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Abstract  

 

Geochemical, mineralogical and natural radiation analysis techniques were used for 

establishment of geochemical and radiological baseline around Barakah Nuclear 

Power Plant, UAE.  The natural radioactivity concentrations of 
238

U (
226

Ra), 
232

Th 

and 
40

K were measured for soil, shore and bottom sediment samples, using gamma 

spectrometry equipped with HPGe detector.  In addition, alpha spectrometry was 

used to measure 
234

U/
238

U ratio for some selected samples. Furthermore, inductively 

coupled plasma atomic emission spectroscopy was used to measure the 

concentrations of heavy metals and Rare Earth Elements (REE).  The grain size of 

the samples ranged from fine to coarse sand. The inverse relationship between grain 

size and heavy metal contaminations was validated. The results indicated the mean 

concentrations of heavy metals and REE are much higher in soil samples compared 

to bottom sediments, which in turn relatively higher than shore samples.  All heavy 

metals concentrations were significantly below the UAE soil contamination safe 

limits. The levels of heavy metals and REE reported in the UAE were lower than the 

levels reported in the soil, shore and bottom sediments of several countries around 

the world. Enrichment factor calculated for heavy metals shows no to moderate 

enrichment (As and Cd), while the contamination factor (CF) was CF<1 which 

indicates low contamination factor. Geoaccumulation results suggest uncontaminated 

area. Furthermore, the pollution load index, >1, indicates no pollution in the area.  

With exception of La in shore samples, all the REE show no enrichment. 

Contamination factor for REE indicates a low contamination factor and 

geoaccumulation results indicate that the studied area was uncontaminated. 

Moreover, the pollution load index indicates no pollution in the area. 

The measured gamma activity concentrations in shore-sediment samples are much 

lower comparing to those concentrations in soil and bottom sediments.  The average 

activity concentrations of 
238

U (
226

Ra) are 15.68±0.56, 4.43±0.39 and 4.73±0.47 

Bq/kg, for 
232

Th are 8.3±0.23, 1.68±0.17 and 1.83±0.24 Bq/kg and for 
40

K, are 

349.72±11.76, 106.3±7.27 and 105.23±10.03 Bq/kg in soil, shore and bottom 

sediment samples, respectively.  Anthropogenic radionuclide 
137

Cs is low than the 

detection limit in the studied area.  The 
234

U/
238

U activity ratios show wide range 
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from 0.59 to 2.24 indicating effects of sources and in situ processes.  In addition, the 

hazard parameters such as Radium equivalent and absorption dose were estimated 

and all are below the world average. The spatial distribution for heavy metals, REE 

and natural radionuclides was generally more compact in the south compared to the 

north, with less severe contaminations in the east and west. Relationships between 

heavy metals, REE and natural radioactivity concentrations were investigated and 

varied between soil, shore and bottom sediment samples. The previous relationships 

may indicate that uranium and thorium have detrital sources possibly associated with 

silicate minerals. 

Keywords: UAE, radiological baseline, Barakah Nuclear Power Plant, heavy metal, 

gamma spectrometry, geoaccumulation index, pollution load index, enrichment 

factor, and spatial distribution. 
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Title and Abstract (in Arabic) 

 

ي النووية ف لطاقةلة وبيئية للمنطقة المحيطة بمحطة براكة دراسة جيوكيمائية واشعاعي

 دولة الإمارات العربية المتحدة

 صالملخ

قاعدة بيانات للمنطقة المحيطة بمحطة براكة  ا البحث إلى عمل دراسة متكاملة وإنشاءهذيهدف 

المختلفة للعناصر ئية تحاليل الجيوكيمياتم استخدام الوقد   للطاقة النووية في دولة الإمارات.

قياس النشاط الإشعاعي  وقد تم .والإشعاع النووي الطبيعيوالعناصر الأرضية النادرة  الثقيلة

 لبريةا في عينات من التربة 40والبوتاسيوم  232( والثوريوم 226)الراديوم  238لليورانيوم 

الجرمانيوم عالي  الشاطئية والرواسب القاعية باستخدام مطياف الشاطئ( والتربةمتر من  200)

لبعض ( 238و 234اليورانيوم )النقاوة.   وتم أيضا استخدام مطياف ألفا لقياس نسبة نظائر 

 مقياس استخدامالنادرة فتم  والعناصر الأرضيةأما بالنسبة لتراكيز العناصر الثقيلة العينات.   

بين الرمل  تتراوحالتربة ف حبيباتل يحجمالتحليل وبالنسبة للالانبعاثات بمطياف البلازما.  

وجود علاقة العلاقة بين تراكيز العناصر الثقيلة وحجم الحبيبات وأوضحت الناعم والخشن.  

متوسط  أظهرت النتائج أنحجم الحبيبات.  تلك العناصر مع انخفاض تراكيز تزداد حيث عكسية 

مقارنة بعينات  بريةتربة الأعلى في عينات ال العناصر الأرضية النادرةالثقيلة و تراكيز العناصر

حيث أن الأخيرة هي الأقل تركيزاً.  أما بالنسبة لتراكيز  التربة الشاطئيةالرواسب القاعية و

العناصر الثقيلة في فهي أقل من الحدود المسموح بها في دولة الإمارات وتعتبر هذه التراكيز 

 شيريوالمسجلة في بعض دول العالم.  بالقيم وتراكيز العناصر الأرضية النادرة قليلة جداً مقارنة 

 الزرنيخمعتدل ) عدم إثراءحالة  إلى الحالة الثانية وهي الثقيلة للعناصر ثراءمعامل الإ

تلوث  حالةشير إلى ي 1> المقدر للمعادن الثقيلة هو(، في حين أن عامل التلوث الكادميومو

مؤشر لك ذم عيدإلى منطقة غير ملوثة و الجغرافيتشير نتائج التراكم من جهة أخرى منخفض. 

نادرة أما بالنسبة للعناصر الأرضية اليشير إلى عدم وجود تلوث في المنطقة.  التلوث حيثحمل ت

 (في عينات التربة الشاطئية) نثينيومباستثناء عنصر اللا فقد أظهرت النتائج أن جميع العناصر

للعناصر الأرضية . ويشير عامل التلوث الأولى وهي معدومة من الدرجة إثراءمعامل  تشير إلى

ومؤشر  نتائج التراكم الجغرافيلكل من  وأما بالنسبةإلى وجود عامل تلوث منخفض  النادرة

 .  أن المنطقة المدروسة غير ملوثة معاً إلىان شيرتحمل التلوث فهما ي
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أقل بكثير  شاطئيةعينات الرواسب الالمقاسة في الاشعاعي نشاط ال اكيزترالنتائج أن  أظهرت

 النشاط والرواسب القاعية ويبلغ متوسط تركيز بريةالالتركيزات في التربة  نتائجمقارنة ب

بيكريل /  4.65±0.47و  3.88±0.44،  5.56±1.57     238الإشعاعي لعنصر اليورانيوم

 الاشعاعي هوفمتوسط تركيز النشاط  232أما بالنسبة لعنصر الثوريوم كيلوغرام، 

 40وبالنسبة للبوتاسيوم  بيكريل / كيلوغرام  2.41±0.18و  0.17±1.71، 0.83±2.29

 بيكريل / كيلوغرام في 10.03±105.23و  7.27±106.3، 11.76±349.72 فتراكيزه هي

لم يتم تسجيل أي تراكيز رواسب القاعية على التوالي. والتربة الشاطئية و ال لبريةلتربة اعينات ا

مطياف ألفا لقياس نسبة أظهرت نتائج  في المنطقة المدروسة. 137ة لعنصر السيزيوم ملحوظ

مما يشير وهو مدى واسع  2.24إلى  0.59تفاوت النسبة من ( 238و 234نظائر اليورانيوم )

. بالإضافة المرتبطة بها الداخلية والعمليات مصادر التربة وجود عدة مؤثرات مثل اختلافإلى 

مثل مكافئ الراديوم شعاعي الإ الخطر مؤشرات، تم قياس شعاعيز النشاط الإقياس تراكيإلى 

 .أقل من المتوسط العالمي قد أشارت النتائج إلى أن كل القيم المقاسةوجرعة الامتصاص و

والعناصر النادرة  والعناصر الأرضيةأوضحت خرائط التوزيع المكاني لكل من المعادن الثقيلة 

مقارنة مع شمالها، واظهرت أيضاً  منطقة الدراسة الطبيعية تراكيزاً أعلى في جنوب المشعة

الثقيلة والعناصر  عناصرعلاقة بين الالدراسة  تتموتلوث أقل حدة في شرق وغرب الخريطة. 

عينات بين وتفاوتت طبيعة وشدة العلاقات الأرضية النادرة وتراكيز النشاط الإشعاعي الطبيعي 

مصادر العلاقات المدروسة إلى  أشارتوقد  القارية والتربة الشاطئية و الرواسب القاعيةالتربة 

 ليورانيوم والثوريوم ربما تكون مرتبطة مع معادن السيليكا.فتاتية ل

 

النشاط الإشعاعي، محطة قاعدة بيانات  ،دولة الأمارات العربية المتحدة مفاهيم البحث الرئيسية:

مؤشر تحمل  الجغرافي،التراكم الثقيلة، مطياف جاما، مؤشر  عناصرال براكة للطاقة النووية،

 والتوزيع المکاني. ثراء، معامل الإالتلوث 
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Chapter 1: Introduction 

 

1.1 Research Focus 

United Arab Emirates (UAE) is embarking a nuclear power program for the 

peaceful uses through constructing four units of Nuclear Power Plant (NPP) in 

Barakah area at the western region of the Arabian Gulf, with the highest standard of 

safety and performance, which meet the UAE 2020 vision.  Switching to alternative 

energies other than oil is supported and managed by the government and the 

leadership of the United Arab Emirates.  The construction of the NPPs is directed by 

Emirates Nuclear Energy Corporation (ENEC) to supply the growing of UAE 

electricity demands. This project and other relevant projects in some countries such 

as Saudi Arabia and Kuwait are likely to influence the radionuclide levels in the Gulf 

water (Huber, 2007).   As the first NPP will be operated in 2018, the routine 

operation of the nuclear facilities may have some release of radioactive materials to 

the environment.  It is mandatory by UAE standards and environmental lows to 

establish a geochemical and radiological baseline before the operation of the NPPs 

and investigate the environmental impact in case of emergency especially that some 

nuclear activities have been established in near surrounding of the UAE.  This study 

aims to determine the activity concentrations of natural uranium, thorium and 

potassium, hazard parameters such as radium equivalent and absorption dose, the 

234
U/

238
U activity ratios, anthropogenic radioactive isotopes and the level of heavy 

metals around Barakah area before the operation of the nuclear power plant. These 

radiological measurements and geochemical investigation will establish a 

documented geochemical and radiological reference data for Barakah area “pre-
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operation of Barakah NPP” which can be used later to assess any changes in the 

radioactive background level or heavy metal concentration.    

The average concentrations for the measured elements (radionuclides and 

heavy metals) will be also compared with the environmental guideline and 

geochemical baseline values to evaluate and indicate any significant radiological risk 

or heavy metal contamination related to human activities in the area. 

The proceeding sections will discuss and outline the introduction, study area 

background information, literature and methods employed in the thesis, results, their 

detailed explanation, and the conclusions and recommendations arrived at from the 

results. 

1.2 Background 

Nuclear energy is a much cleaner source to generate electricity than 

traditional forms like oil and coal because it saves millions of tons of CO2 from being 

released into the atmosphere. Moreover, nuclear reactors produce a huge amount of 

electricity from a very small volume of fuel.   As of 1 July 2016, the world had 444 

operable grid-electric nuclear power reactors with 62 others under construction 

(WNA, 2017). About 11.7% of the world’s electricity demand in 2011 is produced 

by nuclear power (IEA, 2013).  Simply, nuclear energy is generated by splitting 

atoms, through a heat releasing process called fission.  These atoms are radionuclides 

producing radioactive energy.  Radioactivity is around us and simply refers to the 

particles that are emitted from nuclei as a result of nuclear instability. Alpha, beta, 

and gamma radiation are the most common types of ionized radiation (Faure and 

Mensing, 2005).  Natural occurring radioactive materials (NORM) are present in our 

environment and bodies through atmosphere and Earth ‘crust. Rocks and minerals 
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provide a constant natural background of low level radioactivity (Baiulescu, et al., 

1991).  Generally, NORM includes long-lived radioactive elements such as uranium, 

thorium and potassium and their decay products, such as radium and radon. Based on 

their distribution in the environment, natural radioactive substances are often 

classified into two groups: (1) naturally occurring radioactive materials (NORM), 

and (2) technologically enhanced NORM. Fertilizer production and fossil fuel 

combustion are examples of the second group, which contain elevated concentrations 

of radioactive elements as a result of technological transformations of various natures 

(Chau et al., 2011). 

Uranium has an increasing importance as the main source in generating 

energy in nuclear power plant. There are three long lived naturally occurring isotopes 

of uranium: 
234

U (T1/2 = 2.45x10
5 

years), 
235

U (T1/2 = 7.04x10
8 

years) and 
238

U (T1/2 = 

4.47x10
9 

years).  The natural abundances of the isotopes 
238

U, 
235

U and 
234

U are 

99.27%, 0.72% and 0.005%; respectively. Combining these mass percentages with 

the unique half-life of each isotope converts mass into radioactivity units and shows 

that crustal uranium contains 48.7%  
234

U, 2.27% 
235

U, and 49.0%  
238

U by 

radioactivity, and has a very low specific activity (activity per quantity) of 0.69 μCi/g 

based on data compiled by the National Nuclear Data Center (NNDC 2011).  Only 

one of these isotopes is used in nuclear power plant, which is enriched 
235

U. In closed 

system (undisturbed minerals), both 
234

U and 
238

U are in secular equilibrium, which 

mean the alpha decay rates of both isotopes are equal (Paces et al., 2001).  Under 

these conditions, the 
234

U/
238

U activity ratio equal 1. 

Radionuclides spread through the environment along the same pathways as 

other materials. They travel through the air, water, and food chain. Radionuclides 

may enter the human body by eating, drinking, inhalation or absorption through the 
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skin (WHO, 2011). Radionuclides can be hazardous to living tissue because of the 

radiation energy emitted when a radionuclide decays. The more common the 

radionuclide is, the more important to be investigated. Examples of more common 

radionuclides are uranium, thorium and potassium; all are widespread in most rocks 

and soils.  Radium (
226

Ra) is a decay product of 
238

U series, which in turn decay to 

radon (
222

Rn), an inert gas with half life (T1/2 = 3.68 days). Another hazardous short- 

lived radon isotope is 
220

Rn which is result from thorium series with half-life (T1/2 = 

44 second). Because of short half-life, exposure to radon is a problem in certain 

mining activities and the use of self-protection equipment is essential. 

Environment contamination by heavy metals have gained a lot of interest by 

ecologist and public health specialist in recent years.  Human exposure to heavy 

metals has risen dramatically due to the increasing usage in many industrial, 

agricultural, domestic and technological applications (Bradl, 2002). Heavy metals are 

naturally occurring elements that have a high atomic weight. They are widely 

distributed in the environment that raises concerns over their potential effects on 

human health and the environment. Their toxicity depends on several factors 

including the dose, route of exposure, and chemical species, as well as the age, 

gender, genetics, and nutritional status of exposed individuals. Arsenic, cadmium, 

chromium, lead, and mercury have high degree of toxicity and consider the most 

significant in public health (Tchounwou et al., 2012). 

Anthropogenic activities such as construction, mining, transportation, power 

plants, sewage treatment plants, industrial activities, urban waste and agricultural 

runoff have significantly affected the distribution and the level of contamination of 

radionuclides and heavy metals in marine, soil and sediments.  The purpose of 
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measuring the radioactivity and heavy metals concentrations in soil is to assess their 

level of concentration and evaluate any associated environmental impact. 

1.3 Study Area 

The United Arab Emirates (UAE), a federation of seven independent states 

since 1971, is located in the southeastern corner of the Arabian Peninsula and lies 

between latitudes 22° 50ʹ and 26° North and longitudes 51° and 56° 25 ʹ East (Figure 

1.1).   It is bordered by the Arabian Gulf to the north, Saudi Arabia to the south and 

west, and Oman and the Gulf of Oman to the east; it is in a strategic location along 

northern approach to the Strait of Hormuz, a vital transit point for world crude oil.  

The Northern coast of the United Arab Emirates forms the southern margin of the 

Arabian Gulf, a NW–SE trending sea that is approximately 900 km long and up to 

350 km wide.  It covers approximately 226,000 km
2
, and has an average depth of 35 

m and a maximum depth of 100 m at the Strait of Hormuz (Purser and Seibold, 

1973). 

Barakah area is located to the west of the Abu Dhabi Emirate, the capital of 

the UAE.  Abu Dhabi is geographically divided into four distinct regions as (1) Abu 

Dhabi Island, (2) Eastern Region, (3) the Gulf Islands and (4) Western Region 

(where the study area located).  Barakah area is about 224 km west-southwest of Abu 

Dhabi City and about 75 km from the Saudi Border.  UAE government’s decision of 

constructing four units of Nuclear Power Plant (NPP) in Barakah area on the western 

Region of the Arabian Gulf is to supply the growing electricity requirements of the 

UAE. 
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 Figure 1.1: Location map of the study area (Barakah area) 

The Barakah NPP site selection and evaluation process was based on a 

guidance from FANR (Federal Regulation of Nuclear Regulatory), the US Electric 

Power Research Institute, the US Nuclear Regulatory Commission, and the IAEA 

(WNA, 2017). The construction of the non-nuclear structures commenced in Sep 

2010 and the propose date for the partially operation of the nuclear plant will be 2018 

while the full operation of the four unit nuclear power plant will be by 2020.  

Switching to alternative energies other than oil is supported and managed by the 

government and the leadership of the United Arab Emirates.  Although the nuclear 

energy is not renewable since it relies on nuclear fuel that must be mined out of the 

earth, much like coal, it may be considered a green energy because it does not 
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produce carbon dioxide so help to reduce climate change.  At the same time, the 

nuclear energy produces nuclear waste, which is difficult to dispose safely.  

1.4 Geological Setting 

1.4.1 UAE General Geology 

The UAE lies at the northeastern part of the Arabian Peninsula. This 

peninsula is limited by four major tectonic features: (1) the Red Sea and Dead Sea 

rift system at the west and northwest, (2) the Thrust zone from the Alpine Orogeny at 

the north, (3) the mobile belt of Zagros and Oman Mountains at the east and 

southeast and (4) the wrench fault associated with Owen Fracture zone at the south 

(Powers et al., 1966 and Jamali, et al., 2006).  The Arabian Peninsula can be divided 

into three main divisions: shield, shelf and mountains.  The Arabian Shield lies to the 

west of the Peninsula occupying about one third of its area and composed largely of 

Precambrian Igneous and metamorphic rocks while the Arabian platform (Shelf) lies 

to the east of the Arabian shield and contain Paleozoic, Mesozoic and Lower Tertiary 

rocks crop.  The third part of the Arabian Peninsula is the Oman and Zagros 

Mountains (Powers et al., 1966 and Alsharhan et al., 2001).   

The UAE has a diverse landscape as a result of the geologic processes that 

have occurred during earth’s history.  The surface area of UAE is 83600 km
2
 and is 

located within the arid climate zone.  Figure 1.2 shows the UAE surface geology 

with some dominant geologic features such as dunes, wadis, mountains and sabkhas.  

Sand dunes and wadis alluvial of Quaternary ages cover most of the UAE surface 

geology and mountains are represented by the eastern mountains and Jebel Hafit.  

Sabkhah, Arabic term for coastal and inland saline flats (Powers et al., 1966), is also 
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very common.  Generally, Holocene carbonates and evaporate complex dominate the 

northern coast of the UAE while terrigenous clastic sediments with a range of 

mountains cover the eastern coast (Al Rashdi, 2004; Basaham & El-Sayed, 1998).  

 

Figure 1.2: Surface geology of the United Arab Emirates (Modified after the 

Ministry of Energy, Petroleum and Minerals sector, 2006)  

 

1.4.2 Abu Dhabi Geology 

According to a recent soil survey done by the Environment Agency- Abu 

Dhabi for identification and mapping the soil of Abu Dhabi Emirate, the soil in the 

UAE is sandy, infertile and dominated by minerals such as quartz and carbonates 

(EAD, 2012).  The Western area of the Abu Dhabi emirate contains terrestrial 

sediments related to the Miocene period. The Miocene period extended from 

approximately 23 to 5 million years Before Present.   The substrate of this Miocene 

is consisting of a sequence of marls, sandstone, limestone and evaporates occurred 

Mountains                

Alluvial fans and wadis 

Sand Dune                   

Inland Sabkha           

Coastal Sabkha         

Coastal Plain             



9 

 

  

 

 

southward and gently dipping (AlSharhan and Kendall, 2003).   

According to Alsharhan and Kendall (2003), coral reefs and coralgal sand is 

common to the west of Abu Dhabi Island while to the east oolites accumulate on the 

tidal deltas of channels located between barrier islands. Figure 1.3 shows the 

geological features of Abu Dhabi.  Among others, sabkha and sand dunes are 

dominant geological features.  Inland sabkhas consist of calcareous and gypsiferous 

silt and sand while near the coast the composition is mostly haliferous (coastal 

Sabkha). The mode of sabkhas formation in Abu Dhabi is explained by Alsharhan 

and Kendall (2003) in their discussion of carbonate and evaporates of the area.  

Although the coastal plains are dominated by sabkhas, unfortunately, these coastal 

sabkhas in Abu Dhabi emirates had decreased to only 54 km due to land 

development activities (Lokier, 2013).  Graham et al. (2002) studied the Quaternary 

outcrop in Marawah islands near the coast of Abu Dhabi. He found that the 

Pleistocene deposits accumulated partly in a shallow-marine environment and partly 

under aeolian conditions. The Marawah sections have revealed that there were 

periods when sea level was close to present-day levels and other times when it was 

approximately 4 to 5 m higher than today. In general, Abu Dhabi emirate has 

numbers of barrier island which spread at the southwest along the coast of the UAE.  

These islands, which is located to the east of the study area include Abu Dhabi, Al 

Saadiyat, Al Qanatir, Abu Al Abyad and Marawwah.  The absence of offshore 

barriers (as is the case of the study area) means that the deep waters impinge directly 

onto the shore casing a region of maximum water agitation (Purser and Seibold, 

1973).  
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Figure 1.3: Geological map of the surroundings of Abu Dhabi emirate (Simplified 

from EAD, 2012) 

1.4.3 Barakah Area Setting  

The Barakah area is undeveloped and has limited dwellings or infrastructure 

along the coast. There are no commercial, industrial, institutional or recreational 

structures exist in the area. There are also no dominant land uses within 20 km of the 

site other than few houses and small-scale commercial fishing for local consumption.  

The nearest large settlements to the studied area is Ruwais, 53 km to the northeast 

and Sila, 48 km to the northwest. The Barakah area is a flat area at the sea level with 

elevations estimated to be 3 to 4 m. The coastal area of the site consists of carbonate 

sands, interspersed dunes and beach ridges next to the shoreline. The Inland area of 
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the western area of UAE is dominated by calcareous and gypsiferous silt and sand 

(Alsharhan & Kendall, 2003). 

The Jebel Dhannah region, also included in this study, is located to the west 

of Abu Dhabi city and it is about 45 km away from the Barakah NPP.  Whybrow and 

Hill (1999) studied the geological setting of Jebel Dhannah including the upper Dam 

formation to the west of Abu Dhabi.  They described the formation of the lower 

Shuweihat and the upper Baynunah.  Figure 1.4 shows a schematic interrelationships 

between principal stratigraphic formations related to Miocene age in UAE area (Dam 

formation is appear to the west of Abu Dhabi). The lower Shuweihat is mainly 

composed of sedimentary rocks with pink to red cross-bedded layers of quartz sands 

from salt flats, fluvial and aeolian origins (Bristow, 1999).  On the other hand, 

Baynunah Formation is composed mainly of sandstones and mudstones from fluvial 

settings with fossil accumulation at various levels.  This formation is exposed along 

more than 200 km of the Abu Dhabi coast in the western Al Gharbia region, and 

extends more than 30 km inland (Whybrow, 1989).  The findings of Whybrow et. al. 

(1999) suggest the presence of a (currently disappearing) large river system in the 

Baynunah area as evident by the abundance of reptiles and fish remains (Whybrow et 

al., 1999 and Friend, 1999). 
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Figure 1.4: Schematic interrelationships between principal stratigraphic formations, 

UAE related to Miocene age (After Steve and Richard, 2012) 

Sedimentary facies distribution from Jebel Barakah to Sila were studied by 

Alsharhan and Kendall (2002).  They mentioned that the area is extending from Jebel 

Barakah (west of Jebel Dhannah) to Sila embraces the massive, 6000 years old, 

inland sabkha, the ‘‘Sabkha Matti’’ (Figure 1.5).   Sabkha Matti extends 150 km 

southward from the coast and is characterized by a narrow strip of supratidal 

carbonate sands and evaporates near the coast, while southward it grades into an area 

of inland siliciclastic sabkha.  
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Figure 1.5: Sedimentary facies distribution of Sabkha Matti in western United Arab 

Emirates (modified from Hunting Geology and Geophysics, 1979; Alsharhan and 

Kendall, 2002 

1.4.4 Coastal Environment 

Calcium carbonate is secreted by many invertebrate organisms, most 

common of which are the molluscan animal.  Abbot (1976) identified mollusks as 

soft-bodies animal that usually produce an external shell composed of a limy 

material called calcium carbonate secreted by fleshy organ called mantle.  In the 

present study, two major classes were found along the coast of the Barakah area; 

Gastropods and Bivalves as well as some coral species.  No species taxonomy was 

done in the present study, however some previous taxonomy were conducted in the 

Northern and Eastern coast of UAE (Al Rashdi, 2004).  Bosch et al. (1995) published 
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a book on the seashell of the Eastern Arabia.  They identified 1273 species from 

different classes such as Scaphopods, Gastropods, Bivalves and Cephalopods. 

The UAE has an arid, sub-tropical continental climate because the Arabian 

Gulf is surrounded by land and exhibits extreme seasonal fluctuations (Purser and 

Seibold, 1973).  Strait of Hormuz passes the marine water to the Arabian Gulf and 

travels by density currents in a broadly counter clockwise direction around the basin 

(Sheppard et al., 1992).  UAE coast has extensive shallow regions, <20 m deep, and 

also characterized with the densest water in the Arabian Gulf forms during winter 

resulted from atmospheric cooling of extremely saline water masses in shallow water 

(Kampf and Sadrinasab, 2006). There are two types of tides in the Arabian Gulf, 

semidiurnal to diurnal (Reynolds, 1993). The diurnal tides are predominately along 

the western coast of Abu Dhabi emirate, whilst semi-diurnal tides occur mostly along 

the eastern shores of the coastline (Sheppard et al., 1992). The UAE coastlines are 

affected by Shamal winds, which are associated with surface currents and waves 

(Alsharhan and Kendall, 2003). 

1.5 Literature Review 

The coastal region of the United Arab Emirates (UAE) consists of the 

Arabian Gulf Coastal and the Eastern Coast regions. A comprehensive review that 

summarizes the findings of publications over the past three decades about heavy 

metal contamination and hydrocarbon pollution in the Arabian Gulf is prepared by 

Freiji (2015). Among others, Abaychi and Douabul (1986), Fowler et al. (1993), Al-

Arfaj and Alam (1993), Al-Abdali et al. (1996) and Basaham and El-Sayed (1998) 

studied the heavy metal distribution in the Arabian Gulf.  Abyachi and Douabul 

(1986) investigated the trace element geochemical associations in the Arabian Gulf.  
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They determined the geochemical fraction of Cd, Cr, Cu, Fe, Mn, Ni, V and Zn in 

sediments from the northwestern part of the Arabian Gulf.  They found that in the 

non-lithogenous fraction, the easily or freely leachable and exchangeable fraction is 

not geochemically significant while the carbonates and Fe-Mn oxides and hydroxides 

fractions appear in the most dominant phases. Fowler et al. (1993) studied the 

distribution of petroleum hydrocarbons, trace metals and biota in the Arabian Gulf 

sediments, near the shore, before and after the 1991 Gulf war. They concluded that 

the highest concentrations were found along the northern coast of Saudi Arabia as 

evident from the elevated concentrations of hydrocarbon compounds in the subtidal 

sediments. Al-Arfaj & Alam (1993) studied the chemical characterization of 

sediments from the Arabian Gulf after the 1991 oil spill. Al-Abdali et al. (1996) 

found chronic contamination of iron, vanadium, copper, nickel and lead in the 

northern, central and eastern areas of the Arabian Gulf. They also found that the 

contamination of trace metals in the western area, known for its pollution by the 

Kuwait oil slick, does not exceed the permissible natural background levels. 

Basaham and El-Sayed (1998) investigated the distribution and phase association of 

some major and trace elements in the Arabian Gulf sediments.  They observed two 

major sediment types: (1) a terrigeneous, fine-grained and Al-rich type 

predominating along the Iranian side; and (2) a coarse grained and carbonate-rich 

type predominating along the Arabian side of the Gulf.   On the other hand, Shriadah 

(1998a) studied the impacts of an oil spill on the marine environment of the UAE 

along the Gulf of Oman.  He concluded that the oil spill resulted in a temporary 

elevation of contamination levels, which were rapidly reduced, and the oil pollution 

levels have returned to prevailing background levels. Schnetger et al. (1999) carried 

out a high-resolution study on geochemical characteristics of deep-sea sediments 
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from the Arabian Gulf.  They sampled five deep-sea cores at high resolution and 

analyzed major and trace elements.  They observed that Ba/Al ratios, used as a 

productivity proxy, were variable but high in all deep-sea cores of the Arabian Sea 

which indicate that a basin-wide influence of nutrient-rich water masses.  They also 

observed that the Mn distribution in a core from the Western Arabia Sea showed 

enrichments during interglacial periods and may indicate Mn export owing to the 

presence of a strong oxygen-minimum zone. Shriadah (1999) studied oil 

contamination along oil tanker routes of the UAE in the Arabian Gulf and Gulf of 

Oman.  He aimed to examine the current state of oil contamination at offshore areas.  

