographolide 3-100 DMSO/SFM 350.45 g/mole 

Table 7:  Range of concentrations and solvents used for the compounds 
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The concentration ranges used for cell viability experiments were adapted from 

previously published literature (Chen, Wu, Doerksen, Ho, & Huang, 2015; Cheung et 

al., 2005; Kristensen, Jonsson, Sundström, Nygren, & Larsson, 1992; Larsson, 

Fridborg, Kristensen, Sundström, & Nygren, 1993; Larsson, Kristensen, Sandberg, & 

Nygren, 1992; Manikam, Manikam, & Stanslas, 2009) and subsequently confirmed in 

our experiments. Initially 5 concentrations of each drug were tested with 5-fold 

increments in concentration. Inhibitory concentration 50 (IC50) was calculated and 

extra doses were added to reach as close as possible to the IC50 if this was not reached 

within the initial tested range. Blank wells containing only serum free media were 

included to determine the baseline luminescence and negative controls were also 

included; these contain cell suspension treated with 1X PBS or free serum media (the 

drug carrier).  

Trypan blue exclusion test was used with the Neubauer chamber 

hemocytometer to count the number of viable cells prior to plating the cells. 

2.4 Viability and Drug Efficacy Test 

Before treatment, cells were transferred to serum free media for 24 h and plated 

in a 96-well flat sterile optical culture plates with cell density of 5x104 cell/well, in a 

total volume of 90 μl. Cells were treated with different concentrations of frondoside 

A, vincristine sulphate (vin), asparaginase (asp) and prednisolone (pred) each 

compound alone to determine the specific inhibitory concentrations (IC). Experiments 

were conducted with treatment incubation periods of 24, 48 and 72 h. 

The drug-response curve was constructed and the inhibitory concentration 

IC10, IC30, IC50 and IC70 for each compound for the 3 cell lines at each time point was 
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calculated. Treatment duration of 48 h was decided to be used for subsequent 

experiments. 

Concentrations corresponding to approximately IC10, IC30 and IC50 for each 

drug were used to treat the cell lines in combination with similar inhibitory 

concentrations of frondoside A. 

Finally, the efficacy of fixed frondoside A IC50 concentration in combination 

with variable concentrations (IC10, IC30 and IC50) of conventional drugs was assessed. 

All experiments were conducted in duplicate and repeated at least 3 times in 

independent experiments to confirm reproducibility of the results.  

Cell viability after treatment was tested using CellTiter-Glo luminescence kit 

from Promega, USA as per manufacturer recommendations. The principle of this 

method is based on the conversion of luciferin to oxyluciferin (luminescence) in the 

presence of Mg+2, ATP (from viable cells) and the catalyze; luciferase. 

The reconstituted reagent (100 µl) was added to each well in the plate including 

the blank and controls. Protected from light, the plates were kept on a shaking tray for 

2 minutes at ~80 rpm, to induce cell lysis. The plates were transferred to the bench and 

kept in dark for an incubation period of 10 minutes. Luminescence based on ATP 

produced by viable cells remaining after treatment in the plate was read at 560 nm 

wavelength in a VictorX3 multiple plate reader (ParkinElmer, USA). Luminescence 

of the treated groups was expressed as the percentage of viable cells compared to the 

control groups which were assumed to have 100% viability. 
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Similar methodology was used to investigate the effect of treating the blast 

cells with variable concentrations of frondoside A combined with andrographolide 

fixed IC50-70 concentration. 

2.5 Apoptosis Assay 

Guava Nexin reagent (EMD Millipore Corporation, CA) was used for detecting 

apoptosis in the treated cells. The reagent contains phycoerythrin (PE) labeled annexin 

V and 7-AAD dye (7-aminoactinomycin D). 

Cells were cultured in 24-well plates with density of 1.0x105 cell/well in a total 

volume of 180 μl 1% FBS growth media as recommended by the manufacturer. Cells 

were treated with 20 μl of either PBS (control) or IC50 of frondoside A for 1, 3 and 6 

hours duration. After incubation, the cells were fixed with 4% paraformaldehyde in 

1:1 ratio for 20 minutes. Nexin reagent (100 µl) was added to each well and the cells 

were incubated for another 20 minutes at room temperature in dark. 

After incubation, the cells were visualized on Olympus inverted fluorescent 

microscope to detect the annexin-PE and the 7-AAD staining.  

2.6 RNA Extraction and Gene Expression Profiling 

Cells were grown in a T25 culture flasks for 24 h at a density of 3x106 cells in 

5.4 ml serum free media. Cells were treated after the incubation with 600 μl of either 

1X PBS (control) or IC50 frondoside A concentration and incubated again either for 6 

h or 24 h (to detect early versus late changes). Cells were transferred from the culture 

flask to 15 ml falcon tube. Media were removed by centrifugation at 1300 rpm (300 

G) for 5 minutes, leaving only small amount not to disturb the cell palette (~250 μl).  
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One ml of cold 1X PBS (pH 7.4) was added to the pellet and mixed then 

centrifuged at 1300 rpm (300 G) for 5min. The supernatant was discarded. Cells were 

re-suspend in the remaining PBS (~150 μl) and transfer into 1.5 ml RNase free 

Eppendorf tubes. Tubes were washed with an extra 500 μl of cold 1xPBS and the 

content added to the RNase free Eppendorf. Samples were then centrifuged again and 

the supernatants were discarded. 

Six hundred µl of guanidinium thiocyanate-phenol-chloroform (Trizol, Life 

technologies-USA) was added to the tubes making sure all cells are covered (Trizol to 

cell ratio was 1000 μl Trizol to each 5x106 cell). Cells were incubated at room 

temperature on a shaker for 5 minutes at 100 rpm. Cells were lysed by pipetting up 

and down several times then vortexed thoroughly.  Lysates were stored at -80oC at this 

stage until RNA extraction if not done immediately. 

For RNA extraction, total RNA isolation system from Promega-USA was used. 

In the process, 20 µl of chloroform was added per 100 µl of Trizol. Samples were 

mixed vigorously for 15 seconds on a vortex and left for 2-3 minutes at room 

temperature. The tubes were centrifuged at 12,000 G for 15 minutes at 4oC. The 

chloroform separates the cell components of the homogenate into 3 layers as shown in 

Figure 10. The aqueous phase was transferred into fresh tube and 50 μl of 95% ethanol 

per 100 μl Trizol was added and mixed by pipetting up and down several times. The 

contents were then transferred to a spin column and centrifuged at 12000 G at room 

temperature. The flow-through fluid was discarded. 

Figure 11 shows a flow chart of the process for RNA extraction. In brief, the 

spin columns were washed with 600 μl RNA wash solution, centrifuged and the flow-

through fluid was discarded. DNase incubation master mix was prepared by mixing 40 



66 
 

 
 
 

μl of yellow core buffer with 5 μl 0.09 M MnCl2 and 5 μl of DNase I enzyme per 

sample. 

 

Figure 10: Separation of cellular components 

 

Master mix (50 µl) was added to the spin column and incubated for 15 minutes 

at room temperature. The DNase stop solution was added and the column was 

centrifuged then washed twice with RNA wash solution. The spin basket was 

transferred to 1.5 ml elution tube. Fifty µl of nuclease free water was added and the 

tube was incubated for 2 minutes on ice, then centrifuged and the flow-through saved 

labeled as purified RNA.    

Once RNA was purified, quantification of the yield was made using NanoDrop 

spectrophotometer (ND-1000 v3.5.2) reading the nucleic acid based on the 

wavelengths at 260 nm and 280. The purity of RNA was determined at 260/280 nm 

and 260/230 nm. RNA was stored in -80oC till later use for reverse transcription and 

low density array runs. 

For reverse transcription, a high capacity cDNA reverse transcription kit was 

used from Applied Biosystems, USA. The principle of the reaction is based on using 

target RNA to construct complementary DNA (cDNA). 

http://openwetware.org/images/5/58/Trizol_phases.png
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Figure 11: RNA purification method 

 

The purified RNA was used in reverse transcription polymerase chain reaction 

(PCR) to produce cDNA for the processing on low density apoptosis gene arrays for 

gene profiling. Twenty five µl reaction volume was prepared with the content of RNA 

in each sample calculated to be 1 μg per reaction (i.e. 40 ng/μl). 
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RNA Mastermix was prepared as follows (per sample): 2.5 μl of 10X RNA 

buffer, 1 μl of 25X dNTP mix, 2.5 μl of 10X RT random mix, 1 μl of 1X multiscribe 

RT and 1 μl of 1X RNase inhibitor. These were mixed and added to the calculated 

RNA of each sample in a MicroAmp fast optical 96-well PCR reaction plate (AB 

Applied Biosystems), then RNase free water was added to make a total volume of 25 

μl. The plate was sealed, centrifuged to remove any bubbles and run on AB Applied 

Biosystems, Veriti 96 well fast thermo-cycler. 

The resultant cDNA (total of 40 ng per sample) was saved for later used on 

apoptosis microarrays.   

For low density apoptosis arrays, Taqman human apoptosis arrays from 

Applied Biosystems were used with 96 genes involved in apoptosis including control 

genes (listed in table 8). The reaction requires 200 μl of each sample to be loaded on 

the array in a 1:1 ratio mixed with TaqMan gene expression master mix (AB Applied 

Biosysttems). Four μg of cDNA was calculated and transferred into a clean 1.5 ml 

Eppendorf tube. RNase free water was added to make up to 100 μl, then 100 μl of the 

master mix added (the volumes were adjusted for possible pipetting errors). The 

samples were mixed and loaded to the arrays and centrifuged then loaded on 7900HT 

Fast real- time PCR system (AB Applied Biosceiences). The results were analyzed 

using RQ manager software version 1.2.1 and the fold change comparison was done 

using DataAssist software, version 3.01.     

2.7 Protein Extraction and Western Blot 

For protein extraction, radio-immunoprecipitation assay buffer (RIPA) was 

used to lyse the cells (refer for appendix 1 for the constitution). Protease inhibitor mix 
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was freshly added as well as phenylmethylsulfonyl fluoride (PMSF), both 10 

μl for each 1 ml RIPA buffer. β-Mercaptoethanol 25 μl added to prevent 

oxidation.  

Gene 

Abbreviation 

Gene Name 

BIRC2 baculoviral IAP repeat-containing 2 

BAK1 BCL2-antagonist/killer 1 

BCL3 B-cell CLL/lymphoma 3 

CASP1 caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase) 

CASP2 caspase 2, apoptosis-related cysteine peptidase (neural precursor cell 

expressed) 

CASP5 caspase 5, apoptosis-related cysteine peptidase 

CASP7 caspase 7, apoptosis-related cysteine peptidase 

CASP8 caspase 8, apoptosis-related cysteine peptidase 

CASP9 caspase 9, apoptosis-related cysteine peptidase 

IKBKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 

LTB lymphotoxin beta (TNF superfamily, member 3) 

MCL1 myeloid cell leukemia sequence 1 (BCL2-related) 

NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105) 

NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 

NFKBIB nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

beta 

NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

epsilon 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 

RELB v-rel reticuloendotheliosis viral oncogene homolog B, nuclear factor of kappa 

light polypeptide gene enhancer in B-cells 3 (avian) 

TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 

TNFRSF10A tumor necrosis factor receptor superfamily, member 10a 

CARD4 caspase recruitment domain family, member 4 

NALP1 NACHT, leucine rich repeat and PYD (pyrin domain) containing 1 

CASP14 caspase 14, apoptosis-related cysteine peptidase 

BCL2L13 BCL2-like 13 (apoptosis facilitator) 

TNFRSF21 tumor necrosis factor receptor superfamily, member 21 

HTRA2 HtrA serine peptidase 2 

TBK1 TANK-binding kinase 1 

ESRRBL1 estrogen-related receptor beta like 1 

LRDD leucine-rich repeats and death domain containing 

CARD15 caspase recruitment domain family, member 15 

CARD9 caspase recruitment domain family, member 9 

NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

zeta 

BCL2L14 BCL2-like 14 (apoptosis facilitator) 

BIRC7 baculoviral IAP repeat-containing 7 (livin) 

CARD6 caspase recruitment domain family, member 6 

BIRC8 baculoviral IAP repeat-containing 8 

DEDD2 death  domain containing 2 

APAF1 apoptotic peptidase activating factor 

BIRC3 baculoviral IAP repeat-containing 3 

BIRC4 baculoviral IAP repeat-containing 4 

BIRC5 baculoviral IAP repeat-containing 5 (survivin) 

FAS Fas (TNF receptor superfamily, member 6) 

Table 8:  Genes amplified on the apoptosis low density arrays 



70 
 

 
 
 

Gene 

Abbreviation 

Gene Name 

FASLG Fas ligand (TNF superfamily, member 6) 

BAD BCL2-antagonist of cell death 

BAX BCL2-associated X protein 

BCL2 B-cell CLL/lymphoma 2 

BCL2A1 BCL2-related protein A1 

BCL2L1 BCL2-like 1 

BCL2L2 BCL2-like 2 

BIK BCL2-interacting killer 

BNIP3L BCL2/adenovirus E1B interacting protein 3 like 

BOK BCL2-related ovarian killer 

CASP3 capsase 3, apoptosis related cysteine peptidase 

CASP6 caspase 6, apoptosis related cysteine peptidase 

CASP10 caspase 10, apoptosis-related cysteine peptidase 

DAPK1 death-associated protein kinase 1 

HIP1 huntingtin interacting protein 1 

BIRC1 baculoviral IAP repeat-containing 1 

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, α 

RELA v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa 

light polypeptide gene enhancer in B-cells 3, p65 

TNF tumor necrosis factor (TNF superfamily, member 2) 

IKBKG inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma 

PEA15 phosphoprotein enriched in astrocytes 15 

TRADD TNFRSF1A-associated via death domain 

RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1 

HRK harakiri, BCL2 interacting protein (contains only BH3 domain) 

TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 

FADD Fas (TNFRSF6)-associated via death domain 

TNFRSF10B tumor necrosis factor receptor superfamily, member 10b 

CFLAR CASP8 and FADD-like apoptosis regulator 

DEDD death  domain containing 

BCL2L10 BCL2-like 10 (apoptosis facilitator) 

BCL2L11 BCL2-like 11 (apoptosis facilitator) 

BBC3 BCL2 binding component 3 

PYCARD PYD and CARD domain containing 

DIABLO diablo homolog (Drosophila) 

BIRC6 baculoviral IAP repeat-containing 6 (apollon) 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

ACTB actin, beta 

CHUK conserved helix-loop-helix ubiquitous kinase 

REL v-rel reticuloendotheliosis viral oncogene homolog (avian) 

TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 

RIPK2 receptor-interacting serine-threonine kinase 2 

IKBKE inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 

BCAP31 B-cell receptor-associated protein 31 

ICEBERG ICEBERG caspase-1 inhibitor 

TA-NFKBH T-cell activation NFKB-like protein 

BID BH3 interacting domain death agonist 

BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 

CASP4 caspase 4, apoptosis-related cysteine peptidase 

LTA lymphotoxin alpha (TNF superfamily, member 1) 

TNFRSF25 tumor necrosis factor receptor superfamily, member 25 

CRADD CASP2 and RIPK1 domain containing adaptor with death domain 

BCL10 B-cell CLL/lymphoma 10 

CASP8AP2 CASP8 associated protein 2 

18S 18S ribosomal RNA 

Table 8 (Continued): Genes amplified on the apoptosis low density arrays 
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Cells were grown in a serum free media for 24 h in T25 culture flasks with cell 

density of 3x106 cells in a 5.4 ml media. Cells were treated after the incubation with 

600 μl of 1X PBS or IC50 frondoside A concentration and incubated again either for 6 

h or 24 h (to detect early versus late changes).  After the incubation, the contents of 

the culture flasks were transferred to 15 ml falcon tubes. Figure 12 demonstrates the 

process for the protein extraction. 