He found that the pattern of distribution of petroleum hydrocarbons in marine 

sediments from the study areas resembled to some extent the distributions of organic 

carbon in marine sediments. This observation led him to conclude that the increase in 

petroleum hydrocarbons contamination from oil tankers traffic and oil terminals 

would result in an increase in organic carbon contents.   De Mora et al. (2004) 

assessed the heavy metal contamination in marine sediment in the Arabian Gulf.  

They named two hotspots of heavy metals in Bahrain and on the eastern coast of the 

UAE.  Elevated levels of heavy metals of Cu, Hg, Pb and Zn were recorded off the 

oil refinery in Bahrain.  Higher concentrations of heavy metals Co, Cr and Ni were 

reported at Akkah beach on the eastern coast of the UAE with a maximum 

concentrations of 45, 303 and 1010 µg/g dry weight, respectively and attributed to 

the metal-rich mineralogy of the region.  El Tokhi et al. (2015a) studied the 

distribution of heavy metals in bottom sediments of the Arabian Gulf near the UAE 

coast (Dubai, Sharjah, Ajman, and Ras Al-Khaimah) indicated that the concentration 

of Cu, Zn, Pb, Fe, Mn, Ni, Cd and V do not exceed the safe limits suggesting no 

pollution around the studied area.  A recent study by El Tokhi et al. (2016) on the 
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distribution of heavy metals in bottom sediments near Abu Dhabi’s coast, they found 

that the average concentrations of copper, zinc, lead, iron, manganese nickel, 

cadmium and vanadium are 4.65, 11.94, 1.91, 2800, 92.26, 10.55, 0.082 and 11.43 

µg/g respectively and all are within the permissible levels.   

Juma (1995), Shriadah (1998b), El-Sammak (2001) and Alsharhan and El-

Sammak (2004) studied the heavy metal distribution along the coast of UAE. Juma  

(1995) studied the heavy metals and minerals concentrations in the sediments of the 

eastern coast of the UAE. Shriadah (1998b) carried out a study for heavy metals in 

mangrove sediments of the UAE shoreline.  By correlations between some heavy 

metals and grain particles, he suggested that the mangrove sediments might 

inevitable become enriched in heavy metals in a source is available.  He investigated 

eight heavy metals, which are Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn and observed the 

concentrations of Mn, Ni and Pb were significantly higher than the other metals.  The 

high concentration of Mn and Ni were due to non-anthropogenic sources such as the 

geologic nature formations and the presence of high mountains of basic igneous 

rocks, where the high levels of Pb were due to inputs from spills and discarded solid 

wastes. El-Sammak (2001) investigated the heavy metal pollution in bottom 

sediments of Dubai, UAE.  He quantified the metal pollution using statistical 

methods and simple quantification methods.  He observed that most of the stations 

reflect natural background composition of different metals.  On the other hand, few 

samples reflect the man-made impact on the metals contents in the investigated area.  

Al-Sharhan and El-Sammak (2004) investigated grain size analysis and 

characterization of sedimentary environments of the UAE coastal areas.  Their 

results revealed that the Arabian Gulf coast could be divided into three provinces: a) 

Abu Dhabi/Dubai province, b) Sharjah/Ajman/Um Al-Quwain province and c) Ras 
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Al-Khaimah province.  They suggested that the variations among the studied sites 

might be due to either to the diversity of sediment sources, or to the geomorphology 

of the coastal areas.  A recent study by Al Rashdi et al. (2015) investigated the 

concentrations of heavy metals along the coastal area of Abu Dhabi. It was found 

that the contamination of heavy metals including antimony, arsenic,  cadmium, 

cobalt, copper, mercury, lead, molybdenum, nickel and zinc has increased in the 

coastal area of Abu Dhabi from 2004 to 2014.  Heavy metal concentrations in the 

UAE are generally within the natural background levels (Al Rashdi et al., 2015; El 

Tokhi et al., 2016). However, elevated levels of heavy metals may be associated with 

anthropogenic activities such as oil refiners, desalination plants and power plants. 

However, there is paucity of data on geochemical distribution. 

Several researchers studied radioactivity around the world.  Among others, 

Kannan et al. (2002), Lu & Zhang (2008), Nenadovic et al. (2012) and Arnedo et al. 

(2013) studied the natural radioactivity in India, China, Serbia and Spain; 

respectively. Kannan et al. (2002) studied the distribution of 
238

U, 
232

Th and 
40

K in 

soil samples of Kalpakkam in India which known with the presence of pockets of 

monazite mineral in their beach sands.  He found that the concentrations of 
238

U, 

232
Th and 

40
K varied in the range of 36-258, 352-3872 and 324-405 Bq/kg dry, 

respectively. The total absorbed gamma dose rates in air due to the presence of 
238

U, 

232
Th and 

40
K in Kalpakkam soil samples varied between 24 and 556nGyh

-1
 with a 

mean of 103nGyh
-1

. The presence of 
232

Th in beach sand contributed maximum 

(94.0%) to the total absorbed gamma dose rates in air.  Lu & Zhang (2008) measured 

natural activity concentrations in China beach sand ranges from 7.6 to 17.2, 7.8 to 

25.1 and 883.4 to 1313.6 Bq/kg for 
226

Ra, 
232

Th and 
40

K with mean values of 12.0, 

15.2 and 1079.2 Bq/kg, respectively. The activity concentrations of 
226

Ra and 
232

Th 
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in beach sands are lower, while 
40

K is higher than the world average.  Nenadovic et 

al. (2012) measured the vertical distribution of 
238

U, 
232

Th and 
40

K in soil samples 

from the cultivated and undisturbed areas in Rudovci, municipality of Lazarevac, 

Serbia. The specific activity concentrations of 
238

U, 
232

Th and 
40

K in soil and 

sediment samples was determined by gamma spectrometry using the HPGe 

semiconductor detector. Obtained activity concentrations ranged from 28.0 to 44.0 

Bq/kg for 
238

U, from 59.4 to 71.4Bq/kg for 
232

Th and from 335.0 to 517.0Bq/kg for 

40
K. While, Arnedo et al. (2013) measured the activity concentrations of 

226
Ra, 

232
Th 

and 
40

K and found out that the activity concentrations are higher at a depth than at 

the surface. The average values of the activity concentrations of 
226

Ra and 
232

Th are 

lower than the world’s mean values. However, the average values of the activity 

concentrations of 
 40

K are observed to be higher than worldwide. 

Since Iran is relative to the regional studied area, relevant studies and their 

remarks are discussed.  Abdi et al. (2009) determined the activity concentrations of 

the radioactive elements 
238

U, 
232

Th, 
40

K and 
137

Cs in the southern coast of the 

Caspian Sea in Iran.  While Tari et al. (2013) used high pure germanium detectors to 

measure gamma emitting radionuclides in beach sand cores of coastal regions of 

Ramsar in Iran.  He measured the average specific activities of natural radionuclides 

226
Ra, 

235
U, 

232
Th, 

40
K and 

137
Cs, he concluded that none of the studied beaches was 

consider as radiological risk.  On the Gulf of Aqaba of Jordan, Ahmad et al. (1997) 

investigated the radium equivalent activities in sand samples collected from different 

areas in Jordan.  The radium equivalent activities calculated rom measurements of 

226
Ra, 

232
Th and 

40
K activities by gamma ray spectroscopy technique.  The average 

value of the radium equivalent activities were calculated whereas the lowest average 

value were 41.06 Bq/kg measured in Adasiah and the highest average value were 
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85.536 Bq/kg in Ghor As-Safi.    A study done on Gulf of Aqaba by Ababneh et al. 

(2010) using a core sediment from five locations, one of them is the phosphate 

loading berth which showed a higher activity concentrations of 
238

U, 
235

U and 
226

Ra 

that other location and more than twice as high as the worldwide average. Another 

study by Al-Trabulsy et al. (2011) who measured the activity concentrations of 
238

U, 

232
Th, 

226
Ra, 

40
K and 

137
Cs in coast of the Gulf of Aqaba by using gamma-ray 

spectrometry.  They concluded that the average specific activities for 
226

Ra, 
232

Th, 

40
K and 

137
Cs were found to be 11.4, 22.5, 641.1 and 3.5 Bq/Kg, respectively. Which 

mean that the average activity concentrations of 
226

Ra and 
232

Th are lower than that 

of the world average of 25 Bq/Kg for both of them, whereas the mean value of 
40

K is 

about double the world average of 370 Bq/Kg.  While Abd El-Mageed et al. (2011) 

studied the radio activities of 
232

Th, 
226

Ra, 
40

K and 
137

Cs in soil in Juban town in 

Yemen by gamma-ray spectrometry. They concluded that the activity concentrations 

of 
232

Th and 
226

Ra agree with the world wide average concentrations of these 

radionuclides except 
40

K.  Farid et al. (2013) assessed natural radioactivity in some 

local cement type in Yemen using gamma-ray spectrometry.  They found that the 

average values obtained for 
226

Ra, 
232

Th and 
40

K activity concentrations in different 

types of cement are lower than the corresponding global values reported in United 

Nation Scientific Committee on the Effect of Atomic Radiation publications.    

Some studies were conducted in the Arabian Gulf region by some 

researchers; Saad and Al Azmi (2002), Al-Zahrany et al. (2012), Al-Sulaiti, et al. 

(2012), Saleh (2012), Saif Uddin et al. (2012),  Jallad (2014) and Bajoga et al. 

(2015).   Saad and Al Azmi (2002) used Gamma-ray spectrometric measurements to 

study the concentration of 
238

U, 
232

Th, 
226

Ra, 
40

K and 
137

Cs in both northern and 

southern coast of Kuwait.  They concluded that the radioactivity in southern areas 
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reaches about one-half of the values commonly assigned as the world average.  In 

northern areas, higher radioactivity concentrations are found but are still below the 

international levels.  Al-Zahrany et al. (2012) measured the marine radioactivity near 

the Saudi Arabian coasts of the Red Sea and Arabian Gulf.  The purpose of that study 

was to establish a marine radioactivity database, which includes necessary 

information on the background levels of both naturally occurring and man-mad 

radionuclides in the marine environment. On the other hand, determination of the 

natural radioactivity levels in Qatar coast was done by Al-Sulaiti, et al. (2012).  They 

concluded that activity concentrations of 
232

Th and 
40

K were found to be within the 

worldwide average values. They focused on inshore oil field area, and they found 

that the weighted mean value of the activity concentrations of 
226

Ra in one of the 

samples was found to be around a factor of 10 higher that the accepted worldwide 

average value of 35 Bq/kg.  On the other hand, the weighted mean values of the 

activity concentrations of 
232

Th and 
40

K were found to be within the worldwide 

average values of 30 and 400 Bq/kg.   Similar study was done by Saleh, (2012) were 

he assessed the radioactivity of 
238

U, 
232

Th, 
40

K, and 
137

Cs and assessment of 

depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman.  He 

concluded that depleted uranium concentration matches its range in natural uranium. 

His results showed that the levels of 
238

U, 
232

Th and 
40

K are relatively low.  
137

Cs 

levels showed wide variability (0.11-61.40 Bq/kg) in the studied locations and this 

reveals a great diversity in the properties and textures of tested soil. The total annual 

external effective radiation dose from the measured radionuclides is 25.4 μSv. The 

contributions of radionuclides in the total annual effective dose are 30% from 
238

U, 

32% from 
232

Th and 32% from 
40

K while the contribution of 
137

Cs is 6%. The 

obtained results revealed that the mean of isotopic abundance of 
235

U is 0.66%; 
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therefore, the uranium detected in the investigated soil is almost of the natural type.  

The concentration of tritium, polonium, strontium and cesium in Kuwait territorial 

water are low and are comparable to most oceanic waters (Saif Uddin et al. 2012).  

Jallad (2014) studied the activity concentrations of 
238

U, 
232

Th, 
226

Ra, 
40

K and 
137

Cs 

in sand of Failka Island and compared the absorbed dose and the effective dose rates 

with international values.    Anthropogenic radionuclide 
137

Cs were studied by 

Bajoga et al. (2015) by using a high-resolution gamma-ray spectroscopy and found 

that 
137

Cs was not observed above the minimum detectable activity in that study. 

There is paucity of data on radioactivity levels in United Arab Emirates. 

AlShamsi et al. (2013) and Murad et al. (2014) studied radioactivity levels in 

groundwater in UAE and Oman by using ICP-MS in carbonate aquifer and alluvial 

aquifer, respectively.  AlShamsi et al. (2013) concluded that the uranium 

concentration in groundwater of the carbonate aquifers are below the higher 

permissible WHO limit for drinking water.     On the other hand, Murad et al. (2014) 

concluded that the measured groundwater radioactivity including 
323

Th, 
238

U, 
235

U, 

226
Ra, 

222
Rn, gross-α and gross-β, indicates values below the WHO permissible limits 

for drinking water.  They also conclude a large difference in radioactivity 

fingerprints, in particular for 
226

Ra and 
222

Rn within the investigated aquifers.   Al 

Rashdi and Siad (2015) concluded that there is no uranium or thorium contamination 

in the coast of Abu Dhabi. Although there is enrichment of uranium for some 

samples in comparison to average earth crust. The result U is mainly associated with 

CaO and Lost of Ignition (LOI) indicating the source of the U is mainly marine while 

Th is associated with terrigenous elements like Al2O3 indicating the source of the Th 

is originating from possible felsic rocks.  Uranium (1.3-4.6 ppm, average 2.3 ppm), 
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exceeding the value in average upper continental crust, rather than Thorium (0.2-2.5; 

average 1.4 ppm). 

1.6 Research Objectives and Aim 

The aim of this research is to establish a documented geochemical and 

radiological reference data for Barakah area before operation of NPP. This will 

enable the assessment of any revealing radioactive contamination and evaluate any 

associated environmental impact, after the nuclear power plant commences.  The 

main objectives of this research are to: 

1. Prepare a geochemical data about Barakah NPP’s area including both 

heavy metals and rare earth elements concentrations.  

2. Assessment of heavy metals and rare earth elements concentrations by 

ICP-AES and evaluate their anthropogenic influences on environment. 

3. Measure the level of natural and anthropogenic radionuclides at Barakah 

NPP area. 

4. Estimate the hazard parameters such as radium equivalent and absorption 

dose.  

5. Measure of  the U isotopes and estimate the 
234

U/
238

U activity ratio. 

6. Identify any geochemical and/or radiological anomalies in the area. 

7. Mapping the spatial distribution of heavy metals, rare earth elements and 

activity radioactive concentrations and its related hazard parameters.   

8. Establish a radiological baseline as a reference for Barakah NPP to assess 

the potential environmental impact that might be arisen from operation of 

NPP. 
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Chapter 2: Methodology 

 

2.1 Field Work and Sampling 

The materials used in the present study are depositional bottom sediment 

(from the surface to 0.3 m depth) and friable soil (from the surface to 0.5 m depth) 

samples collected from the bottom of the Arabian Gulf and coastal line and onshore 

area of Barakah. Fifty eight representative samples were collected in November 2014 

(soil and shore samples) and May 2015 (bottom sediments). The six months 

difference in sampling were due to sea conditions and other arrangements.  Going 

from west to east, the samples were collected from the Sila, Barakah and Jebel 

Dhannah areas. The collected samples were classified in three categories (as listed in 

Table 2.1): sediments along the shoreline (intertidal zone) of the Barakah area (B1-

B16) referred to as “shore” samples; soil at 2000 meters inland in the Barakah area 

(S1-S24) referred to as “soil” samples and marine sediments  at a distance of 500 to 

7000 meters from the shore of Arabian Gulf and at a depth of 4 to 7 meters (M1-

M18) referred to as marine “bottom”  sediments samples. The bottom samples were 

collected also from Sila and Jebel Dhannah in addition to Barakah (Figure 2.1) and 

(Table 2.1). 

A total of 58 samples had been collected for this study.  25 x 25 x 5 cm 

stainless steel box was used, for collecting 16 shore and 24 soil samples, and a grab 

sampler with expert divers were used for collecting18 bottom sediments samples. 

The sediment samples were dried in oven at a temperature of 60°C and kept in 

labeled plastic bags for further use. 
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Table 2.1: List of samples collected with their label, coordinates and location 

 
Label Coordinates 

 

Label Coordinates 

 

Label Coordinates 

Shore  

Samples 

(sediments 

in 

Barakah) 

B1 N 23 57 33.2  E 52 08 54.2 

Soil 

Samples  

(soil in 

Barakah)  

S1 N 23 56 22.1  E 52 08 54.0 

Bottom 

samples 

(marine 

sediments 

M1-M5 in 

Sila,  

M6-M10 in 

Barakah and 

M11-M18 

in Jebel 

Dhannah ) 

M1 N 24 04 12.7  E 51 47 37.2 

B2 N 23 57 38.9  E 52 10 10.2 S2 N 23 56 35.6  E 52 10 13.2 M2 N 24 00 41.6  E 51 53 22.2 

B3 N 23 57 41.2  E 52 11 19.1 S3 N 23 56 51.2  E 52 11 10.6 M3 N 24 03 06.5  E 51 56 37.8 

B4 N 23 57 43.7  E 52 11 46.1 S4 N 23 56 36.8  E 52 11 51.5 M4 N 24 02 46.8  E 52 01 08.0 

B5 N 23 58 50.5  E 52 16  0.5 S5 N 23 56 51.5  E 52 12 03.4 M5 N 24 01 47.5  E 52 04 42.4 

B6 N 23 58 55.2  E 52 16 27.8 S6 N 23 57 06.2  E 52 13 55.0 M6 N 23 58 36.9  E 52 09 22.1 

B7 N 23 59 05.7  E 52 17 03.6 S7 N 23 57 33.8  E 52 14 26.9 M7 N 23 58 12.3  E 52 11 22.3 

B8 N 23 59 35.7  E 52 18 17.5 S8 N 23 57 55.6  E 52 15 10.6 M8 N 23 58 19.9  E 52 12 32.5 

B9 N 24 00 01.4  E 52 19 13.7 S9 N 23 57 57.2  E 52 15 33.0 M9 N 23 59 09.5  E 52 15 40.5 

B10 N 24 00 48.9  E 52 19 52.8 S10 N 23 57 11.9  E52 15 17.7 M10 N 24 01 06.4  E 52 18 23.8 

B11 N 24 01 23.6  E 52 20 54.1 S11 N 23 58 01.5  E 52 16 23.7 M11 N 24 02 59.3  E 52 20 37.8 

B12 N 24 02 04.1  E 52 22 02.3 S12 N 23 58 19.0  E 52 16 39.5 M12 N 24 03 38.0  E 52 23 35.9 

B13 N 24 02 20.4  E 52 22 34.5 S13 N 23 58 32.2  E 52 17 45.1 M13 N 24 06 20.1  E 52 25 44.9 

B14 N 24 02 41.5  E 52 23 33.3 S14 N 23 58 43.6  E 52 17 46.3 M14 N 24 08 41.2  E 52 27 34.2 

B15 N 24 02 54.2  E 52 24 29.4 S15 N 23 59 15.3  E 52 18 45.0 M15 N 24 08 00.9  E 52 30 55.9 

B16 N 24 03 16.3  E 52 25 24.6 S16 N 23 59 25.5  E 52 19 25.5 M16 N 24 09 25.9  E 52 32 55.6 

   

S17 N 23 59 45.8  E 52 19 41.3 M17 N 24 10 49.2  E 52 33 46.9 

   

S18 N 23 59 08.5  E 52 12 24.6 M18 N 24 12 21.7  E 52 34 33.9 

   

S19 N 24 00 21.0  E 52 20 39.7 

   

   

S20 N 24 00 55.5  E 52 21 40.4 

   

   

S21 N 24 01 11.0  E 52 22 46.8 

   

   

S22 N 24 01 19.5  E 52 23 58.1 

   

   

S23 N 24 01 37.4  E 52 25 06.4 
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Figure 2.1:  Locality map showing the location of sampling sites 

2.2 Data Management 

Data were organized in excel sheets and SPSS 13.0. A global positioning 

system (GPS) was used to record the locations of the samples. ArcGIS (version 10.1) 

was used to produce spatial distribution maps by interpolation method (kernel 

smoothing). Mapping was also performed to resent a comprehensive spatial 

distribution illustration of all heavy metals, rare earth elements concentrations as 

well as radionuclides activities and hazard parameters over the studied area.  In this 

study, maps will represent the 58 sampling locations and summarizes the distribution 

of the measured parameters.  Such maps are helpful to build up and interpret the 

variability in concentrations in terms of geographical location (covering east and 
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west sides of the study area) and the different in depositional environments (onshore, 

coastal line and offshore).  

2.3 Analytical Techniques 

  There are several methods and analytical techniques used in this study. 

Geochemical and mineralogical analysis techniques were used for the chemistry and 

mineralogy analyses of the samples, whereas, radiation methods were used for the 

radiological analysis.   Analyses described and discussed in this section include: 

 Inductively Coupled Plasma (ICP-AES) analysis. 

 X-Ray Diffraction (XRD) spectrometry analysis. 

 Sieve analysis and soil type diagram classification. 

 Carbonate content analysis. 

 High pure Germanium Gamma analysis. 

 Alpha spectrometry analysis. 

2.3.1 Inductively Coupled Plasma (ICP) Analysis 

The inductively coupled plasma atomic emission spectroscopy (ICP-AES) 

analysis, for the determination of the heavy metals and REE content, was done in 

Bureau Veritas Minerals Laboratories (BVML) in Ankara, Turkey. Samples were 

prepared according to BVML guideline. Soil samples were dried and pulverize to ≥ 

85% passing 75 µm. For the Rare Earth Elements and heavy metals, 0.5 g of soil 

samples is digested with a modified Aqua Regia solution using concentrated nitric 

acid and hydrochloric acid at a 1:3 ratio to extract the elements into solution. After 
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digestion, REE and heavy metals were measured by (ICP-AES) after fusion with 

lithium borate (LiBO2/Li2B4O7 flux). Crucibles are fused in a furnace. The cooled 

bead is dissolved in ACS grade nitric acid and analyzed by ICP-AES. Lost on 

ignition (LOI) is determined by igniting a sample split then measuring the weight 

loss.   The instrumentation used for this analysis are Spectro Ciros Vision and/or 

Spectro Arcos and for AQ250 the instrumentation used is Perkin Elmer ELAN 9000.  

The error of analysis for both heavy metal and REE is <0.01. Bureau Veritas 

Minerals Laboratories (BVML) QA/QC protocol includes a sample-prep blank 

carried through all stages of analysis as the first sample, a certified reference 

materials (STD DS10), a pulp duplicate to monitor analytical precision and two 

reagent blanks to measure background.   More information about BVML guidelines 

for preparing and analyzing samples are available on the website 

www.bureauveritas.com.             

Measurements of the rare earth elements and heavy metals concentrations by 

ICP analysis were carried out for the 40 soil samples (16 shore and 24 soil samples).   

The 18 bottom sediments were split into three sizes for each: coarse > 0.5 mm, 

medium > 0.25 mm and fine > 0.125 mm (Udden, 1914).  Concentrations of rare 

earth elements and heavy metals were conducted for all three fractions of each of the 

18 sample. This allow studying the relationship between the grain size and the 

concentrations of REE and heavy metals. 

2.3.2 X-Ray Diffraction (XRD) Spectrometry Analysis 

All the collected samples (58 samples) were prepared for XRD analysis in 

order to determine qualitatively the mineral composition of the collected sediments 

and soils.  This analysis was carried out in Egypt in the Central Egyptian Labs.  A 

http://www.burenavertas.com/
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Philips X-ray diffractometer model PW/1840 was used.  Samples were grinded to 

fine powder then pressed into steel rings to get a mechanical stable sample and 

finally processed by the X-ray diffractometer.  

2.3.3 Grain Size Analysis 

The main purpose of the Sieve analysis of beach soil is to determine and 

understand their granulometric characteristics and textural properties. There are 

several techniques for the size analysis of soil.  The most widely used is the sieve 

analysis, which is mostly used for sands and gravels. All 58 samples were analyzed 

for sieve analysis using the American Society for Testing and Materials (ASTM) 

Sieves, part of the samples were dried using dry oven while others used as reference 

samples.  200 g representing the original dry sample was taken  using john splitter 

and poured in a set of sieves arranged from coarse to fine as follow 

(4,2,1,0.5,0.25,0.125,0.062 mm and pan).  The set of sieves were fixed on a 

mechanical shaker and were shacked for about 15 minutes. The device used is 

Fritsch mechanical shaker with ASTM Sieves.  The weight of each retained fraction 

was recorded in a form sheet used for this purpose using a sensitive balance. The 

weight percentages and cumulative weight percentages were calculated for all 

samples. All samples were analyzed at the Geology Department of UAE University. 

The weight percentages and cumulative weight percentages were calculated 

for each sieve using the following equation: 

𝑊𝑒𝑖𝑔ℎ𝑡 % =

𝑊. 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
𝑊. 𝑡𝑜𝑡𝑎𝑙

2
∗ 100 
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  Where the w. retained is the sample weight recorded for each sieves while w. 

total is the total initial weight (200g).  The Cumulative weight % for the 1
st
 =1

st
 Wt. 

%, 2
nd

Wt. % = the 1
st
 + 2

nd
,  3

rd
 Wt. % =Sum. of 1

st
 + 2

nd 
+ 3

rd
 …...etc.         

2.3.4 Carbonate Content Analysis 

Measuring the carbonate content of the collected samples were carried at the 

UAEU Geology lab. For the carbonate content analysis, 10% hydrochloric acid 

(HCl) is added to a known weight of sediment in glass beaker.  The beaker should be 

placed on a hot plate and heated to 80°C until effervescence stops and a ph of 3.5 to 

4 is reached, a ph paper can be used as indicator that changes from yellow in a 

neutral solution to orange at ph 3.1 to 4.4 and red below ph 3.1.  Decantation for the 

solution should be done and this step can be repeated three times until the residual 

sand is properly washed.  A known weighted filter paper is used to hold the residue  

the weight of the dried filter paper is used to calculate the carbonate content by using 

the difference between the initial and final sample weight divided by the initial 

sample weight times 100%. 

2.3.5 High Pure Germanium Gamma Analysis 

2.3.5.1 Sample Preparation  

All collected samples were prepared for Non-Destructive analysis using 

High-pure Germanium Detector (HPGe).  Sample preparation started with drying the 

sediments and soil in drying oven at 60°C until the moisture is completely removed.  

The sample were homogenized and sieved using 2 mm sieve (IAEA, 1989).  

Marinilli beakers of a volume of one liter were used to hold the samples, density of 

the samples were measured. Marinilli beakers were sealed with adhesive tape and left 
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for at least 4 weeks to achieve secular equilibrium between 
226

 Ra (daughter of 
238

U) 

and their corresponding daughter (NEA-OECD, 1979).  HPGe detector was used 

since it is a sensitive and efficient device as well as it has been widely used in 

determining activity of radionuclides.  This analysis was performed at the UAEU in 

department of physics with a relative efficiency 40%. 

2.3.5.2 High Pure Germanium detector 

 2.3.5.2.1 Description of the system 

Gamma-ray spectrometry is one of the most accepted and widely used 

techniques for the detection and analysis of radioactive isotopes. It is a popular 

technique being used for low-background radio analysis. Three types of gamma ray 

detectors can be used for gamma analysis: thallium doped sodium iodide crystal 

NaI(Tl) scintillation detector, lithium drifted crystal of purified germanium detector, 

and High-Pur Germanium (HPGe) detector (Hansen, 1971).   A typical HPGe 

gamma-ray spectrometry system is composed of: a detector (Ge) with a lead 

shielding, to reduce the background, high voltage power supply, electronics for 

signal processing (preamplifier, amplifier, multichannel analyzer), computer and 

dedicated software. The spectrometric system records, stores and processes the 

gamma-ray spectrum of the analyzed sample, using validated computer software 

packages (Ortec gammavision).                                     

2.3.5.2.2 Energy calibration 

The main principle of calibrating a gamma spectrometer is to relate the total 

number of counts in the full energy peak to the gamma ray intensity or the activity 

concentrations of source.  The calibration of a spectrometric gamma system involves 

three main aspects (Figure 2.2): (i) The energy as a function of the number of the 
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channels; (ii) FWHM (Full Width of Half Maximum) as a function of the number of 

the channels; (iii) The efficiency as a function of the energy correlated with the 

acquisition geometry of the radiation spectrum.   Energy calibration is in simple 

words, setting up a relation between the gamma ray energy and the analyzer channel 

number.  X-axis (channels) of the spectrum will be calibrated in units of energy such 

as keV.  It will ensures peaks in the spectrum appear at the correct energies. Energy 

calibration is done by using the known spectra generated by what is called standard 

source that have isolated peaks. In the present study, a mixed of 12 radionuclides as 

shown in Table 2.2, was used for energy calibration.  There were also considered as 

the energetic lines for 
137

Cs
 
 of  661.6 keV  and 

60
Co

 
of 1173 and 1332 keV for a 

more accurate energy calibration in the work energy interval. The program that is 

used in the present study (Ortec) calibrate the peak width which is called full width at 

half maximum (FWHM) as part of the energy calibration (channel to energy 

calibration).   