 

Figure 12: Protein extraction method      
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Once the proteins were quantified using either BCA protein assay kit or 

Coomassie plus protein assay kit, both from Thermo Scientific-USA. Fifty μg of each 

sample was loaded on the SDS-PAGE gel after mixing with 7 μl 5X loading dye and 

making the total volume loaded up to 20 μl using RIPA buffer. Western blots were run 

for Bcl-2, Bax and p53 all purchased from Abcam-USA as well as p21, caspase 3, 

RelB, c-IAP2 and NFkB2 from Cell Signaling. Βeta actin was used as a protein loading 

control (Abcam-USA). All the secondary horse-radish peroxidase polyclonal 

antibodies were from Abcam. The detail of the antibodies specifications are listed in 

Table 9. 

Protein Primary antibody/dilution Secondary antibody/dilution 

Bcl-2 Mouse monoclonal/ 1:1000 Rabbit anti-mouse HRP polyclonal/ 1:2000 

Bax Rabbit monoclonal/ 1:1000 Goat anti-rabbit HRP polyclonal/ 1:2000 

Caspase 3 Mouse monoclonal/ 1:1000 Rabbit anti-mouse HRP polyclonal/ 1:2000 

p53 Mouse monoclonal/ 1:1000 Rabbit anti-mouse HRP polyclonal/ 1:2000 

p21 Rabbit monoclonal/ 1:250  Goat anti-rabbit HRP polyclonal/ 1:2000 

NFκB2 Rabbit monoclonal/ 1:500 Goat anti-rabbit HRP polyclonal/ 1:2000 

Relb Rabbit monoclonal/ 1:500 Goat anti-rabbit HRP polyclonal/ 1:1000 

cIAP Rabbit monoclonal/ 1:500 Goat anti-rabbit HRP polyclonal/ 1:1000 

ACTB Mouse monoclonal/ 1:1000 Rabbit anti-mouse HRP polyclonal/ 1:2000 

Table 9:  Western blot antibody specifications 

 

Samples were thawed on ice then pre-heat on a heating block to 99oC for 5 

min. The running and stacking gels were prepared as described in table 10. 10% SDS-

PAG was used for the Bcl-2, Relb, cIAP2 and p53 while 12% SDS-PAG was used for 

Bax and p21 proteins. For NFκB2 protein, 7.5% SDS-PAG was used (see Table 10; 

for gel preparation). When the gels had solidified, they were assembled in the 

electrophoresis tank and running buffer (1X SDS, see appendix 2A) was added to fill 

the tank. 
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Ten μl of multicolor broad-range protein ladder (Thermo Scientific-USA) was 

mixed with 7 μl loading dye and run alongside the samples. The gels were run at 100 

V for 30 min. Once the samples appear in straight line, the voltage was increased to 

160 V for another 40-45 min.  

Component 7.5% gel 10% gel 12% gel Staking gel 

dH2O 6.2 ml 5.25 ml 4.5 ml 3.25 ml 

Tris 8.8 5.7 ml 5.7 ml 5.7 ml - 

40% acrylamide (29.1) 2.8 ml 3.75 ml 4.5 ml 0.5 ml 

1xSDS 150 µl 150 μl 150 µl 40 μl 

Tris 6.8 - - - 0.5 ml 

10% APS 150 µl 150 μl 150 µl 40 μl 

TEMED 15 µl 15 μl 15 µl 4 μl 

Table 10:  Western blot gel composition 

 

Once the run had finished, the gel was transferred to a polyvinylidene 

difluoride (PVDF) membrane (Thermo Scientific) in a transfer cassette (shown in 

Figure 13) after the membrane was activated by soaking in 100% methanol for 3 min. 

The cassette was placed in a transfer tank filled with cold 1X transfer buffer (100 ml 

of 10X transfer buffer with 200 ml of 100% methanol and 700 ml water). Refer to 

appendix 2B for the constitution of the 10X transfer buffer. 

The transfer was run for 80 minutes at 100 V in a cold room with ice pack in 

the tank (4oC). Once the transfer was finished, the membrane was washed with 1X 

TBS (refer to appendix 2C) for 3 times each lasting for 5 minutes on a shaker and the 

membrane was blocked using 5% non-fat milk (NFM) in 1X TBST (refer to appendix 

2D) for 1 h at room temperature with shaking.  

Once the blocking was finished, 1:1000 diluted primary monoclonal antibody 

(refer to Table 9 for the specific antibody dilutions) in 5%NFM/TBST was added and 

the membrane was incubated on a shaker overnight at 4oC in dark.    
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After the incubation, the primary antibody was removed and the membrane 

washed with 1X TBST for 3 times each lasting 5 minutes on a shaker at room 

temperature. Meanwhile secondary antibodies were prepared diluted in 

5%NFM/TBST. The blots were incubated with the secondary antibodies for 1:30 h 

with shaking. Once incubation is completed, the blots were washed with 1X TBST for 

5 times each for 5 minutes with shaking. 

The Pierce enhanced chemiluminescence (ECL) plus western blot detection 

substrate (Thermo Scientific) was prepared as per the recommendation of the 

manufacturer. The substrate was added to the membrane and incubated in dark for 5 

minutes, then the blots were scanned for protein bands on Typhoon FLA 9500 reader. 

The bands were quantified using image Quant TL software. 

The bands corresponding to the protein MW were measured and normalized 

against the control protein (ACTB) on the same sample. The protein bands were then 

expressed as percentage area and the IC50 treated compared with the control samples 

at each specific time of treatment (6 h vs 24 h). 

 Figure 13: Western blot transfer assembly cassette 
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2.8 Data Collection and Statistical Analysis 

For comparing multiple groups of different treatments and different compound 

concentrations, the multi-variant analysis two-way ANOVA was used with Bonferroni 

correction as appropriate for multiple comparisons. P-value of < 0.05 was considered 

statistically significant. For gene expression analysis, a fold-change of 2 or more was 

considered significant. The GraphPad Prism program (v 5.01) was used for the analysis 

and to construct the graphs.  
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Chapter 3: Results 

 

3.1 Efficacy Comparison 

Inhibitory concentration for each compound at each treatment duration was 

calculated and the treatment duration of 48 h was decided to be used for all subsequent 

experiments. Frondoside A purchased from Coastside BioResources was more potent 

where the IC50 for frondoside A in CCRF-CEM cells was 1.5 μM at 48 h treatment 

duration. For HL-60 cells, the frondoside A IC50 was 2.5 μM, while for THP-1 cells, 

3.0 μM inhibited cell viability by 50%. The stock purchased from Sigma was less 

potent with CCRF-CEM IC50 of 2.5 µM and 3.5 µM for THP-1 cells. This suggests 

the monocytic leukemia cells are more resistant to the compound (Figure 14 shows 

frondoside A from Coastside BioResources response curve for all cell lines 48 h 

treatment. 

 

Figure 14:  Frondoside A treatment response curve at 48 h. A) Showed the response 

of CCRF-CEM cells with IC50 ~1.5 μM. B) The response of THP-1 cells with IC50 3.0 

μM. C) HL-60 cells response to frondoside A (IC50~2.5 μM) 
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When different concentrations corresponding approximately to IC10, IC30 and 

IC50 of the conventional drugs where tested alone and in combination with similar 

inhibitory concentrations  of frondoside A, the CCRF-CEM cell line showed the higher 

concentration combinations to be more effective in decreasing cell viability than the 

same concentration of each drug given alone. Asparaginase 0.0025 μM and 0.0075 μM 

concentrations combined with frondoside A at 1.0 μM and 1.5 μM respectively, were 

more effective than asparaginase alone (P < 0.001). Similar findings were seen with 

vincristine (P < 0.01). For prednisolone, 0.0558 μM and 0.1115 μM concentration 

combinations with frondoside A 1.0 and 1.5 μM respectively gave statistically higher 

suppression of cell viability (P < 0.01 and < 0.05 respectively). CellTiter-Glo viability 

results were confirmed morphologically as shown in Figure 15. The statistical analysis 

is shown in Figure 16. 

 

Interestingly, the combination effect of asparaginase 0.0025 μM with 

frondoside A 1.0 μM and asparaginase 0.0075 μM with frondoside A 1.5 μM resulted 

in significantly greater reduction in cell viability than accounted for by the calculated 

additive effect (P-value < 0.01). For both vincristine and prednisolone, the 

Figure 15:  CCRF-CEM cell viability. A) Cells treated with asparaginase 0.0075 μM 

alone. B) Cells treated with combination of asparaginase 0.0075 μM and Frondoside 

A 1.5 μM 
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concentrations combined with frondoside A 1.0 μM were also showing synergistic 

effect rather than additive effects (P-value < 0.01) as shown in Figure 17. 

 

Figure 16:  CCRF-CEM response to variable compound concentrations. A) The effect 

of different concentrations of asparaginase and frondoside A alone and in combination. 

The first group shows the control (untreated) cells with 100% viability. Second group 

represents the viability in response to the treatment with 0.0025 μM asparaginase 

alone, frondoside A 0.5 μM alone and both concentrations in combination (the 3rd 

column). The 3rd and 4th groups represents the concentrations of asparaginase 0.0025 

and 0.0075 μM and frondoside A 1.0 and 1.5 μM respectively, both showed statistical 

significant suppression in viability in the combination groups compared to 

asparaginase alone (P < 0.001). B) Similar data was seen with vincristine: when 

combination of 0.00425 μM vincristine and 1.0 μM of frondoside A and 1.5 μM were 

tested (P < 0.01). C) The response to prednisolone with the higher two combinations 

showing a more pronounced decrease in viability in the combination groups (P < 0.01 

and < 0.05 respectively). * = < 0.05, **= < 0.01, ***= < 0.001 
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Figure 17: Compounds synergistic compared to additive effect in CCRF-CEM.  The 

top row represents the observed effect of the combination treatments with asparaginase 

and frondoside A compared to the calculated additive effects. The highest two 

concentration combinations showed statistically significant reductions in cell viability 

compared to the expected calculated additive effect (P < 0.01). The middle and bottom 

rows represent the data for vincristine and prednisolone. Once again, the middle 

concentrations show statistically significant reductions in cell viability compared to 

the expected calculated additive effect (P < 0.01) 

 

In THP-1 cells, treatment with asparaginase and frondoside A was more 

effective in suppressing cell viability than asparaginase alone in all combinations (P = 

< 0.01, < 0.001 and < 0.001 for the three combinations) (Figure 18). Vincristine 

treatment combined with frondoside A showed similar pattern of effect as the 

combination with asparaginase (Figure 18). Only the combination of the highest 
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concentration of prednisolone and frondoside A showed a statistically greater effect 

than either drug alone (P < 0.001) as shown in Figure 18. In this cell line, significant 

synergistic effects were observed in all the combinations of asparaginase and 

vincristine with Frondoside A compared to the calculated additive effect, as shown in 

Figure 19. While enhanced effects of the combinations with prednisolone were only 

seen at the two higher concentrations (Figure 19). 

 

Figure 18:  THP-1 response to variable compound concentrations. A) Asparaginase in 

all combinations with frondoside A showed more marked suppression of viability 

compared to asparaginase alone (P < 0.01 for the lowest concentration and < 0.001 for 

the higher two). B) Vincristine in all combinations showed statistically greater 

reduction in viability (P < 0.05 at lowest concentration and P < 0.001 for the higher 

two concentrations). C) In response to prednisolone treatment, only the highest 

concentration combination caused statistically significant suppression of cell viability 

(P < 0.001) 
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The promyelocytic cell line, HL-60, showed greater resistance to combination 

treatment and only the highest concentration combinations of all three drugs tested 

showed greater suppression of cell viability than the individual drugs alone (Figure 

20). Although combination effect on cell suppression was higher than the calculated 

additive effect, none reached statistical significance. 

Figure 19:  Compound synergistic compared to additive effect in THP-1. Top and 

middle rows show asparaginase and vincristine combination at all tested 

concentrations were able to suppress cell viability more than the calculated 

additive effect (P * = < 0.05, ** = < 0.01, *** = < 0.001). For prednisolone 

(bottom row), the highest two concentration combinations showed statistical 

significant differences 
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Figure 20:  HL-60 response to variable compound concentrations. A) Asparaginase at 

its highest combination with frondoside A 2.5 μM showed significant suppression of 

viability (P < 0.001). B) The combination of vincristine and frondoside A was 

significant compared with vincristine agent alone at the highest concentration (P < 

0.01). C) Combination of prednisolone and frondoside A also significantly suppressed 

the viability compared to prednisolone alone at the highest concentration combination 

(P < 0.001) 
 

 

To determine if the results observed are due to frondoside A and not to the 

variation in the concentration of all compounds used, frondoside A at a fixed IC50 

concentration was used with different concentrations of the other drugs in this set of 

experiments. Using the multi-variant two-way ANOVA to analyze the effect of 
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different compounds combinations in one arm and different concentrations 

combinations in the other arm, it was shown that asparaginase combination treatment 

in all concentrations with frondoside A 1.5 μM in CCRF-CEM cells was statistically 

more effective in decreasing leukemia cell viability than asparaginase alone. Similar 

findings were seen with vincristine but prednisolone combination with frondoside A 

concentration was better than the drug alone only at the lowest concentration (P < 

0.01). Detailed analysis at each concentration is shown in Figure 21. 