2.3.5.2.3 Efficiency calibration 

After matching the gamma ray energies with the analyzer channel number, 

the activity concentrations of the radionuclides should be quantified. This is done by 

efficiency calibration, which calculates the detection efficiency of HPGe detector 

system as function of energy.  The detector was calibrated for absolute efficiency 

using radioactive standard sources with gamma-ray emissions covering a wide 

energy range (Table 2.2).   
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Figure 2.2: Flow chart showing how a standard spectrum was obtained 

 

Table 2.2: Radionuclides present in the standard source 

Radionuclides 
Energy lines 

(keV) 

Activity (Bq/Kg) 

as in certificate 

Net count 

rate (cps) 
live time 

Half life 

days 

241
Am 59.54 4.331 73.95 83628.86 157800 

109
Cd 88.03 13.62 15.54 83628.86 462.6 

57
Co 122.07 1.094 17 83628.86 271.26 

57
Co 136.47 1.094 2.08 83628.86 271.26 

139
Ce 165.85 1.314 5.59 83628.86 137.5 

203
Hg 279.17 2.242 0.11 83628.86 46.72 

113
Sn 391.69 3.677 4.54 83628.86 115.1 

85
Sr 514 4.402 1.04 83628.86 64.78 

137
Cs 661.66 2.483 36.28 83628.86 11019 

60
Co 1173.24 2.497 23.48 83628.86 1925.4 

60
Co 1332.4 2.497 21.45 83628.86 1925.4 

88
Y 1836.01 4.916 2.2 83628.86 106.6 

 

 

• Energy calibrate each spectrum 1 

• Measure reference spectrum source on HPGe  2 

• Re-bin each spectrum such that 1 channel = 
1 keV      

3 
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Background gamma ray measurement were conducted using empty Marinilli 

beaker by acquiring spectra for 24 hours.  The need for measuring the background 

gamma ray is because in most locations there is a considerable gamma ray flux from 

natural background (NORM) and cosmic nuclides, which can mask the material of 

the interest (Keyser and Twomey, 2008).  All of these contribute to change the 

detector total count rates unrelated to the nuclides of interest and can hide 

considerable quantities of material.  Thus, background gamma ray measurement was 

done and the spectrum were corrected to the background. 

2.3.5.2.4 Calculation of radionuclides activity concentrations 

Count rates for selected energy lines (Table 2.3 and Figure 2.3) are used to 

estimate the activity concentrations of U
238

(
226

Ra),
232

Th and 
40

K.  
238

U can be 

determined by gamma spectrometry via its gamma emitting daughter 
226

Ra in 

assumptions that secular equilibrium between 
226

Ra (daughter of 
238

U) and its 

corresponding daughter is achieved.  As shown in Table 2.3 the energy lines 352, 

609, 1120 and 1764 keV were used to estimate the activity concentration of 
226

Ra, 

while 
232

Th is estimated through it’s gamma emitting daughter using  each of  238, 

583 and 911 keV energy lines (EML, 1979). Furthermore lines overlapping with 

others were not used such as186 keV line (doublet due to lines 
238

U/
235

U).  There was 

no peak in the energy line associated for 
137

Cs in all samples (example is Figure 2.3), 

thus no calculation was done for this anthropogenic radionuclide. The activity 

concentrations of both U
238 

(
226

Ra)  and 
232

Th are derived from the spectrum (using 

daughter’s energy lines) through calculation based on that the radioactive 

equilibrium is exists.  Since 
40

K is a direct gamma ray emitter, its energy line can be 
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measured directly.  Table 2.3 shows the energy lines of selected radionuclides and 

daughters. 

The Activity concentrations of radionuclides are estimated through the 

following equation (Beretka and Mathew, 1985) and (El Assaly, 1981): 

𝐴 =
𝑁𝑃

𝑡 ∗ 𝐵𝑟 ∗ 𝜀(𝐸) ∗ 𝑀
 

A is activity concentration in Bq/kg, NP is the net peak, Br is the emission 

probability of the gamma ray produced at the full energy peak, t is the counting time 

in second, ɛ is the full energy peak efficiency and M is the sample mass. 

The method for determining the efficiency for the radionuclides of interest 

(Table 2.3) involves three steps as shown in Figure 2.4. The first step involves the 

measurement of the experimental efficiency using standard radionuclide source with 

standardized activity concentrations (Table 2.2) using the above mentioned equation. 

The second step entails constructing the efficiency fitting curve (Figure 2.5) for the 

given set of experimental data (energy, efficiency).  Finally, deriving the curve 

equation to estimate the efficiency ɛ for the different radionuclides.  Estimated 

efficiency ɛ is presented in Table 2.3 along with the emission probability of each 

radionuclide.   
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Table 2.3: Energy lines and their associated radionuclides efficiency and emission 

probability 

Nuclides 

Energy 

lines 

KeV 

Efficiency 
Emission 

probabilities 

U
238

(
226

Ra) 

series    

Pb
214

 351 0.02847 0.353 

Bi
214

 609 0.01881 0.452 

Bi
214

 1120 0.01152 0.148 

Bi
214

 1764 0.00813 0.152 

Th
232

 

series    

Pb
212

 238 0.03768 0.436 

Ti
208

 583 0.01946 0.306 

Ac
228

 911 0.01364 0.266 

K
40

 
   

K
40

 1460 0.00932 0.1066 

Cs
137

 
   

Cs
137

 661.1 0.01764 0.8499 
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Figure 2.3: Gamma emission spectrum of soil sample (S11) showing the lines used 
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Figure 2.4: Flow chart showing how a standard spectrum was obtained 

 

 

Figure 2.5: Source efficiency as a function of energy 

 

* Calculation of 

Experimental 

efficiency using 

known activity 

standard source. 

* Constructing the 

efficiency fitting 

curve. 

* Deriving the 

curve equation  

and calculate the 

estimated 

efficiency ɛ. 
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2.3.5.2.5 The Radium Equivalent activity concentrations and Absorbed Dose 

Rates  

Radium equivalent activity is used to assess the hazards associated with 

materials that contain U
238

(
226

Ra), 
232

Th and 
40

K in Bq/kg and is mathematically 

defined by (Beretka and Mathew, 1985) and (Mujahid et al., 2008). 

𝑅𝑎𝑑 𝑒𝑞 (
𝐵𝑞

𝑘𝑔
) = 𝐴(𝑅𝑎) + 1.43 𝐴(𝑇ℎ) + 0.077𝐴(𝐾) 

Where A is the activity concentrations.  

Since radioactivity from radionuclides is not uniform and varies from place to 

another, radioactivity has been defined worldwide in terms of radium equivalent 

activity in Bq/kg (Al Jundi, 2002) which allows comparing different places with the 

world allowed value for radium equivalent activity which is 370 Bq/kg.  United 

Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) 

(2000) provided  guidelines to measure the absorbed dose rates (D) which are 

measured by nGy.h 
−1

   due to gamma radiations in air at 1m above the ground 

surface for the uniform distribution of the naturally occurring radionuclides 

(U
238

(
226

Ra), 
232

Th and 
40

K).  The previous guidelines (UNSCEAR, 2000) were used 

to estimate the absorbed dose rates.  

𝐴𝑏𝑠. 𝐷𝑜𝑠𝑒 (𝑛𝐺𝑦/ℎ) = 0.604 𝐴 (𝑇ℎ) + 0.462 𝐴 (𝑈) + 0.0417 𝐴 (𝐾) 

2.3.6 Alpha Spectrometry 

Ten sediment samples were analyzed using alpha spectrometry in nuclear and 

radiological regulatory authority in Cairo, Egypt.  Generally, Uranium is separated 

by Eichrom UTEVA resin prior to elector deposition on stainless steel disc then 
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measurement by alpha spectrometry as shown by a standard alpha spectrum in Figure 

2.6. A detailed analytical procedure by Eichrom is available in  

http://www.eichrom.com/docs/methods/pdf/acs07-15_u-soil.pdf.   Figure 2.7 shows a 

schematic diagram of the radiochemical separation procedure of Uranium. Uranium 

isotopes (
234

U, 
235

U and 
238

U) were extracted from the soil digestion solution by co-

precipitation with calcium phosphate, separated from other actinides and purified 

using extraction chromatography followed by the electrodeposition on a stainless 

steel disc and counted using alpha spectrometry.  

To minimize the experimental error, quality assurance were achieved by 

analyzing a known activity samples from the international Atomic Agency and by 

using a DDW (Distilled and Deionized Water) with a known activity of 
232

U and 

then calculate the theoretical count rate of 
232

U.   

 

Figure 2.6: An alpha spectrum showing the energy lines of U isotopes, the horizontal 

axis is the energy in Mev while the vertical axis is the counts/channel 
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Figure 2.7: Schematic procedure of soil digestion and Uranium separation and 

measurement 

 

 

•Start of digestion process. Ash sample in 550oC for 24h  

•Tracer is used to monitor chemical yield. Add yield tracer232U 

•HNO3 and HF dissolve silica (solids) 

•H2O2 oxidize organic content. 

Dissolved sample material 
with Conc. HNO3, HF and 

H2O2  

•Add conc.  HNO3 Evaporate to dryness. Centrifuge and decantation 

•Add 1 ml of Ca(NO3) and 20 ml of H3PO4, 
residum is dissolved in 9M HCl. 

Co-precipitation with 
calcium phosphate 

•Rinse column with (5mL 3M HNO3, 15mL 
8M HNO3, 5mL 9MHCl, 20mL (5M HCl + 
0.05M Oxalic acid) to eliminate Th and Fe+2, 
U will be retained in the column, strip U with 
15mL 1M HCl. 

UTEVA Column (Extraction 
Chromatography) 

•Electroplating of U isotopes on stainless steel 
disc, heat the disc to dull red to remove Po 

Electrodeposition   

 

•Counting process (4 peaks are expected, 
232.234,235,238U), calculate the activity. 

Alpha spectrometry 
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Chapter 3: Results 

 

3.1 Grain-Size Analysis 

Grain size analysis was carried out to identify the depositional environment.  

In addition the grain size mean and cumulative weight were plotted and used to 

interpret the grain-size frequency distribution in the studied soil, shore and bottom 

samples. Calculation of the grain-size statistical parameters (Mz, σI, Ski and KG) 

were done through applying the equations of Folk and Ward (1957).  

3.1.1 Mean Size (Mz)  

The parameter reflects the overall average size of the samples, which is 

influenced by the beach samples source, mode of transportation and environment of 

deposition (Udden 1914; Folk, 1966).  The base two logarithmic (phi) scale is one 

useful and commonly used way to represent grain size information for a sediment 

distribution.  The measured mean size values of soil  samples (Tables 3.1 & 3.4) 

range between 0.23 mm (fine sand) to 1.07 mm (very coarse sand) with an average 

value of 0.49 mm (medium sand).  The values of mean size in the shore samples 

(Tables 3.2 & 3.4) range between 0.22 mm (fine sand) to 0.5 mm (medium sand) 

with an average value of 0.35 mm (medium sand).    On the other hand, the bottom 

sediments of the studied area show that the mean size (Table 3.3 & 3.4) ranges from 

0.33 mm (medium sand) to 1.71 mm (very coarse sand) with an average value of 

0.56 mm (coarse sand).   
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3.1.2 Inclusive Standard Deviation (σI) 

The inclusive standard deviation is a measure of the uniformity of grain-size 

distribution within the beach samples. It depends on the size range in the source rock 

,extent of weathering distance of transportation and the energy variation of the 

depositing medium (Folk and Ward , 1957 ; Amaral and Prayor , 1977).  The average 

standard deviations for the soil and shore samples (Tables 3.1, 3.2 & 3.4) are lies in 

moderately sorted group with mean values of 0.82 Ø and 0.98 Ø, respectively, and 

that is reflected by the narrow range of grain sizes. For the bottom sediments (Tables 

3.3 & 3.4), the range of the grain sizes is wide, as also shown from the mean value of 

standard deviation which is 1.08 Ø, suggesting a poor sorting of the grains. 

3.1.3 Skewness (SKI)  

This parameter describes the abnormality of grain-size distribution and 

represents the most sensitive parameters of geologic processes (Folk, 1966). The 

mean size values in the soil, shore and bottom samples (Table 3.4) are on average -

0.32, -0.11 and -0.17, respectively. Both average skewness values of shore and 

bottom samples fall into coarse skewed class while average skewness values of soil 

samples fall into very coarse skewed class. The skewness values in the soil, shore 

and bottom samples range from -0.63 to 0.19, -3.5 to 0.35 and from -0.67 to 0.6, 

respectively. The average skewness values in all cases are negative, meaning that the 

data graphically skewed to the positive phi values.  

3.1.4 Kurtosis (KG)  

This parameter measures the normality of grain size distribution using the 

ratio of sorting in the central part of the curve to that in its extremities (Folk, 1966). 
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The soil samples show kurtosis values (Tables 3.1 & 3.4) ranging from 0.77 to 2.81 

with an average value of 1.09, which represents leptokurtic class. The minimum and 

maximum kurtosis values for shore samples (Tables 3.2 & 3.4) is 0.50 and 1.52 with 

an average value of 1.04, which represents mesokurtic class.  The kurtosis value of 

the bottom sediment samples (Tables 3.3 & 3.4) ranges between 0.74 to 1.36 with an 

average value of 1.09 (mesokurtic).  The kurtosis values for the shore and bottom 

samples suggest that the peak of the data distribution is rather flat. The data 

distribution in the soil is light tailed. 

 

Table 3.1: Statistical parameters and Phi percentiles for the analyzed soil samples 

S  

Phi percentile Statistical Parameters 

Φ5 Φ16 Φ25 Φ50 Φ75 Φ84 Φ95 MZ(Φ) σ1(Φ) SK1 KG 

S1 -5.5 -2 -0.3 1.3 2 2.2 2.9 0.5 -0.34 -0.6 1.5 

S2 -0.4 0.4 0.7 1.3 1.9 2.1 2.6 1.27 0.96 -0.1 1.03 

S3 -1.6 -0.5 0.2 1.1 1.7 2 2.6 0.87 0.53 -0.28 1.15 

S4 -1 0 0.6 1.3 1.7 1.9 2.4 1.07 0.69 -0.36 1.27 

S5 0.5 1.3 1.5 1.9 2.3 2.5 2.8 1.9 1.45 -0.11 1.18 

S6 -2.4 -0.6 0.3 1.2 1.7 1.9 2.4 0.83 0.33 -0.47 1.4 

S7 -2.5 0.5 1.7 2.5 2.7 3 3.5 2 1.02 -0.63 2.46 

S8 -3.5 -1.7 -0.6 1 1.7 1.9 2.5 0.4 -0.1 -0.5 1.07 

S9 -0.7 1.1 2 2.4 2.6 2.8 3.4 2.1 1.39 -0.52 2.81 

S10 -3.9 -1.4 0 1.4 2.2 2.4 3.1 0.8 0.13 -0.47 1.3 

S11 -3.7 -2 -1.3 0.6 1.8 2.1 2.5 0.23 -0.16 -0.33 0.82 

S12 -1.8 -0.4 0.3 1 1.8 2.1 2.8 0.9 0.58 -0.16 1.26 

S13 -3.4 -1.4 -0.3 1.2 2 2.3 2.9 0.7 0.15 -0.43 1.12 

S14 -1.3 -0.4 0.1 0.8 1.8 2.1 3.1 0.83 1.29 0.04 1.06 

S15 -2.6 -1.5 -0.9 0.2 1.2 1.4 2 0.03 1.42 -0.2 0.9 

S16 -4 -2.6 -1.3 1 2.3 2.6 3.2 0.33 -0.12 -0.39 0.82 

S17 -4 -2 -1 1 1.7 1.9 2.4 0.3 1.94 -0.55 0.97 

S18 -9.5 -0.5 0.4 1.6 2.3 2.6 3.4 1.23 -0.4 -0.54 2.8 

S19 -4.2 -0.4 1.1 1.5 2.2 2.4 3.3 1.16 1.83 -0.44 2.8 

S20 -3.2 -2 -1.5 -0.4 1.7 2.1 2.8 -0.1 1.93 0.14 0.77 

S21 -1.3 1.4 1.6 2 2.4 2.6 3 2 0.95 -0.27 2.21 

S22 -0.3 0.9 1.5 2.3 2.7 3 3.4 2.06 1.08 -0.37 1.26 

S23 0.3 0.6 0.9 1.6 2.7 3 3.6 1.73 1.1 0.19 1.63 

S24 -3.6 -1.3 0 1.3 2.3 2.7 3.4 1.35 2.06 -0.35 1.24 

Min -9.5 -2.6 -1.5 -0.4 1.2 1.4 2 -0.1 -0.4 -0.63 0.77 

Max 0.5 1.4 2 2.5 2.7 3 3.6 2.1 2.06 0.19 2.81 

Ave. -2.65 -0.60 0.24 1.30 2.06 2.32 2.92 1.02 0.82 -0.32 1.45 
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Table 3.2: Statistical parameters and Phi percentiles for the analyzed shore samples 

S  

Phi percentile Statistical Parameters 

Φ5 Φ16 Φ25 Φ50 Φ75 Φ84 Φ95 MZ(Φ) σ1(Φ) SK1 KG 

B1 -0.7 0.3 0.8 1.4 1.8 2 2.4 1.23 0.83 -0.19 1.27 

B2 0.5 1 1.3 1.7 2.4 2.5 3 1.73 1.41 0.05 0.96 

B3 -0.9 0 0.5 1.5 2.3 2.6 3.2 1.4 1 -0.16 0.93 

B4 0.7 1.4 1.7 2.2 2.6 2.7 3.2 2.1 1.62 -0.22 1.14 

B5 -0.4 0.2 0.4 1 1.6 1.9 2.4 1 0.82 0.03 0.96 

B6 0.7 1.1 1.4 1.8 2.2 2.4 2.8 1.77 1.41 -0.06 1.08 

B7 0.2 0.5 0.6 0.9 1.5 1.7 2.4 1.03 0.63 0.35 1 

B8 0.3 0.9 1.2 1.6 2 2.2 2.6 1.56 0.67 -0.1 1.18 

B9 -0.9 -0.4 0 1.5 2.2 2.4 2.7 1.16 1.25 -0.35 0.67 

B10 -0.4 0.5 1 1.9 2.4 2.6 3 1.66 1.04 -0.34 0.99 

B11 0.1 0.7 1.1 1.4 1.8 2 2.4 1.36 0.67 -0.1 1.35 

B12 0 0.9 1.5 1.8 2.2 2.4 2.6 1.7 0.77 -0.29 1.52 

B13 -0.3 0.5 1 1.5 2 2.3 2.7 1.43 0.9 -0.16 1.23 

B14 -0.4 0.2 0.8 1.6 2.3 2.6 3.2 1.46 1.23 -0.14 0.98 

B15 0.9 1.4 1.6 2.2 2.7 2.8 3.4 2.16 0.75 -0.05 0.93 

B16 0.5 0.9 1.3 1.6 2.1 2.3 2.7 1.6 0.68 0 0.5 

Min -0.9 -0.4 0 0.9 1.5 1.7 2.4 1 0.63 -0.35 0.5 

Max 0.9 1.4 1.7 2.2 2.7 2.8 3.4 2.16 1.62 0.35 1.52 

Ave. -0.01 0.63 1.01 1.60 2.13 2.34 2.79 1.52 0.98 -0.11 1.04 
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Table 3.3: Statistical parameters and Phi percentiles for the analyzed bottom 

sediments 

S 

Phi percentile Statistical Parameters 

Φ5 Φ16 Φ25 Φ50 Φ75 Φ84 Φ95 MZ(Φ) σ1(Φ) SK1 KG 

M1 -2.7 -1.3 -0.5 1 2 3 3.7 0.9 2.05 -0.05 1.05 

M2 -1 -0.4 0 0.4 1 1.3 2 0.43 0.88 0.06 1.23 

M3 -0.5 0.3 0.5 1 1.5 1.7 2.3 1 0.77 -0.04 1.15 

M4 -1.8 -1.5 -1.2 -0.7 -0.2 -0.1 0.4 -0.77 0.68 -0.07 0.9 

M5 -1.5 -0.3 0.2 1 1.8 2.2 2.6 0.97 1.25 -0.13 1.05 

M6 -0.7 -0.4 0 0.5 1 1.3 1.7 0.47 0.79 -0.03 0.98 

M7 -0.8 0.5 1 1.5 2.3 2.5 3 1.5 1.08 -0.11 1.2 

M8 -1 0.5 1 1.6 2.5 2.7 3.5 1.6 1.23 -0.08 1.23 

M9 -0.7 0 0.5 1.2 1.7 2 2.5 1.06 0.98 -0.19 1.1 

M10 -1 -0.5 -0.3 0.3 0.6 1 1.7 0.27 0.79 -0.01 1.23 

M11 -0.6 0 0.3 0.6 1 1.2 1.5 0.6 0.62 -0.57 1.23 

M12 -1.3 -0.5 0 0.7 1.5 1.7 2.4 0.63 1.11 -0.53 1.01 

M13 -1.1 0 0.4 1.2 1.8 2 2.5 1.07 1.05 -0.24 1.06 

M14 -0.3 0.4 0.6 1.3 1.7 2 2.5 1.23 0.82 -0.13 1.04 

M15 -0.5 0 0.4 1 1.6 1.8 2.4 0.93 0.89 -0.08 0.99 

M16 -1 0 0.3 0.7 1.2 1.5 2 0.73 0.83 -0.04 1.36 

M17 -3.5 -2 -1 2 2.6 2.9 3 0.97 2.21 -0.67 0.74 

M18 -1.4 0 0.5 1.5 2.3 2.6 3.3 1.37 1.36 -0.2 1.07 

Min -3.5 -2 -1.2 -0.7 -0.2 -0.1 0.4 -0.77 0.62 -0.67 0.74 

Max -0.3 0.5 1 2 2.6 3 3.7 1.6 2.21 0.06 1.36 

Ave. -1.19 -0.29 0.15 0.93 1.55 1.85 2.39 0.83 1.08 -0.17 1.09 
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Table 3.4: Statistical summary of grain size parameters in studied samples 

  MZ (mm) MZ (Φ) σI (Φ) 

Classification 

SkI 

Classification 

KG 

Classification 

 according to σI (Φ) according to Sk1 according to KG 

Soil  

Min 0.23 -0.1 -0.4   

  

-0.63   

  

0.77   

  Max 1.07 2.1 2.06 0.19 2.81 

Average 0.49 1.02 0.82 Moderately sorted -0.32 Very coarse skewed 1.45 Leptokurtic 

Shore 

Min 0.22 1 0.63   

  

-0.35   

  

0.5   

  Max 0.5 2.16 1.62 0.35 1.52 

Average 0.35 1.52 0.98 Moderately sorted -0.11 Coarse skewed 1.04 Mesokurtic 

Bottom 

Min 0.33 -0.77 0.62   

  

-0.67   

  

0.74   

  Max 1.71 1.6 2.21 0.06 1.36 

Average 0.56 0.83 1.08 Poorly sorted -0.17 Coarse skewed 1.09 Mesokurtic 
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3.1.5 Determination of the Mechanical and Environments of Deposition 

 According to Sahu (1964), the statistical method of analysis of the sediments 

to interpret the variations in the energy and fluidity factors seems to have excellent 

correlation with the different processes and environment of deposition.  The 

application of Sahu’s (1964) discriminate functions will be only applied to shore and 

soil samples since applying it to the bottom sediments according to Ali et al. (1987) 

resulted in 70.6% of the analyses being compatible with the field observations. 

Linear discriminate function (LDF) analysis of the shore and soil samples was 

carried out using the following equations: 

Aeolian/beach: 

Y1 = -3.5688 Mz +  3.7016 σ1 - 230766 SK1 +  3.1135 KG 

If Y is >−2.7411, the environment is ‘Beach’ but if Y is <−2.7411, the environment 

is ‘Aeolian’. 

Beach/shallow agitated water: 

Y2 = 15.6534 Mz + 65.7091 σ1 + 18.1071 SK1 + 18.5043 KG 

If Y is <63.3650, the environment is ‘Beach’ but if Y is >63.3650, the environment 

is ‘Shallow marine’. 

Shallow marine/fluvial environment: 

Y3 = 0.2852 Mz – 8.7604 σ1 – 4.8932 SK1 +  0.0482 KG 

If Y is >−7.4190, the environment is ‘Shallow marine’ but if Y is <−7.4190, the 

environment is ‘Fluvial’. 
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 After applying the above equations on the shore and soil sample parameters, 

results are shown in Table 3.5.   

Table 3.5: discriminate function of grain size parameters in soil and shore samples 

S Y1 Y2 Y3 S Y1 Y2 Y3 

so
il

 

S1 2.87 2.38 6.13 

sh
o

re
 

B1 3.03 93.85 -5.93 

S2 2.44 100.21 -7.51 B2 1.93 138.4 -12.06 

S3 3.02 64.65 -2.97 B3 1.93 101.94 -7.53 

S4 3.44 79.07 -3.92 B4 2.51 156.43 -12.46 

S5 2.49 144.86 -11.57 B5 2.39 87.84 -7 

S6 3.59 52.07 -0.29 B6 2.39 139.25 -11.5 

S7 5.61 132.44 -5.16 B7 1.04 82.36 -6.89 

S8 2.57 10.44 3.49 B8 0.79 88.47 -4.88 

S9 7.48 166.79 -8.9 B9 3.3 106.35 -8.87 

S10 2.65 36.61 1.45 B10 1.71 106.48 -6.93 

S11 1.83 2.28 3.12 B11 2.04 88.48 -4.93 

S12 3.19 72.62 -3.98 B12 2.12 100.08 -4.77 

S13 2.44 33.75 1.04 B13 2.39 101.39 -6.63 

S14 5.03 118.1 -11.21 B14 2.68 119.27 -9.63 

S15 8.37 106.81 -11.41 B15 -1.93 99.4 -5.66 

S16 1.74 5.39 3.09 B16 -1.64 78.98 -5.48 

S17 10.27 140.16 -14.17 

     S18 3.97 35 6.63 

     S19 12.27 182.25 -13.41 

     S20 9.61 142.04 -17.58 

     S21 3.82 129.74 -6.32 

     S22 1.34 119.83 -7 

     S23 2.58 132.96 -9.99 

     S24 7.39 173.1 -15.89 
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3.2 Mineralogy 

The mineralogical composition of the studied shore, soil and bottom samples 

was obtained by XRD technique.  Few samples were excluded to minimize the 

number of analyzed samples especially where they are close to each other and no 

changes in the mineralogy is expected.  The results obtained are given in Tables 3.6, 

3.7 and 3.8.  

3.2.1 Soil Samples Mineralogy 

  Soil samples exhibit some variations among the selected sites as shown in 

Table 3.6, however quartz is the only major mineral in all soil samples except S13 

and S20.  Ca-Na feldspars are the major minerals in S13 and S20, respectively. K-

feldspars, calcite, Ca-Na feldspars, halite, aragonite and gypsum are moderate 

mineral found in soil samples.  It appears that some of the moderate minerals are also 

found as a minor in some soil samples with few appearances of some minor minerals 

such as basanite and dolomite. 

3.2.2 Shore Samples Mineralogy 

 The mineralogical composition of the 12 shore samples show that quartz and 

aragonite are the dominant primary minerals in almost all sites (Table 3.7), with little 

exception in few samples.  In samples B13, Ca-Na feldspars occurs as a major 

mineral, whereas magnesite is a minor in B6, B13, B15 and B16 and a major mineral 

in B9.  Some minor minerals such as dolomite is found in B5. Moreover, calcite is 

present as minor minerals in many samples while Ca-Na feldspars are present in B1, 

B4 and B15 as moderate mineral.  
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3.2.3 Bottom Sediment Samples Mineralogy 

 The mineralogical composition of the 18 bottom sediments also shows the 

predominant of quartz and aragonite as major minerals in all sites (Table 3.8) in 

similarity with those of the shore samples.   However, magnesite becomes more 

existing, occurring in many sites as a minor mineral.  In addition, calcite and 

dolomite are also common minor minerals, while aragonite and Ca-Na feldspars are 

found in a moderate quantity of many bottom samples. 