 

Figure 21:  CCRF-CEM treatment in combination with IC50 frondoside A. A) The 

combinations of frondoside A with asparaginase at all concentrations showed 

significantly greater suppression in cell viability than asparaginase alone (P < 0.001, 

< 0.001 and < 0.01 respectively). B) The combinations of frondoside A and vincristine 

treatment was more effective than vincristine alone (P < 0.05, < 0.01 and < 0.05 

respectively). C) Prednisolone at the lowest concentration decreased cell viability 

more effectively when combined with frondoside A, compared to prednisolone alone 

(P < 0.01) 
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In the THP-1 cell line, asparaginase with frondoside A IC50 treatment was more 

effective than asparaginase alone in the lower two concentrations (P-value < 0.001 & 

< 0.01 respectively). Vincristine also at lower concentrations combined with 

frondoside A 3.0 μM was more effective in suppressing cell viability than vincristine 

alone (P < 0.001). The combination of prednisolone with frondoside A showed only 

the highest concentration to be more effective than prednisolone treatment alone (P < 

0.001). Data of the different therapy effects on THP-1 combined with frondoside A 

IC50 are shown in Figure 22. 

 

Figure 22:  THP-1 treatment in combination with IC50 frondoside A. A) and B) The 

first two combinations of both asparaginase and vincristine with frondoside A 

decreased cell viability more effectively than either drug alone. C) Treatment with 

combinations of frondoside A with different concentrations of prednisolone show a 

statistically significant change only at the highest concentration (1393 μM) (P < 0.001) 
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Asparaginase combined with frondoside A IC50 treatment was more effective 

than asparaginase alone at low concentrations in the HL-60 cell line (P < 0.01). There 

was no significant difference between the combination treatment and the treatment 

alone at any of the tested concentrations with both vincristine and prednisolone, as 

shown in Figure 23. 

 

Figure 23:  HL-60 treatment in combination with IC50 frondoside A concentration. A) 

Asparaginase at lower concentrations combinations with frondoside 2.5 μM decreased 

viability significantly compared to asparaginase alone (P < 0.01). B) and C) 

Combination treatments of both vincristine and prednisolone with frondoside A did 

not show any significant change compared to each of the drugs alone 
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From these experiments, frondoside A induced cell death in different leukemia 

cell lines measured by decrease in ATP production (as well as morphologically, 

showing features of cell death) in the treated groups. The efficacy of frondoside A was 

variable, being more effective in acute T-cell ALL (CCRF-CEM) and less effective in 

the monocytic acute leukemia cells (THP-1). Frondoside A also enhanced the effect of 

conventional chemotherapeutic drugs used in the treatment of this malignancy.  

Further investigations were performed on CCRF-CEM as an example of 

frondoside A sensitive cells and on THP-1 as an example of more resistant cells. The 

HL-60 cell line was excluded from further investigation because of showing minimal 

response to combination treatment. 

3.2 Apoptosis Assays 

At least 10 consecutive fields were screened in both, control and treated wells. 

Frondoside A induced apoptosis in both cell lines. Annexin positive cells were 

significantly higher in the IC50 treated group compared to controls. Figure 24 shows 

THP-1 annexin stained cells at 1 and 3 h treatment points. Results from experiments 

in CCRF-CEM cells (at 1, 3 and 6 h) are shown in Figure 25. 

 

Figure 24:  THP-1 cells annexin staining. A) Control cells treated with PBS for 1 h 

and B) Frondoside A IC50 treated cells at 1 h showing increase in cell numbers that are 

annexin-PE stained. C) and D) represents control and frondoside A treated at 3 h 

respectively with marked increase in annexin staining compared to the control and to 

1 h treatment duration (P < 0.05) 
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Figure 25:  CCRF-CEM cells annexin staining. A) Control cells treated with PBS for 

1 h and B) Frondoside A IC50 treated cells at 1 h showing increase in cell numbers that 

are annexin-PE stained. C) and D) represents control and frondoside A treated at 3 h 

respectively with marked increase in annexin staining compared to the control and to 

1 h treatment duration. E) and F) represents control and frondoside A treated at 6 h 

respectively with marked increase in annexin staining compared to the control (P < 

0.001 at all-time points) 

 

3.3 Gene Expression Analysis 

For gene expression profiling, β-actin mRNA (ACTB) was chosen as 

endogenous control to which all the other gene amplifications were normalized for all 

the samples. The choice of ACTB was made because its expression was consistent 

among all samples (controls vs treated) at both treatment duration points (6 h vs 24 h) 

(Naora, 1995). It also amplifies at Ct value close to the samples and not earlier (as did 

the 18S gene) which can give false higher fold increase in expression as shown in 

Figure 26. 



88 
 

 
 
 

Control samples (untreated) were used as reference for the analysis of the 

treated samples, each control at its time point; i.e. control 6 h was used to compare 

treated samples at 6 h treatment duration and control 24 h was used to compare treated 

samples at 24 h treatment duration. Then the 6 h treated samples were compared to the 

24 h treated ones to detect the trend of change in the gene expression in response to 

different time durations. Increase in gene expression more than 2-fold from the 

reference sample or decrease of more than 0.5 fold was considered significant. 

 

Figure 26: The choice of control gene in CCRF-CEM cells. Comparison between 

ACTB (in blue) and 18S (in red). Control samples at 6 and 24 hr time points as well 

as frondoside A 1.5 μM treated sample show no variation in ACTB expression which 

amplified at Ct value of around 22 

 

In order to simplify the analysis, the expression of genes on the arrays were 

grouped into 4 groups; TNF pathway genes, apoptosis pathway genes, NFκB pathway 

genes and NFκB inhibitor genes. 

3.3.1 Gene expression in CCRF-CEM cells 

In the CCRF-CEM cell line, frondoside A induced significant increase in 

expression of tumor necrosis factor C (TNF-C, also known as lymphotoxin β, LTB) at 
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both time points. Expression of tumor necrosis factor β (TNF-β, also known as 

lymphotoxin α, LTA) and tumor necrosis factor receptor 1 (TNF-R1, also known as 

tumor necrosis factor receptor superfamily member 1A, TNFRSF1A) were up-

regulated after 24 h treatment duration while expression of death receptor 3 (DR3, also 

known as  tumor necrosis factor receptor superfamily member 25, TNFRSF25) and 

death receptor 6 (DR6, also known as tumor necrosis factor receptor superfamily 

member 21, TNFRSF21), although not significantly increased from controls, they 

were more than 2-fold higher in the longer treatment duration compared to 6 h 

treatment. 

Frondoside A caused a marked increase in expression of caspase-6, NoxA 

(phorbol-12-myristate-13-acetate-induced protein 1; PMAIP1), leucine rich repeat and 

pyrin domain containing 1 (NALP1), death effector domain (PEA15) and BCL2 like 

1 (BCL2L1) which are pro-apoptosis genes encoding pro-apoptosis proteins in CCRF-

CEM cells. The pro-apoptosis genes caspase 1, 2, 6, 7 , 8, 10, CASP8AP, leucine-rich 

receptor and death domain (LRDD), tumor necrosis factor receptor superfamily 1A 

associated death domain (TRADD) and death associated protein kinase 1 (DAPK), 

although not significantly changed from the control samples, there was ≥ 2 fold 

increase at 24 h compared to 6 h treatment duration. Frondoside A caused a minimal 

down-regulation of the anti-apoptosis gene B-cell CCL/lymphoma 2 (Bcl-2) at 6 h 

treatment duration. 

Frondoside A increased expression of the nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 2 (NFκB2), v-rel reticuloendotheliosis viral 

oncogene homolog B (RelB, also known as nuclear factor of kappa light polypeptide 

gene enhancer in B-cells 3) and inhibitor of kappa light polypeptide gene enhancer in 
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B-cells kinase beta (IκBKβ) genes significantly in this cell line. The gene encoding 

cIAP2 (BIRC3) was also markedly up-regulated. In response to frondoside A 

treatment, the NFκB pathway inhibitors; nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor alpha (NFκBIA), T-cell activation NFκB-like protein 

(TA-NFκBH, also known as NFκBID) and nuclear factor of kappa light polypeptide 

gene enhancer in B-cells inhibitor zeta (NFκBIZ) were also markedly up-regulated. 

The details of the genes affected by the treatment with frondoside A in CCRF-CEM 

cell line is shown in Figure 27 and Table 11. 

 

Figure 27:  Gene expression fold change in response to frondoside. In THP-1 and 

CCRF-CEM cell lines at 6 and 24 h treatment duration 
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Gene Pathway Fold Change 

6 h/24 h 

Direction of Change 

APAF1 Apoptosis 0.57/1.19 No change, increased at 24h 

BCL2 Apoptosis 0.59/1.04 No change 

BCL2L1 Apoptosis 0.66/3.13 Up-regulated at 24 h 

MCL1 Apoptosis 0.63/1.74 No change, increased at 24 h 

CASP1 Apoptosis 0.55/1.47 No change, increased at 24 h 

CASP2 Apoptosis 0.53/1.54 No change, increased at 24 h 

CASP6 Apoptosis 0.77/2.49 Up-regulated, increased at 24 h 

CASP7 Apoptosis 0.71/1.37 No change, increased at 24 h 

CASP8 Apoptosis 0.38/1.46 Increased at 24 h 

CASP8AP2 Apoptosis 0.45/1.13 Increased at 24 h 

CASP10 Apoptosis 0.91/1.89 No change, increased at 24 h 

DEDD Apoptosis 0.88/1.88 No change, increased at 24 h 

DEDD2 Apoptosis 0.65/1.49 No change, increased at 24 h 

LRDD Apoptosis 0.57/1.34 No change, increased at 24 h 

HIP1 Apoptosis 0.88/0.48 Down-regulated at 24 h 

TRADD Apoptosis 0.81/1.67 No change, increased at 24 h 

DAPK1 Apoptosis 0.55/1.49 No change, increased at 24 h 

BAK Apoptosis 0.32/0.78 Increased at 24 h 

NALP1 Apoptosis 0.81/2.01 Up-regulated at 24 h 

PEA15 Apoptosis 0.91/2.01 Up-regulated at 24 h 

PMAIP1 Apoptosis 0.91/2.01 Up-regulated, increased at 24 h 

TNFRSF1A TNF 1.09/2.09 Up-regulated at 24 h 

TNFRSF10A TNF -/0.13 Down-regulated at 24 h 

TNFRSF21 TNF 0.41/1.34 No change, increased at 24 h 

TNFRSF25 TNF 0.49/1.92 No change, increased at 24 h 

LTA TNF 1.61/2.73 Up-regulated at 24 h 

LTB TNF 2.0/2.7 Up-regulated 

RIPK1 NFκB  0.85/1.87 No change, increased at 24 h 

RIPK2 NFκB  3.0/1.48 Down-regulated, decreased at 24 h 

BCL3 NFκB 2.5/1.42 Up-regulated, decreased at 24 h 

BCL10 NFκB 0.91/1.71 No change, increased at 24 h 

BIRC3 NFκB 2.42/2.29 Up-regulated 

BIRC4 NFκB 0.47/- Down-regulated 

CARD6 NFκB 0.36/0.13 Down-regulated 

IKBKB NFκB  0.65/2.17 Up-regulated at 24 h 

NFKB1 NFκB 1.07/1.26 No change 

NFKB2 NFκB  4.99/3.3 Up-regulated 

RELA NFκB 0.76/1.7 No change, increased at 24 h 

RELB NFκB  2.44/2.9 Up-regulated 

IKBKG NFκB  0.84/1.84 No change, increased at 24 h 

NFKBIZ NFκB inhibitor 1.53/2.1 Up-regulated at 24 h 

NFKBIA NFκB inhibitor 2.1/2.25 Up-regulated 

TA-NFKBH NFκB inhibitor 1.51/2.06 Up-regulated at 24 h 

Table 11: CCRF-CEM cell line gene changes. The fold change in CCRF-CEM cell 

line gene expression in response to frondoside A treatment at 6 and 24 h time points, 

categorized based on gene function 
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Nine genes failed to amplify in this cell line at both time points and were 

excluded from the analysis. These included BOK, CARD9, caspase-5, caspase-14, 

BIRC7, BIRC8, HRK, BCL2L10 and ICEBERGE.  

3.3.2 Gene expression in THP-1 cells 

The THP-1 cell line showed more changes in gene expression in response to 

frondoside A treatment compared to CCRF-CEM cell line. 

Frondoside A caused a significant up-regulation in caspase-3, caspase-4, 

caspase-6, Noxa, BCL-2 ovarian killer (Bok), huntingtin interacting protein 1 (HIP1), 

BH3 interacting domain death agonist (Bid) and phosphoprotein enriched in astrocytes 

15 (PEA15). Caspase-7 was up-regulated early after 6 h treatment duration. Although 

there was no significant increase compared to controls, caspase-1, caspase-10, BCL2-

antagonist/ killer 1 (Bak), BCL2-antagonist of cell death (Bad) and BCL2-associated 

X protein (Bax) show more than 2-fold increase in expression at 24 h compared to 6 h 

treatment. The anti-apoptosis gene Bcl-2 was down-regulated at both time points while 

myeloid cell leukemia sequence 1 (MCL1) showed up-regulation. 

Frondoside A-treated THP-1 cells showed marked up-regulation of the tumor 

necrosis factor (TNF) pathway genes including TNF receptor superfamily member 6 

(FAS), TNF receptor superfamily member 2 (TNF), tumor necrosis factor receptor 

superfamily member 10B (TNFRSF10B, also known as TRAIL-R1), tumor necrosis 

factor receptor superfamily member 10A (TNFRSF10A, also known as TRAIL-R2), 

death receptor 3 (DR3, also known as  tumor necrosis factor receptor superfamily 

member 25, TNFRSF25) and death receptor 6 (DR6, also known as tumor necrosis 

factor receptor superfamily member 21, TNFRSF21), tumor necrosis factor receptor 
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superfamily member 1A (TNFRSF1A, also known as TNF-R1), tumor necrosis factor 

receptor superfamily member 1B (TNFRSF1B, also known as TNF-R2) and 

lymphotoxin α (TNFβ).  