Table 3.6: Mineralogical composition of soil samples 

S Major Moderate Minor 

S1 Quartz Aragonite, Gypsum Halite, Ca-Na feldspars 

S2 Quartz Aragonite 
Calcite, Ca-Na feldspars, 

Gypsum, Dolomite, Halite 

S4 Quartz Halite 

Ca-Na feldspars, 

Aragonite, Gypsum, 

Calcite, Dolomite 

S6 Quartz   
Ca-Na feldspars, Halite, 

Calcite 

S7 Quartz   Halite, Ca-Na feldspars 

S8 Quartz Aragonite 
Calcite, Ca-Na feldspars, 

Halite, Dolomite 

S9 Quartz   
Calcite, Halite, Ca-Na 

feldspars 

S10 Quartz Halite, Ca-Na feldspars Dolomite, Calcite 

S11 Quartz Ca-Na feldspars, K-feldspars Halite, Calcite, Gypsum 

S13 Ca-Na feldspars Quartz Halite 

S16 Quartz Calcite, Ca-Na feldspars   

S18 Quartz Halite, Dolomite Calcite, Ca-Na feldspars, 

S19 Quartz 
 

Calcite, Dolomite, 

ferroan, Ca-Na feldspars,  

S20 Ca-Na feldspars Quartz 
Calcite, Gypsum, 

Bassanite 
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Table 3.6: Mineralogical composition of soil samples (continued) 

S Major Moderate Minor 

S21 Quartz K-feldspars, Ca-Na feldspars   

S22 Quartz Calcite Gypsum 

S23 Quartz Calcite, Ca-Na feldspars, Gypsum   

S24 Quartz Ca-Na feldspars Dolomite, Gypsum 

 

Table 3.7: Mineralogical composition of shore samples 

S Major Moderate Minor 

B1 Quartz 
Aragonite, Ca-Na 

feldspars  

B2 Quartz, Aragonite   
Calcite, Ca-Na 

feldspars 

B4 Quartz, Aragonite Ca-Na feldspars Calcite 

B5 Quartz, Aragonite    
Calcite, Ca-Na 

feldspars, Dolomite 

B6 Aragonite Quartz 
Ca-Na feldspars, 

Magnesite 

B7 Quartz, Aragonite   Calcite 

B9 Quartz, Magnesite Aragonite, calcite   

B10 Quartz Aragonite Calcite 

B11 Quartz, Aragonite   Calcite 

B13 Quartz, Ca-Na feldspars Aragonite Magnesite 

B15 Quartz, Aragonite Ca-Na feldspars Magnesite 

B16 Aragonite Quartz, Calcite Magnesite 
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Table 3.8: Mineralogical composition of bottom sediment samples 

S Major Moderate Minor 

M1 Aragonite Quartz, Ca-Na feldspars 
Calcite, Dolomite, 

Magnesite 

M2 Quartz Aragonite, Ca-Na feldspars 
Magnesite, Calcite, 

Dolomite 

M3 Quartz Aragonite   

M4 
Quartz, 

Aragonite 
  Calcite 

M5 
Quartz, 

Aragonite 
Ca-Na feldspars   

M6 
Quartz, 

Aragonite 
  Magnesite 

M7 Quartz Aragonite 
Magnesite, Calcite, 

Dolomite, Ca-Na feldspars 

M8 Quartz Aragonite 
Magnesite, Calcite, 

Dolomite, Ca-Na feldspars 

M9 Quartz Aragonite Calcite 

M10 Aragonite Quartz Magnesite 

M11 Aragonite Calcite Magnesite 

M12 Aragonite Ca-Na feldspars Magnesite, Calcite, Quartz 

M13 Aragonite Quartz Calcite 

M14 Quartz Ca-Na feldspars Aragonite, Calcite 

M15 
Quartz, 

Aragonite 
  Magnesite 

M16 Aragonite Ca-Na feldspars Magnesite, Quartz, Calcite 

M17 Quartz Ca-Na feldspars 
Dolomite, Calcite, 

Aragonite 

M18 Quartz Aragonite 
Magnesite, Calcite, 

Dolomite, Ca-Na feldspars 
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3.3 Carbonate Content 

The carbonate content of soil is an important parameter determining soil 

chemistry.  The measurement of this parameter is based on the reaction between 

carbonates and strong acids, which results in carbonate dissolution and CO2 

development.  

  The carbonate content percentage in all of the collected samples is estimated 

and shown in Table 3.9. Generally, measured carbonate content in the studied 

samples is high.  The percentage of carbonate content in the soil samples (Tables 3.9) 

range between 4.13% to 63.96% with an average value of 35.38%. While the 

percentage average of shore and bottom samples shows an average of 67.7% and 

72.24%, respectively ranging from 46.25% to 85.12% and from 11.02% to 97.8%, 

respectively.  Based on the measured average carbonate content, the following order 

is observed: soil < shore < bottom.   
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Table 3.9: Carbonate content (%) of soil, shore and bottom sediment samples 

soil Carbonate content (%) shore Carbonate content (%) bottom Carbonate content (%) 

   S1 63.96 B1 81.71 M1 85.3 

S2 44.27 B2 85.12 M2 86.1 

S3 51.58 B3 80.75 M3 23.22 

S4 47.52 B4 68.12 M4 89.3 

S5 41.54 B5 82.02 M5 66.86 

S6 37.92 B6 46.25 M6 75 

S7 23.71 B7 48.51 M7 60.69 

S8 60.87 B8 53.57 M8 59.11 

S9 26.47 B9 67.26 M9 65.61 

S10 30.18 B10 60.12 M10 97.8 

S11 34.98 B11 82.11 M11 95.43 

S12 41.14 B12 74.02 M12 96.03 

S13 38.42 B13 55.12 M13 97.4 

S14 32.28 B14 71.15 M14 58.96 

S15 17.16 B15 54.42 M15 84.8 

S16 40.67 B16 72.92 M16 91.7 

S17 37.55 Min 46.25 M17 11.02 

S18 29.82 Max 85.12 M18 55.98 

S19 23.32 Ave. 67.7 Min 11.02 

S20 27.59 

  

Max 97.8 

S21 4.13 

  

Ave. 72.24 

S22 31.21 

    S23 35.57 

    S24 27.22 

    Min 4.13 

    Max 63.96 

    Ave. 35.38 

    



56 

 

 

 

3.4 Major Oxides 

The Major oxides include SiO2, Al2O3, TiO2, FeO, MnO, MgO, CaO, Na2O 

K2O and P2O5. Because these are reported as a percentage, they are usually greater 

than 1%, as the total should sum to 100 %, ideally, however acceptable totals lie in 

the range 98.5 to 101 weight percentage.  Studying the major oxides can help to 

describe the geochemical compositions of the studied area.  Major oxides of the 

studied area are listed in Tables 3.10 to 3.12. Generally, major oxides are dominated 

by CaO and SiO2. Major oxides in soil samples (Table 3.10) are characterized with 

higher SiO2 content than CaO content unlike the shore and bottom sediments ranging 

from 21.97 to 82.92 wt.%, with an average of 49.84 wt.%.  The next most abundant 

element is CaO ranging between 1.75 to 33.22 in wt.% and with an average of 14.08 

wt. % while the Lost of Ignition (LOI) range from 13.35 to 52.29 wt. % with an 

average of 30.73. Both of Na2O and MgO show a range of 0.11 – 6.74 wt. %, and 

0.46 – 4.97 wt. % and average of 2.84 and 2.04 wt. %, respectively. 

  The shore samples have moderate to high CaO contents, with abundances 

ranging 30.04 to 45.94 wt.% (Table 3.11), and average of  38.95 wt.% well 

consistent with 3.9 wt.%  present in the sandstone reported by Turekian and 

Wedepohl (1961). The high value of CaO content in the shore samples reflects their 

biogenic carbonate content. The next most abundant element is SiO2 ranging 

between 6.57 to 32.05 wt.%, averaging 17.48 wt.%, much less than in sandstone 

(36.80 wt.%). LOI ( 41.03 wt.%, range 35.02 – 47.69 wt.%,) and MgO (1.59 wt.%, 

range 1.04 – 2.19 wt.%).  All other oxides are present in smaller amount. The higher 

CaO and LOI contents of all samples, suggesting that marine biogenic CaCO3 

component is dominant in Barakah beach sediments.   
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Major oxides in bottom sediments of the studied area are listed in Table 3.12.  

Similar to shore samples, bottom sediments are characterized with high contents of 

CaO and SiO2 with an average of 34.9 and 21.99 wt. %, respectively. Furthermore, 

LOI ( 39.26 wt.%, range 19.31 – 50.88 wt.%,), Na2O (2.16 wt.%, range 0.71 – 3.14 

wt.%), and MgO (1.15 wt.%, range 0.68 – 2.1 wt.%),  are the most abundant on 

average.  

The major oxides variation in the soil, shore and bottom sediments samples 

are consistent with their general mineralogy.  The higher silica contents and 

relatively lower CaO content in soil samples than shore and bottom sediments may 

be attributed to a different source of the last one. 
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Table 3.10: Major oxides Wt.% of soil samples (analytical error is <0.01) 

S SiO2 FeO CaO P2O5 MgO TiO2 Al2O3 Na2O K2O MnO LOI 

S1 21.97 0.22 33.22 0.02 1.16 0.02 0.26 3.10 0.07 0.006 39.96 

S2 47.28 0.33 20.93 0.03 1.49 0.02 0.38 0.78 0.08 0.009 28.66 

S3 47.15 0.32 24.14 0.03 1.69 0.02 0.34 0.30 0.07 0.009 25.94 

S4 28.49 0.48 15.59 0.03 2.57 0.02 0.40 >6.74 0.13 0.012 52.29 

S5 51.02 0.40 20.39 0.03 1.39 0.03 0.45 0.15 0.07 0.011 26.05 

S6 50.97 0.85 11.77 0.04 3.70 0.03 0.91 1.89 0.27 0.028 29.56 

S7 52.86 0.55 8.48 0.02 1.13 0.04 0.57 0.55 0.12 0.009 35.68 

S8 25.86 0.23 25.87 0.03 1.72 0.01 0.25 3.82 0.10 0.007 42.11 

S9 59.60 0.89 9.12 0.04 0.98 0.04 0.79 1.95 0.13 0.022 26.43 

S10 55.27 0.90 4.62 0.04 2.59 0.04 0.77 5.93 0.23 0.022 29.59 

S11 58.88 0.69 8.05 0.03 2.57 0.03 0.59 2.11 0.16 0.021 26.88 

S12 41.02 0.69 12.02 0.03 2.47 0.03 0.68 >6.74 0.25 0.015 42.78 

S13 52.42 0.86 10.87 0.04 2.27 0.05 0.89 4.20 0.18 0.017 28.19 

S14 48.16 1.33 16.41 0.05 1.74 0.03 1.81 1.68 0.31 0.016 28.45 

S15 62.07 1.09 5.71 0.04 2.87 0.05 0.94 2.87 0.19 0.030 24.13 

S16 51.38 0.77 15.22 0.05 2.70 0.04 0.79 1.94 0.13 0.021 26.94 

S17 49.75 0.81 10.44 0.03 1.69 0.04 0.81 >6.74 0.22 0.017 36.19 

S18 59.83 0.77 7.16 0.04 2.39 0.04 0.81 5.12 0.22 0.022 23.60 

S19 65.40 0.82 11.88 0.03 1.01 0.05 0.81 0.13 0.13 0.019 19.71 

S20 35.73 0.84 18.37 0.05 4.97 0.04 1.08 2.44 0.16 0.021 36.31 

S21 82.92 0.63 1.75 0.02 0.46 0.03 0.60 0.11 0.12 0.010 13.35 

S22 42.16 0.69 12.41 0.03 1.94 0.03 0.47 >6.74 0.07 0.016 42.17 

S23 48.27 0.42 21.32 0.03 1.67 0.02 0.34 0.19 0.06 0.008 27.66 

S24 57.62 0.60 12.09 0.03 1.89 0.03 0.59 2.02 0.14 0.016 24.98 

Min 21.97 0.22 1.75 0.02 0.46 0.01 0.25 0.11 0.06 0.01 13.35 

Max 82.92 1.33 33.22 0.05 4.97 0.05 1.81 6.74 0.31 0.03 52.29 

Ave. 49.84 0.68 14.08 0.03 2.04 0.03 0.68 2.84 0.15 0.02 30.73 
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Table 3.11: Major oxides Wt.% of shore samples (analytical error is <0.01) 

S SiO2 FeO CaO P2O5 MgO TiO2 Al2O3 Na2O K2O MnO LOI 

B1 17.85 0.12 37.58 0.02 1.66 0.01 0.13 0.58 0.04 0.003 42.02 

B2 11.26 0.09 38.73 0.02 1.43 0.01 0.11 0.62 0.04 0.003 47.69 

B3 14.32 0.12 40.90 0.03 1.71 0.01 0.13 0.63 0.04 0.004 42.12 

B4 26.06 0.17 34.78 0.03 2.19 0.02 0.21 0.62 0.05 0.005 35.87 

B5 19.31 0.00 36.18 0.03 1.84 0.01 0.15 0.59 0.04 0.005 41.83 

B6 22.14 0.14 35.60 0.03 1.64 0.01 0.15 0.60 0.05 0.004 39.65 

B7 13.45 0.10 42.13 0.03 1.72 0.01 0.11 0.62 0.04 0.003 41.79 

B8 22.84 0.09 37.65 0.03 1.56 0.01 0.11 0.68 0.05 0.003 36.99 

B9 28.03 0.24 33.94 0.02 1.21 0.01 0.19 0.64 0.06 0.004 35.64 

B10 17.45 0.12 40.25 0.02 1.04 0.01 0.15 0.73 0.05 0.003 40.17 

B11 6.57 0.06 45.38 0.02 1.16 0.00 0.08 0.59 0.04 0.001 46.09 

B12 8.27 0.08 45.94 0.02 1.26 0.01 0.11 0.60 0.04 0.002 43.67 

B13 9.33 0.08 43.16 0.02 1.71 0.01 0.09 0.53 0.04 0.002 45.03 

B14 10.63 0.09 42.37 0.03 2.07 0.01 0.09 0.59 0.04 0.003 44.08 

B15 32.05 0.19 30.04 0.03 1.76 0.01 0.19 0.64 0.06 0.005 35.02 

B16 20.15 0.17 38.52 0.03 1.54 0.01 0.17 0.61 0.05 0.005 38.75 

Min 6.57 0.01 30.04 0.02 1.04 0.01 0.08 0.53 0.04 0.001 61.67 

Max 32.05 0.24 45.94 0.03 2.19 0.02 0.21 0.73 0.06 0.005 18.53 

Ave. 17.48 0.12 38.95 0.03 1.59 0.01 0.14 0.62 0.04 0.003 41.03 
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Table 3.12: Major oxides Wt.% of bottom samples (analytical error is <0.01) 

S SiO2 FeO CaO P2O5 MgO TiO2 Al2O3 Na2O K2O MnO LOI 

M1 6.54 0.36 36.32 0.05 3.13 0.01 0.43 2.10 0.16 0.006 50.88 

M2 14.88 0.15 34.67 0.03 2.21 0.02 0.16 1.09 0.05 0.004 46.74 

M3 60.38 0.26 17.77 0.02 0.71 0.02 0.16 0.78 0.05 0.003 19.85 

M4 10.56 0.13 38.71 0.04 3.06 0.01 0.10 1.89 0.06 0.004 45.45 

M5 24.91 0.15 33.13 0.03 2.20 0.01 0.17 1.00 0.05 0.004 38.33 

M6 18.87 0.20 35.59 0.03 2.30 0.01 0.17 1.28 0.06 0.003 41.49 

M7 29.54 0.21 30.66 0.02 2.04 0.01 0.19 1.11 0.06 0.004 36.16 

M8 25.16 0.28 31.44 0.03 2.39 0.01 0.31 1.60 0.09 0.007 38.66 

M9 27.36 0.20 32.45 0.03 2.13 0.01 0.25 0.76 0.06 0.006 36.73 

M10 5.94 0.07 46.39 0.03 2.06 0.01 0.08 1.12 0.06 0.002 44.24 

M11 0.84 0.04 48.83 0.04 2.07 <.002 0.05 0.98 0.04 0.002 47.10 

M12 1.21 0.04 49.26 0.04 1.88 <.002 0.06 1.03 0.04 0.002 46.44 

M13 2.27 0.05 45.44 0.06 3.14 <.002 0.06 1.08 0.05 0.003 47.86 

M14 37.00 0.21 28.46 0.03 2.01 0.02 0.23 0.68 0.06 0.006 31.30 

M15 14.03 0.11 42.12 0.04 2.09 0.01 0.12 0.86 0.06 0.003 40.56 

M16 8.30 0.13 44.46 0.05 2.43 0.01 0.13 1.04 0.06 0.004 43.39 

M17 71.14 0.68 5.57 0.03 1.23 0.04 0.78 1.02 0.18 0.016 19.31 

M18 36.92 0.36 26.92 0.05 1.73 0.02 0.38 1.24 0.10 0.010 32.27 

Min 0.84 0.04 5.57 0.02 0.71 0.01 0.05 0.68 0.04 0.00 19.31 

Max 71.14 0.68 49.26 0.06 3.14 0.04 0.78 2.10 0.18 0.02 50.88 

Ave. 21.99 0.20 34.90 0.04 2.16 0.01 0.21 1.15 0.07 0.00 39.26 
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3.5 Heavy Metal 

 Heavy metal concentrations in the soil, shore and bottom samples are 

presented in Tables 3.13-3.15. Generally, both Fe and Mn are present in the highest 

concentrations, while Cd has the lowest concentrations in all areas. Furthermore, the 

shore samples had the lowest level of heavy metal concentrations followed by 

bottom sediments then soil samples.   

 Heavy metal concentrations show some elevation in soil samples as shown 

in Table 3.13.  Both of Fe and Mn values ranged from 1700 to 10300 ppm (average 

5250 ppm) and from 49 to 231 (average 124 ppm), respectively.    Both of Cr and Ni 

show wide variations in the studied soil sample with a standard deviation of 8 for 

each.  Their concentrations vary between 5.9 and 58.1 ppm and between 5.3 and 45.1 

ppm with average of 17.4 and 15.4, respectively.  Vanadium and zinc show similar 

minimum and maximum values (5 and 23 ppm) with average concentration values of 

13 and 11.5 ppm, respectively.  The remaining heavy metal concentrations fluctuate 

in the study samples as following: Cu from 1.58 to 8.11 ppm (average 4.18 ppm); 

and Co from 0.8 to 4.4 ppm (average 2.6 ppm). Pb (1.07 to 4.04 ppm; average 2.43), 

As (0.8 to 2.9 ppm, average 1.6 ppm), Mo (0.18 to 2.18 ppm; average 0.89 ppm), and 

finally Cd (0.02 to 0.09; average 0.05 ppm).  

 According to Table 3.14, Fe and Mn are the most abundant heavy metals in 

shore samples, with average value of 975 and 26 ppm, ranging between 500 to 1900 

and 11 to 42 ppm, respectively.   The next most abundant metal is Cr ranging 

between 2.4 to 5.7 ppm, averaging 3.7 ppm followed by V and Zn with concentration 

values range from 2 to 5 ppm, and from 1.5 to 3.9 ppm with a mean value of 3 and 

2.8, respectively.  The average concentration in ppm for the remaining heavy metals 
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as order of the occurrence is 2.1, 1.4, 1.14, 0.78, 0.4, 0.1 and 0.03 for Ni, As, Pb, Cu, 

Co, Mo and Cd, respectively. 

 Bottom sediments show moderate heavy metal concentrations relative to 

shore and soil samples.  According to Table 3.15, both Fe and Mn show the highest 

average concentration of 1463 and 33.33 ppm.  The average remaining heavy metals 

concentration (in ppm) is, in order of occurrence, Cr (6), V(4.67), Ni (4.3), Zn (3.23), 

As (1.9), Pb (1.44), Cu (1.41), Co (0.6), Mo (0.23) and finally Cd (0.03). 
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Table 3.13: Heavy metal concentrations (in ppm) for the soil samples (analytical 

error is <0.01) 

S Cu Pb Zn Ni Co Mn Fe Cd V Cr As Mo Sr 

S1 1.62 1.29 5 5.3 1.1 49 1700 0.02 5 5.9 1.4 0.25 4818 

S2 2.06 1.97 6.8 8 1.3 72 2600 0.03 6 8.3 2.6 0.19 2374 

S3 2.09 2.77 5.9 7.1 1.1 68 2500 0.03 6 8.2 2.9 0.18 2345 

S4 3.43 3.08 13.4 45.1 3.3 92 3700 0.04 7 22.9 1.8 1.17 1756 

S5 3.21 2.31 7 10.1 1.7 88 3100 0.03 8 9.9 2.5 0.24 2313 

S6 5.86 4.04 21 19.2 3.8 213 6600 0.09 19 21.3 2 1.21 1378 

S7 3.32 2.23 9.4 9.4 1.9 70 4300 0.02 11 15.5 0.9 0.23 810 

S8 1.58 1.07 7.9 5.4 0.8 51 1800 0.05 5 6.3 1.6 0.31 2523 

S9 4.82 2.61 13.9 20.7 3.3 170 6900 0.08 16 22.4 1.3 0.51 10000 

S10 4.9 2.45 11.4 19.9 3.3 167 7000 0.07 15 23.5 0.9 0.62 313 

S11 3.92 3.65 10.4 9.2 2.5 162 5400 0.06 13 13.1 1.2 1.75 5215 

S12 4.56 2.46 12.5 21.6 2.5 118 5400 0.04 13 19.2 1.4 0.55 1598 

S13 4.89 2.48 14.7 18.1 3 133 6700 0.03 17 28.7 1.4 0.76 1678 

S14 8.11 2.66 22.5 18.7 4.4 122 10300 0.04 19 58.1 1.1 0.53 2001 

S15 5.91 3.03 16.1 24 4.2 231 8500 0.07 23 29.3 2 1.97 1043 

S16 5.26 2.79 12.2 23.2 3.3 165 6000 0.07 15 21 1.8 1.26 3074 

S17 5.24 2.59 11.9 16.9 3 128 6300 0.04 16 19.8 1.2 0.63 1729 

S18 4.5 2.23 13.2 15.6 3.2 169 6000 0.08 16 19.5 0.8 2.18 1233 

S19 4.75 2.97 12.9 14.1 3.1 151 6400 0.05 14 18.2 1.2 0.53 1273 

S20 6.28 2.34 15.9 21.9 3.7 166 6500 0.05 22 38.3 2.9 1.75 2740 

S21 3.19 2.34 8.6 8.6 2.1 77 4900 0.03 9 12.4 0.8 0.49 198 

S22 4.37 1.75 8.6 12.6 2.3 127 5400 0.04 11 13 1.5 1.67 1212 

S23 2.7 1.45 7 5.9 1.3 64 3300 0.04 6 9.5 1.3 1.02 2432 

S24 3.83 1.78 8.9 9.7 2.3 122 4700 0.05 12 13.8 1.3 1.25 1296 

Min 1.58 1.07 5 5.3 0.8 49 1700 0.02 5 5.9 0.8 0.18 198 

Max 8.11 4.04 22.5 45.1 4.4 231 10300 0.09 23 58.1 2.9 2.18 10000 

Ave. 4.18 2.43 11.5 15.4 2.6 124 5250 0.05 13 17.4 1.6 0.89 2306 

St.Dev. 1.58 0.69 4.5 8.8 1 51 2108 0.02 5 8.2 0.6 0.62 2021 
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Table 3.14: Heavy metal concentrations (in ppm) for the shore samples 

S Cu Pb Zn Ni Co Mn Fe Cd V Cr As Mo Sr 

B1 0.65 1.07 2.5 2.4 0.2 23 900 0.03 3 3.3 1.9 0.11 4743 

B2 0.79 1.9 3.9 1.8 0.5 20 700 0.04 <2 2.9 1.4 0.05 4771 

B3 0.77 1.16 3.4 5 0.6 28 900 0.02 2 4 0.7 0.09 4884 

B4 1.21 2.42 3.9 4 0.8 42 1300 0.03 4 5.7 1.4 0.12 3498 

B5 0.88 1.1 3 3 0.4 37 1200 0.04 5 4.2 1.6 0.11 4148 

B6 0.97 1.21 3.7 2.4 0.4 32 1100 0.02 4 4.3 1.4 0.25 4380 

B7 0.75 1.48 3.2 1.6 0.3 22 800 0.02 3 3.2 1.3 0.21 4396 

B8 0.5 0.89 1.5 0.9 0.3 21 700 0.03 <2 3.1 1.8 0.08 4483 

B9 0.9 1.56 2.5 2.1 0.4 29 1900 0.01 3 4.6 1.2 0.17 4367 

B10 0.58 0.94 1.9 1.8 0.3 20 900 0.02 2 3.5 1.5 0.07 5819 

B11 0.49 0.93 1.9 1.6 0.1 11 500 0.02 <2 2.4 1.4 0.07 6366 

B12 0.52 0.84 2 1.5 0.2 19 600 0.02 3 3.1 1 0.06 6564 

B13 0.67 0.85 2 1.3 0.6 18 600 0.02 3 2.6 1.5 0.06 5446 

B14 0.69 0.93 3.5 1.5 0.5 21 700 0.02 3 3.2 1.2 0.08 4627 

B15 1.15 0.88 2.7 3.1 0.7 39 1500 0.03 4 5 1.6 0.12 3198 

B16 1.03 1.33 2.9 1.9 0.7 35 1300 0.03 3 4.6 1.5 0.12 4486 

Min 0.49 0.84 1.5 0.9 0.1 11 500 0.01 2 2.4 0.7 0.05 3198 

Max 1.21 2.42 3.9 5 0.8 42 1900 0.04 5 5.7 1.9 0.25 6564 

Ave. 0.78 1.14 2.8 2.1 0.4 26 975 0.03 3 3.7 1.4 0.1 4761 

St.Dev. 0.22 0.31 0.8 0.8 0.2 9 382 0.01 1 0.9 0.3 0.04 911 

 

Table3.15: Heavy metal concentrations (in ppm) in bottom sediment samples 

(analytical error is <0.01). The grain size notations “C”, “M” and “F” stand for 

coarse, medium and fine 

S Cu Pb Zn Ni Co Mn Fe Cd V Cr As Mo Sr 

M1 C 3.9

2 

1.93 5.5 7.1 1 34 210

0 

<0.01 7 6.7 2.8 0.83 314

0 M2 C 0.4

7 

0.51 1.8 0.8 0.3 12 500 <0.01 2 1.6 1.4 0.12 284

8 M3 C 1.1

4 

0.85 1.5 1.1 0.4 21 180

0 

<0.01 <2 3.3 1.2 0.18 129

8 M4 C 0.4

7 

0.64 2.6 <0.1 0.2 27 400 0.15 <2 0.9 1.8 0.13 274

7 M5 C 0.5

8 

0.73 0.8 1.8 0.5 16 600 <0.01 2 2 1.7 0.22 311

5 M6 C 0.6

1 

0.45 0.8 2.1 0.4 14 500 <0.01 4 2.4 1.7 0.11 418

5 M7 C 2.6

1 

16.11 5.9 2.2 0.5 23 150

0 

0.03 3 3.8 2.1 0.3 376

5 M8 C 2.9

8 

12.19 5.6 3.8 0.6 33 170

0 

0.01 5 4.9 2.1 0.71 362

8 M9 C 0.9

4 

0.84 2.7 3.9 0.4 26 100

0 

0.03 4 4.4 1.4 0.19 364

0 M10 C 0.3

5 

0.9 2.6 1 <0.1 13 300 0.04 <2 1.5 1.1 0.13 486

1 M11 C 0.3

6 

0.56 1.2 1.5 <0.1 13 200 0.04 <2 1.6 0.9 0.09 451

3 M12 C 0.3

5 

0.98 2.2 1 <0.1 13 300 0.02 <2 1.6 1 0.15 520

3 M13 C 0.3

8 

0.63 2.1 0.9 0.1 19 300 0.05 <2 1.8 1.1 0.13 297

2 M14 C 0.9

7 

1.38 2.6 2.5 0.4 25 100

0 

0.03 2 4.3 1.6 0.27 289

0 M15 C 0.6

4 

0.75 1.7 2 0.2 23 600 0.03 3 2.7 1.6 0.17 466

6 M16 C 0.9

3 

1.36 3.5 2.1 0.2 32 900 0.04 6 3.6 2.5 0.32 391

1 M17 C 5.4

4 

2.09 30.8 29.3 2.8 147 610

0 

0.11 17 21.5 1.4 0.49 379 

M18 C 6.6

6 

1.75 11.4 12.7 1 59 210

0 

0.07 6 7.7 2.4 1.12 259

6 Ave. 0.6

3 

1.02 2.7 2.1 0.4 24 929 0.03 3 3.2 1.7 0.2 335

3 St.Dev. 0.2

8 

0.52 1.6 1.7 0.3 12 662 0.02 2 1.9 0.5 0.11 120

9  
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Table 3.15: Heavy metal concentrations (in ppm) in bottom sediment samples 

(analytical error is <0.01). The grain size notations “C”, “M” and “F” stand for 

coarse, medium and fine (continued) 

S Cu Pb Zn Ni Co M

n 

Fe Cd V Cr As Mo Sr 

M1 M 5.04 5.58 7.1 9 1.3 41 2800 0.04 9 9.3 4.3 1.14 431

6 M2 M 1.33 5.87 3.1 2.7 0.4 16 700 <0.01 3 2.5 2.1 0.18 366

8 M3 M 2.35 11.2

9 

6.7 3.2 0.4 23 2100 <0.01 <2 3.7 1.4 0.38 178

9 M4 M 1.41 6.62 2.9 2.4 0.4 21 1000 0.01 2 3.3 1.4 0.28 408

7 M5 M 0.76 2.15 2.1 2.8 0.4 23 900 <0.01 3 3.9 1.7 0.2 313

1 M6 M 3.97 2.18 5.8 3.6 0.6 25 1600 0.01 5 5.9 2 0.3 378

1 M7 M 1.69 1.94 2.6 2.7 0.5 25 1500 <0.01 4 4.8 1.7 0.24 384

5 M8 M 2.15 1.96 3.6 6.4 0.8 42 2000 0.02 8 7 2.5 0.77 290

9 M9 M 1.2 0.96 3.8 4 0.5 35 1300 0.03 4 5.7 1.4 0.21 320

5 M10 M 0.48 0.57 1.2 0.7 <0.1 14 400 0.04 <2 2 1.2 0.13 573

0 M11 M 0.51 0.56 0.8 1 0.2 11 200 0.04 <2 1.7 1.2 0.1 634

5 M12 M 0.68 0.8 2.1 0.5 <0.1 14 200 0.04 <2 1.8 1.6 0.12 584

6 M13 M 0.71 0.89 1.8 2.2 0.2 28 300 0.05 3 2.7 1.5 0.13 399

9 M14 M 1.32 1.18 3.3 4.4 0.6 35 1400 0.03 4 6.9 1.5 0.3 241

6 M15 M 0.79 1.16 2.2 2 0.2 24 700 0.03 4 3.2 1.7 0.17 449

2 M16 M 0.9 1.11 2.4 2.6 0.3 24 800 0.03 4 4 2.7 0.25 414

2 M17 M 4.42 2.36 23.5 15.7 2.4 11

1 

5000 0.08 12 17.3 1.6 0.4 177 

M18 M 4.06 1.4 11.7 9.7 1.2 72 2900 0.06 6 9.5 2.1 0.72 148

8 Ave. 1.88 1.37 3.2 3.5 0.5 25 1433 0.03 4 4.6 1.7 0.23 363

1 St.Dev... 1.48 0.63 1.8 2.6 0.3 9 1210 0.02 2 2.5 0.4 0.09 155

1 M1 F 5.75 2.63 8.5 11.5 1.7 63 3400 0.04 12 12.4 4.5 1.07 363

5 M2 F 1.86 1.73 3.4 11.3 0.8 60 2200 <0.01 8 13.1 3.4 0.32 224

8 M3 F 1.5 2.2 2.6 7.1 0.7 37 2100 <0.01 5 7.7 1.8 0.28 226

6 M4 F 1.38 2.75 2.3 11.1 0.6 38 1600 0.04 5 14.3 2.1 0.32 361

7 M5 F 1.5 1.88 3.6 5.9 1 54 2000 0.02 7 9.3 2.3 0.25 259

8 M6 F 1.99 3.49 4 18.5 0.8 42 2500 <0.01 6 32.5 2.5 0.41 328

1 M7 F 1.38 1.75 3.2 5.5 0.9 43 1800 0.04 7 9.1 2.7 0.27 329

6 M8 F 2.64 1.82 5.2 10.3 1.5 79 2900 0.02 11 10.6 3.2 0.8 227

2 M9 F 1.81 1.17 4.5 9.6 1.1 73 2400 0.03 8 11 1.7 0.31 212

9 M10 F 1.21 1.86 4.5 2 0.4 30 900 0.03 3 4.1 1.8 0.18 489

0 M11 F 0.96 4.29 2.3 0.8 <0.1 16 500 0.03 3 2.8 1.1 0.16 502

1 M12 F 0.6 0.85 1.9 0.7 0.2 15 400 0.03 <2 2.4 2.8 0.13 590

9 M13 F 0.6 0.89 1.4 1 0.2 23 500 0.02 3 2.8 1.1 0.14 424

7 M14 F 1.75 1.27 5 6.7 1.1 79 2500 0.03 8 11 2.5 0.32 213

9 M15 F 0.95 1.25 3 1.5 0.3 32 1200 0.02 5 4.4 1.8 0.19 380

1 M16 F 1.34 1.52 4.7 4.6 0.4 36 1400 0.03 4 7 2.3 0.22 353

7 M17 F 3.84 1.8 21.5 13.1 2.1 11

2 

4800 0.06 12 16.8 1.3 0.34 118 

M18 F 4.12 1.56 15.1 9.6 1.4 92 3400 0.06 8 11.5 1.9 0.89 110

1 Ave. 1.73 1.93 3.8 7.3 0.9 51 2028 0.03 7 10.2 2.3 0.26 311

7 St.Dev.v 0.99 0.89 1.7 5 0.6 27 1156 0.01 3 7 0.9 0.08 142

5  
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 In general, some sites show high heavy metal concentration compared to 

other sites.  The map in Figure 3.1 shows the location of S14, B4 and M18, samples 

with the highest heavy metals concentrations in shore, soil and bottom samples, 

respectively.  

      

Figure 3.1: Location of the samples with maximum heavy metal concentrations (in 

ppm) in shore, soil and bottom sediment 

 

3.6 Rare Earth Elements 

 Rare earth elements (REE) are a set of seventeen chemical elements in the 

periodic table, specifically the fifteen contiguous lanthanoids (lanthanum (La), 

cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium 

(Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium 

(Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu)) plus the lighter 

scandium and yttrium. Scandium and yttrium are considered REE since they tend to 

occur in the same ore deposits as the lanthanoids and exhibit similar chemical 

properties. Most REEs are not rare however, because of their geochemical properties, 

REE minerals are typically dispersed and not often found in concentrated and 
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economically exploitable forms. REEs are often found together, and are difficult to 

separate.  

 The concentration of  Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu 

are measured in the soil, shore and bottom sediments, as shown in Tables 3.16-3.18.  

 The REE concentration for soil samples shows higher values than shore 

and bottom sediment samples.  Their order of occurrence is Nd > La > Pr > Sm > Gd 

> Dy > Er > Yb > Eu > Ho > Tb > Tm = Lu, with average concentration of 3.39, 

3.36, 0.83. 0.70, 0.62, 0.27, 0.24, 0.17, 0.11, 0.08, 0.04 and 0.04 (ppm), respectively 

(Table 3.16).   

 The REE concentration for shore samples is lower than of soil samples 

with an order of occurrence (Table 3.17) as follow: La > Nd > Pr > Sm > Gd > Dy > 

Er = Yb > Eu > Tb = Ho, with average concentration of 0.95, 0.87, 0.23, 0.19, 0.16, 

0.15, 0.07, 0.07, 0.05, 0.03 and 0.03 (ppm), respectively. Both Tm and Lu are below 

the detection limit (0.02). 

The order of occurrence of REE in bottom sediments (Table 3.18) is as follows La > 

Nd > Pr > Sm > Gd > Dy > Er > Yb > Eu > Tb = Ho > Tm = Lu.  Their average 

concentration (in ppm) with the same previous order is 1.5, 1.26, 0.32, 0.26, 0.24, 

0.30, 0.11, 0.10, 0.07, 0.05, 0.05, 0.03 and 0.03, respectively.  

 Overall, all of the sites show narrow differences in REE concentrations in 

the analyzed samples as revealed by the small values of standard deviation as shown 

in Tables 3.16 -3.18. 
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Table 3.16: REE and Al concentrations (in ppm) in soil samples (analytical error is <0.01) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
LREE (ppm) HREE (ppm) ppm 

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

S1 1.2 0.31 1.28 0.25 0.07 0.22 <0.02 0.24 0.03 0.12 <0.02 0.10 <0.02 1400 

S2 2.2 0.57 2.05 0.45 0.11 0.44 0.04 0.36 0.07 0.18 0.03 0.14 0.02 2000 

S3 2.0 0.46 1.82 0.35 0.10 0.36 0.04 0.34 0.06 0.15 0.02 0.15 <0.02 1800 

S4 1.8 0.43 1.67 0.37 0.09 0.33 0.03 0.32 0.07 0.19 <0.02 0.13 <0.02 2100 

S5 2.5 0.58 2.49 0.57 0.13 0.53 0.05 0.41 0.08 0.18 0.03 0.15 0.02 2400 

S6 4.7 1.18 4.41 0.98 0.25 0.85 0.11 0.73 0.14 0.38 0.05 0.34 0.04 4800 

S7 2.8 0.81 3.35 0.67 0.18 0.69 0.08 0.56 0.10 0.29 0.03 0.20 0.03 3000 

S8 1.3 0.33 1.31 0.24 0.07 0.12 0.04 0.22 0.05 0.09 <0.02 0.08 0.02 1300 

S9 4.9 1.24 4.73 1.07 0.27 1.05 0.13 0.87 0.16 0.44 0.07 0.43 0.05 4200 

S10 4.6 1.12 4.47 0.93 0.22 0.96 0.11 0.74 0.16 0.32 0.06 0.34 0.03 4100 

S11 4.2 1.02 3.94 0.83 0.20 0.77 0.12 0.76 0.13 0.33 0.05 0.29 0.04 3100 

S12 3.3 0.84 3.59 0.62 0.20 0.79 0.09 0.54 0.12 0.28 0.04 0.27 0.04 3600 

S13 3.7 0.97 3.77 0.84 0.18 0.76 0.08 0.65 0.12 0.29 0.04 0.29 0.05 4700 
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Table 3.16: REE and Al concentrations (in ppm) in soil samples (analytical error is <0.01) (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

S14 6.4 1.69 6.88 1.42 0.34 1.18 0.16 1.00 0.18 0.49 0.07 0.41 0.06 9600 

S15 5.0 1.25 4.98 1.02 0.25 0.99 0.13 0.89 0.15 0.40 0.06 0.34 0.06 5000 

S16 3.7 0.93 3.66 0.70 0.20 0.84 0.11 0.67 0.13 0.30 0.04 0.33 0.05 4200 

S17 3.7 0.97 3.87 0.86 0.16 0.67 0.09 0.71 0.14 0.31 0.04 0.28 0.04 4300 

S18 3.6 0.90 3.64 0.76 0.19 0.62 0.08 0.64 0.12 0.28 0.04 0.26 0.03 4300 

S19 5.3 1.31 4.98 1.00 0.24 0.88 0.11 0.76 0.16 0.33 0.05 0.31 0.03 4300 

S20 3.5 0.87 3.42 0.72 0.21 0.63 0.11 0.67 0.12 0.29 0.04 0.22 0.04 5700 

S21 3.1 0.81 3.55 0.59 0.17 0.62 0.07 0.53 0.07 0.20 0.03 0.19 0.02 3200 

S22 2.4 0.60 2.48 0.49 0.13 0.49 0.06 0.40 0.09 0.24 0.03 0.18 0.02 2500 

S23 1.8 0.45 1.84 0.40 0.08 0.31 0.03 0.27 0.06 0.15 0.02 0.09 <0.02 1800 

S24 3.0 0.76 3.14 0.65 0.13 0.64 0.08 0.49 0.09 0.24 0.04 0.20 0.03 3100 

Min 1.20 0.31 1.28 0.24 0.07 0.12 0.03 0.22 0.03 0.09 0.02 0.08 0.02 1300 

Max 6.40 1.69 6.88 1.42 0.34 1.18 0.16 1.00 0.18 0.49 0.07 0.43 0.06 9600 

Ave. 3.36 0.85 3.39 0.70 0.17 0.66 0.08 0.57 0.11 0.27 0.04 0.24 0.04 3604 

St.Dev 1.08 0.27 1.04 0.23 0.06 0.21 0.03 0.18 0.04 0.08 0.01 0.09 0.01 1296 
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Table 3.17: REE and Al concentrations (in ppm) in shore samples (analytical error is <0.01) 

Sample 
LREE (ppm) HREE (ppm) ppm 

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

B1 1.0 0.25 0.78 0.25 0.05 0.19 0.03 0.13 0.03 0.12 <0.02 0.07 <0.02 700 

B2 0.7 0.18 0.71 0.14 0.05 0.16 <0.02 0.16 0.03 0.06 <0.02 0.07 <0.02 600 

B3 1.0 0.22 0.87 0.24 0.04 0.21 <0.02 0.16 0.03 0.10 <0.02 0.08 <0.02 700 

B4 1.4 0.33 1.26 0.30 0.08 0.27 <0.02 0.20 0.04 0.11 <0.02 0.09 <0.02 1100 

B5 1.1 0.29 0.99 0.21 0.04 0.13 0.03 0.21 0.05 0.08 <0.02 0.08 <0.02 800 

B6 1.1 0.23 1.01 0.22 0.06 0.13 0.03 0.19 0.04 0.05 <0.02 0.07 <0.02 800 

B7 0.7 0.18 0.69 0.17 0.03 0.10 0.03 0.16 0.02 0.05 <0.02 0.04 <0.02 600 

B8 0.8 0.20 0.74 0.18 0.03 0.16 0.02 0.14 <0.02 0.06 <0.02 0.04 <0.02 600 

B9 1.2 0.32 1.26 0.26 0.06 0.19 0.03 0.21 0.03 0.08 <0.02 0.10 <0.02 1000 

B10 0.9 0.23 0.81 0.19 0.04 0.12 0.03 0.13 <0.02 0.08 <0.02 0.08 <0.02 800 

B11 <0.5 0.11 0.48 0.07 <0.02 0.10 0.02 0.07 <0.02 0.02 <0.02 0.04 <0.02 400 

B12 0.6 0.19 0.58 0.14 0.03 0.16 0.04 0.09 <0.02 0.04 <0.02 0.06 <0.02 600 

B13 0.6 0.15 0.58 0.12 0.03 0.08 <0.02 0.10 <0.02 0.06 <0.02 0.06 <0.02 500 

B14 0.6 0.16 0.67 0.13 0.03 0.13 <0.02 0.08 0.02 0.05 <0.02 0.05 <0.02 500 

B15 1.4 0.36 1.39 0.26 0.07 0.24 0.02 0.22 0.04 0.10 <0.02 0.09 <0.02 1000 

B16 1.1 0.25 1.04 0.21 0.07 0.18 <0.02 0.22 0.04 0.08 <0.02 0.07 <0.02 900 

Min 0.60 0.11 0.48 0.07 0.03 0.08 0.02 0.07 0.02 0.02 - 0.04 - 400 

Max 1.40 0.36 1.39 0.30 0.08 0.27 0.04 0.22 0.05 0.12 - 0.10 - 1100 

Ave. 0.95 0.23 0.87 0.19 0.05 0.16 0.03 0.15 0.03 0.07 - 0.07 - 725 

St.Dev. 0.23 0.05 0.22 0.05 0.01 0.04 0.00 0.04 0.01 0.02     - 0.01 - 165.6 

 



 

 

71 

 

Table 3.18: REE and Al concentrations (in ppm) in bottom sediment samples (analytical error is <0.01) 

Sample 
LREE (ppm) HREE (ppm) ppm 

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

M1 C 1.1 0.29 1.27 0.27 0.06 0.22 <0.02 0.14 0.03 0.08 <0.02 0.1 <0.02 
8210 

 
M1 M 1.4 0.38 1.5 0.3 0.08 0.27 0.03 0.29 0.05 0.14 <0.02 0.11 <0.02 

M1 F 2.1 0.56 2.15 0.41 0.11 0.42 0.05 0.42 0.07 0.16 <0.02 0.19 0.03 

M2 C <0.5 0.09 0.25 0.11 <0.02 0.06 <0.02 0.05 <0.02 0.03 <0.02 0.03 <0.02 
2974 

 
M2 M 0.5 0.13 0.54 0.12 0.03 0.12 <0.02 0.08 <0.02 0.04 <0.02 0.05 <0.02 

M2 F 1.9 0.43 1.99 0.33 0.1 0.39 0.04 0.29 0.06 0.15 0.03 0.16 <0.02 

M3 C 0.9 0.27 0.95 0.16 0.04 0.15 <0.02 0.18 <0.02 0.07 <0.02 0.05 <0.02 

2974 M3 M 1 0.26 1.1 0.18 0.03 0.24 <0.02 0.12 0.02 0.07 <0.02 0.06 <0.02 

M3 F 1.6 0.4 1.6 0.33 0.07 0.36 <0.02 0.24 0.04 0.12 <0.02 0.11 <0.02 

M4 C <0.5 0.04 0.12 0.03 <0.02 0.04 <0.02 0.04 <0.02 <0.02 <0.02 <0.02 <0.02 
1903 

 
M4 M 0.7 0.15 0.56 0.13 0.04 0.11 <0.02 0.09 <0.02 0.06 <0.02 0.05 <0.02 

M4 F 1.2 0.26 1.1 0.26 0.05 0.21 <0.02 0.19 0.04 0.09 <0.02 0.09 <0.02 

M5 C 0.5 0.12 0.61 0.12 0.03 0.09 <0.02 0.1 0.03 0.04 <0.02 0.04 <0.02 
3212 

 
M5 M 1 0.26 1.06 0.2 0.05 0.14 <0.02 0.15 0.03 0.07 <0.02 0.06 <0.02 

M5 F 1.8 0.41 1.82 0.39 0.11 0.39 0.02 0.31 0.06 0.19 0.02 0.13 <0.02 

M6 C 0.5 0.14 0.55 0.11 0.03 0.13 <0.02 0.1 0.02 0.03 <0.02 0.05 <0.02 

3212 M6 M 1 0.27 1.08 0.3 0.05 0.18 <0.02 0.2 0.03 0.08 <0.02 0.08 <0.02 

M6 F 1.4 0.37 1.31 0.28 0.05 0.3 0.02 0.19 0.04 0.12 <0.02 0.09 <0.02 

M7 C 0.7 0.17 0.72 0.16 0.04 0.09 <0.02 0.14 0.03 0.04 <0.02 0.06 <0.02 
3569 

 
M7 M 1.2 0.3 1.3 0.24 0.05 0.19 <0.02 0.15 0.03 0.09 <0.02 0.07 <0.02 

M7 F 1.7 0.43 1.67 0.4 0.1 0.36 0.03 0.29 0.05 0.14 <0.02 0.13 <0.02 
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Table 3.18: REE and Al concentrations (in ppm) in bottom sediment samples (analytical error is <0.01) (continued) 

Sample La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

M8 C 1 0.24 1.14 0.2 0.05 0.21 <0.02 0.17 0.04 0.09 <0.02 0.07 <0.02 
5830 

 
M8 M 1.5 0.38 1.43 0.32 0.05 0.41 0.03 0.29 0.04 0.14 <0.02 0.08 <0.02 

M8 F 2.3 0.53 2.46 0.55 0.08 0.54 0.04 0.41 0.08 0.21 0.02 0.2 0.03 

M9 C 2.3 0.25 0.87 0.2 0.04 0.15 0.03 0.18 <0.02 0.09 <0.02 0.08 <0.02 

4759 M9 M 1.4 0.32 1.33 0.28 0.05 0.22 0.04 0.23 0.03 0.12 <0.02 0.05 <0.02 

M9 F 2.3 0.56 2.09 0.5 0.1 0.38 0.05 0.38 0.05 0.18 <0.02 0.21 <0.02 

M10 C <0.5 0.04 0.17 0.03 <0.02 0.06 <0.02 0.04 <0.02 0.03 <0.02 <0.02 <0.02 
1546 

 
M10 M <0.5 0.07 0.30 0.09 <0.02 0.04 <0.02 0.04 <0.02 <0.02 <0.02 0.03 <0.02 

M10 F 0.7 0.19 0.81 0.17 0.04 0.13 0.02 0.1 <0.02 0.06 <0.02 0.08 <0.02 

M11 C <0.5 0.04 0.15 0.03 <0.02 <0.02 <0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 
951 

 
M11 M <0.5 0.05 0.16 0.04 <0.02 0.02 <0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 

M11 F <0.5 0.1 0.42 0.07 <0.02 0.05 <0.02 0.08 <0.02 0.03 <0.02 0.02 <0.02 

M12 C <0.5 0.05 0.21 0.05 <0.02 0.03 <0.02 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

1133 M12 M <0.5 0.06 0.24 0.04 <0.02 0.05 <0.02 0.03 <0.02 <0.02 <0.02 0.02 <0.02 

M12 F <0.5 0.08 0.35 0.08 <0.02 0.05 <0.02 0.05 <0.02 0.03 <0.02 0.02 <0.02 

M13C <0.5 0.05 0.21 0.06 <0.02 0.06 <0.02 0.05 <0.02 0.02 <0.02 <0.02 <0.02 1070 

 
M13 M <0.5 0.1 0.31 0.04 <0.02 0.11 <0.02 0.05 <0.02 0.03 <0.02 0.03 <0.02 

M13 F 0.6 0.15 0.69 0.13 <0.02 0.12 0.02 0.08 <0.02 0.05 <0.02 0.04 <0.02 

M14 C 0.9 0.23 1.04 0.19 0.04 0.15 0.03 0.14 0.02 0.07 <0.02 0.06 <0.02 4283 

 
M14 M 1.5 0.35 1.33 0.3 0.05 0.21 0.04 0.18 0.04 0.09 <0.02 0.08 <0.02 

M14 F 2.9 0.67 2.62 0.49 0.12 0.46 0.08 0.44 0.07 0.19 0.03 0.18 <0.02 
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Table 3.18: REE and Al concentrations (in ppm) in bottom sediment samples (analytical error is <0.01) (continued) 

Sample La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Al 

M15 C <0.5 0.11 0.49 0.09 <0.02 0.09 <0.02 0.1 <0.02 0.03 <0.02 0.04 <0.02 

2260 M15 M 0.7 0.21 0.76 0.15 0.02 0.13 0.02 0.13 <0.02 0.08 <0.02 0.07 <0.02 

M15 F 1.3 0.36 1.41 0.32 0.06 0.27 0.03 0.18 0.03 0.1 <0.02 0.08 <0.02 

M16 C 0.6 0.17 0.62 0.15 0.02 0.12 0.03 0.12 <0.02 0.06 <0.02 0.05 <0.02 
2498 

 
M16 M 0.8 0.22 0.84 0.16 0.05 0.16 0.03 0.17 0.02 0.04 <0.02 0.07 <0.02 

M16 F 1.4 0.34 1.2 0.23 0.06 0.2 0.03 0.16 0.03 0.1 <0.02 0.07 <0.02 

M17 C 4.7 1.29 5.17 1.06 0.23 0.92 0.16 0.82 0.12 0.36 0.05 0.27 0.04 
14754 

 
M17 M 4.3 1.16 4.4 0.82 0.21 0.84 0.12 0.62 0.11 0.37 0.04 0.27 0.02 

M17 F 4.3 1.1 4.16 0.89 0.22 0.74 0.13 0.63 0.12 0.34 0.04 0.29 0.04 

M18 C 2 0.51 1.94 0.39 0.1 0.41 0.07 0.39 0.05 0.21 <0.02 0.12 <0.02 

7258 M18 M 2.5 0.63 2.45 0.47 0.1 0.44 0.07 0.32 0.06 0.18 0.03 0.15 <0.02 

M18 F 2.9 0.77 2.98 0.72 0.15 0.57 0.1 0.39 0.07 0.2 0.03 0.24 <0.02 

Min 0.50 0.04 0.12 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 951 

Max 4.70 1.29 5.17 1.06 0.23 0.92 0.16 0.82 0.12 0.37 0.05 0.29 0.04 14754 

Ave. 1.59 0.32 1.26 0.26 0.07 0.24 0.05 0.20 0.05 0.11 0.03 0.10 0.03 4022 

St.Dev. 
0.77 0.20 0.77 0.16 0.04 0.16 0.03 0.12 0.02 0.06 0.01 0.05 0.01 3372 
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3.7 Radionuclide Activity Concentrations 

 The natural radioactivity concentrations of 
238

U (
226

Ra),
232

Th and 
40

K were 

measured for soil, shore and bottom sediment samples, using gamma spectrometry, 

their results are shown in Tables 3.19, 3.20 and 3.21. The average activity 

concentrations of 
238

U (
226

Ra) are 15.68±0.56, 4.43±0.39 and 4.73±0.47 Bq/kg in 

soil, shore and bottom sediment samples, respectively. The activity concentrations of 

238
U (

226
Ra) fluctuate in the soil samples with a minimum value of 5.33±2.46 and a 

maximum value of 64.82±8.7 Bq/kg. Further more,
238

U (
226

Ra) shows a narrower 

range in shore and bottom sediment samples between 3.04±5.78 to 6.2±5.08 and 

1.24±1.52 to 10.63±4.62, Bq/kg, respectively. 

 The estimated average activity concentrations of 
232

Th show wide variations 

in the studied area.  The activity concentrations vary between 2.23±0.10 and 

18.15±0.43 Bq/kg in soil samples and between 0.87±0.18 and 2.46±0.26 Bq/kg in 

shore samples, and finally between 0.36±0.49 and 7.29±0.34 Bq/kg in bottom 

sediments with average of 8.3±0.23, 1.68±0.17 and 1.83±0.24 Bq/kg, respectively.  

 The activity concentrations of 
40

K range from 141.35±8.6 to 611.16±14.9 

Bq/kg with an average of 349.72±11.76 Bq/kg in soil and from 40.71±5.59 to 

240.91±9.7 Bq/kg with an average of 106.3±7.27 Bq/kg in shore and from 7.81±2.7 

to 544.12±14.8 Bq/kg with an average of 105.23±10.03 Bq/kg in bottom sediment 

samples. 
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Table 3.19: Radionuclides Activity concentrations and radium equivalent in (Bq/kg) 

and absorbed dose (nGy/hr) in soil samples 

S 
238

U(
226

Ra) 
232

Th 
40

K Rad. eq. Abs. dose 

S1 5.33±0.25 2.23±0.10 141.35±8.6 19.41±1.05 9.71±0.21 

S2 8.48±0.58 3.82±0.15 323.84±11.3 38.88±1.66 19.73±0.40 

S3 9.05±0.31 3.31±0.20 239.4±8.4 32.22±1.23 16.16±0.30 

S4 10.29±0.38 4.21±0.20 287.24±10.2 38.43±1.44 19.28±0.33 

S5 10.3±0.45 4.51±0.21 308.52±11.7 40.5±1.63 20.35±0.38 

S6 14.51±0.39 9.37±0.22 394.97±10.15 58.33±1.50 28.84±0.36 

S7 13.3±0.62 11.52±0.23 485.04±12.9 67.11±1.93 33.33±0.47 

S8 7.66±0.34 4.65±0.22 258.4±11.05 34.21±1.50 17.12±0.34 

S9 15.57±0.47 13.76±0.33 444.97±20.65 69.51±2.53 34.06±0.50 

S10 16.92±0.56 8.9±0.22 447.34±10.45 64.1±1.67 31.85±0.43 

S11 64.82±0.87 7.08±0.10 455.57±12.65 110.03±1.98 53.22±0.51 

S12 12.67±0.39 8.4±0.18 314.95±10.1 48.93±1.42 24.06±0.33 

S13 17.59±0.48 12.46±0.23 362.78±10.9 63.34±1.65 30.78±0.41 

S14 14.8±0.55 11.34±0.27 347.82±14 57.8±2.01 28.19±0.47 

S15 18.63±0.73 10.91±0.22 465.2±12.9 70.05±2.05 34.6±0.53 

S16 22.02±0.52 7.6±0.24 307.01±10.7 56.54±1.71 27.57±0.43 

S17 14.4±0.62 13.21±0.24 389.62±13.15 63.29±1.98 30.88±0.49 

S18 12.9±0.97 8.92±0.27 415.5±10.9 57.65±2.20 28.67±0.66 

S19 16.44±0.74 18.15±0.43 340.78±12.7 68.63±2.33 32.77±0.66 

S20 15.16±0.54 5.14±0.21 174.07±8.05 35.92±1.45 17.37±0.41 

S21 7.97±0.84 8.11±0.31 611.16±14.9 66.62±2.42 34.07±0.63 

S22 17.28±0.69 6.47±0.32 251.86±10.95 45.93±1.99 22.4±0.56 

S23 17.98±0.66 6.11±0.29 243.16±12.5 45.43±2.04 22.13±0.53 

S24 12.21±0.39 9.35±0.19 382.62±12.5 55.04±1.62 27.24±0.35 

Min 5.33±0.25 2.23±0.10 141.35±8.6 19.41±1.05 9.71±0.21 
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Table 3.19: Radionuclides Activity concentrations and radium equivalent in (Bq/kg) 

and absorbed dose (nGy/hr) in soil samples (continued) 

S 
238

U(
226

Ra) 
232

Th 
40

K Rad. eq. Abs. dose 

Max 64.82±0.87 18.15±0.43 611.16±14.9 110.03±1.98 53.22±0.51 

Ave. 15.68±0.56 8.31±0.23 349.72±11.76 54.5±1.79 26.85±0.44 

St.Dev. 11.23 3.87 107.16 18.31 8.84 

 

Table 3.20: Radionuclides Activity concentrations and radium equivalent in (Bq/kg) 

and absorbed dose (nGy/hr) in shore samples 

S 238U(226Ra) 232Th 40K Rad. eq. Abs. dose 

B1 5.14±0.40 2.04±0.15 101.45±8.25 15.87±1.24 7.84±0.31 

B2 4.39±0.34 1.5±0.19 89.33±6.1 13.41±1.08 6.66±0.30 

B3 4.22±0.22 1.66±0.21 86.81±5.9 13.29±0.97 6.58±0.25 

B4 5.87±0.38 2±0.17 186.42±7.95 23.09±1.23 11.7±0.31 

B5 5.77±0.36 2.23±0.13 99.32±6.85 16.61±1.07 8.15±0.27 

B6 6.2±0.51 1.82±0.17 142.01±7.9 19.73±1.35 9.88±0.37 

B7 3.55±0.51 1.25±0.15 71.94±7.35 10.88±1.30 5.4±0.36 

B8 3.22±0.47 1.5±0.22 128.41±7.5 15.24±1.37 7.74±0.39 

B9 4.23±0.54 2.17±0.20 116.86±7.25 16.34±1.38 8.14±0.40 

B10 4.44±0.51 2.46±0.26 102.19±9.25 15.83±1.60 7.8±0.43 

B11 3.15±0.21 0.87±0.18 40.71±5.59 7.53±0.94 3.68±0.24 

B12 3.14±0.25 1.1±0.12 47.14±5.9 8.35±0.88 4.09±0.21 

B13 3.33±0.28 0.98±0.13 61.62±6.45 9.48±0.97 4.7±0.24 

B14 3.04±0.58 1.27±0.11 90.42±7.5 11.82±1.31 5.94±0.37 

B15 5.37±0.30 2.22±0.17 240.91±9.7 27.09±1.29 13.87±0.28 

B16 5.78±0.36 1.76±0.17 95.19±6.5 15.63±1.11 7.7±0.30 

Min 3.04±0.58 0.87±0.18 40.71±5.59 7.53±0.94 3.68±0.24 

Max 6.2±0.51 2.46±0.26 240.91±9.7 27.09±1.29 13.87±0.28 

Ave. 4.43±0.39 1.68±0.17 106.3±7.27 15.01±1.19 7.49±0.31 

St.Dev. 1.12 0.49 50.68 5.19 2.68 
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Table 3.21: Radionuclides Activity concentrations and radium equivalent in (Bq/kg) 

and absorbed dose (nGy/hr) in bottom sediment samples 

S 238U(226Ra) 232Th 40K Rad. eq. Abs. dose 

M1 6.98±0.54 2.19±0.49 76.93±14.6 16.04±2.37 7.76±0.61 

M2 2.83±0.53 0.95±0.40 38.05±15 7.11±2.24 3.47±0.54 

M3 3.59±0.42 2.34±0.35 152.29±19.4 18.66±2.41 9.42±0.49 

M4 2.03±0.47 0.64±0.34 21.84±8.2 4.62±1.60 2.23±0.46 

M5 5.54±0.74 1.54±0.31 93.65±16.95 14.95±2.50 7.39±0.60 

M6 3.66±0.50 1.24±0.22 51.94±7.75 9.44±1.40 4.61±0.40 

M7 5.83±0.38 1.89±0.24 112.27±15.25 17.17±1.90 8.51±0.39 

M8 8.83±0.79 3.38±0.40 166.91±15.55 26.51±2.55 13.08±0.67 

M9 7.12±0.31 1.98±0.11 121.04±10.6 19.28±1.28 9.53±0.25 

M10 1.3±0.15 0.36±0.49 10.6±3 2.62±0.45 1.26±0.11 

M11 1.24±0.15 0.54±0.45 7.81±2.7 2.6±0.42 1.22±0.11 

M12 1.53±0.16 0.42±0.15 11.45±2.7 3.01±0.58 1.44±0.18 

M13 1.96±0.17 0.54±0.69 15.95±3.05 3.95±0.50 1.89±0.13 

M14 10.63±0.46 1.6±0.14 99.87±6.7 20.6±1.18 10.04±0.33 

M15 2.49±0.20 1.17±0.61 58.51±4.95 8.67±0.66 4.3±0.15 

M16 3.2±0.67 1.12±0.24 30.49±4.95 7.14±1.40 3.42±0.48 

M17 9.47±0.86 7.29±0.34 544.12±14.8 61.79±2.49 31.47±0.67 

M18 6.88±0.87 3.71±0.41 280.48±14.4 33.78±2.57 17.11±0.71 

Min 1.24±0.15 0.36±0.49 7.81±2.7 2.6±0.42 1.22±0.11 

Max 10.63±0.46 7.29±0.34 544.12±14.8 61.79±2.49 31.47±0.67 

Ave. 4.73±0.47 1.83±0.24 105.23±10.03 15.44±1.58 7.68±0.40 

St.Dev. 3.01 1.67 130.14 14.58 7.43 
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3.8 Radium Equivalent Activity Concentrations and Absorbed Dose Rates 

 The Estimated values of Radium equivalent and absorbed dose are shown in 

Tables 3.19, 3.20 and 3.21.  The estimated average value of Radium equivalent 

activities concentrations in soil, shore and bottom sediment samples are 54.50±1.79, 

15.01±1.19 and 15.44±1.58 Bq/kg. Their activity concentrations vary between 

19.41±1.05 and 110.03±1.98 in soil samples and between 7.53±0.97 and 27.09±1.29 

in shore samples and between 2.60±0.42 and 61.79±2.49 Bq/kg in bottom sediments.  