Treatment with frondoside A was associated with massive up-regulation of the 

expression of NFκB pathway genes such as nuclear factor of kappa light polypeptide 

gene enhancer in B-cells 1 (NFκB1), nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 2 (NFκB2), v-rel reticuloendotheliosis viral oncogene homolog B 

(RelB, also known as nuclear factor of kappa light polypeptide gene enhancer in B-

cells 3), v-rel reticuloendotheliosis viral oncogene homolog (Rel, also known as c-

Rel), B-cell CLL/lymphoma 3 (BCL3) and inhibitor of kappa light polypeptide gene 

enhancer in B-cells kinase epsilon (IκBKE). Frondoside A also affected the expression 

of multiple genes involved in NFκB inhibition, these genes were markedly up-

regulated (nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor 

alpha; NFκBIA, nuclear factor of kappa light polypeptide gene enhancer in B-cell 

inhibitor beta; NFκBIB, NFκBID, nuclear factor of kappa light polypeptide gene 

enhancer in B-cell inhibitor epsilon; NFκBIE and nuclear factor of kappa light 

polypeptide gene enhancer in B-cell inhibitor zeta; NFκBIZ). The genes encoding 

cIAP2 and XIAP (BIRC3 and BIRC4 respectively) were markedly up-regulated at 

both time points. The details of the gene changes in THP-1 cell line in response to 

frondoside A treatment is shown in Figure 27 and Table 12.  

In this cell line 6 genes failed to amplify at both time points and were excluded 

from the analysis. These included BCL2L14, caspase-14, FASLG, DAPK1, HRK and 

ICEBERG. 
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Gene Pathway Fold Change 

6 h/24 h 

Direction of Change 

APAF1 Apoptosis 0.16/0.69 No change, increased at 24 h 

BCL2 Apoptosis 0.3/0.6 Down-regulated 

BCL2L1 Apoptosis 0.18/1.46 Down-regulated at 6 h 

MCL1 Apoptosis 3.8/3.0 Up-regulated 

CASP1 Apoptosis 0.3/1.3 No change, increased at 24 h 

CASP3 Apoptosis -/2.16 Up-regulated at 24 h 

Casp4 Apoptosis 0.58/3.68 Up-regulated at 24 h 

CASP6 Apoptosis -/2.04 Up-regulated at 24 h 

CASP7 Apoptosis 2.4/1.17 Up-regulated at 6 h 

CASP8 Apoptosis 0.99/- No change 

CASP8AP2 Apoptosis 1.13/1.09 No change 

CASP10 Apoptosis 0.5/1.12 No change, increased at 24 h 

DEDD2 Apoptosis 0.36/1.69 Down-regulated, increased at 24 h 

LRDD Apoptosis 0.74/1.24 No change, increased at 24 h 

HIP1 Apoptosis 0.72/3.36 Up-regulated at 24 h 

TRADD Apoptosis 2.3/1.53 Up-regulated at 6 h 

BID Apoptosis 2.69/3.85 Up-regulated 

BAK Apoptosis 0.56/1.86 Increased at 24 h 

BAD Apoptosis 0.26/1.66 Increased at 24 h 

BAX Apoptosis 0.63/1.58 Increased at 24 h 

BOK Apoptosis 0.12/2.45 Up-regulated at 24 h 

NALP1 Apoptosis 0.3/0.92 Increased at 24 h 

PEA15 Apoptosis -/4.83 Up-regulated at 24 h 

PMAIP1 Apoptosis 2.47/3.8 Up-regulated, increased at 24 h 

FAS TNF 1.79/2.06 Up-regulated at 24 h 

TNF TNF -/7.67 Up-regulated at 24 h 

TNFRSF1A TNF 2.79/2.19 Up-regulated at 24 h 

TNFRSF1B TNF 2.0/3.0 Up-regulated 

TNFRSF10A TNF 0.65/2.9 Up-regulated at 24 h 

TNFRSF10B TNF -/3.05 Up-regulated at 24 h 

TNFRSF21 TNF 2.28/2.75 No change, increased at 24 h 

TNFRSF25 TNF 0.2/2.0 No change, increased at 24 h 

LTA TNF 13.02/6.22 Up-regulated at 24 h 

LTB TNF 0.85/1.68 Up-regulated 

RIPK1 NFκB  -/2.68 Up-regulated at 24 h 

RIPK2 NFκB  4.49/10.95 Up-regulated  

BCL3 NFκB 6.0/9.0 Up-regulated 

BCL10 NFκB 2.94/- Up-regulated at 6 h 

BIRC3 NFκB 7.0/10.0 Up-regulated 

BIRC4 NFκB 4.0/1.6 Up-regulated at 24 h 

CARD6 NFκB 3.56/0.97 Up-regulated at 24 h, Down-regulated at 6 h 

CARD9 NFkB 0.36/- Down-regulated at 6 h 

IKBKB NFκB  0.76/1.4 No change, increased at 24 h  

IKBKG NFkB -/1.9 No change 

NFKB1 NFκB 12.18/6.12 Up-regulated 

NFKB2 NFκB  8.24/11.55 Up-regulated 

REL NFkB 2.27/2.03 Up-regulated 

RELA NFκB -/1.89 No change 

RELB NFκB  0.97/11.72 Up-regulated 

BCL2A1 NFκB  6.36/- Up-regulated at 6 h 

NFKBIZ NFκB inhibitor 7.47/5.41 Up-regulated  

NFKBIA NFκB inhibitor 6.4/10.84 Up-regulated 

NFKBIB NFκB inhibitor 2.27/5.07 Up-regulated 

NFKBIE NFκB inhibitor 2.27/6.6 Up-regulated 

TA-NFKBH NFκB inhibitor 8.16/6.54 Up-regulated  

Table 12: THP-1 cell line gene changes. The fold change in THP-1 cell line gene 

expression in response to frondoside A treatment at 6 and 24 h time points, categorized 

based on gene function 
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3.4 Protein Expression Analysis 

A minimum of 3 western blot experiments were performed for each cell line 

for each protein and reproducibility of the results was confirmed. 

3.4.1 Bcl-2 

The anti-apoptotic protein Bcl-2 showed a small but significant decreased in 

expression in both cell lines at 6 h in response to frondoside A treatment. This finding 

was in accordance with the gene expression as discussed in section 3.3. The western 

blot membranes are described in Figure 28. 

 

Figure 28: Western blot of Bcl-2 protein. A) Western blot of CCRF-CEM showing 

decrease in Bcl-2 expression after 6 h of frondoside A treatment (left). On the right is 

the statistical quantification of the bands. B) Western blot of THP-1 showing decrease 

in Bcl-2 expression after 6 h and 24 h of frondoside A treatment (left). Right panels 

show the statistical analysis of the quantification of the bands. (M= protein ladder, C6= 

control samples at 6 h, T6= frondoside A-treated sample at 6 h, C24= control samples 

at 24 h, T24= frondoside A-treated samples at 24 h) 

 6 h                  24 h 

M    C6    T6     C24   T24 

M    C6      T6    C24    T24 

 6 h                  24 h 
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3.4.2 Bax 

In THP-1 cells, although the expression of the pro-apoptotic gene, Bax was not 

significantly altered in response to frondoside A treatment compared to the control, at 

the protein level, Bax showed marked decrease in expression level in the frondoside 

A treated groups at both time points. Similar findings were observed in the CCRF-

CEM cell line. Figure 29 showed the analysis and level of significance for the protein 

in both cell lines. 

 

Figure 29:  Western blot of Bax protein. A) Bax protein showing decrease expression 

in the frondoside A treated groups in CCRF-CEM cells being more significant at 6 h. 

B) THP-1 cells show marked reduction in Bax expression post frondoside A treatment 

at both time points. Right panels show the statistical analysis of quantification of the 

bands 

 

 6 h                      24 h 

 6 h                      24 h 
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3.4.3 Caspase-3 

 The cysteine-dependent aspartate- directed protease 3 is the main player in the 

execution apoptosis pathway where its activation leads to the fragmentation of cell 

cytoskeletal proteins, DNA fragmentation and PARP inactivation. This protein in its 

full length inactive form has a MW of 35 KDa, when it is activated, it gets cleaved to 

a smaller active form with a MW of 17/19 KDa. 

Analysis of this caspase on WB has shown marked reduction in the expression 

of pro-caspase-3 (inactive full length form) in both the CCRF-CEM and THP-1 cell 

lines in response to the treatment with frondoside A at 6 h and 24 h (see Figure 30). 

This suggests that the protease has been activated.  

 

Figure 30: Western blot of pro-caspase-3. A) Shows significant reduction in pro-

caspase-3 expression at 6 h frondoside A treatment duration in the CCRF-CEM cell 

line (left). B) Shows significant reduction in pro-caspase-3 expression at both 6 and 

24 h frondoside A treatment duration in the THP-1 cell line. Right panels show the 

statistical analysis of the quantification of the bands 

 6 h                  24 h 

 6 h                   24 h 
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3.4.4 p53 

The p53 protein is known to be mutated in the CCRF-CEM cell line. It has a 

missense mutation at 524 changing guanine to adenine leading to arginine amino acid 

substitution by glutamine at position 248 (R248Q). In this cell line, expression of the 

mutated p53 was decreased in the frondoside A treated group at 6 h treatment duration 

compared to untreated cells as shown in Figure 31.  

The THP-1 cell line has a deletional mutation resulting in complete lack of 

expression of the protein (Guerrouahen et al., 2010), hence, the protein was not 

detected on WB using p53 monoclonal antibodies. 

 

Figure 31: Western blot of p53 protein. The expression of mutated p53 protein in 

CCRF-CEM cells showing a significant decrease after 6 h treatment with frondoside 

A, but not after 24 h. The right panel shows the statistical analysis of quantification of 

the bands 

 

3.4.5 p21 

In the monocytic leukemia cell line, THP-1, frondoside A caused increased 

expression of p21 protein (CDK inhibitor 1) after 6 h of treatment. Milder significant 

change in the expression was seen at 24 h in the treated groups compared to the control.  

 6 h                    24 h 
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The CCRF-CEM cells lack expression of p21, hence it was not tested. The protein 

expression and statistical analysis id shown in Figure 32. 

 

Figure 32: Western blot of p21 protein. THP-1 cells show a marked increase in p21 

protein expression after 6 and 24 h treatment with frondoside A. The change in 

expression compared to controls was more significant at early treatment point. The 

right panel shows the statistical analysis of the quantification of the bands 

  

3.5 Frondoside A Interaction with NFκB Pathway 

From gene expression results, we found that in both cell lines, the frondoside 

A-treated groups showed marked change in the expression of multiple members of the 

NFκB pathway. We hypothesized that blast cells activate NFκB pathway as a survival 

mechanism in an attempt to escape the apoptotic effects of frondoside A. 

To investigate the interaction of frondoside A with NFκB and its effect on 

CCRF-CEM and THP-1 cell lines, cells were treated with variable concentrations of 

frondoside A in combination with IC50 of andrographolide (an irreversible NFκB 

antagonist). Note that the frondoside A used in these experiments was from the stock 

purchased from Sigma-USA. Andrographolide IC50 was around 50 µM in both cell 

lines. 

 6 h                      24 h 
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We found that andrographolide enhanced the anti-leukemia effect of low dose 

frondoside A in both cell lines where it significantly potentiated the effect of 

frondoside A in all tested concentrations. Data are shown in Figure 33. 

 

 

The protein expression of selected NFκB pathway members was further 

investigated. These proteins were chosen based on the results of the gene expression 

profiling findings. Expression of RelB, cytoplasmic inhibitor of apoptosis protein 2 

(cIAP2 encoded by BRIC3 gene) and NFκB2 proteins was investigated using the 

western blot technique. 

3.5.1 RelB  

Frondoside A increased expression of RelB (v-rel reticuloemdotheliosis viral 

oncogene homolog B) gene in the frondoside A-treated groups after 6 and 24 h in 

CCRF-CEM cells. In contrast it was initially not changed in THP-1 after 6 h, but 

increased in the frondoside A-treated group at 24 h. However, none of the changes on 

Figure 33: Frondoside A effect in-combination with andrographolide. A) The effect 

of low dose frondoside A was markedly enhanced when combined with 

andrographolide IC50 in the CCRF-CEM cell line in all tested concentrations. B) 

Similar effects were seen in the THP-1 cell line (P < 0.001) 
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the protein level reached statistical significance. The images of the western blots are 

shown in Figure 34. 

 

Figure 34: Western blot showing RelB protein expression. In CCRF-CEM cells (A) 

RelB protein expression is increased in the frondoside A-treated groups (T6, T24) 

compared to controls (C6, C24) at both treatment points. B) RelB protein expression 

in response to frondoside A treatment in THP-1 cells is unchanged. Beta Actin was 

used as a control for the protein loading. Right panel shows the statistical analysis of 

the quantification of the bands 

 

3.5.2 cIAP2  

Expression of cIAP2 (cytoplasmic inhibitor of apoptosis protein 2), which is 

the protein product of BIRC3 gene, was not changed in response to frondoside A in 

CCRF-CEM cells. In contrast, expression of cIAP2 was increased after 24 h frondoside 

A treatment in THP-1 cells but did not reach clinical significance. See Figure 35. 

 6 h                        24 h 

 6 h                        24 h 
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Figure 35: Western blot showing cIAP2 protein expression. A) cIAP2 protein 

expression in CCRF-CEM cells was not significantly changed by frondoside A 

treatment in the treated groups (T6, T24) compared to controls (C6, C24) at either 

treatment point. B) In contrast, cIAP2 protein expression in THP-1 cells was increased 

by frondoside A in the 24 h treated group. Right panel shows the statistical analysis of 

the quantification of the bands 

 

 

3.5.3 NFκB2  

NFκB2 (Nuclear factor kappa light polypeptide enhancer in B-cell 2) 

expression was investigated for both, the full-length protein (p100) which is a 120 kDa 

protein and for the active (cleaved/ p52) form with MW of 52 kDa. There was an 

increase in the full-length protein expression following frondoside A treatment at 6 h 

in CCRF-CEM cells. In contrast, there was a small decrease in the p52 form that didn’t 

reach statistical significance. Both forms of the NFκB2 protein were increased in the 

A) 

 6 h                       24 h 

 6 h                        24 h 
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frondoside A-treated group at 24 h but this did not reach statistical significance. Figure 

36 shows NFκB2 protein expression in the western blot. 

In THP-1 cells, NFκB2 protein expression was decreased at 6 h following 

frondoside A treatment (p < 0.05) but there was increase in expression of the full-

length form after 24 h treatment duration (See Figure 36). 