The average values of the estimated absorbed dose in soil, shore and bottom 

sediment samples are 26.85±0.44, 7.49±0.31 and 7.68±0.40 nGy/hr, respectively.  

The estimated absorbed dose (in nGy/hr) rang from 9.71±0.21 to 53.22±0.51 and 

from 3.08±0.24 to 13.87±0.28 in soil and shore samples, respectively and from 

1.22±0.11 to 31.47±0.66 in bottom sediments. 

3.9 Alpha Spectrometry 

Among the different uranium isotopes, both 
234

U and 
238

U are of particular 

interest, as the shorter half-life 
234

U (2.45x10
5
 year) is in secular equilibrium in 

closed system with long half-life 
238

U (4.47x10
9
 year). However, any closed system 

is disturbed by physico-chemical weathering processes, that operate when rocks 

become exposed at the Earth's surface, which affect the 
234

U/
238

U equilibrium.  

Monitoring the 
234

U/
238

U activity ratio will be a good indicator of the origin of 

uranium either natural (from weathering of igneous rocks and ore bodies) or 

anthropogenic (from industrial use, manufacturing or handling of depleted U) (Dresel 

et al., 2002).  Monitoring also can help in indicating activities associated with 

variation of 
234

U/
238

U activity ratio in the studied environment. On the other hand, 

differences in  
234

U/
238

U ratio can be used  in some cases to study the pathway of U 
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applied with fertilizers from an agricultural field downstream (Zielinski et al., 2000). 

In order to determine the isotopic composition of uranium, alpha spectrometry 

(measuring alpha particle emitting) is used.  Table 3.22 shows 
234

U/
238

U ratios for ten 

samples, which were selected based on their gamma activity concentrations. Based 

on the current alpha spectra, the peaks of 
234

U and 
238

U are most common while 
235

U 

peak is weak.  That is because both 
234

U and 
238

U emit distinct alpha particles at 

specific energy level while 
235

U emits a mixed energy particles as the crustal uranium 

contains lower percentage of 
235

U, compared with 
234

U and 
238

U (NNDC 2011).  The 

small radioactive percentage of 
235

U gave very small peak, which was not 

distinguished in current alpha spectra.  The results indicate that the 
234

U/
238

U activity 

ratios show wide range from 0.59 to 2.24.   

Table 3.22: 
234

U and 
238

U activity ratios for selected samples 

S 
234

U Bq/kg 
238

U Bq/kg 
234

U/
238

U ratio 

S7 0.7±0.04 0.5±0.03 1.40 

S9 12±0.72 13±0.78 0.92 

S5 15.9±0.95 13.4±0.80 1.19 

S11 3.9±0.24 2.2±0.13 1.77 

S16 5.6±0.34 2.5±0.15 2.24 

S17 6.9±0.42 7±0.42 0.99 

S20 18.7±1.30 31.5±1.10 0.59 

S23 26.3±1.58 28±1.68 0.94 

B12 56.8±3.51 50.7±3.04 1.12 

M11 14.0±0.84 11.3±0.68 1.24 

Ave. 16.07±0.98 14.25±0.88 1.24 
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3.10 Relationship between Heavy Metals, REE and Natural Radioactivity        

Concentrations 

 Despite the variability of concentrations of heavy metals, REE and the natural 

radioactivity concentrations measured in the studied samples, their highest values are 

recorded in three samples (Figure 3.1).   All measured concentrations (Figure 3.2) in 

S14, B4 and M17 from soil, shore and bottom sediment samples, respectively, show 

higher values than the measured averages.  Highest concentrations of REE, Cu, Pb, 

Co, Mo, V and Cr are recorded in S14 while M17 shows the highest values of Rad eq, 

Zn, Ni, As and Cd, as shown in Figure 3.2.      

 

 

Figure 3.2: Concentrations of heavy metals, total REE and radium equivalent in S14, 

B4 and M17, in addition to their average values in soil, shore and bottom sediments 
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Chapter 4: Discussion 

4.1 Grain Size Analysis 

4.1.1 Grain Size Parameters 

The mean size values in the shore, soil and bottom samples are on average 

0.35 mm, 0.49 mm and 0.56 mm, respectively. According to Udden (Udden, 1914), 

the ranges of the sizes for very coarse, coarse, medium, fine, and very fine sand grain 

sizes are 1-2 mm, 0.5-1 mm, 0.25-0.5 mm, 125-250 μm and 62.5-125 μm, 

respectively. The grain size of shore and soil is between medium to coarse sand.  

However, the mean size of shore samples lies in medium sand, while most of the soil 

samples consists of coarse sand. The dominance of coarse sand in soil samples 

suggests a higher energy in the depositional environment, which is mainly controlled 

by wind. Shoreline turbulence prevents small particles from settling and transports 

them towards the sea (Yuan et al., 2008). 

The bottom samples are dominated by coarse and medium sand with a mean 

size average value of 0.56 mm (coarse sand). The highest mean size reading appears 

in sample M4 of Sila area, which is associated, during the sampling process, with the 

presence of very coarse shell fragments and coarse sediments. Figure 4.1 shows that 

most of the grains range in size from 0.13 to 1.00 mm; i.e. the samples consist of fine 

to coarse sand. This result is also presented in Figure 4.2. Compared to the rest of the 

samples, the soil samples, S1-S24, contained more grains with size greater than 2 

mm, but they also contained more grains with size 0.06 mm or less, which means 

that the standard deviation is relatively high. Figure 4.2 also shows the variation in 

the composition of each samples even if they are located in the same area. 
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        Figure 4.1: Mean size distribution for all 58 samples in mm. All the samples, 

grouped in soil, shore and bottom, are shown in this plot. The locations are listed 

from left to right in chronological order as shown in Table 2.1. The vertical lines 

separate the samples according to the area they were taken from. The horizontal 

line show the threshold for the classification of fine, medium and course sand 

according to Udden classification 

 

The sorting of the grain size depends on several factors such as the extent of 

weathering, distance of transportation and the energy variation of the depositing 

agents. The statistical analysis of the grain size values of the 58 samples considered 

in this study are summarized in Table 3.4. The standard deviations for the shore and 

soil samples suggesting that the grain sizes are relatively within a narrow range, but 

they are moderately sorted. The large standard deviation for the marine sediments is 

suggesting a scattered sorting of the grains  as shown in the stacked column (Figure 

4.2).                             
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Figure 4.2: Stacked column showing the percent by weight of the grains in the different size ranges
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Figure 4.3: Graphical plot of Y1 against Y2 

 

 

Figure 4.4: Graphical plot of Y2 against Y3 
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4.1.2 Mechanical and Environments of Deposition 

The application of Sahu’s (1964) discriminate functions for shore and soil 

samples was done for determination of the mechanical and environments of 

deposition.   A graphical plot of Y1 vs. Y2 and Y2 vs. Y3 allows four fields of 

depositional environments (Sahu, 1964) to be distinguished (Figs 4.3 & 4.4).  The 

values of Y1 is greater than -2.74 which indicated that all the studied samples are 

identified as beach deposits.  Values of Y2 calculated for the studied samples 

indicate that 77.5% of sediments are concluded to be derived from shallow agitated 

marine environments.  While the 22.5 % of the sediments are beach deposition. The 

22.5% comes from the soil samples, which mean 100% of the shore sediment 

samples are derived from shallow agitated marine.  Values of Y3 shows that 60% of 

the sediment samples are shallow marine deposits, while the rest (40%) are fluvial 

deposits. 

4.1.3 Grain Size vs. Heavy Metals in the Bottom Sediment Samples 

The relationship between the average concentrations of heavy metal and the 

grain size of the bottom samples is shown in Figure 4.5. Samples were classified into 

three size categories: coarse (> 0.5 mm) medium (> 0.25 mm) and fine (> 0.125 

mm). The results confirm the inverse relationship between the grain size and levels 

of concentration of heavy metals. As the grain size gets finer, the specific surface 

area increases causing an increase in the heavy metal concentration. The only 

exception is that of Cu, where Cu concentration in fine particles (on average) were 

less than the medium particles. 
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Figure 4.5: Average concentrations (in ppm) of various heavy metals for each of the 

course, medium and fine grains of the bottom samples 

 

Although, that inverse relationship between the heavy metals concentrations 

and the grain size is well defined for all heavy metal in Figure 4.5, Table 3.15 in the 

previous chapter shows some samples with higher values ( Ni and Cd) in coarse 

grains than in fine grains. The formation of agglomerates from contaminated fine 

grains could be the reason for these exceptions. The agglomeration of the small 

particles could happen either in the presence of organic matter or by sea salts from 

the marine sediments (Parizanganeh 2008).  Chakraborty et al. (2009) concluded that 

a higher contamination of heavy metals in the coarse grains is also related to the 

quality and quantity of organic matter and the distribution of different mineral 

phases. 
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4.1.4 Grain Size vs. Carbonate Content in Soil, Shore and Bottom Sediment 

Samples 

Generally, Carbonate content percentage values reveal wide variation in the 

shore, soil and bottom samples.  The bottom samples show highest carbonate content 

values while soil is the least.  Grain size analysis shows that both soil and shore mean 

grain size fall in medium sand class while the mean grain size for bottom sediment 

samples is in coarse sand class.  A comparison between mean grain size and 

carbonate content percentage is presented in Figure 4.6.  The higher carbonate 

percentage in both shore and bottom sediments is because coastal sediments usually 

contain bioclastic carbonate (shell) as well as siliciclastic components.  The 

correlation between mean grain size and carbonate content in soil, shore and bottom 

samples shows a decreasing trend (Figure 4.7) with weak correlation coefficient of 

0.24 or less.   The negative correlation between the mean grain size and carbonate 

content suggest that finer-grain contain more carbonate material.  This inverse 

relation can be due to those coastal sediments have various shapes and densities 

(Prager et al., 1996).   
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Figure 4.6: Comparison between mean grain size and carbonate percentage in soil, 

shore and bottom sediment samples 
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Figure 4.7: Correlation between mean grain size and carbonate percentage in soil, 

shore and bottom sediment samples 
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4.2 Geochemistry 

4.2.1 Major Oxides Indication 

The relationship between the three primary components, CaO for biogenic 

carbonate, SiO2 and Al2O3 in the beach sand sediments of all samples are shown in 

ternary diagram in Figure 4.8. The data from the beach sand and bottom sediments of 

Barakah plot mostly in CaO corner, thus pointing marine biogenic carbonate 

materials. While the data from Barakah soil plot more closely to SiO2 side indicating 

quartz sand.  This plot are parallel with the finding from mineralogical composition 

of the samples where quartz is the major mineral in soil while the major minerals in 

shore and bottom sediments are aragonite and quartz. 

 

Figure 4.8: CaO, SiO2 and Al2O3 ternary plot for shore, soil and bottom sediments of 

study area 
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4.2.2 Heavy Metals Concentration 

  The average distributions of all heavy metals in the shore, soil and bottom 

samples is illustrated in Figure 4.9. Both Fe and Mn are present in the highest 

concentrations, while Cd has the lowest concentrations in all areas. The shore 

samples reveal the lowest level of the heavy metal concentrations despite having the 

smallest grain size average (0.35 mm) (Table 3.4) compared to the soil (0.49 mm) 

and bottom (0.56 mm) samples. Although soil samples are not the finest in the grain 

size, they show the highest concentrations relative to shore and bottom sediment 

samples. The correlation between grain size and levels of heavy metal concentrations 

is not clear in this case because the samples vary from soil samples to shore or 

bottom sediments. The shore and bottom sediments are subject to the convection 

cycle of water along with possible tidal activities and turbidities; which can wash 

away heavy metals (Scoullos et al., 2014). The most contaminated samples are those 

of the soil, ~ 200 m away from the coastal water. The soil samples are more 

contaminated than the bottom sediments by almost a factor of four for Cu, Zn, Ni, 

Co, Mn, Fe, and Mo; by a factor of three for V and Cr; by a factor of two for Pb and 

Cd and the ratio is close to unity for As. The level of contaminations of the bottom 

compared to the shore samples are almost equal or higher by a factor of maximum 

1.6 with two exceptions, Ni and Mo, where the level is doubled. 

The average of heavy metal concentrations in the soil ranked from the lowest 

to the highest is as of the following: Cd < Mo < As < Pb < Co < Cu < Zn < V < Ni < 

Cr < Mn < Fe while in shore is Cd < Mo < Co < Cu < Pb < As < Ni < Zn < V < Cr < 

Mn < Fe and finally in bottom sediment is Cd < Mo < As < Pb < Co < Cu < Zn < V 

< Ni < Cr < Mn < Fe. 
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These rankings clearly show that the soil, shore and bottom samples are 

highly enriched with iron followed by manganese (Figure 4.9).  Cadmium and 

molybdenum show the lowest level of contamination.  In the middle range, the 

contamination level of zinc, nickel, vanadium and chromium is found in upper level 

whereas lead, copper, cobalt and arsenic is in the lower level. 

 

Figure 4.9:  Average concentrations (in ppm) of the heavy metals and their standard 

deviations in the shore, soil and bottom samples 
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concentrations of heavy metals.  The high concentration depends on the nature of 
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enriched with Cu (8.11 ppm), Zn (22.5 ppm), Co (4.4 ppm), Fe (10300 ppm), V (19 
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fragments in the sample.   The slightly higher metal concentrations in B4 is as 

follow: Cu (1.2 ppm), Pb (2.42 ppm), Zn (3.9 ppm), Ni (4.0 ppm), Co (0.8 ppm), Mn 

(42 ppm), Fe (1300 ppm), V (4 ppm) and Cr (5.7 ppm). The bottom sample M17 is 

also exceptionally more contaminated with Cu (4.57 ppm), Zn (25 ppm), Ni (19.37 

ppm), Co (2.43 ppm), Mn (123.33 ppm), Fe (5300 ppm), Cd (0.08 ppm), V (13.67 

ppm) and Cr (18.53 ppm) compared to other bottom samples. The M17 site is 2 km 

North the Shuweihat power company, and it is adjacent to a harbor that is 760 m 

North this site. Table 4.1 shows some characteristics of the locations with highest 

heavy metal concentrations.  It is well established that granulometry, carbonate and 

organic matter content are important controlling factors in the abundance of heavy 

metals (McCave, 1984; Horowitz, 1987).   

Table 4.1: Characteristics samples location with the maximum heavy metal 

concentrations (in ppm) in shore, soil and bottom sediment 

 Sample Location/depth of water 
Nature of 

sediments 

grain size 

class 

% of 

carbonate 

content 

soil 

S14  2 km south of shoreline Salt flat 
0.83 (coarse 

sand) 
32.28 

S15 2 km south of shoreline Salt flat 
0.03 (fine 

sand) 
17.16 

shore 

B4  Beach sediment 
Shell 

fragments 

2.1 (fine 

sand) 
68.12 

B15 Beach sediment 
Shell 

fragments 

2.16 (fine 

sand) 
54.42 

bottom 

sediments 

M17 

2 km north of a power 

company 

0.7 km north of a 

harbor 

5 meters depth 

Dark 

green 

sediments  

0.97 (coarse 

sand) 
11.02 

M18 

4.8 km north of a power 

company, 

2.8 km north of a 

harbor 

6 meters depth 

Dark 

green 

sediments 

1.37 (fine 

sand) 
5.98 
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4.2.3 Spatial Distribution of Heavy Metals 

The maps in Figure 4.10 provide a comprehensive illustration of the spatial 

distribution of the heavy metals over the studied area. These maps clearly show how 

soil samples (from areas coded with blue) are more contaminated than the shore and 

bottom sediments. The shore sediments show lower levels of contamination likely 

due to the tidal fluctuation and wave currents (Caetano et al., 1997). The relatively 

higher concentration of heavy metals in the soil samples could be related to the 

erosion of the bedrock. The studied area is dominated sandstones and limestones 

from the Miocene age (Alsharhan and Kendall 2003). The southern part of the study 

area is occupied by sand dunes that are thought to originate from the extensive 

erosion of the Miocene rocks. On the other hand, Baynunah Formation is composed 

mainly of sandstones and mudstones from fluvial settings with fossil accumulation at 

various levels, this  Formation is exposed along more than 200 km of the Abu Dhabi 

coast in the western Al Gharbia region, and extends more than 30 km inland 

(Whybrow, 1989).   

The distributions of Cr, Ni and Mn in shore, soil and bottom samples are in a 

very similar pattern, as shown in Figure 4.10.  The concentrations decrease 

significantly from the south to the north; with relatively mild contaminations in the 

east while the west remains virtually intact. V, Fe, Co, Mo, Zn and Cu exhibited 

similar distribution patterns; the maximum concentrations were found in the south 

central zone with relatively elevated concentrations (especially for Cu) to the east 

(Jebel AlDhannah) and west (Sila). Overall, for the Cr, Ni, Mn, V, Fe, Co, Mo, Zn 

and Cu, the general trend of the concentrations distribution is maximal in the center 
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of the southern Barakah area and minimal in the shore and bottom sediments in the 

northern area.  

The spatial distribution maps of Pb, Cd and As (as shown in Figure 4.10) are 

unique compared to the distributions of the rest of the heavy metals considered in 

this study. The lead is mainly concentrated around the western part of the studied 

area near the Sila area; cadmium is spread intermittently in the eastern part (Jebel 

AlDhannah), the central southern part (Barakah), with exceptionally high 

concentrations in the western part (Sila); and arsenic is spread across the entire area, 

with particularly higher concentrations in the western part (Sila). The toxicity 

generated by the elevated concentrations of lead in the western part of the studied 

area may lead to extinctions of endangered marine species, thus causing a change in 

the structure of the marine biota (Moriarty 1975; Bowen 1979). Despite its unique 

distribution, cadmium (as shown in Figure 4.10) is found in the lowest 

concentrations among other metals considered in this study; with the highest value, 

0.15 ppm, being in M4 in the Arabian Gulf. Al Abdali et al. (1996) concluded that 

Cd is a natural constituent of the Gulf marine environment, and not an element 

derived from pollutant sources. 
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Figure 4.10: Spatial distribution maps showing the heavy metal distributions across 

all 58 sampling sites, which are represented by dots. The blue line represents the 

coastline and the star is the location of the BNPP. The color codes from yellow to 

green to blue correspond to concentrations from low to medium to high, 

respectively 
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Figure 4.10: Spatial distribution maps showing the heavy metal distributions across 

all 58 sampling sites, which are represented by dots (continued) 

 

 

 

51 50 0 E          52 00 0 E            52 10 0 E              52 20 0 E               52 30 0 E 



98 

 

 

 

 

 

Figure 4.10: Spatial distribution maps showing the heavy metal distributions across 

all 58 sampling sites, which are represented by dots (continued) 
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Figure 4.10: Spatial distribution maps showing the heavy metal distributions across 

all 58 sampling sites, which are represented by dots (continued) 
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4.2.4 Regional and International Comparison of Heavy Metal Average 

Concentrations 

The average concentrations of some heavy metals in this study, BNPP, is 

compared with previous studies done by Al Rashdi et al. (2015) on shore sediments 

in Abu Dhabi  and Al-Abdali et al. (1996) and El Tokhi et al. (2016) on bottom 

sediments of the Arabian Gulf (Table 4.2). The results of Al Rashdi et al. (2015) 

study for the shore sediments are higher than the current study, which proves that 

there is a wide variation in the distributions of heavy metals in Abu Dhabi depending 

on the specific areas considered. In this case, the Barakah area is less contaminated 

than Abu Dhabi (the capital) coastal line. The results by Al Rashdi et al. (2015), 

however, are comparable, for all metals, with the results founds for the soil samples 

in this study. This observation needs further investigations to assess the reasons (if 

any) for this similarity. For the bottom sediments, compared to the results reported 

by El Tokhi et al. (2016), the values in this study are less than half for all metals 

except for lead, which is present in roughly equal concentrations, 1.91 and 1.4 ppm, 

respectively. Results of Al Abdali et al. (1996) were significantly higher for all 

metals compared to those reported in this study.   The significant drop in Pb from 15-

30 ppm (according to Al Abdali et al., 1996) to 1.9 ppm in 2015 (according to El 

Tokhi et al., 2016 and to this study) may be attributed to the banned use of the leaded 

gasoline in the UAE since January 2003. Nevertheless the average concentrations of 

all heavy metals are less than the safe limits set by the Dutch guidelines (Lijzen et 

al., 2001) (Table 4.2), i.e. the guidelines accepted and referred to in Abu Dhabi. 

Thus, the area is considered unpolluted and safe. 
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Table 4.2: Heavy metal contaminations (in ppm) in BNPP (for shore, soil and bottom samples) in comparison with other studies in the UAE and 

with Dutch guidelines (Lijzen et al., 2001) 

  Cd Mo Co Cu Pb As Zn Ni V Cr Mn Fe 

Shore (BNPP) 0.03 0.1 0.4 0.78 1.14 1.4 2.8 2.1 3 3.7 26 975 

Bottom (BNPP) 0.03 0.23 0.5 1.17 1.4 1.8 3.2 4.3 4 5.3 30 1339 

Soil (BNPP) 0.05 0.89 2.6 4.18 2.43 1.6 11.5 15.4 13 17.4 124 5250 

(Al-Abdali et al., 1996) 1.2-2  -  - 15-30 15-30  - 30-60 70-80 20-30  - 300-600 10000-20000 

(Al Rashdi et al., 2015) 0.1 0.5 4.1 3.8 1.9 2.8 8.2 25.3  -  -  -  - 

(El Tokhi et al., 2016) 0.08  - 1.28  - 1.91  - 11.94 10.55 11.43 17.53 92.26 2800 

Dutch guidelines (Lijzen et al., 2001) 13 200 240 190 530 85 720 210 - 220 0 0 

 

Table 4.3: Heavy metal concentrations (in ppm) in soil samples from BNPP in comparison with other international studies 

 References Location Cd Co Cu Pb As Zn Ni Cr Mn Fe 

 This study 

(soil) 
UAE 0.05 2.6 4.18 2.43 1.6 11.5 15.4 17.4 124 5250 

 (Pradhan and 

Kumar 2014) 
India 1.3 12.4 4291 2645 17.1 776.8 126 115   4130 

 (Velea et al., 

2008) 
Romania 7   350 750   1300         

 (Zhou et al., 

2013) 
China 0.2     25 12 74 35 79     

 (Hu et al., 

2013) 
China   8.6   51.4     26 67.2 371 5092 

 (Malik et al., 

2009) 
Pakistan 36.8 35.5 26.85 121.4   94.2 85.5 155   17992 
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A comparison of heavy metal concentrations (in ppm) in soil samples from 

the BNPP to those reported in other countries similar to the current study in grain 

size and geographical latitude is shown in Table 4.3. Levels of some heavy metals 

reported from surface soils of waste recycling areas in India exceeded the safe limits 

suggested by the US Environmental Protection Agency (Pradhan and Kumar 2014) 

exposing human health to serious hazard. The heavy metal values recorded near an 

industrial area in Romania decrease with increasing the distance from the focal point 

of the industry (Velea et al., 2008). This reflects the impact of the industrial activities 

on the accumulation of heavy metals in the surrounding area. The high concentation 

values of Pb, As, Zn and Ni measured in China are due to anthropogenic sources, 

which are atmospheric deposition, sewage irrigation/fertilizers usage, and 

atmospheric deposition/ irrigation water (Zhou et al., 2013). Another study of heavy 

metals in the surface soils in one of the world’s most densely populated regions in 

China shows high mean values of Cd, Cu, Zn, and As concentrations that were over 

two times higher than the background values.  The source of Cd, Cu and Zn could be 

anthropogenic sources while Mn, Co, Fe, Cr, and Ni could be primarily derived from 

lithogenic sources (Hu et al., 2013).  The exceptionally high values of Cd (36.8 ppm) 

in Pakistan emerge from effluents of pharmaceutical industries (Malik et al., 2009). 
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Table 4.4: Heavy metal concentrations (in ppm) in shore samples from BNPP in 

comparison with other international studies. BDL stands for below detection limit 

 References Location Cd Co Cu Pb Zn Ni Cr Fe 

 This study 

(shore) 
UAE 0.03 0.4 0.78 1.14 2.8 2.1 3.7 975 

 (Ali et al., 

2014) 
Pakistan 0.4 1.1 64.2 45 68 34 171   

(Saleh & Marie 

2014) 

Yemen- 

polluted site 
2.8   39.1 4.4   8.6   100.5 

 (Saleh & Marie 

2014) 

Yemen- 

unpolluted 

sited  

2.8   39.1 4.4   8.6   100.5 

 (AbuHilal, 

1987) 

Gulf of 

Aqaba-Red 

sea 

2-

18 
 

7-

27 
 

31-

260 
19-76 15-186 

4000-

28400 

 (Gao & Chen 

2012) 
China 0.22   38.5 34.7 131.1 40.7 101.4   

 

The heavy metal concentration of the shore samples is compared with values 

reported in other coastal regions of the world that have similarity in grain size and 

geographical latitude (Table 4.4).   Based on concentration of heavy metals in 

Pakistan both enrichment and contamination factors (EF and CF) suggested 

significant influence of anthropogenic and industrial activities along the coastal belt 

of Pakistan (Ali et al., 2014). The levels of Cd, Cu, Pb, Ni and Fe in the coastal 

sediments from the Red Sea coast of Hodeida in Yemen were roughly twice as much 

in the site surrounded by industrial and domestic water wastes (polluted site) 

compared to an unpolluted site in the same area (Saleh and Marie 2014). Heavy 

metal concentrations in surface sediment samples along the Jordanian coast of the 

Gulf of Aqaba, Red Sea show higher values compared to results from current study 

and that is due to the anthropogenic activities. The coastal sediments of the Bay of 
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Bohai Sea in China are rather unpolluted indicating a limited influence of the 

anthropogenic activities (Gao and Chen 2012). 