 

 

Figure 36:  Western blots showing NFκB2 protein expression. A) Increased expression 

of the full-length NFκB2 protein in frondoside A-treated CCRF-CEM cells after 6 h 

treatment. In contrast, no significant change seen at 24h treatment duration. B) 

Decreased expression of the full-length (p100) NFκB2 protein in frondoside A-treated 

THP-1 cells after 24 h treatment. Right panels show the statistical analysis of 

quantification of the bands 

 

  

 6 h                    24 h 

 6 h                    24 h 
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Chapter 4: Discussion 

 

Acute leukemia is a common hematological malignancy and is a major health 

concern. Although complete remission is achievable with the conventional 

chemotherapeutics (Cisterne et al., 2014; Davies et al., 2011) this is not without 

debilitating side-effects. The long-term side-effects of the current available synthetic 

drugs are difficult for patients to cope with and add burden on the health system. To 

address this problem, scientists have turned to the naturally available compounds to 

investigate their potential anti-leukemic properties (Park   et al., 2012). One such 

compound is frondoside A, which is a triterpenoid glycoside from the sea cucumber 

C. frondosa.  

Frondoside A has been known for its anti-bacterial, anti-inflammatory and 

immune-modulatory effects (Bordbar et al., 2011; Janakiram et al., 2015; Kalinin, 

Aminin, Avilov, Silchenko, & Stonik, 2008) but its anti-cancer properties have only 

been explored in the last 10 years. Studies have shown its potent anti-proliferative, 

anti-metastatic, anti-angiogenic and pro-apoptotic effects in solid tumors (Gomes, 

Dasari, Chandra, Kiss, & Kornienko, 2016; Li  et al., 2013). Only one study has shown 

the pro-apoptotic effect of frondoside A on some leukemia cell lines (Jin et al., 2009). 

The current study is the first to investigate in detail the anti-leukemic effects of 

frondoside A and compare it to conventional chemotherapeutic drugs. 

Frondoside A was effective in reducing leukemic blast cell viability in all the 

tested acute leukemia cell lines in this project; including acute T-cell lymphoblastic 

leukemia (CCRF-CEM), acute monocytic leukemia (THP-1) and the acute 

promyelocytic leukemia (HL-60) cell lines. The sensitivity of these leukemic cells to 
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frondoside A treatment varied, with the most sensitive being CCRF-CEM and the least 

sensitive was THP-1. 

4.1 Frondoside A Potentiates the Effect of Other Drugs 

Combinations of low concentrations of frondoside A with conventional 

therapeutic drugs used to treat acute leukemia (asparaginase, vincristine and 

prednisolone) led to more pronounced suppression of cell viability than the 

conventional drugs used as single agents. The CCRF-CEM and THP-1 cell lines 

showed increased suppressive effects on cell viability in all the combination treated 

groups, while the HL-60 cell line showed enhanced effects of conventional drugs only 

when higher compound concentrations were used. 

L-asparaginase acts on leukemia blast cells by depriving the cells of the amino 

acid asparagine which is crucial for leukemic cell function. The impairment of the blast 

cell function, leading to cell death following treatment with asparaginase was 

enhanced by the addition of frondoside A, which also induced cell death through the 

induction of apoptosis (as will be discussed later). A similar explanation applies to the 

enhanced effect of vincristine when combined with frondoside A. Vincristine 

eradicates leukemia blast cells by interfering with cell division. It prevents 

chromosomal segregation in metaphase which in turn triggers apoptosis as a default 

mechanism. Prednisolone when given as a single agent for the treatment of ALL, was 

found to induce a short-lived remission in 50% of cases (Inaba & Pui, 2010). Its anti-

cancer effect is thought to be mediated through its regulation of gene expression by 

interaction with activated protein 1 (AP-1) and NFκB. Frondoside A has also shown 

in previous studies on solid tumors to inhibit AP-1 and NFκB (Park   et al., 2012). In 

our study (as will be explained later) frondoside A treatment resulted in the up-
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regulation of multiple NFκB inhibitors and this may possibly explain the reduction in 

cellular viability when frondoside A is combined with prednisolone. 

Studies have shown p21 activated kinase 1 (PAK1) to be highly involved in 

the oncogenic transformation of many tumors including acute leukemia (Kumar, 

Gururaj, & Barnes, 2006). This protein with a kinase activity was found to be over-

expressed in tumors and was associated with more aggressive phenotype. PAK1 is 

involved in many physiological functions in the cell including cytoskeletal and actin 

modifications, cell motility, proliferation, survival and metabolism. Activation of 

PAK1 leads to the phosphorylation of survival pathways such as MAPK/JNK and ERK 

(Kumar et al., 2006; Pandolfi et al., 2015). PAK1 also activates the NFκB survival 

pathway through NFκB inducing kinase (NIK). A recently published study showed 

frondoside A to inhibit PAK1 at concentrations identical to those that exhibit anti-

cancer effects (Nguyen, Yoshimura, Kumazawa, Tawata, & Maruta, 2017). It would 

appear that this has unraveled a new mechanism of action of this drug. The pro-survival 

NFκB pathway promotes proliferation, metastasis, angiogenesis and cell survival 

through activating multiple gene targets involved in these cellular activities (Pahl, 

1999). Frondoside A through its direct inhibition of PAK1 (Nguyen et al., 2017) and 

hence, NFκB pathway, showed the ability to inhibit these activities, which are major 

characteristics of cancer cells. Frondoside A promotes cell death through the intrinsic 

apoptotic pathway where the pro-apoptotic protein expression was increased and the 

anti-apoptotic proteins decreased in response to the treatment (Li   et al., 2008). Those 

apoptotic proteins are the product of genes that are targets of the NFκB pathway (Pahl, 

1999). PAK1 has shown the ability to inhibit activation of the pro-apoptotic protein 

Bad on the mitochondrial outer membrane that leads to inhibition of cell death, while 

frondoside A promotes the activation of Bad. Frondoside A also inhibited breast cancer 
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migration and invasion through inhibiting MMP-9 (Al Marzouqi et al., 2011; Park   et 

al., 2012), which is also a target gene product for NFκB activation (Pahl, 1999). 

Angiogenesis is required for the survival and metastasis of cancer cells and this is also 

inhibited by the treatment with frondoside A (Attoub et al., 2013) and the growth 

factors required for this process are products of genes under the influence of NFκB 

pathway. Inflammation is triggered through the activation of NFκB, which binds the 

DNA promoter genes and up-regulates multiple pro-inflammatory molecules such as 

cytokines and eicosanoids (Pahl, 1999). On the other hand, frondoside A has been 

shown to enhance immunity by stimulating the lysosomal and phagocytic activity of 

macrophages (Aminin et al., 2008). 

 Inhibition of PAK1 by frondoside A, inhibits PAK1 activation of NFκB 

pathway. As mentioned before, PAK1 activates NFκB through the activation of NFκB 

inducing kinase (NIK) that is required for the non-canonical pathway induction. It was 

also found to activate NFκB via activating inhibitor of kappa B kinase beta (IKKβ) 

that is needed to release NFκB from its inhibitor (IKB) (Kumar et al., 2006). 

4.2 Frondoside A Effect on Apoptosis Genes and Proteins 

Frondoside A changed the expression of many genes and proteins in acute 

leukemia cell lines that are involved in apoptosis. In the CCRF-CEM cell line, there 

was up-regulation of Bcl-2 like-1 (BCL2L1) gene which encodes the pro-apoptosis 

protein Bcl-Xs and the anti-apoptotic protein Bcl-xL by an alternative splicing of the 

transcript. Both isoforms are located on the mitochondrial outer membrane and 

regulate the voltage channels controlling the release of cytochrome c and hence, the 

intrinsic apoptosis pathway. The gene is also a transcriptional target for NFκB pathway 

and the up-regulation might have been a direct effect of NFκB pathway activation. 
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Although the gene expression was increased, the protein product of the gene was not 

examined.  Interestingly, PAK1 is known to increase the nucleus translocation of 

signal transducer and activator of transcription 5 (STAT5) which is a transcription 

factor targeting Bcl-xL gene (Chatterjee et al., 2014) and studies have shown 

frondoside A to inhibit this action.  

Treatment with frondoside A in CCRF-CEM cells led to the up-regulation of 

phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). This gene encodes 

Noxa, a member of the Bcl-2 family proteins that promotes apoptosis by enhancing 

the change in the mitochondrial membrane potential. Noxa also known to degrade the 

pro-survival protein Mcl-1 (myeloid cell leukemia sequence 1). Noxa is regulated by 

p53 in normal cells and since in CCRF-CEM cells, p53 is mutated, the up-regulation 

of Noxa must be p53 independent. Noxa expression is also regulated by other genes of 

the p53 family, like p73 and p63. However, p73 is activated only in the presence of 

NFκB (Martin, Trama, Crighton, Ryan, & Fearnhead, 2009). 

Although Bax gene expression was not altered by the treatment, both cell lines 

showed significant decrease in the protein expression on western blot analysis. Since 

we have demonstrated the induction of apoptosis as early as 1h after frondoside A 

treatment (Annexin V assay), this decrease in Bax might be due to consumption or 

degradation after activating the mitochondrial pathway (Guerrouahen et al., 2010). 

There was also a marked up-regulation of caspase 6, the executioner caspase. 

The expression of caspase 1, 2, 7, 8, 10 and Bcl-2 antagonist/ killer 1 (Bak) genes were 

more than 2-fold increased in the 24 h frondoside A treated cells compared to 6 h 

treated, indicating the activation of those pro-apoptosis genes transcription by 

frondoside A. When comparing these gene changes to the untreated (control) cells, the 
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up-regulation was less than 2-fold, hence, frondoside A might have activated the 

protein products of those genes rather than significantly affecting the gene 

transcription. This is in support of the early morphological changes consistent with 

apoptosis after 1h of frondoside A treatment. Another explanation might be that the 

increase in expression of the pro-apoptosis genes in the treated groups occurred before 

6 h and since our gene profiling experiments were investigating the changes only at 

two time points (6 h and 24 h), earlier changes might have been missed.  

Our experiments showed evidence to support activation of caspase 3 without 

an effect on its mRNA level. We have shown frondoside A to induce apoptosis in 

CCRF-CEM cell line (where annexin positive cells were present in the treated groups) 

as early as 1 h post-treatment. Western blot analysis for caspase 3 showed decrease in 

the pro-caspase 3 protease expression at 6 h and 24 h treatment durations. We could 

not detect a band corresponding to the active cleaved form on western blot and one 

explanation for this might be that caspase-3 was activated early after treatment, but the 

active form was consumed or degraded at time of protein extraction (Hu, Li, Liu, Miao, 

& Yao, 2015) since our western blot experiments were performed only at two time 

points (6 and 24 h) post frondoside A treatment. This might indicate that frondoside A 

activates those proteases and proteins that are present in the cell without inducing the 

transcription and hence the translation of new proteins (Davies et al., 2011; Soussi & 

Wiman, 2015) as is the case with other chemotherapeutic agents (Hu et al., 2015). 

Frondoside A also might have initiated cell death in these cells in a caspase 

independent manner (Dyshlovoy et al., 2016; Goldar et al., 2015; Jin et al., 2009) such 

as the apoptosis-inducing factor (AIF) and endonuclease G pathway, then later, the 

intrinsic pathways get activated post 24 h treatment which has been reported in other 

types of chemotherapy drugs (Guerrouahen et al., 2010) and couldn’t be detected here 
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due to the time experiments not investigating changes beyond 24 h. In the CCRF-CEM 

(T-cell ALL) cells, other mechanisms might have activated the executionary pathway 

(Caspase-3 and 7) directly without much involvement of other caspases from the 

intrinsic or extrinsic pathways. In lymphocytic cells, the granzyme/perforin apoptosis 

pathway might have been activated (Goldar et al., 2015) and this pathway was not 

investigated. Activation of the initiator caspase 12 can also directly activate the 

executionary pathway (Goldar et al., 2015) and was also not investigated. 

Studies on the effect of frondoside A in solid tumors confirmed the induction 

of the intrinsic apoptosis pathway by the compound but in CCRF-CEM cells, treatment 

with frondoside A also up-regulated the gene expression of multiple death receptors 

and adaptors that are involved in the extrinsic apoptosis pathway such as the death 

effector domain containing 2 (DEDD2), the death associated protein kinase 1 

(DAPK1), the leucine-rich repeats and death domain (LRDD) which encodes for a 

protein that activates death domains by binding to Fas associated death domain 

(FADD) and the NATCH leucine-rich repeats and pyrin domain containing 1 

(NALP1). The later gene encodes for caspase recruitment domain (CARD). 

Frondoside A also up-regulated phosphoprotein enriched in astrocytes 15 (PEA15) 

that encodes Pea15 protein which contains death effector domain (DED). These 

findings suggest that frondoside A induced apoptosis in CCRF-CEM cells might 

involve both, extrinsic and intrinsic apoptosis pathways. 

The pro-survival protein Bcl-2 is usually overexpressed in leukemia and is 

associated with inferior outcome (Goldar et al., 2015; Testa & Riccioni, 2007). The 

Bcl-2 protein was mildly down-regulated in frondoside A-treated CCRF-CEM cells at 

6 h. The protein as mentioned before binds the pro-apoptosis proteins Bad, Bik, Puma, 
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Bid and Noxa leading to inhibition of apoptosis. Its decreased expression after 

frondoside A treatment resulted in attenuation of its inhibitory effect on the pro-

apoptosis proteins (Delbridge & Strasser, 2015; Goldar et al., 2015). A limited number 

of studies have shown that lowering Bcl-2 level using antisense to Bcl-2 improve 

patient response to treatment in acute leukemia (Testa & Riccioni, 2007). The myeloid 

cell leukemia sequence 1 (Mcl-1) gene, which is also an anti-apoptotic member of the 

Bcl-2 family, was more than 2- fold increased after 24 h frondoside A treatment 

compared to 6 hr. 

Although p53 is mutated in the CCRF-CEM cell line (Davies et al., 2011), the 

function of this mutation has not been investigated. Recently, many studies have 

demonstrated that some cancer associated p53 mutations are causing an oncogenic 

gain of function which can drive the leukemic blast cells survival (Mantovani et al., 

2015; Soussi & Wiman, 2015). In the present study, treatment with frondoside A 

resulted in the decrease of the mutated protein in response to treatment at both time 

points being more significant at 6 h treatment, which might have contributed to its anti-

leukemic effect. It is well demonstrated in previous studies that a functional p53 is 

important for achieving the desired response to chemotherapeutic drugs, while cancers 

with dysfunctional p53 are known to be more resistant to treatment (Davies et al., 

2011; Mantovani et al., 2015). The tumor suppressor p21 protein is repressed in this 

cell line due to epigenetic alterations (Davies et al., 2011). 