Concentrations of heavy metals in bottom sediments of many countries across 

different continents depending on similarities in grain size and geographical latitude 

are shown in Table 4.5. India, is contaminated with Cd (Raj and Jayaprakash 2007) 

more than other countries listed in this table. The amount of copper, lead and 

chromium varies significantly from one place to another with the UAE being the 

least polluted and India being the most polluted with Cu, Pb and Cr. Arsenic and 

Zinc levels are high in both of China (Xu et al., 2015) and Ethiopia (Yohannes et al., 

2013). Iran is particularly contaminated with nickel (Keshavarzi et al., 2015). China 

has the highest concentration of Mn (Cheng et al., 2015) compared to the level 

reported in India which is the second highest. The levels of contaminations of all 

heavy metals in the UAE are the lowest among all countries listed in Table 4.5 

followed by Croatia (Zvab Rozic et al., 2012). Overall, India is the most 

contaminated country; this is because of anthropogenic activities such as industrial 

wastewater, coal-fueled iron and steel industries and municipal sewage (Raj and 

Jayaprakash 2007). The UAE is the least polluted with all metals despite the rapid 

growth of anthropogenic activity in the area. 
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Table 4.5: Heavy metal concentrations (in ppm) in bottom sediments of BNPP in comparison with other international studies 

 

 

 

 

  

 

References Location Cd Mo Co Cu Pb As Zn Ni V Cr Mn Fe 

This study 

(Bottom 

sediments) 

UAE 0.03 0.23 0.5 1.17 1.4 1.8 3.2 4.3 4 5.3 30 1339 

(Raj and 

Jayaprakash 

2007) 

India 
4.6-

7.5  

5.8-

11.8 

385-

657 

24.9-

40  

71.3-

201 

19.8-

53.4  

148.6-

243.2 
284-460 

17000

-

37000 

(Xu et al., 

2015) 
China 0.1 

  
31.1 27.9 11.2 102.3 

  
83.3 

  

(Cheng et 

al., 2015) 
China 0.11 

  
39.3 41.1 

 
72.4 

  
53.6 1633.5 

 

(Zvab Rozic 

et al., 2012) 
Croatia 

0.07-

2 

0.2-

1.4 
0.2-2.5 

1.05-

6.6 

3.3-

12.3 
2.3-8 

4.0-

33.0 

2.8-

15.6 

5.3-

19.3 
20-40 

  

(Yohannes 

et al., 2013) 
Ethiopia 0.21 

 
5.49 8.69 15.7 4.02 93.8 20.2 

 
8.27 

  

(Keshavarzi 

et al., 2015) 
Iran 0.24 

  
20.45 8.09 4.25 48.89 73.66 

 
48.79 
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4.2.5 Heavy Metal Contamination Assessment 

To evaluate the anthropogenic influences of heavy metals in the Barakah 

area, the enrichment factors are calculated using EF equation (Rubio et al., 2000): 

EF = Mx Feb/Mb Fex 

 where Mx is the average concentration of the metal in the study area, Mb is 

the concentration of the metal in the background (in ppm), sandstone average 

(Turekian and Wedepohl 1961) (in ppm), Fex is the average concentration of iron in 

the samples(in ppm) and Feb is the iron concentration in the background (in ppm). 

Enrichment factors EF < 1, EF = 1–3, 3–5, 5–10, 10–25, 25–50, EF > 50 indicate no 

enrichment (I), minor enrichment (II), moderate enrichment (III), moderate severe 

enrichment (IV), severe enrichment (V), very severe enrichment (VI) and extremely 

severe enrichment (VII), respectively (Birch, 2003). As shown in Table 4.6, the shore 

samples are the most enriched group. The enrichment is in As, followed by Cd, then 

the rest of the metals, with no enrichment exhibited for Cu. The bottom samples are 

marginally more enriched compared to the soil samples. Overall, the study area had 

minor enrichment in all metals, but no enrichment in Cu or V. For all samples, Co, 

Zn and Mn exhibited minor enrichment, but the values are at the lower end of the 

range.  

The level of contamination expressed by the contamination factor (CF) 

(Pekey, et al., 2004) is calculated as follows: 

CF = Mx /Mb 

 where Mx is the metal content in the sediment (in ppm) and Mb metal content 

in natural reference sediment (in ppm) based on sandstone average (Turekian and 
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Wedepohl 1961).  CF < 1, CF = 1–3, 3–6, CF > 6 indicate low contamination factor, 

moderate contamination factors, considerable contamination factors and very high 

contamination factor, respectively.  The CF categories are based on the 

classifications by (Pekey, et al., 2004). Results show that all the heavy metals in all 

sites and environments had CF<1 which indicate low contamination factor. 

The geoaccumulation index (Muller, 1979) is employed in order to determine 

and define metal contamination in sediments by comparing current concentrations 

with background levels and it is calculated using: 

I-geo = log2 [Cn/(1.5Bn)] 

 where Cn is the measured concentration of element n in a sample (in ppm) 

and Bn is the average for in Earth crust sandstone for the element n (in ppm) by 

(Turekian and Wedepohl 1961). Classifications of geoaccumulation indices are: class 

0 uncontaminated, class 1 uncontaminated to moderately contaminated, class 2 

moderately contaminated, class 3 moderately to strongly contaminated, class 4 

strongly contaminated, class 5 strongly to extremely contaminated and class 6 

extremely contaminated; for I-geo < 0, 0–1, 1–2, 2–3, 3–4, 4–5, and >5 (Muller 

1979).  For soil, shore and bottom samples of the study area, the geoaccumulation 

index is negative indicating that the area is classified as uncontaminated. The 

negative geoaccumulation index indicates that there has not been accumulation of 

heavy metals over the time. 

The pollution load index (PLI) proposed by Tomlinson et al. (1980) is 

obtained as a Enrichment Factor (EF) of each metal with respect to the background 

value in the sediment, by applying the following equation: 
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PLI = (EF1 x EF2 x EF3. . .x EFn)
1/n

 

 If PLI < 1 the place is not polluted, if PLI > 1 the area is polluted (Tomlinson 

et al., 1980). The pollution load index (PLI) is greater than unity in the each of the 

soil, shore and bottom samples. This means that the study area is polluted. 

Nevertheless the average concentrations of all heavy metals are an order of 

magnitude less than the safe limits set by the Dutch guidelines (Lijzen et al., 2001), 

i.e. the guidelines accepted and referred to in Abu Dhabi. Thus, even though the area 

is analytically considered polluted, it is still safe. 
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Table 4.6: The average background values, enrichments factors (EF), contamination factor (CF) and geoaccumulation indices (I-geo) for the soil, 

shore, bottom areas and overall average 

  Cd Mo Co Cu Pb As Zn Ni V Cr Mn Fe 

Earth crust (Turekian andWedepohl 1961) 0.03 0.2 0.3 5 0.2 1 16 2 20 35 50 9800 

Enrichment Factors (soil) 1.44 3.06 1.23 0.84 1.09 4.97 1.09 2.04 0.88 1.74 1.31 1 

 Enrichment Factors (shore) 4.03 1.89 1.11 0.84 2.75 5.21 1.42 1.47 1.12 2.01 1.48 1 

Enrichment Factors (bottom) 3.43 3.08 0.97 0.92 2.47 1.09 1.2 2.22 1.17 2.8 1.24 1 

Enrichment Factors 

 (overall average) 
2.97 2.68 1.10 0.87 2.10 3.76 1.24 1.91 1.06 2.18 1.34 1 

Contamination factors (soil) 0.01 0.34 0.14 0.09 0.12 0.12 0.12 0.23 0.1 0.19 0.015 0.11 

Contamination factors (shore) 0.1 0.04 0.02 0.02 0.06 0.11 0.03 0.03 0.02 0.04 0.03 0.02 

Contamination factors (bottom) 0.1 0.09 0.03 0.03 0.07 0.15 0.03 0.06 0.04 0.07 0.04 0.03 

Contamination factors  

(overall average) 
0.07 0.16 0.06 0.05 0.08 0.13 0.06 0.11 0.05 0.10 0.03 0.05 

Geoaccumulation index (soil) -3.2 -2.1 -3.5 -4 -3.6 -3.63 -3.6 -2.7 -3.9 -3 -3.4 -3.75 

Geoaccumulation index (shore) -4.2 -5.3 -6 -6.4 -4.7 -3.8 -5.7 -5.6 -6 -5.2 -5.6 -6.1 

Geoaccumulation index (bottom) -3.9 -4.1 -5.8 -5.8 -4.4 -3.41 -5.5 -4.6 -5.5 -4.7 -5.4 -5.7 

Geoaccumulation index (overall average) -3.77 -3.83 -5.10 -5.40 -4.23 -3.61 -4.93 -4.30 -5.13 -4.30 -4.80 -5.18 
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4.2.6 REE Concentration and Normalization 

The rare earth elements (REE) concentration in the study area reveals that the 

LREE are higher than the HREE, which is in accordance with the general 

distribution of REE in earth crust.  Furthermore, this behavior is expected since the 

REE contents of most shales are normally enriched in LREE relative to HREE 

(Haskin et. al., 1966).  Generally, all REE concentrations in the current study are 

below the mean REE values in earth crust (Turekian and Wedepohl, 1961) (Table 

4.7) and (Figure 4.11).  Nd is the most abundant REE in soil samples, whereas La is 

the most abundant REE in both shore and bottom sediments (Figure 4.12).  The order 

of occurrence of REE in bottom sediments is similar to that in the earth’s crust as 

described by Taylor and McLennan (1995) as show in Table 4.7. Comparison of the 

distribution of REE amongst the three depositional environments (soil, shore and 

bottom sediment) showed that soil samples have the highest concentrations of REE. 

The relatively higher concentration of REE in the soil samples may be attributed to 

erosion process.  However, REE concentration vary with in soil samples, which can 

be related to the long aeolian transport distance in case of low concentrations and the 

short aeolian distance in high concentration of REE samples (Kasper-Zubillaga et. 

al.,  2008). The studied samples displayed variations in total REE (∑REE) contents 

(Table 4.7) with mean values of 10.48, 2.80 and 4.31 ppm, in soil, shore and bottom 

sediments, respectively.  The ∑REE is higher in soil samples than in shore and 

bottom sediments.  Shore samples that are rich in carbonate showed the lowest 

values of ∑REE, those samples were characterized with the presence of shell 

fragments (calcium carbonate contents). Carbonates decrease the concentrations of 
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REE as calcareous biological debris dilute the REE abundances of the sediments 

(Chen et. al., 2013).  

 

Figure 4.11: REE average concentrations in soil, shore and bottom sediments 

compared to average background values and chondrite value 

 

 

Figure 4.12: Average concentrations of REE in soil, shore and bottom sediments 
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Table 4.7: REE average concentrations in soil, shore and bottom sediments compared to average background values and chondrite value 

  
LREE HREE 

∑REE 
La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Soil (average) 3.36 0.85 3.39 0.70 0.17 0.66 0.08 0.57 0.11 0.27 0.04 0.24 0.04 10.48 

Shore (average) 0.95 0.23 0.87 0.19 0.05 0.16 0.03 0.15 0.03 0.07 - 0.07 - 2.80 

Bottom (average) 1.59 0.32 1.26 0.26 0.07 0.24 0.05 0.20 0.05 0.11 0.03 0.10 0.03 4.31 

Earth crust (sandstone) 

(Turekian & Wedepohl, 1961) 
30 8.8 37 10 1.6 10 1.6 7.2 2 4 0.3 4 1.2  - 

Continental crust 

(Taylor & McLennan, 1995) 
30 7.1 26 4.5 0.88 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.32  

Chondrite value  

(Taylor & McLennan, 1985) 
0.4 0.14 0.71 0.2 0.09 0.31 0.1 0.38 0.09 0.2 0.04 0.25 0.0  - 
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Normalization of the analyses to reference standards such as chondrite 

(Taylor and McLennan, 1985) (values are in Table 4.7) were done since chondrites 

are thought to be compositionally similar to the original earth’s mantle (Table 4.8).  

The REE distribution patterns in soil, shore and bottom sediments indicated an 

enrichment of LREE over HREE shown by distinctly decreasing LREE trends 

accompanied by flat HREE trends (Figure 4.13).  Similar REE pattern for offshore 

marine sediments in Abu Dhabi  have been reported by El Tokhi (et. al., 2015b).   No 

depletion (anomaly) appeared in the REE distribution patterns.  The similarity of 

REE distribution patterns is not only within the same depositional environments but 

are also similar among the three depositional environments (shore, soil and bottom 

sediment).  This may indicate that the source rock of the three environments have 

similar geochemical characteristics, which is in accordance with El Tokhi et.al, 

(2015b) conclusions.  Because soil samples showed the highest REE concentrations, 

the chondrite normalized REE values were plotted for each soil sample to investigate 

the variation among sites (Figure 4.14).  It can be observed that the normalized 

values of REE concentrations of all soil samples show a wide variation in the REE 

concentrations.  It is likely that the major differences in REE concentration among 

soil samples is controlled by the aeolian transport (Kasper-Zubillaga et. al., 2008).  

Rare earth elements are mobilized, fractionated and precipitated during 

weathering processes (Prudincio et al., 1995). Variations in that behavior across the 

REE are indicated by the degree of LREE enrichment with respect to HREE.  This is 

represented by La/Yb ratio, where (La/Yb)n =(La sample /La chondrite)/(Yb 

sample/Yb chondrite); the degree of middle rare earth element (MREE) enrichments 

with respect to LREE and HREE (Tranchida et al., 2011). The concentration of the 

previously mentioned REE are used from Turekian and Wedepohl, (1961). The 
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average calculated (La/Yb)n for soil, shore and bottom sediment are  6.44, 6.35 and 

7.44, respectively (Table 4.7).  The  (La/Yb)n values are close to each other (within 

17%) indicating a similarity in the behavior across the REE in the three different 

depositional environments as well as that REE are most unlikely to have the 

anthropogenic nature.  The average (La/Yb)n value of bottom sediments is slightly 

higher than those of shore and soil.  Slightly higher (La/Yb)n ratio in the bottom 

sediments indicate LREE enrichments relative to the HREE, and the LREE 

enrichment trend become slightly lower in soil and shore where lower (La/Yb)n 

values (mean values 6.44 and 6.35, respectively.  The results of REE concentration in 

the current study were compared with REE results of (El Tokhi et. al., 2015b).  REE 

concentrations in the both studies were found to be less than those in the oceanic 

crust.  

Grain size, mineralogy, source rock composition and chemical weathering are 

the main controlling factors for the REE concentration in the bottom sediments 

(Yang et al., 2002).  The source of REE in the present study is detrital fraction 

derived from continental land as the final result of weathering processes. Since REE 

contents increased in the sand-silt-clay series (Dubinin, 2004; Sholkovitz, 1988), 

REE were measured in three grain size fractions (coarse, medium and fine) for the 

bottom sediments.  Figure 4.15 shows REE concentrations for the different grain size 

fractions of the bottom sediment.  This figure shows an overall inverse relationship 

between grain size and REE concentrations with an anomaly in Tm. The anomaly 

could be attributed to the fact that clay minerals are rich sources of REE due to their 

ability to adsorb REE onto their surfaces and to incorporate REE in their crystalline 

structure (Dubinin, 2004). 
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Figure 4.13: Concentrations of REE: LREE (La, Pr, Nd,Sm and Eu) and HREE (Gd, 

Tb, Dy, Ho, Er, Tm, Yb and Lu) normalized to the concentrations in chondrite in 

Average of soil, shore and bottom sediments 

 

 

 

Figure 4.14: Concentrations of REE: LREE(La, Pr, Nd,Sm and Eu) and HREE (Gd, 

Tb, Dy, Ho, Er, Tm, Yb and Lu) normalized to the concentrations in chondrite for all 

soil samples 
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Table 4.8: Basic statistics of REE normalized to the concentrations in chondrite normalized in soil, shore and bottom sediments 

 

LREE HREE 

(La/Yb)n 

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Soil (average) 9.16 6.20 4.77 3.03 2.00 2.14 1.46 1.51 1.34 1.08 1.18 0.96 0.94 6.44 

Shore (average) 2.58 1.67 1.22 0.84 0.54 0.52 0.48 0.41 0.42 0.29 <0.02 0.27 <0.02 6.35 

Bottom (average) 4.33 2.31 1.77 1.13 0.85 0.79 0.87 0.53 0.60 0.44 0.91 0.39 0.84 7.44 
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Figure 4.15: Average REE distribution pattern normalized to the concentrations in 

chondrite in different fraction (C coarse, M medium and F fine) of bottom sediments 

 

Both of Al and REE are considered immobile during the alteration process 

that result from temperature, chemical variables and time (Reeves et al., 2006 and 

Liaghat et al., 2003).  In this study, REE concentrations in bottom sediments showed 

significant positive correlations between Al and REE (Figure 4.16). The correlation 

coefficients range from 0.83 to 0.95, the strong relation between REE and  immobile 

Al (Land et al., 1997) indicates that REE show low or negligible mobility and are 

resistant to fractionation during weathering processes This result is in correlation 

with result obtained by Fu et al. (2011). 

 

0

1

2

3

4

5

6

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

co
n
ce

n
tr

at
io

n
 

Coarse Medium Fine



118 

 

 

 

 

Figure 4.16: Scatter diagram of Al2O3 (%) contents against REE concentration in 

ppm for bottom sediment 
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Figure 4.16: Scatter diagram of Al2O3 (%) contents against REE concentration in 

ppm for bottom sediment (continued) 
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Figure 4.16: Scatter diagram of Al2O3 (%) contents against REE concentration in 

ppm for bottom sediment (continue) 

 

4.2.7 Spatial Distribution of REE 

Spatial distribution maps are constructed using Arcmap 10.1 by interpolation 
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northern zone towards the shore.  All REE exhibit similar distribution pattern with 
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toward the west. A unique distribution is found in Lu concentration, where the 

maximum concentration are only shown in the south.  

 

 

 

 

R² = 0.9536 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

A
l 2

O
3
 %

 

Yb 



121 

 

 

 

 

 

Figure 4.17: The distribution pattern of REE in the studied area 
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Figure 4.17: The distribution pattern of REE in the studied area (continued) 
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Figure 4.17: The distribution pattern of REE in the studied area (continued) 
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Figure 4.17: The distribution pattern of REE in the studied area (continued) 

4.2.8 Regional and International Comparison of REE Average Concentrations 

 The distribution of REE in many countries across different continents 

compared to the current study based on similarity in grain size and/or geographical 

latitude is shown in Table 4.9. The surface soil around a Chinese mining area (Wang 

& Liang 2015) shows elevated concentration of REE indicating human activates and 

strong winds in that region.  A similar REE investigation near an Iranian mining area 

(Zaremotlagh & Hezarkhani 2016) reveals high concentrations of REE and thereby 

their findings are extended to REE geochemical exploration projects. The coastal 

area of both UAE (current study), Malaysia (Antonina et al., 2013) and India (Naidu 

et al., 2016) show low REE concentrations compared to the earth curst values, while 

Gd shows elevated concentration in Nigeria (Akinlua et al., 2016) due to organic 

matter origin. The bottom sediments of both Korea and china (Xu et al., 2009) show  

high content of REE while the least concentration is in UAE bottom sediments. 
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Table 4.9: REE distribution (ppm) in soil, shore and bottom sediments of BNPP in comparison with other international studies 

 

 References Location La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

so
il

 

 

This study (soil samples) UAE 3.36 0.85 3.39 0.70 0.17 0.66 0.08 0.57 0.11 0.27 0.04 0.24 0.04 

(Sultan and Shazili 2009) Malaysia 24.24 3.83 11.71 1.77 3.38 2.41 0.36 1.31 0.25 0.88 0.11 0.72 0.13 

(Zaremotlagh & 

Hezarkhani 2016) 
Iran 454.44 59.89 306.98 52.71 151.92 117.72 34.83 26.36 6.81 13.22 7.64 14.3 4.78 

(Wang & Liang 2015) China 891.59 355.20 384.44 48.16 2.76 10.30 2.50 7.85 2.06 3.19 1.36 2.90 0.69 

sh
o

re
 

This study (shore samples) UAE 0.95 0.23 0.87 0.19 0.05 0.16 0.03 0.15 0.03 0.07 <0.02 0.07 <0.02 

(Antonina et al., 2013) Malaysia 16.30 4.30 12.80 4.20 3.39 2.47 0.65 1.54 0.59 1.04 0.42 1.20 0.66 

(Akinlua et al., 2016) Nigeria 51.10 5.81 7.22 8.56 1.52 297.8 0.81 29.19 0.50 - 12.80 2.77 0.07 

(Naidu et al., 2013) India 0.17 0.04 0.15 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.01 

b
o

tt
o

m
 

This study (Bottom sediments) UAE 1.59 0.32 1.26 0.26 0.07 0.24 0.05 0.20 0.05 0.11 0.03 0.10 0.03 

(El Tokhi et al., 2015b) UAE 3.43 0.74 2.83 0.60 0.18 0.50 0.11 0.48 0.16 0.30 0.10 0.27 0.10 

(Xu et al., 2009) Korea 46.97 9.90 40.89 7.03 1.39 5.02 - 4.52 0.86 2.35 - 2.49 0.38 

(Xu et al., 2009) China 33.29 7.38 31.15 5.77 1.15 4.41 - 4.24 0.83 2.29 - 2.48 0.38 
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4.2.9 REE Contamination Assessment 

In order to calculate the enrichment factor (EF), which is widely used to 

estimate the anthropogenic impact on soil, Al is used as a conservative element to 

calculate the EF of REE (Wang and Liang, 2015).  EF is based on the normalization 

of analytical data against the reference element (Al) using the following formula 

(Sutherland, 2000): 

EF = (Ci/Cr)sample / (Ci/Cr)crust 

where Ci is the average concentration of the REE (in ppm) in the study area, 

Cr is the concentration of the REE in the background (in ppm), sandstone average 

(Turekian and Wedepohl 1961), Ci is the average concentration of Al in the samples 

and Cr is the Al concentration in the background. 

Calculation were made using content values of REE and Al in the upper 

continental crust from Turekian and Wedepohl (1961). The EF categories are based 

on the classifications by Birch (2003). As shown in Table 4.10, with exception of La 

(1.05) in shore samples, all the REE have an average EF <1 which indicate no 

enrichment. Even the average EF of the element La value in shore samples is slightly 

above the limit of this category. Most of LREE had average EF value slightly higher 

than HREE average, reflecting a relatively LREE enrichment influenced by the 

prevailing wind in this region. Enrichment factor (EF) of the different REE shows 

the order shore>soil>bottom, indicating that the shore samples were relatively 

enriched the most among other samples. 

Contamination factor (CF) (Pekey, et al., 2004) is calculated also using the 

metal content in natural reference sediment is based on (Turekian and Wedepohl 



127 

 

 

 

1961).  The CF categories are based on the classifications by (Pekey, et al., 2004). 

Results show that all the REE in all sites and environments had CF<1 which indicate 

low contamination factor.   

The pollution load index is calculated using the same equation used in heavy 

meal assessment (Tomlinson et al., 1980). Pollution load index of shore, soil and 

bottom samples (Table 4.10) is 0.68, 0.51 and 0.17, respectively. All PLI is < 1, 

indicating no pollution.  

The geoaccumulation index is calculated also using the average for sandstone 

for the element n by (Turekian & Wedepohl, 1961). All shore, soil and bottom 

sediments show I-geo <1, which fall in uncontaminated class (Table 4.10).  The 

negative values of geoaccumulation index indicate that the studied area is classified 

as uncontaminated. 
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Table 4.10: Average enrichment factors (EF), contamination factors (CF) and geoaccumulation indices (I-geo) for the soil, shore and bottom 

areas and for all samples together (overall average) 

  La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Earth crust (Turekian and Wedepohl 1961) 30 8.8 37 10 1.6 10 1.6 7.2 2 4 0.3 4 1.2 

Enrichment Factors (soil) 0.81 0.69 0.66 0.5 0.78 0.47 0.36 0.58 0.39 0.49 0.82 0.43 0.17 

 Enrichment Factors (shore) 1.05 0.89 0.8 0.66 0.96 0.56 0.57 0.73 0.37 0.61 - 0.59 - 

Enrichment Factors (bottom) 0.28 0.23 0.22 0.17 0.27 0.15 0.17 0.18 0.16 0.17 0.73 0.16 0.01 

Enrichment Factors (overall average) 0.71 0.60 0.56 0.44 0.67 0.39 0.37 0.50 0.31 0.42 0.78 0.39 0.09 

Contamination factors (soil) 0.11 0.10 0.09 0.07 0.11 0.07 0.05 0.08 0.06 0.07 0.13 0.06 0.03 

 Contamination factors(shore) 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02  - 0.02  - 

Contamination factors (bottom) 0.05 0.04 0.03 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.10 0.03 0.03 

Contamination factors  (overall average) 0.06 0.06 0.05 0.04 0.06 0.04 0.03 0.04 0.04 0.04 0.12 0.04 0.03 

Geo-accumulation index (soil) -3.7 -3.9 -4.0 -4.4 -3.7 -4.5 -4.8 -4.2 -4.79 -4.4 -3.4 -4.6 -5.6 

Geo-accumulation index (shore) -5.6 -5.8 -6 -6.2 -5.7 -6.5 -6.5 -6.1 -6.4 -6.4 - -6.4 - 

Geo-accumulation index (bottom) -5.1 -5.3 -5.4 -5.8 -5.2 -5.9 -6.0 -5.7 -6.2 -5.8 -4.2 -6.0 -5.8 

Geo-accumulation index (overall average) -4.8 -5.0 -5.1 -5.5 -4.9 -5.6 -5.8 -5.3 -5.8 -5.5 -3.8 -5.7 -5.7 
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4.3 Radiology 

4.3.1 Radionuclide Gamma and Alpha Activity 

To observe the variation in gamma activity concentrations and hazard 

parameters, Figure 4.18 shows this tendency for each environment and sites, 

respectively. Generally, the gamma radioactivity concentrations in shore samples are 

much lower than the concentration in soil (due to tidal fluctuation and wave currents) 

and slightly lower than bottom sediments (shore samples<bottom sediments<soil 

samples) (Figure 4.18) and all are lower than the world average set by UNSCEAR 

(2000). The highest activity concentration of 
238

U (
226

Ra) is found in site S11 (soil 

sample) which is higher than the world average value (33 Bq/kg). In the case were 

226
Ra concentration activity is much higher than world average, radioactive 

equilibrium is significantly disturbed with the 
226

Ra/
238

U ratio reaching high values 

(Anagnostakis et al., 2002). The high activity concentration of 
226

Ra in S11 indicates 

a transport of 
226

Ra to that surface soil. Furthermore, all the averages of the different 

three environments are below the world average value. These results demonstrate 

that the source of 
226

Ra is natural and is coming from 
238

U that had been incorporated 

in the sediments long time ago. The activity concentrations of 
232

Th for all samples 

are lower than the activity concentration of the world average value (45 Bq/kg). 

The activity concentrations of 
40

K show a maximum value measured in 

bottom sediment found in M17, which locate to the east of the area where Jebel 

AlDhannah port is located. Other than anthropologic factor (due to harbor activities), 

high activity may be due to the muddy texture of M17 sample that lead to adsorption 

of radionuclides in lattice defects or onto crystal and grain boundaries (Baeza et al., 

1995). High 
40

K activity concentrations indicate high percentage of potassium level 
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that may come from K-feldspar such as microcline and anorthoclase as showed from 

mineralogical composition of the samples. Although there are wide variations in the 

activity concentrations of 
40

K in the studied area, but all the activity concentrations 

averages of soil, shore and bottom sediment samples are below the world average 

values (420 Bq/kg).  

Variation of radionuclides activities from one environment to another is 

expected while the difference in the same environment could be attributed to the 

physical and chemical sorting processes from one location to another.  Activity 

concentrations are in the order 
40

K>
238

U (
226

Ra)>
232

Th in all sampling sites (except 

soil samples S19 & S21), where 
232

Th
 
activity concentrations are slightly higher than 

238
U (

226
Ra).  The higher activity concentrations found in soil could be explained in 

relation to geologic structure of the studied area, which is mainly Baynunah 

Formation (Miocene-age sandstones and limestones) (Whybrow et. al., 1999).  The 

extensively eroded Miocene rocks is thought to be the origin of this sand which has 

been transported south to create the extensive dune fields that occupy much of the 

southern part of the area.  

Our spectroscopic data indicate absence of 
137

Cs peak in the runs of all 

samples. This observation is in accordance with the global distribution of 
137

Cs 

atmospheric nuclear tests fallout (UNSCEAR, 1993) which suggests insignificant 

activity in the UAE soils. 

The Estimated values of Radium equivalent and absorbed dose as shown 

Figure 4.18 are higher in soil while both shore and bottom sediments shows close 

values. Radium equivalent shows values less than the safe limit value 370 Bq/kg set 

by (UNSCEAR, 2000).  Furthermore, the estimated absorbed dose in shore, soil and 
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bottom sediment samples is much less than the world average (57 nGy/hr) set by 

(UNSCEAR, 2000). The estimated contribution by individual components of natural 

radioactivity shows 
40

K as the biggest contributor to the absorbed dose.  

 

 

Figure 4.18: Average values of the radiological activities and radium equivalent in 

(Bq/kg) and absorbed dose (nGy/hr) 

 

The alpha analysis result (see Table 3.22) shows that the 
234

U/
238

U activity 

ratios show wide range from 0.59 to 2.24.  In closed systems older than 10
6
 years 

238
U decay chain should be at equilibrium where 

234
U/

238
U is approximately equal 1 

in activity ratio (Holden, 1990, Cheng et al., 2000).  The current study is done in 

open system where the daughter to parent (
234

U/
238

U) activity ratio is out of secular 

radioactive equilibrium.  The depletion of 
238

U in natural objects is a well-known 

phenomenon (Rosholt 1959 and Thurber 1962) and more other workers.  Two main 

factors affect the disequilibrium, the direct recoil of 
232

Th and its fast decay to 
234

U 

near mineral grain boundaries and the leaching processes of 
234

U from crystal lattices 
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that are damaged by energetic alpha decay (Andersen et al, 2009; Tokarev, 2005).  

Thus, the observed disequilibrium in the current data can be attributed to the geology 

of the area. The Western area of Abu Dhabi emirate contains terrestrial sediments 

related to the Miocene period.  The substrate of this Miocene consists of a sequence 

of marls, sandstone, limestone and evaporation occurred southward and gently 

dipping (AlSharhan and Kendall, 2003). The presence of evaporites and carbonates 

can cause high 
234

U/
238

U ratio disequilibrium due to fractionation from water-rock 

interactions (Riotte and Chabaux, 1999). Faure and Mensing (2005) illustrated how 

uranyl ion (UO2 
2+

) tends to form carbonate complexes, thus observable 

concentrations of U would be found in Ca carbonates minerals. 