In cells where p53 is non-functional, other members of the same family of 

proteins, i.e. p63 and the more structurally and functionally similar p73 proteins and 

their isoforms may act to induce apoptosis as substitute for p53 (Hollstein & Hainaut, 

2010; Mantovani et al., 2015; Menchinskaya, Pislyagin, et al., 2013). The protein p73 
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can be activated by DNA damage (that is caused by conventional drugs in treated cells) 

leading to the phosphorylation of p38/MAPK (Mantovani et al., 2015; Saha et al., 

2015). This leads to an increase in p73 transcriptional function promoting the 

promoters of pro-apoptosis genes (Mantovani et al., 2015). See above relationship 

between these proteins and Noxa. 

Many p53 mutations in cancer are missense mutations that affect the DNA 

binding site but keep the trans-activation site intact. This might explain how p53 acts 

in CCRF-CEM cells in transcription-independent manner (Naujokat et al., 2000) by 

affecting the balance and activation/inactivation of different pro- and anti-apoptosis 

proteins rather than affecting their expression (Mantovani et al., 2015). Frondoside A 

being functional in p53-independent manner makes it an attractive compound since 

many cancers are characterized by loss of p53. 

In the monocytic acute leukemia cell line (THP-1), there was a similar up-

regulation of Bcl2 like 1 (BCL2L1) and phorbol-12-myristate-13-acetate-induced 

protein 1 (PMAIP1 encoding Noxa) genes. In contrast to CCRF-CEM, THP-1 cells 

showed marked up-regulation in additional pro-apoptosis genes involved in the 

intrinsic and executioner pathways, including the BH3 interacting domain death 

agonist (BID), which encodes the Bid protein, which upon apoptosis activation 

enhances the insertion of Bax protein (Bcl-2 associated X protein) into the 

mitochondrial membrane, leading to the opening of the mitochondrial voltage-

dependent anion channels and the release of cytochrome c. The Bcl-2 related ovarian 

killer (Bok) gene was also significantly up-regulated in these cells post frondoside A 

treatment. It encodes Bok protein, which is another pro-apoptotic BH1-4 containing 

Bcl-2 protein family member.  
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In THP-1 cells there was marked up-regulation of caspase 4, 3, 6 and 7. At the 

protein level, analysis of caspase 3 on western blot showed similar changes as seen in 

CCRF-CEM cells with the activation of pro-caspase 3. Unlike CCRF-CEM cells, 

frondoside A treatment of THP-1 cells up-regulated caspase 3 gene expression as well 

as activating the protease at the protein level. 

Other pro-apoptosis genes were more than 2-fold increased after 24 h treatment 

compared to 6 h treatment but were not significantly changed compared to the control 

cells. These included caspase 1, caspase 10, Bak, Bad and Bax.  Again, when the Bax 

protein level was investigated, we showed decreased expression of the protein in 

frondoside A-treated groups. This might be due consumption or degradation after 

activating the mitochondrial pathway post 6 and 24 h of treatment (Guerrouahen et al., 

2010). 

In THP-1 cells, although there was no change in the gene expression of caspase 

8, caspase 10 showed more than 2-fold up-regulation after 24 h treatment compared to 

6h. Studies have shown that in some acute leukemia cells, activation of caspase 10 can 

substitute for caspase 8 in triggering apoptosis. Caspase 10 can cleave Bid and activate 

the mitochondrial apoptosis pathway (Cisterne et al., 2014). 

As seen in CCRF-CEM cells, treatment with frondoside A in THP-1 cells was 

associated with marked up-regulation of death/effector receptors and domains. These 

included PEA15 gene and tumor necrosis factor receptor superfamily 1A associated 

via death domain (TRADD) that encodes for an adaptor molecule, which interacts with 

TNF-R1 and mediates apoptosis through decreasing the recruitment of inhibitor of 

apoptosis proteins (IAPs) and activates pro-caspase 8.  Further detail of this interaction 

will be discussed in section 4.3. The THP-1 cells also showed up-regulation of leucine-
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rich repeats and death domain containing (LRDD), death effector domain containing 

2 (DEDD2) and Huntingtin interacting protein 1 (HIP1). The later gene encodes for a 

protein similar in structure in death effector domains and might promote cell death via 

activation of caspase 3 but its exact role is not clear. 

The Bcl-2 gene was significantly down-regulated at both treatment points in 

THP-1 cells and the protein level change was consistent with this down-regulation. In 

acute myeloid leukemia, the pro-survival Bcl-2 family protein, Mcl-1 is found to be 

up-regulated (Delbridge & Strasser, 2015; Testa & Riccioni, 2007) and in our study 

Mcl-1 gene was up-regulated in THP-1 cells following frondoside A treatment. The 

protein Mcl-1 has a similar carboxy terminus to Bcl-2 and it also controls the intrinsic 

apoptosis pathway by inhibiting the change in mitochondrial membrane potential. 

Many studies have failed to demonstrate a correlation between Mcl-1 level and 

outcome in leukemia (Testa & Riccioni, 2007). 

In the monocytic leukemia cell line (THP-1), p53 is not expressed because of 

a mutation that causes deletion (Eder et al., 1992) but studies have shown p21 to be 

functional in these cells and causes cell cycle arrest independent of p53 (Guerrouahen 

et al., 2010; Kreis et al., 2015). Here we saw that frondoside A markedly increased the 

expression of p21which undoubtedly contributes to the anti-leukemia effect in this cell 

line. A possible mechanism by which frondoside A increases the expression of p21 

cyclin dependent kinase inhibitor is through its inhibitory effect on PAK1. PAK1 is 

known to suppress p21 and its inhibition by frondoside A removes its suppressive 

effect on p21 (Nguyen et al., 2017). 

In HL-60 cells (promyelocytic leukemia cell line), both p53 and p21 are non-

functional because of deletion (Eder et al., 1992) and the effect of frondoside A on cell 
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viability in these cells must be due to other mechanisms independent of the proteins. 

The deletions might also explain the reason why those cells were more resistant to 

frondoside A. 

Frondoside A acts as a PAK1 inhibitor in leukemia cells but the response of 

the cells is cell-type and circumstances dependent (Yun, Shin, Stonik, & Park, 2016). 

In THP-1 cells frondoside A not only activated caspase-3 but also affected many 

apoptosis- related genes, including modest up-regulation of caspase-3, caspase-4, 

caspase-6, Bok and HIP1 post 24 h. Caspase-7 which is an executioner protease 

showed early up-regulation (at 6 h). The pro-apoptosis Bcl-2 family proteins genes Bid 

and PMAIP1 (encoding Noxa) were also up-regulated early, indicating frondoside A 

to be acting in THP-1 cells in a caspase-dependent manner, activating the 

mitochondrial pathway and affecting gene transcription as well as activating the 

proteins. In CCRF-CEM cells, expression of the Bid and caspase 3 genes did not 

change in response to the treatment. The apoptotic protease activating factor 1 

(APAF1) is essential for the formation of apoptosome in the mitochondrial pathway 

(Jia et al., 2001) and the corresponding mRNA was down-regulated in THP-1 cells but 

not changed in CCRF-CEM cells. Studies have shown that 25% of leukemia cell lines 

and 42% of primary blast cells to have low expression of APAF1 mRNA due to gene 

silencing (Jia et al., 2001; Testa & Riccioni, 2007).  

Previous studies have demonstrated the activation of the intrinsic apoptosis 

pathway in solid tumors in response to frondoside A treatment (Al Marzouqi et al., 

2011; Li et al., 2008). In our leukemia cell lines, it is clear that frondoside A 

significantly affects and activates the transcription of many genes involved in the 

extrinsic pathway as well. A study conducted in THP-1 cells showed that despite 
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blocking caspases, frondoside A was still able to induce apoptosis in those cells but to 

a lower extent. The study suggested that frondoside A induces cell death in THP-1 

cells, at least initially, in a caspase-independent manner (Jin et al., 2009) but in this 

study, the suppression of caspase activity might have been partial.  

Frondoside A concentrations that induced apoptosis in our study were 

comparable to those reported in solid tumors (Al Marzouqi et al., 2011; Al Shemaili 

et al., 2014; Attoub et al., 2013). 

4.3 Frondoside A Interaction with TNF Pathway 

The tumor necrosis factor (TNF) superfamily is known to regulate 

inflammatory responses, cell differentiation, proliferation and cell death, depending 

on the state of the cell (Etemadi et al., 2013). The ligands of the TNF family can bind 

multiple receptors with different affinities leading to different biological responses. In 

response to frondoside A, both T-cell ALL and the monocytic leukemia cell lines 

showed marked involvement of the TNF pathway, which gets activated following the 

binding of a ligand to one of the pathway specific receptors (Etemadi et al., 2013; 

Goldar et al., 2015). Both cells showed marked gene up-regulation of multiple 

receptors, adapter proteins and death effector domains. Many TNF pathway gene 

members are also transcriptional targets of NFκB pathway (the interaction of both 

pathways is discussed in section 4.4). 

The CCRF-CEM cells showed down-regulation of the tumor necrosis factor 

superfamily 10A (TNFRSF10A, also known as death receptor 4; DR4 and TRAIL-

R1), which upon the binding of TRAIL-1 (TNF related apoptosis inducing ligand) 

induces apoptosis in the cells (Wang & El-Deiry, 2003). The gene expression of 
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TNFRSF25 (DR3) and TNFRSF21 (DR6) was more than 2-fold increased post 24 h 

frondoside A treatment. The up-regulation of DR6 is known to favor apoptosis through 

its interaction with TRADD (TNFRSF1A associated via death domain) (Pobezinskaya 

& Liu, 2012). Depending on the cell conditions the up-regulation of DR3 can interact 

with FADD, and this interaction leads to the activation of caspases and hence, 

apoptosis (Luqman & Pezzuto, 2010). Interaction of DR3 with the adaptor molecule 

TRADD usually favors inflammatory response and the activation of NFκB pathway, 

as shown in Figure 37. The tumor necrosis factor β (lymphotoxin alpha, LTA) and 

TNF-C (lymphotoxin beta, LTB) genes were up-regulated and binding of the ligands 

encoded by these genes to the up-regulated TNFRSF1A (TNF-R1) promotes 

inflammatory cytokine production (Luqman & Pezzuto, 2010). Studies have shown 

that upon binding to its receptor TNF-β promotes degradation of the inhibitor of 

nuclear factor kappa B- alpha (IKB-α) leading to the release of RelA/p50 and its 

translocation to the nucleus for its transcriptional activity which includes up-regulation 

of inflammatory cytokines and their receptors and many other proteins (Etemadi et al., 

2013). 

The involvement of the TNF pathway in physiological processes in the cell is 

complex. Activation of ligands and receptors of this pathway can either induce 

apoptosis or promote inflammation through the interaction with NFκB pathway 

(Etemadi et al., 2013). Reciprocally, NFκB pathway activation can activate the 

transcription of multiple TNF pathway ligands, receptors and other pathway member 

proteins (Hoesel & Schmid, 2013). 
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In THP-1 cells in addition to the up-regulation of TNFRSF1A (TNF-R1), DR3, 

DR6 and TNF-β (LTA) there was a significant up-regulation of TNFRSF1B (TNF-

R2), DR4, TNFRSF10B (DR5 also known as TRAIL-R2), TNF (TNF-α) and Fas 

(TNFRSF6). The Fas gene encodes a death receptor that when activated, induces 

apoptosis in the cell through the formation of DISC (death induced signaling complex), 

this is followed by the internalization of the complex to interact with FADD (the 

adaptor molecule) leading to the activation of caspase 8/10 (Goldar et al., 2015). 

Figure 37:  Pathways interaction. When TNF-α binds TNF-R1, RIPK1 

phosphorylates TRADD and recruits TRAF2 which in the presence of c-IAP1/2 

results in the polyubiquitination of RIPK1 leading to activation of IKK and hence, 

the degradation of IKB and the translocation of p50/RelA (NFκB canonical 

pathway) into the nucleus. Polyubiquitinated RIPK1 can also activate the 

MAPK/P38/JNK/ERK pathways. When RIPK1 is not ubiquitinated, it binds FADD 

and activates caspase 8 and apoptosis occurs. Activation of TNF-R1 can also activate 

the canonical NFκB pathway through the interaction of CARD domain of RIPK2 

with NOD2. Activation of NFκB leads to the production of inflammatory cytokines 

and inhibitors of apoptosis such as c-FLIP 
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The role of the cytokine TNF-α in acute leukemia is controversial, some studies 

reported its elevation to be associated with blast cells suppression (Cisterne et al., 

2014) while others demonstrated its association with increased leukemia cell 

proliferation (Cisterne et al., 2014) depending on the state of the cells and the receptor 

involved (activated). Binding of TNF-β (LTA) or TNF-c (LTB) to LTB receptor (LTB-

R) mediates lymphoid organ development while binding of the same ligands to TNF-

R1 can either lead to apoptosis or activation of NFκB with promotion of inflammatory 

cytokine production (Etemadi et al., 2013). TNF-α binds TNF-R1 and phosphorylates 

MAPK (p38), ERK and c-JNK signaling pathways that eventually lead to the 

activation of NFκB (Etemadi et al., 2013). Both TNF-α and TNF-β also degrade 

inhibitor of nuclear factor kappa B alpha (IKBα) leading to the activation of RelA/p50 

and its translocation into the nucleus (Etemadi et al., 2013) as mentioned above. 

The fate of the cell after TNF-R1 activation is controlled by a complex 

interaction with other molecules, enzymes/ligase and adaptor proteins. The receptor-

interacting serine-threonine protein kinase group of genes (RIPKs) encode a family of 

kinases of 7 members (RIPK1 to RIPK7), which are known to be key players in the 

decision of the cell response (Etemadi et al., 2013). The CCRF-CEM cells showed 

marked up regulation of RIPK2 gene after 6 h of frondoside A treatment while THP-

1 cells showed significant up-regulation of RIPK1 as well as RIPK2. Both kinases 

contain a kinase domain and an intermediate domain. The RIPK1 has a c-terminal 

death domain while the c-terminal of RIPK2 contains a caspase activation and 

recruitment domain (CARD) (Humphries, Yang, Wang, & Moynagh, 2015). 