Correlation between the activities of 
238

U (
226

Ra) and 
232

Th and between 
238

U 

(
226

Ra) and 
40

K and between 
232

Th and 
40

K is presented in Figure 4.19.  It is obvious 

that all the correlations in soil samples is rather weak, with correlation coefficient of 

0.3 or less.  Correlation between 
238

U (
226

Ra) and 
40

K and between 
232

Th and 
40

K 

activities in shore samples show weak but relatively higher than soil samples.  A 

good correlation exists between 
238

U (
226

Ra) and 
232

Th in shore samples (R2=0.52), 

which agrees with a previous study on the correlation between 
238

U (
226

Ra) and 
232

Th 

in Egypt done by Eissa et al. (2010).  In bottom samples a significant correlation is 

found between 
238

U (
226

Ra) and 
40

K (R2=0.97), which indicate that the presence of 

40
K activities is related to the presence of 

238
U (

226
Ra) in bottom samples. 
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Figure 4.19: Correlation between 
238

U (
226

Ra), 
232

Th and 
40

K in different 

environments (shore, soil and bottom) 
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4.3.2 Spatial Distribution of Radionuclide Activity Concentrations 

 The spatial distribution (radiological map) of the measured radiological 

activities, radium equivalent and absorbed dose in the studied area is plotted in 

Figure 4.20. For plotting spatial distribution, Arcmap 10.1 was used by interpolation 

method (kernel smoothing). Interpolation method allows us to estimate activity 

values in a regularly distributed grid and to represent the corresponding activity 

fields. Two areas are observed with highest values at east and south portions of the 

map. The concentrations decrease from the south to the north, the highest activity 

concentrations of radionuclides as well as the absorbed dose are observed in the 

south where soil samples were collected.  The north and west areas of the maps show 

lower activity concentrations where both shore and bottom sediment samples were 

collected.  Tidal fluctuation and wave currents effectively lower the activity 

concentrations of radionuclides in shore sediments and that indicate the low 

measured values in the current study.  It can be seen that to the northern east of the 

map there is a slight increase in the radionuclides activities, Radium equivalent and 

absorbed dose readings.  The eastern part represents Jebel AlDhannah port where 

some anthropogenic activities are present and that may positively affect the activity 

concentrations of the radionuclides and other hazard parameters. 
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Figure 4.20: Spatial Distribution pattern of radionuclides activities, Rad.eq. and abs. 

dose in the studied area 
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Figure 4.20: Spatial Distribution pattern of radionuclides activities, Rad.eq. and abs. 

dose in the studied area 

4.3.3 Regional and World Average Comparison of Radionuclide Activity 

Concentrations 

Some measured values of radionuclides activities presented from other 

researchers are given for comparison in Table 4.11.  Activity concentrations of 

radionuclide in soil for Oman, Yemen and Jordan are below the world average 

except India, which was very high.  On the other hand, the estimated activity 

concentrations of the current study is close with the published data done by (Alali, 

2003) on shore sediments in Abu Dhabi.  Moreover, the activity concentrations of 

radionuclide in shore of Chain and Gulf of Aqaba are very close that of UAE, while 
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beaches of Iran and Turkey shows elevated activity concentrations for all 

radionuclides.  Furthermore, radionuclide activity concentrations in bottom 

sediments of the current studied area are very close to that of Gulf of Aqaba while 

the estimated activity concentrations of 
238

U of Red Sea is higher than the world 

average. 

Table 4.11: International and regional comparison of radionuclide activity 

concentrations (in Bq/kg) 

 
 References Location 

238
U 

(
26

Ra) 
232

Th 
40

K  

so
il

 

 

This study (soil samples)

  
UAE 15.68 8.31 349.72 

(Kannan et al., 2002) India 36-258 
352-

3872 
324-405 

(Saleh , 2012) Oman 14.4 9.95 158.2 

(Abd El-Mageed et al., 

2011) 
Yemen 44.4 58.2 822.7 

(Ahmad et al., 1997) Jordan 9.9 20.1 88.7 

sh
o
re

 

This study (shore samples) UAE 4.43 1.68 106.30 

(Alali, 2003) UAE 26.38 4.78 219.21 

(Lu & Zhang 2008) China 7.6-17.2 7.8-25.1 
883.4-

1313.6 

(Abdi et al., 2009) Iran 177 117 1085 

(Al-Trabulsy et al., 2011) 
Gulf of 

Aqaba 
11.4 22.5 641.1 

(Orgun et al., 2007) Turkey 290.4 532.0 1160.8 

b
o
tt

o
m

 

This study (Bottom 

sediments) 
UAE 1.59 0.32 1.26 

(Ababneh et al., 2010) 
Gulf of 

Aqaba 
3.43 0.74 2.83 

(Al-Zahrany et al., 2012) Red Sea 35.3 0.92 34.34 

Worldwide values (UNSCEAR, 

2000) 
- 33 45 420 
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4.4 Relationships between Heavy Metals, Rare Earth Elements (REE) and 

Natural Radioactivity Concentrations 

 In order to investigate the correlations between heavy metals, REE and 

natural radionuclides in all studied soil, shore and bottom sediment samples, some 

statistical analysis including the correlation matrix (Pearson correlation coefficient) 

and cluster analysis were carried out using SPSS program.   

4.4.1 Pearson Correlation Coefficient 

Pearson correlation coefficient (Rollinson, 1993) is used to study the 

correlation (at 95% level) between radionuclides, major oxides, heavy metals, and 

REE in the studied samples.  Table 4.12 and 4.13 represent the correlation matrix 

between all elements in soil samples.   Some major oxides such as Al2O3, FeO and 

K2O are highly positively correlated with some heavy metals in the studied soil 

samples.  It is clear from this correlation that, in soil, FeO plays an important role in 

adsorbing heavy metal elements (Teemofeeva and Golov, 2007). The negative 

correlation of both Ca and Sr with all heavy metals and major oxides in soil samples 

indicate evaporitic source of Ca and Sr.  This is supported by the mineralogical 

composition of soil samples that shows the presence of both aragonite and calcite. 

  Both Co and Mn show significant positive correlation with most of the rest 

elements except for Ca where the relation is negative. This can be related to that Co 

and Mn are mainly controlled by the content of continental clay (Fruth and 

Scherreiks, 1975). Significant positive correlations were found among major oxides 

and heavy metals (Table 4.12), especially Cu-Zn (R2=0.89), Cu-Co (R2=0.93), Cu-

Mn (R2=0.75), Cu-V (R2=0.91), Cu-Cr (R2=0.89), Mn-V (R2=0.88), Al2O3-Cr 

(R2=0.94) and Al2O3-Cu (R2=0.93). 
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On the other hand, 
232

Th shows significantly negative correlation with Ca and 

positive correlation with SiO2 and Al2O3 (Table 4.13).  Table 4.13 also shows 

significant positive correlation between 
40

K and SiO2 (R2=0.82), which may be 

interpreted as presence of some anorthoclase and microcline minerals as indicated 

from mineralogical composition of the soil samples and the high measured activity 

concentration of 
40

K by gamma analysis in the current study. 

Correlations between major oxides (%) and heavy metals (ppm) in shore 

samples are shown in Table 4.14. The strong positive correlation between Sr - Ca 

suggests that strontium is associated with Ca in marine biogenic carbonate material. 

The presence of relatively high Sr concentration indicates the presence of significant 

amount of aragonite (Fernandez-Bastero et al., 1999).  This agree with the biogenic 

origin of most of the carbonate deposits of the Arabian Gulf (Ellis and Milliman, 

1985).  Furthermore, this explanation is supported by the mineralogical composition 

of the shore samples where it shows the presence of aragonite as a major and 

moderate in many sites as well as the high carbonate content (average of 67.70 %). 

Significant correlation is found among major oxides and heavy metals (Table 4.14), 

especially Cu-Zn (R2=0.64), Cu-Co (R2=0.79), Cu-Mn (R2=0.91), Cu-V (R2=0.65), 

Cu-Cr (R2=0.89), Mn-Cr (R2=0.95), Al2O3-Cr (R2=0.95).   

Table 4.15 shows the correlation of 
238

U, 
232

Th, 
40

K (Bq/kg) and major oxides 

(%) in shore samples.  There are negative correlations between each of Ca and Sr 

with 
238

U, 
232

Th, 
40

K. On the other hand, SiO2 and Al2O3 show positive correlations 

with 
238

U, 
232

Th, 
40

K. Moreover, all major oxides and heavy metals are negatively 

correlated with Ca and Sr but positively correlated with SiO2 and Al2O3. The 
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previous relations may pointing that uranium and thorium has detrital sources 

possibly associated with silicate minerals. 

Table 4.16 and 4.17 represent the correlation matrix between all elements in 

bottom sediments.  Table 4.16 shows many significant positive correlations   

between Al2O3, FeO and K2O with some metals or among heavy metals.  These 

significant positive correlations especially for Mn and Fe with other heavy metals are 

due to oxidation and reduction process in solutions that are controlled by the activity 

of free electrons (Sposito, 1983).  Both Mn and Fe have different valences and many 

heavy metals such as Cu, Co, Cr, and Ni are associated with their oxides. 

Mineralogical shows minerals such as magnesite (Oxide of iron, manganese, 

niobium, and tantalum). MgO shows negative correlation with most of the elements 

except Ca and Sr.  Magnesium is a major constituent of carbonate minerals such as 

dolomite CaMg(CO3)2, which is present in bottom sediment samples as revealed by 

mineralogical composition of the samples.  Significant correlation is found among 

major oxides and heavy metals (Table 4.16), especially Cu-Ni (R2=0.81), Cu-Co 

(R2=0.82), Cu-FeO (R2=0.81), Cu-K2O (R2=0.81), Zn-Ni (R2=0.92), Zn-Co 

(R2=0.93), Zn-Mn (R2=0.94), Zn-FeO (R2=0.93), FeO-Cr (R2=0.96), Al2O3-Cr 

(R2=0.98), Al2O3-Co (R2=0.98). 

Table 4.17 shows significant positive correlation between 
40

K and SiO2 

(R2=0.84), which is similar to soil samples in addition to a significant negative 

correlation of 
40

K with both Sr and Ca. Both 
232

Th and 
238

U show significantly 

negative correlation with Ca and Sr, in addition to significantly positive correlation 

with SiO2 and Al2O3.  Soil, shore and bottom sediment samples have positive 

correlations between SiO2 and 
232

Th, suggesting a terrigenous source of 
232

Th.  This 
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result is supported by Al Rashdi and Siad (2015) findings on Abu Dhabi beach 

sediments. 

Using person correlation between the activity concentrations of 
238

U, 
232

Th, 
40

K 

(Bq/kg) and the ∑REE in soil, shore and bottom sediment samples (Tables 4.18-

4.20) indicate that the 
238

U and 
232

Th content is significantly positive correlated with 

the ΣREE content in shore and bottom sediments.  On the other hand, soil samples 

exhibit significantly positive correlation between 
232

Th and ΣREE while a lower 

positive correlation between ΣREE and each of 
238

U and 
40

K, which is in agreement 

with the findings reported by Popic et al., 2001 in soil samples in Norway. 
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Table 4.12: Pearson correlation coefficients between major oxides (%) and heavy metals (ppm) in soil samples (red values indicate significant 

correlation at 0.01 level) 

  Cu Pb Zn Ni Co Mn Cd V Cr As Mo Ca Sr SiO2% FeO% MgO% Al2O3% Na2O% K2O% ∑REE 

Cu 1.00                                      

Pb 0.53 1.00                                    

Zn 0.89 0.61 1.00                                  

Ni 0.51 0.50 0.59 1.00                                

Co 0.93 0.64 0.90 0.71 1.00                              

Mn 0.75 0.65 0.70 0.46 0.83 1.00                            

Cd 0.47 0.47 0.53 0.34 0.59 0.82 1.00                          

V 0.91 0.53 0.83 0.43 0.89 0.88 0.58 1.00                        

Cr 0.89 0.37 0.86 0.54 0.83 0.49 0.24 0.76 1.00                      

As -.12 0.10 -.08 0.07 -.13 -.03 -.10 -.06 -.06 1.00                    

Mo 0.42 0.28 0.36 0.35 0.51 0.66 0.57 0.53 0.26 -.03 1.00                  

Ca -.49 -.48 -.40 -.31 -.57 -.60 -.42 -.56 -.28 0.50 -.38 1.00                

Sr -.08 0.02 -.05 -.03 -.06 0.05 0.21 -.04 -.06 0.08 -.09 0.24 1.00              

SiO2% 0.27 0.38 0.14 -.13 0.28 0.39 0.27 0.33 0.07 -.36 0.13 -.76 -.15 1.00            

FeO% 0.95 0.52 0.85 0.44 0.91 0.77 0.49 0.90 0.85 -.28 0.40 -.63 -.07 0.43 1.00          

MgO% 0.48 0.38 0.51 0.47 0.51 0.58 0.46 0.58 0.42 0.41 0.63 -.06 -.13 -.27 0.33 1.00        

Al2O3% 0.93 0.42 0.87 0.36 0.84 0.58 0.34 0.83 0.94 -.16 0.24 -.39 -.07 0.28 0.91 0.33 1.00      

Na2O% 0.18 .04 0.16 0.50 0.25 0.19 0.15 0.16 0.13 -.24 0.30 -.18 -.15 -.39 0.16 0.30 0.02 1.00    

K2O% 0.78 0.50 0.83 0.43 0.76 0.59 0.45 0.73 0.72 -.31 0.24 -.48 -.22 0.18 0.78 0.40 0.79 0.36 1.00  

∑REE 0.88 0.60 0.80 0.312 0.84 0.75 0.52 0.83 0.75 -.30 0.22 -.62 0.04 0.55 0.94 0.18 0.88 0.01 0.76 1.00 
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Table 4.13: Pearson correlation coefficients between 
238

U, 
232

Th, 
40

K (Bq/kg) and major oxides (%) in soil samples (red values indicate 

significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Ca Sr SiO2% FeO% MgO% Al2O3% Na2O% K2O% 
238

U 1.00                     
232

Th 0.13 1.00                   
40

K 0.25 0.53 1.00                 

Ca -.33 -.62 -.86 1.00               

Sr 0.27 -.02 -.15 0.24 1.00             

SiO2% 0.25 0.57 0.82 -.76 -.15 1.00           

FeO% 0.26 0.68 0.42 -.63 -.07 0.43 1.00         

MgO% 0.24 -.17 -.25 -.06 -.13 -.27 0.33 1.00       

Al2O3% 0.12 0.55 0.25 -.39 -.07 0.28 0.91 0.33 1.00     

Na2O% -.02 -.01 -.11 -.18 -.15 -.39 0.16 0.30 0.02 1.00   

K2O% 0.13 0.47 0.36 -.48 -.22 0.18 0.78 0.40 0.79 0.36 1.00 
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Table 4.14: Pearson correlation coefficients between major oxides (%) and heavy metals (ppm) in shore samples (red values indicate significant 

correlation at 0.01 level) 

  Cu Pb Zn Ni Co Mn Cd V Cr As Mo Ca Sr SiO2% FeO% MgO% Al2O3% NA2O% K2O% ∑REE 

Cu 1.00                                      

Pb 0.58 1.00                                    

Zn 0.64 0.67 1.00                                  

Ni 0.57 0.37 0.52 1.00                                

Co 0.79 0.44 0.53 0.50 1.00                              

Mn 0.91 0.44 0.50 0.64 0.69 1.00                            

Cd 0.26 0.24 0.27 0.14 0.24 0.34 1.00                          

V 0.65 0.15 0.35 0.31 0.33 0.73 0.27 1.00                        

Cr 0.89 0.50 0.45 0.64 0.66 0.95 0.13 0.60 1.00                      

As 0.02 -.10 -.30 -.37 -.12 0.08 0.50 0.21 -.03 1.00                    

Mo 0.48 0.25 0.38 0.15 0.03 0.43 -.27 0.46 0.45 0.00 1.00                  

Ca -.75 -.34 -.30 -.41 -.48 -.79 -.32 -.52 -.77 -.38 -.42 1.00                

Sr -.81 -.46 -.54 -.44 -.64 -.81 -.38 -.56 -.73 -.27 -.48 0.85 1.00              

SiO2% 0.70 0.28 0.13 0.36 0.44 0.78 0.13 0.46 0.82 0.33 0.46 -.94 -.78 1.00            

FeO% 0.57 0.36 0.16 0.23 0.42 0.44 -.37 0.03 0.63 -.08 0.43 -.58 0.45 0.68 1.00          

MgO% 0.52 0.30 0.59 0.42 0.60 0.54 0.33 0.55 0.40 0.05 0.18 -.29 -.67 0.21 -.05 1.00        

Al2O3% 0.82 0.50 0.31 0.53 0.56 0.87 0.12 0.51 0.95 0.09 0.40 -.82 -.67 0.87 0.70 0.20 1.00      

NA2O% -.03 0.07 -.18 0.05 -.06 0.08 -.04 -.35 0.23 0.00 -.03 -.28 -.07 0.40 0.30 -.39 0.36 1.00    

K2O% 0.54 0.15 -.09 0.10 0.34 0.53 -.17 0.20 0.67 0.19 0.37 -.75 -.50 0.87 0.82 -.13 0.76 .50 1.00  

∑REE 0.84 0.43 0.38 0.61 0.61 0.92 0.21 0.56 0.94 0.12 0.42 -.90 -.80 0.91 0.66 0.34 0.96 0.28 0.71 1.00 
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Table 4.15: Pearson correlation coefficients between 
238

U, 
232

Th, 
40

K (Bq/kg) and major oxides (%) in shore samples (red values indicate 

significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Ca Sr SiO2% MgO% Al2O3% Na2O% K2O% 
238

U 1.00                  
232

Th 0.72 1.00                
40

K 0.60 0.64 1.00        

Ca -.72 -.78 -.89 1.00             

Sr -.61 -.53 -.81 0.85 1.00           

SiO2% 0.64 0.77 0.89 -.94 -.78 1.00         

FeO% 0.33 0.43 0.58 -.58 -.45 0.68         

MgO% 0.30 0.03 0.41 -.29 -.67 0.21 1.00       

Al2O3% 0.76 0.81 0.76 -.82 -.67 0.87 0.20 1.00     

Na2O% 0.04 0.54 0.32 -.28 -.07 0.40 -.39 0.36 1.00   

K2O% 0.40 0.60 0.75 -.75 -.50 0.87 -.13 0.76 0.50 1.00 
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Table 4.16: Pearson correlation coefficients between major oxides (%) and heavy metals (ppm) in bottom sediments (red values indicate 

significant correlation at 0.01 level) 

  Cu Pb Zn Ni Co Mn Cd V Cr As Mo Ca Sr SiO2% FeO% MgO% Al2O3% Na2O% K2O% ∑REE 

Cu 1.00                                      

Pb 0.29 1.00                                    

Zn 0.75 0.14 1.00                                  

Ni 0.81 0.08 0.92 1.00                                

Co 0.82 0.09 0.93 0.98 1.00                              

Mn 0.68 -.07 0.94 0.96 0.94 1.00                            

Cd 0.31 -.41 0.62 0.60 0.57 0.69 1.00                          

V 0.78 -.06 0.78 0.92 0.92 0.85 0.52 1.00                       
 

Cr 0.79 0.00 0.92 0.97 0.98 0.95 0.57 0.92 1.00                      

As 0.57 0.16 0.12 0.37 0.34 0.16 0.03 0.53 0.31 1.00                    

Mo 0.77 0.28 0.39 0.64 0.59 0.46 0.18 0.68 0.57 0.80 1.00                  

Ca -.54 -.56 -.74 -.65 -.68 -.61 -.15 -.50 -.65 0.01 -.28 1.00                

Sr -.51 -.55 -.73 -.69 -.69 -.67 -.23 -.47 -.65 -.02 -.31 0.88 1.00              

SiO2% 0.47 0.35 0.74 0.65 0.65 0.69 0.18 0.47 0.68 -.17 0.20 -.88 -.80 1.00            

FeO% 0.81 0.20 0.93 0.96 0.97 0.92 0.46 0.88 0.96 0.31 0.59 -.78 -.75 0.78 1.00          

MgO% -.11 -.21 -.45 -.22 -.23 -.31 -.14 -.05 -.25 0.41 0.15 0.59 0.36 -.74 -.37 1.00        

Al2O3% 0.77 0.06 0.91 0.98 0.98 0.94 0.56 0.93 0.98 0.35 0.59 0.68 -.66 0.68 0.97 -.27 1.00      

Na2O% 0.47 0.26 0.06 0.24 0.25 0.07 -.07 0.34 0.17 0.64 0.66 0.11 -.01 -.31 0.17 0.61 0.19 1.00    

K2O% 0.81 0.09 0.82 0.93 0.93 0.84 0.59 0.93 0.90 0.55 0.72 -.53 -.53 0.44 0.89 -.05 0.93 0.44 1.00  

∑REE 0.72 0.02 0.94 0.95 0.95 0.97 0.53 0.86 0.97 0.18 0.47 -.70 -.70 0.79 0.97 -.39 0.96 0.04 0.83 1.00 
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Table 4.16: Pearson correlation coefficients between 
238

U, 
232

Th, 
40

K (Bq/kg) and major oxides (%) in bottom sediments (red values indicate 

significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Ca Sr SiO2% MgO% Al2O3% Na2O% K2O% 
238

U 1.00                   
232

Th 0.71 1.00                 
40

K 0.66 0.98 1.00               

Ca -.53 -.74 -.75 1.00             

Sr -.49 -.71 -.73 0.88 1.00           

SiO2% 0.64 0.81 0.84 -.88 -.80 1.00         

MgO% -.19 -.46 -.53 0.59 0.36 -.74 1.00       

Al2O3% 0.75 0.94 0.91 -.68 -.66 0.68 -.27 1.00     

Na2O% 0.01 0.03 -.08 0.11 -.01 -.31 0.61 0.19 1.00   

K2O% 0.59 0.81 0.75 -.53 -.53 0.44 -.05 0.93 0.44 1.00 
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Table 4.17: Pearson correlation coefficients between the activity concentrations of 
238

U, 
232

Th, 
40

K (Bq/kg) and the REE (in ppm) in soil samples (red values indicate 

significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Rad. eq. 
Abs. 

dose 
∑ REE 

238
U 1.00           

232
Th 0.13 1.00         

40
K 0.25 0.53 1.00       

Rad. eq. 0.76 0.62 0.76 1.00     

Abs. 

dose 

0.74 0.61 0.79 0.99 1.00   

∑ REE 0.31 0.76 0.51 0.65 0.64 1.00 

 

 

Table 4.18: Pearson correlation coefficients between the activity concentrations of 
238

U, 
232

Th, 
40

K (Bq/kg) and the REE (in ppm) in shore samples (red values indicate 

significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Rad. eq. 
Abs. 

dose 
∑ REE 

238
U 1.00           

232
Th 0.72 1.00         

40
K 0.6 0.64 1.00       

Rad. eq. 0.76 0.77 0.96 1.00     

Abs. 

dose 
0.74 0.75 0.97 0.99 1.00   

∑ REE 0.78 0.81 0.82 0.89 0.89 1.00 

 

 

Table 4.19: Pearson correlation coefficients between the activity concentrations of 
238

U, 
232

Th, 
40

K (Bq/kg) and the REE (in ppm) in bottom sediment samples (red 

values indicate significant correlation at 0.01 level) 

  
238

U 
232

Th 
40

K Rad. eq. 
Abs. 

dose 
∑ REE 

238
U 1.00           

232
Th 0.71 1.00         

40
K 0.66 0.98 1.00       

Rad. eq. 0.78 0.98 0.98 1.00     

Abs. 

dose 

0.77 0.98 00.98 1.00 1.00   

∑ REE 0.75 0.97 0.96 0.97 0.97 1.00 
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4.4.2 Cluster Analysis of Soil, Shore and Bottom Sediment Samples 

Cluster analysis is the simplest form of meaningfully grouping of measured 

variables (David, 1973).  Cluster analysis is also define as a multivariate technique 

extensively using by numerical taxonomists (Sokal and Sneath, 1963).  Dendrogram 

is a method of showing the degree of similarity between multivariate objects.  The 

samples with closest relation will lie near each other (Rock, 1988 and Haan, 2002).   

Hierarchical agglomerative cluster analysis is performed using 26 variables; 

radionuclides, REE, heavy metals, and major oxides (
238

U, 
232

Th, 
40

K, Abs. dose, 

Raeq, ∑ REE, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cd, V, Cr, As, Mo, Ca, Sr, SiO2%, FeO%, 

MgO%, Al2O3%, Na2O%, K2O% ) for each environments (soil, shore and bottom 

sediments) using Centroid method with Squared Euclidean distances as a measure of 

similarity. The results is presented as dendrograms (Figures 4.21-4.23) for soil, shore 

and bottom sediments, respectively. The three dendrograms are almost similar 

showing that all elements are cluster together except Fe and Sr.   In soil dendrogram 

(Figure 4.21), elements cluster with Sr at linkage distance of 8, then Fe will join the 

association at linkage distance of 25.  While elements cluster with Fe at  linkage 

distance of 2 and 7 in shore (Figure 4.22) and bottom sediments (Figure 4.23), 

respectively.  Finally, Sr linked the association at linkage distance of 25 for both.  

While  

The association of these elements can be explained using XRD analysis 

results.  Quartz and/or aragonite are the main composition for shore and bottom 

sediments, while for soil it is quartz.  Therefore, the elements associations in shore 

and bottom sediments indicate the dominance of carbonate minerals while the 

association of soil samples is terrestrial origin.  
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Figure 4.21: Dendrogram for soil samples using centroid method 

 

Figure 4.22: Dendrogram for shore samples using centroid method 
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Figure 4.23: Dendrogram for bottom sediment samples using centroid method 
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Chapter 5: Conclusion and Recommendation 

 

5.1 Concluding Summary 

The aim of this study is to examine the heavy metal concentrations and the 

activity concentrations of gamma-emitting natural radionuclides, in addition to 

determination of  
234

U and 
238

U activity ratio of the area surrounding the nuclear 

power plant in the UAE, the Barakah Nuclear Power Plant (NPP).  Moreover, to 

establish a documented radiological reference data about Barakah area pre-operation 

of BNPP to enable the assessment of revealing any radioactive contamination and 

evaluate any associated environmental impact, after the nuclear power plant 

commences.  The current study will be the first published radiological study focuses 

on the Barakah NPP site.   

Based on the obtained results and discussion, the following main conclusions 

and recommendations can be drawn out: 

 Fifty-eight samples were collected across three areas, Sila, Barakah and 

Jebel Dhannah, and were grouped in three categories, “soil”, shore” and 

“bottom” depending on where the samples were collected from.  

 On average, soil samples showed more heavy metal concentrations than 

the bottom samples, which in turn, were higher than the shore samples. 

Overall, iron and manganese were present in the highest concentrations, 

while cadmium was present in the lowest concentrations. 

 According to the grain size analysis, most of the samples were mainly 

composed of medium to course sand. The inverse relationship between 
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the grain size and the contamination of heavy metals was observed for all 

metals. 

 All heavy metals concentrations were significantly below the UAE soil 

contamination safe limits. The levels of heavy metals and REE reported 

in the current study were lower than levels reported in the soil, shoe and 

bottom sediments of countries around the world. 

 Enrichment factor calculated for heavy metals showed no to moderate 

enrichment (As and Cd). While the contamination factor (CF) was CF<1 

which indicate low contamination factor. Geoaccumulation results 

indicate that the studied area was uncontaminated. Furthermore, the 

pollution load index, >1, indicates polluted area. 

 The BNPP area was uncontaminated with REE, furthermore, soil, shore 

and bottom sediment samples show different degree of REE enrichment. 

 LREE were more abundant than HREE. Among the REE, Nd was the 

most abundant element. The chondrite normalized REE patterns in shore, 

soil and bottom sediments indicated an enrichment of LREE over HREE. 

 With exception of La in shore samples, all the REE show no enrichment. 

Contamination factor for REE CF <1, which indicates a low 

contamination factor and geoaccumulation results indicate that the studied 

area was uncontaminated. Moreover, the pollution load index, <1, 

indicates no pollution in the area. 

 The spatial distribution of REE was more compact in the south compared 

to the north, with less severe contaminations in the east and west. 
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 The natural radioactivity of 
238

U (
226

Ra),
232

Th and 
40

K measured 

suggested that the measured natural concentration activities were below 

the world average and the anthropogenic radionuclide 
137

Cs is below the 

detection limit. 

 The 
234

U/
238

U ratio measured by alpha spectrometry show wide range, 

which reflect that the area was not, closed system with different sources, 

there was disequilibrium between 
234

U and 
238

U, and that can be attributed 

to the geology of the area. 

 The studied relations between major oxides and radionuclides may 

pointing that uranium and thorium have detrital sources possibly 

associated with silicate minerals. 

 The highest concentrations of heavy metal and REE in addition to natural 

radioactivity concentrations appeared in same sites (S14, S15 (Soil), B4, 

B15 (shore) and M17, M18 (bottom)). 

 This study is considered as a radiological baseline for the Barakah 

Nuclear Power Plant area and might be used to evaluate the impact from 

Barakah Nuclear Power Plant when operation start in 2018. 

5.2 Further Work 

 Periodic radiological monitoring around the Barakah Nuclear Power 

Plant is recommended after the operation of the plant. 

 Anthropogenic radionuclides such as Pu and Po might be considered 

in the coming investigations around the area. 
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