When TNF-α binds TNF-R1, it activates the receptor and this leads to the 

interaction with the adaptor TRADD and RIPK1 (Humphries et al., 2015). This results 
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in the recruitment of E3 ubiquitin ligases such as the tumor necrosis factor receptor 

associated factor 2 (TRAF2) and further recruitment of the inhibitors of apoptosis, c-

IAP1 and c-IAP2. The RIPK1 gets polyubiquitinated. This results in the 

phosphorylation, and hence, the activation of inhibitor of kappa B kinase (IKK) by 

ubiquitin-dependent kinase (TAK1). The inhibitor of kappa B kinase further 

phosphorylates the IKB which subjects it to degradation by proteasomes releasing 

NFκB to be translocated to the nucleus (Figure 37). Activation of the NFκB pathway 

is known to increase the expression of cellular c-FLIP which is a negative regulator of 

apoptosis. The c-FLIP inhibitory protein inhibits apoptosis induced via TNF-R1, death 

receptor 4 (DR4) and DR5 by interacting with death inducing signaling complex 

(DISC) and preventing the activation of pro-caspase 8 and 10 (Goldar et al., 2015; 

Hoesel & Schmid, 2013; LaCasse et al., 2008). The activation of NFκB also inhibits 

the apoptotic effect of the TNF pathway through the up-regulation of multiple 

cytoplasmic inhibitors of apoptosis proteins (cIAP) including c-IAP2 (Goldar et al., 

2015).  

Ubiquitinated RIPK1 can also activate MAPK/p38 and JNK pathways with 

subsequent activation of ERK signaling pathway (Humphries et al., 2015). If the 

activation of TNF-R1 is associated with RIPK1 and the latter is not ubiquitinated, this 

favors the binding of RIPK1 to FADD adaptor molecule with subsequent activation 

and cleavage of pro-caspase 8 with further activation of the executioner apoptosis 

pathway (Humphries et al., 2015). RIPK2 kinase can also either induce apoptosis 

through caspase 8 or activate NFκB through the interaction with nucleotide-binding 

oligomerization domain-containing protein 2 (NOD2), depending on the 

ubiquitination and the kinase status of RIPK2 (Etemadi et al., 2013; Humphries et al., 

2015). The RIPK’s can also activate necroptosis pathway (Humphries et al., 2015). 
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4.4 Frondoside A Interaction with NFκB Pathway and Its Inhibitors  

In cancer, NFκB can be activated by direct mutations of related genes but this 

is not very common (Hoesel & Schmid, 2013). Mutations of Bcl3 and inhibitor of 

kappa kinase complex (IKK) are also seen which can affect the NFκB signaling 

pathway (Hoesel & Schmid, 2013). The activation usually happens in response to the 

secretion of activating cytokines from the tumor cells or its microenvironment (Hoesel 

& Schmid, 2013). Interaction of NFκB with other transcription factors, either by direct 

binding or co-binding to the DNA promoter region can activate or suppress NFκB 

function (Hoesel & Schmid, 2013). Such interaction is seen between the tumor 

suppressor protein p53 and NFκB; p53 inhibits the transcriptional activity of NFκB 

and reciprocally NFκB inhibits p53 (Hoesel & Schmid, 2013). One of the normal 

functions of wild-type p53 is to inhibit inflammation by antagonizing the NFκB 

pathway (Hoesel & Schmid, 2013). Loss of this protein either by deletional mutation 

(such as in THP-1 cells) or other missense mutation (as in CCRF-CEM cells) might be 

an explanation for the increased expression of NFκB pathway genes in these cell lines. 

Further increase in the gene expression of the NFκB pathway in cancer cells can be 

due to activation in response to endogenous survival triggers to counteract and resist 

the apoptosis inducing drugs/ compounds (Mercurio & Manning, 1999). Since 

leukemias arise from cancerous stem cells, those have a constitutively activated NFκB 

pathway (Rinkenbaugh & Baldwin, 2016).  

Studies have shown that loss of p53 function by mutation can lead to the 

activation of tumor-promoting inflammation and enhance NFκB activity in response 

to TNF-α stimulation (Mantovani et al., 2015). In the acute leukemia cell lines used in 

this project, the elimination of the inhibitory effect of the wild-type p53 protein can be 
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the cause of the up-regulation of NFκB signaling pathway (Hoesel & Schmid, 2013). 

As mentioned before, NFκB pathway once activated, can activate the TNF pathway 

creating a loop of feed-back activation rendering the NFκB pathway constitutively 

active. 

In the T-cell lymphocytic acute leukemia cell line (CCRF-CEM), there was a 

marked up-regulation of NFκB2 and Relb (v-rel reticuloendotheliosis viral oncogene 

homolog B) indicating the activation of the alternative/ non-canonical NFκB pathway 

(shown in Figures 1 and 38).The expression of the gene encoding inhibitors of kappa 

B kinases β and γ (IKBKB and IKBKG) were also increased, which enhances IkB 

degradation and the release of NFκB to be translocated into the nucleus (Hoesel & 

Schmid, 2013). When the protein expression of NFκB2 (both, the full length p100 and 

the cleaved active form p52) and Relb were investigated, there was no significant 

change compared to the control cells at either time point. 

We have also observed the up-regulation of Bcl-3 gene. Studies have shown 

that when the inhibitory ankyrin repeats of NFκB1 (p105) and NFκB2 (p100) are 

cleaved they produce the active forms p50 and p52 respectively (Gilmore, 2006; 

Gilmore & Herscovitch, 2006). These two proteins are transcriptional suppressors in 

the homodimeric form since they lack the transactivation domain but when bound to 

Bcl-3 (with its intact transactivation domain) they turn into transcriptional activators 

(Hoesel & Schmid, 2013) as is the case when they are bound to RelA or RelB 

respectively. The activation of NFκB pathway through Bcl-3 binding is known as the 

atypical activation pathway (Gilmore & Herscovitch, 2006).  
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In response to frondoside A treatment, CCRF-CEM cells showed up-regulation 

of the expression of BIRC3 gene that encodes the cellular inhibitor of apoptosis protein 

2 (c-IAP2). As mentioned in the previous section (see Figure 37), c-IAP2 inhibits 

apoptosis through TNF-R1 and augments the activation of NFκB pathway when 

binding to RIPK1 and TRAF2 (Humphries et al., 2015). Analysis of c-IAP2 protein 

expression showed no significant change. The gene encoding X-linked inhibitor of 

apoptosis protein (XIAP), BIRC4 was down-regulated in the treated groups. XIAP can 

Figure 38: The NFκB activation pathway. The canonical pathway is activated 

through Toll-like receptor (TLR), TNF-R and IL-1R. It involves the activation 

of IKK by TAK and the phosphorylated mediation of IKB degradation with 

the translocation of p50 to the nucleus with RelA after cleavage of p105. The 

non-canonical pathway involves the activation of LTB receptor by LTB (TNF-

c) or the activation of DR14 and TLR-2 by LTA (TNF-β). It requires the 

activation of NIK and the translocation of p52/RelB complex to the nucleus. 

The alternative pathway activation mechanism is unknown and requires Bcl-3 

to carry processed p50 to the nucleus 
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directly bind caspase 3 and inhibit apoptosis and its down-regulation by frondoside A 

favors the enhancement of apoptosis (LaCasse et al., 2008). 

The gene expression of caspase activation and recruitment domain 6 (CARD6), 

which encodes a protein involved in signal transduction and activation of NFκB 

pathway (Stehlik, Hayashi, Pio, Godzik, & Reed, 2003) was markedly reduced. 

Treatment with frondoside A resulted in the up-regulation of the NFκB 

inhibitors; NFKBIA, NFKBID (TA-NFKBH) and NFKBIZ that code for IKBα, IKBδ 

and IKBZ, respectively (Gilmore & Herscovitch, 2006). 

The monocytic acute leukemia cell line (THP-1) showed marked changes in 

the genes of the NFκB pathway in response to frondoside A treatment. Not just a 

greater number of genes were affected but also the magnitude of the changes in 

expression was higher. This might explain our finding of THP-1 cells being more 

resistant to the treatment compared to CCRF-CEM cells (THP-1 cells frondoside IC50 

was 3.0 µM compared to 1.5 µM). 

Again in THP-1 cells, the non-canonical pathway genes were markedly up-

regulated including NFκB2 and Relb. The protein expression analysis for these gene 

products showed little change. Only a modest decrease in the protein expression of the 

full length NFκB2 was observed after 6 h treatment (p < 0.05). In these cells, although 

RelA gene expression didn’t change in response to frondoside A treatment, NFκB1 and 

Rel (c-Rel) genes were highly up-regulated which might indicate the activation of the 

NFκB through the classical/canonical pathway along with the alternative pathway. 

There was no change in the gene expression of the inhibitors of kappa B kinase 

complexes (IKK) while looking to BIRC3 and BIRC4 genes encoding c-IAP2 and 
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XIAP respectively, the cells showed significant up-regulation of c-IAP2. At the protein 

level, the expression of c-IAP2 was slightly increased after 24 h treatment but didn’t 

reach statistical significance. For XIAP, interestingly, the gene was up-regulated 

initially but dramatically down-regulated post 24 h frondoside A treatment. In the 

presence of up-regulated RIPK1 and RIPK2 in this cell line, these changes might favor 

the activation of NFκB pathway but with the later changes in XIAP, cells might favor 

the shift in the direction of apoptosis enhancement. Inhibitors of apoptosis protein are 

frequently over-expressed in acute leukemias and this is usually associated with poor 

prognosis (Hu et al., 2015).  

The effect of frondoside A on other gene expression might also be delayed as 

seen in the expression of CARD6. The gene was up-regulated but post 24 h it was 

greatly down-regulated which might interfere with the signal transduction and the 

activation of NFκB. Caspase activation and recruitment domain 9 (CARD9) and B-

cell leukemia/lymphoma 10 (Bcl10) gene products are functionally connected. The 

Bcl10 protein requires the presence of CARD9 to be functional and assembled (Bertin 

et al., 2000). Although the expression of CARD9 was decreased, there was an up-

regulation of Bcl10. Both gene products play a role in apoptosis and NFκB pathway 

activation depending on the cell status and stimuli (Bertin et al., 2000). 

Again in THP-1 cells, like CCRF-CEM cells, the expression of the Bcl-3 gene 

was up-regulated and this promotes cleavage of NFκB p105 form and the translocation 

of p50 active form into the nucleus in an atypical way of activation (Gilmore & 

Herscovitch, 2006). The Bcl-2 related protein 1 (BCL2L1) was up-regulated. This 

gene encodes a protein that is capable of decreasing the release of cytochrome c from 

the mitochondria and inhibiting caspase activation, depending on splicing-the short 
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form is an apoptosis activator and the long form is an apoptosis inhibitor. NFκB is 

known to target this gene by binding to its promoter region on the DNA and activating 

its transcription. Here, the up-regulation of this pro-survival gene might be a result of 

NFκB pathway activation rather than a direct effect of frondoside A treatment. 

Comparing the effect of frondoside A on CCRF-CEM and THP-1 cells, we can 

see a similar pattern of action but detailed examination of each cell type showed some 

specific changes that were not seen in the other cell line indicating that the effect of 

frondoside A has a general pattern but it is further tuned based on the cell type. 

Activation of the NFκB pathway is physiologically essential for cell growth 

and differentiation. It also plays a role in acute and chronic inflammation. The 

signaling pathway maintains the survival of immune cells at site of infection and 

enhances the secretion of cytokines to attract cytotoxic cells at sites of abnormal (pre-

malignant) cells to eliminate them (Hoesel & Schmid, 2013). We can say that NFκB 

pathway activation is important for preventing cancer development but studies have 

shown that its constant activation leads to cancer promotion. This have led researchers 

to attempt using NFκB inhibitors for cancer treatment. Given the complexity of the 

signaling pathway, multiple compounds have been developed, some are general 

inhibitors while others are more specific. The NFκB pathway can be blocked at the 

stage of initiation of signaling activation, at the level of activation in the cytoplasm, at 

the stage of nuclear translocation or at the stage of binding the κB site on DNA 

promoter region (Gilmore & Herscovitch, 2006).  

In our study we attempted investigating the effect of NFκB inhibitor 

(andrographolide) when combined with frondoside A on acute leukemia cells. Treating 

CCRF-CEM and THP-1 cells with different frondoside A concentrations in-
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combination with andrographolide IC50 concentration markedly enhanced the anti-

leukemic effect of frondoside A. Andrographolide is a diterpenoid, a natural product 

extracted from the leaves of Andrographis paniculata (Low, Khoo, Münch, 

Govindaraghavan, & Sucher, 2015). The mechanism of action by which 

andrographolide inhibits NFκB pathway activation have been studied in different type 

of cells and showed variable mechanisms that are cell-type and concentration 

dependent (Chen et al., 2015; Cheung et al., 2005; Hidalgo et al., 2005; Lee et al., 

2012; Luqman & Pezzuto, 2010). Andrographolide inhibits NFκB activation through 

covalent modification of reduced Cys62 of the p50 sub-unit (Levita, Nawawi, Mutalib, 

& Ibrahim, 2010). It binds to NFκB and prevents the transactivation. 

Studies have demonstrated multiple biological properties of andrographolide 

including anti-bacterial, anti-inflammatory, anti-platelet aggregation, neuro-

protective, gastro-protective, immune-stimulant and hypolipidemic functions (Chen et 

al., 2015; Hidalgo et al., 2005; Low et al., 2015). Multiple studies showed that 

andrographolide induces apoptosis in cancer cells including acute leukemia cells. In a 

study conducted in HL-60 cells (acute promyelocytic leukemia cell line); treating the 

cells with andrographolide induced significant suppression in cell viability with 

morphological changes consistent with apoptosis (Cheung et al., 2005). Cell cycle 

analysis showed G0/G1 arrest and protein expression analysis showed decrease in the 

pro-survival proteins Bcl-2 and Bcl-xL while there was a significant increase in the 

pro-apoptosis protein, Bax (Cheung et al., 2005), all of which are products of NFκB 

target genes. The study also demonstrated release of cytochrome c in the treated cells 

which indicates the activation of the intrinsic mitochondrial pathway in these cells 

(Cheung et al., 2005). In another study conducted on the same type of cells, an 

additional mechanism was demonstrated by which andrographolide induced apoptosis 
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(Cheung et al., 2005). It was found to suppress phosphorylation of Akt/ERK pathways, 

hence, decreasing their activation which led to apoptosis (Chen et al., 2015). It was 

demonstrated that andrographolide suppresses NFκB activation and that leads to 

apoptosis (Chen et al., 2015). In the hepatocellular cancer cell line, HepG, 

andrographolide caused cell cycle arrest and the apoptosis was associated with 

reduction in the levels of glutathione (GSH) (Li, Cheung, Zhang, Chan, & Fong, 2007), 

which is again a target gene product for NFκB pathway. A similar mechanism was 

proposed in the THP-1 cell lines, were treatment with the compound caused cell cycle 

arrest in the G2/M phase and was associated with decreased GSH level due to inhibition 

of GSH transferase enzyme (Raghavan, Cheriyamundath, & Madassery, 2014).  

The effect of andrographolide as a potent anti-inflammatory agent has been 

extensively studied. Its effect on a major pro-inflammatory pathway (the NFκB 

pathway) is well demonstrated since it acts as a specific inhibitor of the NFκB 

pathway. This inhibition might result in a different pattern of change in gene 

expression depending on the particular cell line, the state of the cells and on 

environmental factors. 

In the HL-60 cell line, treatment with andrographolide led to decrease 

phosphorylation of the inhibitor of NFκB (IκB) and hence, its degradation. This 

stabilizes the NFκB-IκB complex in the cytoplasm, preventing NFκB activation and 

translocation to the nucleus (Chen et al., 2015). Andrographolide decreases the 

phosphorylation of PI3K/Akt and MEK/ERK pathways, leading to decreased 

activation of NFκB through these signaling cascades (Chen et al., 2015). Another study 

showed that andrographolide inhibited the binding of NFκB to its DNA consensus 

sequence in HL-60 derived neutrophilic cells but IκB-α degradation was not affected 
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(Hidalgo et al., 2005). In the same study no effect of andrographolide on PI3K/Akt 

and MEK/ERK pathways was demonstrated and it was concluded that the compound 

does not inhibit the p38/MAPK/ERK pathway in HL-60 derived neutrophilic cells 

(Hidalgo et al., 2005). 

In the THP-1 cell line, the effect of andrographolide on TNF-α/ 

lipoplolysaccaride (LPS)-mediated NFκB activation was through the suppression of 

TNF-α interaction with IκB-α rather than a direct effect on IκB degradation. In this 

study, andrographolide inhibited NFκB activation and translocation to the nucleus but 

did not affect its binding to DNA, or the MAPK/ERK pathway (Lee et al., 2012). 

Treatment with andrographolide was associated with the inhibition of the release of 

TNF-α in LPS- activated macrophages as well as inhibition of the p38 MAPK/ERK1/2 

pathway and the downstream activation of NFκB (Low et al., 2015). 

In the present study, the effect we observed from combining the treatment of 

frondoside A and andrographolide in acute leukemia cell lines was synergistic. As we 

proposed earlier, that the treatment of frondoside A triggered the NFκB survival 

pathway in THP-1 cells and CCRF-CEM cells, the potent effect of andrographolide on 

inhibiting NFκB sensitized the cells to frondoside A. When the acute leukemia cell 

lines were treated with frondoside A combined with andrographolide; a potent NFκB 

pathway inhibitor, the suppression of cell viability was significantly enhanced 

compared to the treatment with frondoside A alone. This can be explained by the fact 

that resistant blast cells in these cell lines, when exposed to frondoside A they activate 

NFκB pathway as a survival mechanism and when this pathway is inhibited, even 

resistant cells undergo cell death. However, since andrographolide has been shown to 

have other biological effects, including the inhibition of cyclooxygenase 2 (COX-2) 
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activity, synthesis of inducible nitric oxide synthase (iNOS) and platelet activating 

factor (PAF)-induced platelet aggregation (Hidalgo et al., 2005), which are also targets 

for NFκB activation. It is necessary to confirm the effect of this compound in 

enhancing the effects of frondoside A using drugs which are structurally and 

mechanistically unrelated to andrographolide (Levita et al., 2010). 
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Chapter 5: Conclusion 

 

Acute leukemia is a major cause of death among hematological malignancies. 

Current chemotherapeutic drugs can cure the majority of patients but there still remain 

some who will not respond, develop resistance, or suffer from long-term side-effects 

of the drugs. Because of that, there is a need to search for effective new anti-leukemia 

agents with reduced side-effects.  

Natural products have been found to have a wide range of bioactive 

components that can serve as alternatives to established chemotherapeutic drugs, or to 

potentiate their anti-leukemia effects thus allowing reduced doses of drugs, which will 

decrease side-effects without compromising the effectiveness of the leukemia blast 

eradication therapy. Natural product derived from marine sources that are in current 

clinical use for such purposes are limited (Dyshlovoy et al., 2016; Schwartsmann, 

Brondani da Rocha, Berlinck, & Jimeno, 2001). 

Frondoside A is a triterpenoid glycoside, extracted from the skin of the Atlantic 

sea cucumber; Cucumaria frondosa. Studies have shown its potent effect as anti-

bacterial, anti-cancer and immune-modulatory agent. Its anti-cancer properties in solid 

tumors have been explored. Frondoside A induces cell cycle arrest and induces 

apoptosis. Frondoside A also prevents migration, invasion and the development of 

metastasis as well as exhibiting anti-angiogenic effects. These anti-cancer functions 

have been demonstrated in vivo as well as in in vitro studies. Since frondoside A has 

been shown to be a potent PAK1 inhibitor, it is most likely this mechanism that is 

responsible for the biological effects of this agent. 
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The effect of frondoside A as anti-leukemia agent (i.e. its effect in 

hematological malignancies) has not been fully explored. This project is the first to 

extensively study the effect of frondoside A in acute leukemia cell lines, alone and in-

combination with other conventionally used chemotherapeutic drugs for the treatment 

of acute leukemia. 

In the present study, frondoside A significantly suppressed the viability of an 

acute T-cell lymphoblastic leukemia cell line, CCRF-CEM and the acute monocytic 

leukemia cell line, THP-1. It also decreased the cell viability in acute promyelocytic 

leukemia cells (HL-60). CCRF-CEM cells were the most sensitive to frondoside A 

treatment while THP-1 cells were the least. Frondoside A showed marked 

enhancement of the anti-leukemia effect of asparaginase, vincristine and prednisolone 

when the cells were treated in-combination. The combinations showed synergistic 

effects in multiple concentration combinations in CCRF-CEM and THP-1 cells. 

The mechanism by which frondoside A exerts its effect on those acute 

leukemia cell lines was further investigated and frondoside A was found to induce 

apoptosis as early as one hour post treatment.  

Analysis of apoptosis and cell cycle related proteins showed significant 

decrease in the expression of the pro-survival Bcl-2 protein in both cell lines. 

Treatment with frondoside A also led to a significant decrease in expression of the Bax 

protein and we attributed this finding to the early activation of apoptosis (1 h post 

treatment) and the degradation/consumption of Bax protein by the time protein 

extraction was made (6 h and 24 h post treatment). Analysis of caspase-3, the main 

executioner caspase in the apoptosis pathway, showed a marked decrease in pro-
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caspase-3 concentrations in the treated groups, which indicates the activation of 

apoptosis in CCRF-CEM and THP-1 cells. 

The acute T-cell lymphoblastic leukemia cell line is known to have a mutated 

p53 protein and the treatment with frondoside A significantly decreased the expression 

of the mutated tumor suppressor at 6 h of treatment. 

The cyclin-dependent kinase inhibitor p21 was assessed in THP-1 cells. 

Frondoside A treatment resulted in increased expression of this tumor suppressor 

protein. This might be a result of frondoside A inhibitory effect on PAK1 (p21 

activated kinase 1) and is p53-independent. 

Further analysis was done to study the effect of frondoside A treatment on the 

mRNA /gene expression level of multiple genes involved in apoptosis/survival 

pathways using low density arrays. In general, the changes in gene expression induced 

by frondoside A were more marked in THP-1 cells compared to CCRF-CEM cells.  

Acute leukemia cell lines used showed marked up-regulation of the pro-

apoptosis genes; Bcl-2 like 1 (BCL2L1), Caspase-4, Caspase-6, Caspase-7, BH3 

interacting domain death agonist (Bid), death effector domain (phosphoprotein 

enriched in astrocytes 15, PEA15), phorbol-12-myristate-13-acetate-induced protein 1 

(PMAIP1 also known as Noxa), leucine rich repeat and pyrin domain containing 1 

(NALP1) and TNFRSF1A-associated via death domain (TRADD). 

Frondoside A also resulted in marked up-regulation of genes of the TNF 

pathway, including multiple ligands and receptors. 

Interestingly, gene expression analysis showed massive increases in expression 

of genes of the NFκB pathway as well as inhibitors of the pathway. Nuclear factor 
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kappa light polypeptide enhancer in B-cell 2 (NFκB2), RelB and cIAP2 proteins were 

selected to be further analyzed at protein expression level since they were markedly 

up-regulated at the mRNA level in both cell lines. Analysis show modest changes in 

expression between the treated groups and the controls that did not reach statistical 

significance. The NFκB activation is suggested to be mainly through the non-canonical 

pathway in these cells. PAK1 is known to activate NFκB pathway in acute myeloid 

leukemia cells. We also proposed that the treatment with frondoside A might have 

triggered the survival NFκB pathway in the treated cells to overcome the anti-leukemia 

effect of frondoside A but on the other hand, frondoside A inhibited the protein 

synthesis at the translation level and that might be through its inhibitory effect on 

PAK1. Interaction between frondoside A and NFκB pathway was confirmed when the 

anti-leukemia effect of frondoside A was enhanced in these cells when tested in-

combination with the NFκB inhibitor, andrographolide. 

In conclusion, this study has demonstrated that frondoside A has marked anti-

leukemic effects. It decreased the viability of acute leukemia blasts by inducing 

apoptosis. The apoptosis appeared to be due to the activation of both extrinsic and 

intrinsic pathways. Resistance to frondoside A can be due to the activation of the NFκB 

survival pathway in the treated cells and combining the treatment with NFκB pathway 

inhibitors results in dramatic enhancement of the anti-leukemic effect of frondoside A. 

Frondoside A affected different genes and pathways in leukemia blast cells and 

inhibiting malignant cells by targeting multiple pathways might be more beneficial in 

the treatment strategy. The addition of frondoside A to acute leukemia conventional 

therapeutic protocols currently used in the treatment might prove beneficial in high 

risk patients, while sparing the side effects of high dose therapy and bone marrow 

transplantation. 
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5.1 Managerial Implications 

This project highlighted the possible use of frondoside A in the treatment of 

acute leukemia. 

Preliminary experiments to explore the possible mechanism of action were 

started in this project but further investigations are needed. Future work is required to 

study the exact apoptosis pathway involved. Inducing cell death through death 

receptors specifically should be examined and the release of cytochrome c, which is a 

hallmark of intrinsic pathway activation should also be tested. 

The effect of frondoside A on other p53 family members such as p63 and p73 

should be explored in leukemia cells were p53 is mutated or deleted. 

The interaction of frondoside A with NFκB pathway members should be 

further examined. Protein synthesis experiments will help to explain the discrepancy 

between the gene expression and the protein expression in this pathway after the 

treatment with frondoside A. 

Limited studies have investigated the pharmacokinetics of frondoside A (Al 

Shemaili et al., 2016) and further investigations are needed in leukemia animal models.   

Finally, comparing the current findings with experiments that test frondoside 

A effect on primary acute leukemia blast cells from patients diagnosed with the disease 

can be the first step to start in vivo experiments in animals to mimic the physiological 

settings when frondoside A is given.  



136 
 

 
 
 

5.2 Research Implications 

Data from the current project highlighted the potential use of frondoside A for 

the treatment of acute leukemia. Its use in high risk patients might prove beneficial 

since it markedly potentiates the effect of chemotherapeutics currently included in the 

treatment protocols. 

From previous studies in solid tumors, frondoside A showed its marked effect 

on inducing apoptosis and arresting cell cycle in cancer cells. There we demonstrated 

similar effect on leukemia blast cells, in addition, an unexpected finding was 

discovered and that is the interaction of frondoside A with NFκB pathway. The gene 

expression profiling on RNA low density arrays have shown frondoside A treatment 

to induce multiple genes in the NFκB survival pathway as well as many NFκB pathway 

inhibitors.  

One of the well-known mechanisms by which cancer cells resist anticancer 

treatment is through the activation of NFκB pathway and here we have shown that 

using frondoside A in-combination with andrographolide (NFκB antagonist) can 

overcome this mechanism and induces cell death in treatment-resistant leukemia cells. 
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Appendix 

 

Buffers and solution reconstitution. 

1) Protein extraction: 

Radioimmunoprecipitation assay (RIPA) buffer: 

1M TRIS-HCl pH 7.4        5 ml (final concentration will be 50m M  TRIS-HCl pH 7.4)             

5M NaCl                            3 ml (final concentration will be 150 Mm NaCl) 

Triton X-100                     1 ml (final concentration will be 1%Triton X-100) 

Soduim Deoxycholate        1 gm (final concentration will be 1% Sodium Deoxycholate)       

10% SDS                           1 ml (final concentration will be 0.1% SDS) 

The solution is made up to 100 ml with autoclaved distilled water and filtered. 

2) Western blot reagents: 

2A) 10X Sodium Dodecyl Sulfate (SDS) buffer: 

Trizma base   30 g 

Glycine          72 g 

SDS               10 g  

Dissolved in 1 L dH2O.  

For 1X SDS buffer, 100 ml of 10X SDS is diluted in 900 ml dH2O. 

2B) 10X Transfer buffer: 

Trisma base    15.15 g 
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Glycine           72 g  

Dissolved in 500 ml dH2O  

For 1X Transfer buffer (1 L):  100 ml of 10X Transfer buffer added to 200 ml absolute 

methanol and 700 ml dH2O. 

2C) 10X TBS, pH 7.2-7.5 (1 L) 

Trisma base      24.2 g  

NaCl                 87.7 g 

Dissolved in 1000 ml H2O.  

For 1X TBS (1 L): 100 ml of 10X TBS is diluted in 900 ml of dH2O. 

2D) 10X TBST, pH 7.2-7.5 (1 L): 

Trisma base      24.2 g  

NaCl                 87.7 g 

Tween20           10 ml 

Dissolved in 1000 ml dH2O. 

For 1X TBST (1 L): 10X TBST 100 ml is added to 900 ml H2O. 
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